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Abstract—The proper orthogonal decomposition (POD) is shown to be an efficient model reduc-
tion technique for simulating physical processes governed by partial differential equations. In this
paper, we make an initial effort to investigate problems related to POD reduced modeling of a large-
scale upper ocean circulation in the tropic Pacific domain. We construct different POD models with
different choices of snapshots and different number of POD basis functions. The results from these
different POD models are compared with that of the original model. The main findings are: (1) the
large-scale seasonal variability of the tropic Pacific obtained by the original model is well captured
by a low dimensional system of order 22, which is constructed using 20 snapshots and 7 leading
POD basis functions. (2) the RMS errors for the upper ocean layer thickness of the POD model of
order 22 are less than 1m that is less than 1% of the average thickness and the correlation between
the upper ocean layer thickness with that from the POD model is around 0.99. (3) Retaining modes
that capture 99% energy is necessary in order to construct POD models yielding a high accuracy.
© 2006 Elsevier Ltd. All rights reserved.
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1. INTRODUCTION

The proper orthogonal decomposition (POD) is an efficient way to carry out reduced order model-
ing by identifying the few most energetic modes in a sequence of snapshots from a time-dependent
system, and providing a means of obtaining a low-dimensional description of the system’s dynam-
ics. Since it was originally introduced by Karhunen in 1946 (see [1]) and Loéve in 1945 (see [2]),
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the method has been extensively used in research in recent years and successfully applied to a
variety of fields. One of these important applications was the application to spatially organized
motions in fluid flows, such as cylinder flows (see [3]). POD was also used for identification of
coherent structures, signal analysis and pattern recognition (see [4-6]). Many researchers have
also applied the POD technique to optimal control problems. For instance, this method has been
used for Burgers’ equation (see [7-9]), the Ginzburg-Landau equation and the Bénard convection
(see [10]), and in other fluid control problems [11-17]). More recently POD has also been used in
inverse problems (see [18]). In addition, the method has also been used for industrial applications
such as supersonic jet modeling (see [19]), thermal processing of foods (see [20,21]), and study of
the dynamic wind pressures acting on buildings ([22]), to name but a few. For a comprehensive
description of POD theory and state of the art POD research, see [23,24].

Compared with above efforts, little attention was paid to application of POD to large-scale
geofluid dynamics such as atmospheric or oceanic systems. In general these dynamic systems
are quite complex and their discrete models are hard to solve due to their large dimensions
(typical 10° — 10®). Uzunoglu et al. (see [25]) applied POD to adaptively reduce an ensemble
for numerical weather forecasting. Another obvious application of POD in weather forecasting
and operational oceanography is the four-dimensional variational (4DVAR) data assimilation
problem. 4D-VAR looks for an optimal solution of an atmospheric or oceanic general circulation
model that fits observations over a certain period (analysis interval) best. 4D-VAR is an optimal
control problem. However, a major hurdle in use of 4D-Var for realistic general circulation
models is the dimension of the control space, generally equal to the size of the model state
variable and typically of order 107 — 10%. Current ways to obtain feasible implementations
of 4D-VAR consist mainly of the incremental method (see [26]), check-pointing (see [27]) and
parallelization. However, each of these three methods have their typical defects. The incremental
method is characterized by the fact that the dimension of the control space remains very large in
realistic applications (see [28-30]). Memory storage requirements impose a severe limitation on
the size of assimilation studies, even on the largest computers. Checkpointing strategies (see [31])
have been developed to address the explosive growth in both on-line computer memory and
remote storage requirements of computing the gradient by the forward/adjoint technique, which
characterizes large-scale assimilation studies. POD provides a potential candidate technique that
can dramatically reduce computation and memory burdens of 4D-VAR. Cao et al. (see [32])
made an initial effort to explore the feasibility of application of POD to 4D-VAR.

Prior to applying POD to various atmospheric and oceanic problems, it is essential to study
problems related to construction of POD reduced models: how to choose the number of POD
snapshots; how to decide the modes used in such system and how the different modes of basis
functions used to reconstruct the solution are affecting the resulting simulation results. These
problems have not been studied as of now for large-scale atmospheric or oceanic models. In this
paper, we will study these problems with an upper ocean system in the tropical Pacific domain.

The paper is arranged as follows. The upper tropical Pacific Ocean model is described in
Section 2. The POD technique is briefly presented in Section 3. The issues of the implementation
and numerical calculations with POD used in the context of simulating the upper layer thickness
and the current in this ocean model are finally discussed in Section 4.

2. MODEL OF UPPER TROPIC PACIFIC

2.1. Description of the Physical Model

The numerical model used in this paper is a reduced-gravity model with a constant-depth
surface layer (Cane 1979; Seager et al. 1988), which is studying the ocean dynamics in tropical
regions.

The model is a reduced-gravity, linear transport model, consisting of two layers above the
thermocline with the same constant density (Figure 1). It is assumed that below the thermocline,
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Figure 1. The vertical structure of the reduced-gravity model.

the ocean is of a higher density, which is sufficiently deep so that its velocity vanishes and there
is no density difference across the base of the surface layer, that is, we regard the surface layer
as part of the upper layer. The equations for the depth-averaged currents are

Ou ,0h T* 2
——fv——ga—+—H+AVu—au, (2.1a)
31} ,0h 2
+ fu=—¢ 6_ + _H + AV*v — av, (2.1b)
oh Ou Ov
Br +H (51_- + a—y) =0, (2.1¢)

where (u,v) are the horizontal velocity components of the depth-averaged currents; h the total
layer thickness; f the Coriolis force; H the mean depth of the layer; po the density of water;
and A the horizontal eddy viscosity coefficient and « is the friction coefficient. The wind stress
is calculated by the aerodynamic bulk formula (7%,7Y) = paCDly/Uwzjnd + szind(UWindv Viind),
where p, is the density of the air; Cp the wind stress drag coefficient; and (Uwind, Vind) the
components of the wind velocity.

2.2. Numerical Scheme

The dynamical model equations (2.1a)-(2.1c) are governed by wave dynamics. In addition,
the chosen model domain ranges from 29°S ~ 29°N, 120°E ~ 70°W. This chosen model domain
allows all possible equatorially trapped waves, to be excited by the applied wind forcing (Moore
and Philander 1978). We choose the spatial interval for the dynamical model to be Az = Ay =
0.5° and the time step to be At = 100s. This temporal-spatial resolution will allow resolving all
possible waves and to render the model integration numerically stable. The model (2.1a)—(2.1c)
is driven by the FSU (Florida State University) climatological monthly mean winds (Stricherz
et al. 1992). By a linear interpolation, the data are projected onto each time step and into each
grid point. In Table 1, the values of the numerical parameters used in the model integration are
listed. It takes about 20 years for the model to reach a periodic constant seasonal cycle; at that
time, it has successfully captured the main seasonal variability of dynamical fields. The currents
and the upper layer thickness of the 215 year are saved for the process.

The model is discretized on the Arakawa C-grid, and all the model boundaries are closed. At
these solid boundaries, we apply the no-normal flow and no-slip conditions. The time integration
uses a leapfrog scheme, with a forward scheme every 10" time step to eliminate the computational
mode. Every integration day a mass-compensation is carried out.
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Table 1. The values of the model parameters used in the model.

Parameter Value Remarks

q 3.7 x 10—2 Reduced gravity
Cp 1.5 x 10~3 Wind stress drag coefficient

H 150 m Mean depth of upper layer

Pa 1.2kg-m~3 Density of air

PO 1025kg- m—3 Density of seawater

750 m?. sec—1 Coefficient of horizontal viscosity

«a 2.5x10~3 Coefficient of bottom friction

3. PROPER ORTHOGONAL DECOMPOSITION

We denote by U;(Z), i = 1,2,...,n the set of n observations (also called snapshots) of some
physical process taken at position Z. In this section, we consider the discrete Karhunen-Logve
expansion to find an optimal representation of the ensemble of snapshots.

In general, each sample of snapshots U;(Z) which is defined on a set of m node Z stands for a
m dimensional vector #; as follows:

Uy = [ﬂu,ﬁm,-u,ﬁim]T (3.1)

where u;; represent j component of the vector @;. Define the mean vector
1 n
ak=52mk, k=1,...,m. (3.2)

We can form a new ensemble by subtracting from the mean as follows:
Uik = Ui (Tk) = Uik — Tk, k=1,...,m. (3.3)

To find an optimal compressed description of the sequence of data (3.3), one description of the
process is a series expansion in terms of a set of basis functions. Intuitively, the basis functions
should represent the members of the ensemble in some sense. Such a coordinate system is provided
by the Karhunen-Loéve expansion. Actually here, the basis functions & are admixtures of the
snapshots given by

(3.4)

3

q)(f)=zaikvi(f), k=1,...,
i=1

Here, the coefficients a;; are to be determined so that ® given by (3.4) will most resemble the
ensemble (3.3). More specifically, one looks for a function ® to maximize

.71;2 3 (@ (8)%, (3.5)

i=1 k=1

-

subject to

Y (@ @) =1.

k=1

Let matrix A denote the new ensemble

U1 Va1 o Um
Vig V22 ct Un2

Uim V2m  *** Unm /) ,xn
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Here, the discrete covariance matrix of the ensemble 4 is
O, = AAT Mg = M. (3.6)

Thus, with the POD mode computed, one must solve an m x m eigenvalue problem. For a
discretization of an ocean problem, the dimension m often exceeds 10%, so it is often not feasible
to get the direct solution of this eigenvalue problem. The m x m eigenvalue problem can be
transformed into an n x n eigenvalue problem (Sirovich, 1987). The n x n eigenvalue problem
can be solved with the method of snapshots,

Dwy = AT Awy, = Myw, M\ € R™, (3.7)

where D is a symmetric and nonnegative matrix, Ay are the eigenvalues. We can choose the
eigenvectors wy to be orthonormal, and give the POD modes by ¢r = Awr/v/Ax. In matrix
form, ® = AW, where ® = [¢1,¢2,...,¢,], W = [w1,ws,...,w,]. It is shown that the cost

functional
m

n
IS e @) =
i=1 k=1
which is maximized when the coefficients a;s of (3.4) are the element of the eigenvector corre-
sponding to the largest eigenvalue of D.
The n x n eigenvalue problem (3.7) is more efficient than the m x m eigenvalue problem (3.6)
when the number of snapshots n is smaller than m.

4. POD REDUCED MODEL

In this section, the POD method is applied to the above upper tropical Pacific Ocean model.
This method can provide a systematic way of creating a reduced basis space with the state of the
system at n different time instances and m different space station. As in general reduced order
basis methods, one can derive the states from full order numerical computations and n should
be sufficiently large so that the snapshots #; may contain all salient features of the dynamics
being considered. Therefore, through a nonlinear Galerkin procedure the POD basis functions
&, with the original dynamics offer the possibility of achieving a high fidelity model (albeit) with
a possible large dimension n.

To achieve model reduction, we first choose k¥ < n then carry out a nonlinear Galerkin pro-
cedure with the set of elements {®;,®,,...,Px}. How to choose the values of n and k is a
crucial question. Since the associated POD eigenvalues are ordered A\; > Ay > --- > A, > 0, one
can define a relative information content to choose a low-dimensional basis of size M <« n by
neglecting modes corresponding to the small eigenvalues. We define

Zl'c—l Ai
I(k) = &=t
( ) Zi:l Ai
and choose M such that
M = argmin {I(k) : I(k) > v},

where 0 < v < 1 is the percentage of total information captured by the reduced space DM =
span {®1, @2, ..., P }.The tolerance v must be chosen to be in the vicinity of the unity in order
to capture most of the energy of the snapshot basis. Here for our case, if the POD is constructed
for n = 5 and a reduced order model with k = 3 yields a ratio of about 0.99; and if n = 20 or
n = 30 with k£ = 7 it yields a ratio of above 0.99 for the percentage of kinetic energy retained.

We are now returning to the upper tropical Pacific Ocean model of Section 2 to apply the POD
technique. Therefore, solve equations (2.1a)—(2.1c) for the steady state solutions of upper layer
thickness and velocity field after 20 years time integration. The 215 year results are depicted
graphically in Figure 2.
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Figure 2. Upper layer thickness of full order approximation in February, May, August,
and November.

4.1. Construction of POD Basis Vectors

We compute the POD reduced order spaces XFOP, XPOD XPOD 45 the following steps.

(i) Obtain the snapshot. First, integrate equations (2.1a)—(2.1c) 20 years. During the 21%t
year solve these equations at n (n=5, 20, 30) time steps (then snapshots) {hi(Z), ho(Z),...,
hn(Z); w1 (F), u2(Z), . . ., un(F); v1(Z), v2(F), ..., va(Z)} at an increment of 360/n day for
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Z € Q (here Q denotes the two-dimensional rectangular domain). These snapshots are
discrete data over Q.

(ii) Compute the covariant matrix Dy, D,,, D,. The matrix elements of Dy, D,,, D, are given
as Dy = A;Ah,Du = AI A,, D, = AI A, which is depicted in Section 3. Here the
space-time transposed technique is used.

(iii) Solve the eigenvalue problem Dy Vi =ApVi, D, V,, =\, V,,, D, V,, = A, V,. Since Dy, D, D,
are all nonnegative, Hermitian matrices, they all have a complete set of orthogonal eigen-
vectors with the corresponding eigenvalues arranged in ascending order as Apy > Ap2 2>
Z /\hn Z O;Aul 2 Au2 2 Z Auﬂ. Z O;Avl 2 )\v2 2 2 )\vn Z 0 YeSPeCtively‘

(iv) Compute the POD basis vector. The POD basis elements ®;(Z); ®u:(Z); Pyi(Z) such that

X5, °P = span {@41(Z), Ph2(), - - -, Ban(@)},
X3P = span {@41(%), Pu2(), - -, Bun (@)},
XEOD = span {q)vl(f)’ q)u2(f)7 cre Qvn(f)}’

are defined as
n n n
k. . _ k. . _ k
Bpe =Y afichi; Buk = Y aicus; Quk = ) akicui,
i=1 i=1 i=1

where 1 < k < n and aﬁi;aﬁi;ak are the elements of the eigenvalues AhV,fc VvV Ahk;

vi

A, VJ‘ /v Auk; A,,Vu’c /v/Auk corresponding to the eigenvalue, respectively.

4.2. Reconstruction of Solutions through POD Basis Vectors

Since the scales in model variables h,u,v are not uniform, thus different modes can be chosen
to reconstruct the solutions.

In this section, we will take into account the problem of approximation of the infinite-dimension-
al equations (2.1a)—(2.1c) by a sequence of finite-dimensional problems with combination of
Galerkin approximations and POD basis elements.

First, different modes of the basis functions will be used to reconstruct model variables, which
assume the following forms

hE)=h@)+ Y B (@),

=1

W@t =a @)+ Bbu (@),

i=1
v(Z,t) =9 (%) + Zvﬁi"%i ().
=1

Once the coefficients 8 (i = 1,...,n4); B¢ (i =1,...,n,); Y (i = 1,...,n,) have been obtained,
then substituting h(Z,t), u(Z,t),v(Z,t) into equations (2.1a)-(2.1c) and multiplying by ¢p; (i =

1,...,mp); dus (1 =1,...,n4); ¢ (¢ = 1,...,n,) and integrating respectively in terms of Z.
Since the basis functions are orthonormal, the system of ODE is as follows
9B} (¢) :
L = (6B B, O BE ), B2 (5B, BE, (), G =Ly,
aﬂy(t) u u v .
ét = fa (6, BL®) - s B @) BE®), s Bt (@) BY(E), - s B (1)) G =15nn
9B; (1)

5% = (&, BE@)s - B, @ BL(R), -, B () BE (@), -, B () s G =1,y
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along with the initial condition
ﬂzh(O)z(h(f,O)-—f_L(."i,“),(ﬁm(f)), t=1,...,mp,
B (0) = (u(Z,0) — @ (Z), dui (Z)), i=1,...,Ny,
57(0) = (v(Z,0) — 3 (%), dwi (T)), i‘=1,...,nv.

Solving the above ODE problems using a finite difference scheme, one can obtain the reconstructed
solutions.
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Figure 3. The POD modes capture of energy in case of five snapshots, 20 snapshots,
and 30 snapshots; rhombus line: upper layer thickness h (m), triangle line: zonal
current velocity u (m/s), and star line: meridional current velocity v (m/s).



Table 2. RMSE of five snapshots, 20 snapshots, and 30 snapshots, respectively, for

Reduced-Order Modeling

different percentages of captured energy.

(a). Upper layer thickness h (unit: m).

RMSE of h 70% energy | 95% energy 99% energy
5 snapshots 3.17096138 1.31539011 0.88490134
20 snapshots 2.99194503 1.29849041 0.88701826
30 snapshots 2.97900558 1.27734923 1.07926083
(b). The zonal current velocity u (unit: m/s).
RMSE of u 58% energy 95% energy 99% energy
5 snapshots 0.01243962 0.00761431 0.00669807
20 snapshots 0.01354840 0.00680718 0.00542305
30 snapshots 0.01358298 0.00711650 0.00504097

(c). The meridional current velocity v (unit: m/s).

RMSE of v 54% energy | 95% energy | 99% energy
5 snapshots 0.01182489 0.00403928 0.00422783
20 snapshots 0.01149406 0.00387623 0.00504759
30 snapshots 0.01146040 0.00474720 0.00536092

1381

4.3. Numerical Results

In this section, we report numerical computations related to the approaches presented in the
previous paragraphs.

Here, if n = 5, the first four POD modes (Figure 3), capture nearly 100% of the characteristics
of the five observations. While for n = 20 or n = 30, the first seven POD modes capture about
99% energy. It also could be seen clearly, for the upper layer thickness h, the same modes may
capture the most energy, next is u and the least is v. Thus, different POD modes may be used
to reconstruct h, u, and v, respectively.

To quantify the performance of the reduced basis method, we use two metrics namely the
root mean square error (RMSE) and correlation of the difference between the full order and the
reduced order simulation. This is obtained by first taking twelve-month’s full order results and
the corresponding twelve-month’s reduced order results and computing the error, for example,
for variable u it yields

M
_ 1 . N (2
RMSE,,, = Mglum(zz) um (2|,

where M is the number of node, the index m denotes the month, 4, is the full order approxi-
mation and u,, is the reduced order approximation. The average RMSE is defined as

1 12 1 12 1 M
—_ — = — [— U 2) — ; 2
RMSE, = 12";RMSEum 12; M;mm(%) um (2:)°.

the correlation as:
Ly (i (26) = i () (um (23) = T (21))
VI, (@m(2) = () T, (e (2) — T (20))?

CORRELATION,, =

where @& and @ are the average of full-order approximation and reduced order approximation
respectively. Similarly compute the RMSE and the correlation for other model variables A and v.
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Figure 4. Upper layer thickness in February, May, August and November in case
of five snapshots, 20 snapshots, 30 snapshots, energy capture 95%, the full model
approximation and the reduced order approximation. Black isoline: full order ap-
proximation, red isoline: five snapshots, green isoline: 20 snapshots, blue isoline: 30
snapshots.

Table 2 presents the average RMSE in reduced order approximations using different modes as
ton =5, n = 20, and n = 30 snapshots. Note that from these simulations, on one hand, with
the span of the reduced basis space increasing, the RMSE decreases for the same number of
snapshots it retained. On the other hand, for different number of snapshots but for the same
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Figure 5. Upper layer thickness in February, May, August, and November in case
of five snapshots, 20 snapshots, 30 snapshots, energy capture 99%, the full model
approximation and the reduced order approximation. Black isoline: full order ap-

proximation, red isoline: five snapshots, green isoline: 20 snapshots, blue isoline: 30
snapshots.

energy captured, the RMSE decrease stops at 30 snapshots. The correlation for twelve months is
displayed in Table 3. Clearly, when increasing the POD mode, the correlation increases also for the
same snapshots. The increment stops at 30 snapshots (Table 3) where the best approximation
obtained with 20 snapshots produced a correlation of the same level as the approximation 20
snapshots.
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However one must also note that a simple linear independence is not a sufficient criterion when
choosing the POD mode. It only provides one with some reference. The comparison between the
full order and the reduced order is displayed in Figure 4 for a retained energy of 95% respectively
about upper layer thickness. From these figures, we can see there is little improvement between
either 20 snapshots or 30 snapshots compared to five snapshots, but there is almost no difference
between 20 snapshots and 30 snapshots. The contrast between the full order approximation and
numerical results using energy captured 99% for different snapshots about upper layer thickness
is displayed in Figure 5 It shows that the reduced order approximation may be sufficiently close
to the full order approximation. Other experiments have also been carried out, with either more
or less taken snapshots and for different percentages of energy captured. From the computational
cost and memory storage aspects, 20 snapshots and the energy captured 99% yielded the best
results.

5. CONCLUSIONS

We studied problems related to POD reduced modeling of a large-scale upper ocean circulation
in the tropic Pacific domain. The large-scale seasonal variation of the upper tropic Pacific is first
simulated using a reduced gravity model with spatial resolution of Az = Ay = 0.5 and a time
step of At = 100s. Then we constructed different POD models with different choices of snapshots
and different number of POD basis functions. The results from these different POD models are
compared with that of the original model. The main conclusions are as follows.

o The large-scale seasonal variability of the tropic Pacific obtained by the original model
can be captured well by a low dimensional system of order of 22, that is constructed by
20 snapshots and seven leading POD basis functions.

e By analysis of RMS errors and correlations, we found that the modes that capture 99%
energy are necessary to construct POD models.

o RMS errors for the upper ocean layer thickness of the POD model of order of 22 is less
than 1m that is less than 1% of the average thickness. The correlations of the upper ocean
layer thickness from the POD model is around 0.99.

e Compared with the upper ocean layer thickness, the velocity fields from the POD model
are less accurate, especially the meridional component. This remains a problem to be
further explored in forthcoming research.

Our preliminary investigations on the use of POD for the upper ocean circulation simulation yield
encouraging results and show that POD can be a powerful tool for various applications such as
four-dimensional variational data assimilation. These results will be described in a follow-up

paper.
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