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1. INTRODUCTION

Observation sensitivity techniques have been ini-
tially developed in the context of 3D-Var data as-
similation for applications to targeted observations
(Baker and Daley 2000, Doerenbecher and Bergot
2001). Adjoint-based methods are currently imple-
mented in NWP to monitor the observation impact
on analysis and short-range forecasts (Fourrié et al.
2002, Langland and Baker 2004, Zhu and Gelaro
2008).

An optimal use of the time-distributed observa-
tional data may be achieved with a four dimensional
variational data assimilation system (4D-Var DAS)
and the adjoint methodology may be used to esti-
mate the forecast sensitivity with respect to all pa-
rameters in the DAS. Specification of the statistical
properties of the background and observation errors
is a key DAS ingredient and accurate error estimates
are often difficult to provide. A better understand-
ing of how uncertainties in the specification of the
error statistics will impact the analysis and fore-
cast may be achieved by extending the sensitivity
analysis to the DAS input [y,R,xb,B]. The error-
covariance sensitivity analysis may be used to iden-
tify the observation and background components
where improved statistical information would be of
most benefit.

In this work the forecast sensitivity with respect
to the time-series of data/error covariance pairs
(yi,Ri), i = 0, 1, . . . , N and to the background input
pair (xb,B) in a 4D-Var DAS is presented and the
close relationship between the sensitivities within
each pair is discussed. In practical applications a
high computational cost is required to provide ac-
curate observation sensitivity estimates since the
linear algebra involves Hessian of the 4D-Var cost
functional. To overcome this difficulty, a reduced-
order observation sensitivity approach is formulated
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by projection on a low-dimensional state subspace.
An optimal basis to the reduced space is shown to
be closely related to the Hessian singular vectors
optimized at the observation time. A computa-
tionally feasible method is proposed to identify a
projection operator on a low-dimensional control
space that incorporates in a consistent fashion in-
formation pertinent to the 4D-Var data assimilation
procedure and to the forecast sensitivity. Idealized
twin experiments are performed with a Lin-Rood
finite volume global shallow-water model (Lin and
Rood 1997) and initial conditions from ECMWF
ERA-40 data sets. A nonlinear 4D-Var assimilation
scheme is implemented using first and second order
adjoint modeling to provide gradient and Hessian
information, respectively. Preliminary numerical re-
sults and a comparative analysis with observation
sensitivities evaluated in the full model space indi-
cate that the reduced-order approach may be used
to achieve significant computational savings in the
observation sensitivity estimation. Limitations of
the current implementation and future research di-
rections are also discussed.

2. 4D-VAR FORECAST SENSITIVITY

A general framework to sensitivity analysis in the
context of optimal control is discussed by Le Dimet
et al. (1997). Corresponding to the 4D-Var cost
functional
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1
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(x0 − xb)T B−1(x0 − xb)

+
1
2
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(Hi(xi)− yi)T R−1
i (Hi(xi)− yi)

xa
0 = Arg minJ (1)

the optimality condition ∇x0J (xa
0) = 0 is
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0 − xb)

+
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where M0,i(xa
0) is the tangent linear model asso-

ciated to the nonlinear model integration xi =



Mt0→ti
(xa

0) and Hi(xi) is the Jacobian matrix of
the observation operator Hi evaluated at xi. An
analytic derivation of the 4D-Var DAS sensitivity
equations from the first order necessary condition is
provided by Daescu (2008). The sensitivity equa-
tions of a scalar aspect Jv(xv) of the forecast xv =
Mt0→tv

(xa
0) are given in Table 1

Table 1: Forecast sensitivity to 4D-Var DAS input.

DAS input Forecast sensitivity (∇Jv)

yi R−1
i HiM0,iA∇xa

0
Jv

σ2
i (R−1

i (Hi(xi)− yi)) ◦ ∇yi
Jv

Ri : (R−1
i (Hi(xi)− yi))⊗∇yi

Jv

xb B−1A∇xa
0
Jv

σ2
b (B−1(xa

0 − xb)) ◦ ∇xb
Jv

B : (B−1(xa
0 − xb))⊗∇xb

Jv

where ⊗ and ◦ denote the Kronecker and Hadamard
product, respectively, (:) denotes the vec operator
that transforms a matrix into a column vector (Mag-
nus and Neudecker 1999) and A denotes the inverse
Hessian matrix at the analysis xa

0

A
def
=

[
∇2

x0x0
J (xa

0)
]−1

(3)

The sensitivity calculations require the solution to
the linear system

A−1µ0 = ∇xa
0
Jv (4)

involving the 4D-Var Hessian and an iterative pro-
cedure such as the conjugate gradient method (CG)
must be used to approximate the solution µ0 to the
system (4). For time distributed observations, the
errors in the estimation of µ0 are further propagated
into the observation sensitivity computations by the
tangent linear model M0,i. An increased accuracy
in the numerical solution to (4) is thus necessary for
the sensitivity estimates to be reliable.

It is noticed that if the observation errors are as-
sumed to be uncorrelated, Ri = diag(σ2

i,1, . . . , σ
2
i,ki

),
the sensitivity to the observation-error variance is

∂Jv

∂σ2
i,j

=
1

σ2
i,j

(Hi(xi)− yi)j
∂Jv

∂(yi)j
, j = 1, 2, . . . , ki

(5)
For each component (yi)j of the observational
data vector yi at time ti, the sensitivity to the
observation-error variance σ2

i,j is related to the ob-
servation sensitivity by the proportionality coeffi-
cient (Hi(xi) − yi)j/σ2

i,j - the analysis fit to data
divided by the observation-error variance.

2.1 Low-rank approximation using HSVs

The forecast sensitivity with respect to the ob-
servational data set yi at time ti may be expressed
as

∇yi
Jv = R−1

i HiAi∇xi
Jv (6)

where the matrix

Ai = M0,iAMT
0,i (7)

is an approximation of the covariance matrix of the
errors in xi. The Hessian singular vectors (HSVs)
optimized at the observation time ti are the gen-
eralized singular vectors of the pair (M0,i,A−1/2)
and are obtained by solving a generalized eigenvalue
problem

MT
0,iM0,ivj = λjA−1vj (8)

HSVs are A−1-orthonormal and the evolved singu-
lar vectors uj = (1/

√
λj)M0,ivj are orthonormal

eigenvectors to Ai:

Aiuj = λjuj (9)

Given k < n,

A(k)
i =

k∑
j=1

λjujuT
j (10)

provides an optimal rank−k approximation to Ai

in any unitarly invariant norm and may be used to
estimate the observation sensitivities

∇yi
Jv ≈ R−1

i HiA
(k)
i ∇xi

Jv (11)

The solution to the generalized eigenvalue value
problem (8) may be obtained through an iterative
algorithm that requires only matrix-vector products
such as the Jacobi-Davidson method (Sleijpen and
Van der Vorst 1996). An exact evaluation of the
required Hessian-vector products may be obtained
with a second order adjoint model (SOA) (Le Dimet
et al. 2002). Gradient differences may be used to
approximate A−1v ≈ (∇J (x0 + εv) − ∇J (x0))/ε
which is an exact relationship for a quadratic 4D-Var
cost functional, e.g., in the incremental formulation
(Courtier et al. 1994). For each observation time
ti a new set of HSVs must be computed and the
computational cost increases as ti − t0 increases.
The high computational burden associated to the
HSVs is a major factor that has hampered their
potential benefit in many practical applications. A
computationally efficient approach is to solve the
ordinary eigenvalue problem (9) using an approxi-
mation of the inverse Hessian matrix A. Approxi-
mations based on the leading eigenvectors and the



BFGS method are discussed in the work of Fisher
and Courtier (1995), Leutbecher (2003).

2.2 Reduced-order 4D-Var observation sensi-
tivity

The sensitivity equations are derived from the
optimality condition (2) whereas in the practical
implementation the minimization (1) is terminated
when the gradient satisfies a certain convergence cri-
teria or simply after a prescribed number of iter-
ations. To obtain an estimate of the observation
sensitivity that is consistent to the data assimila-
tion process, Zhu and Gelaro (2008) implemented
the adjoint of the minimization algorithm in the GSI
analysis scheme (Wu et al. 2002).

In this work a reduced-order approach to obser-
vation sensitivity is considered where information
gathered in the 4D-Var minimization (1) is used to
define an appropriate low-rank state subspace. In
a general framework, the reduced-order 4D-Var is
formulated by projecting δx0 = x0 − xb onto a k-
dimensional control space (Daescu and Navon 2008)

Πδx0 = Ψη =
k∑

i=1

ηiψi (12)

where the matrix Ψ = [ψ1, . . . ,ψk] ∈ Rn×k has the
reduced-space basis vectors as columns (orthonor-
mal), Π = ΨΨT is the projection operator, and
η = (η1, . . . ηk)T ∈ Rk is the coordinates vector in
the reduced space

η = ΨT δx0 (13)

The reduced-order 4D-Var problem searches for the
optimal coefficients η

Ĵ (η) := J (xb + Ψη); min
η∈Rk

Ĵ (η) (14)

If ηa is the solution to (14), an approximation to the
analysis (1) is obtained as

xa
0 ≈ xb + Ψηa (15)

It is noticed (Daescu and Navon 2007) that deriva-
tives in the reduced space are evaluated according
to

∇ηĴ = ΨT∇x0J (16)

∇2
ηηĴ = ΨT

[
∇2

x0x0
J

]
Ψ (17)

such that in the reduced-space the linear system (4)
becomes

ΨT A−1Ψµ̂0 = ΨT∇xa
0
Jv (18)

The reduced Hessian matrix ΨT A−1Ψ ∈ Rk×k is
positive definite, provided that A−1 is positive def-
inite, and the reduced-order approach estimates the
observation sensitivity according to

∇yiJ
v ≈ R−1

i HiM0,iΨµ̂0 (19)

Remark 1: It is noticed from (18) that Ψµ̂0 is a
solution to the projected system (4)

ΠA−1Ψµ̂0 = Π∇xa
0
Jv (20)

and that if the approximation (15) is exact, then the
reduced- order 4D-Var observation sensitivity esti-
mate relies on the reduced-rank approximation to
the inverse Hessian matrix

A ≈ Ψ
[
ΨT A−1Ψ

]−1

ΨT (21)

2.3 Reduced-order subspace selection

In practice the 4D-Var minimization (1) is im-
plemented by performing k-iterations

x(i+1)
0 = x(i)

0 + αid(i), i = 0, 1, . . . , k − 1 (22)

with the initial guess x(0)
0 = xb and the optimality

condition (2) is only approximately satisfied. The
analysis xa

0 is expressed

xa
0 = xb +

k−1∑
i=0

αid(i) (23)

and the analysis increment δxa
0 is an element of

the vector space spanned by the descent directions
δxa

0 ∈ S = Span{d(0),d(1), . . . ,d(k−1)}.

Remark 2: If the conjugate gradient or the BFGS
method is implemented and the cost functional (1)
is quadratic (e.g., incremental 4D-Var formulation)
then xa

0 is the minimizer of J over the set {xb +S}.
Denoting {ψ0, . . . ,ψk−1} an orthonormal basis to
S, ∇ηĴ (ηa) = 0 and the optimality condition is
satisfied in the reduced space, although in general
∇x0J (xa

0) 6= 0. The reduced-space is thus consistent
to the 4D-Var minimization process and the approx-
imation (15) is exact.

An additional enhancement is obtained by
appending to the reduced basis the unit vec-
tor ψk orthogonal to each of ψ0, . . . ,ψk−1,
ψk ∈ {ψ0, . . . ,ψk−1}⊥, such that ∇xa

0
Jv ∈

Span{ψ0, . . . ,ψk−1,ψk}. The reduced-space pro-
vides thus an exact representation of the forecast



sensitivity to analysis Π∇xa
0
Jv = ∇xa

0
Jv and an er-

ror estimate may be derived from Eqs. (4) and (20)

µ0 −Ψµ̂0 =
(
AΠA−1 − I

)
Ψµ̂0 (24)

where I is the n× n identity matrix.

3. NUMERICAL EXPERIMENTS

Numerical experiments are setup with a finite
volume global shallow-water (SW) model of Lin and
Rood (1997) at a resolution of 2.5◦×2.5◦ and with a
time step ∆t = 600s. The state vector x = (h, u, v)
where h is the geopotential height and u and v are
the zonal and meridional wind velocities, respec-
tively. An idealized 4D-Var DAS is considered in
the twin experiments framework: a reference ini-
tial state xt

0 (“the truth”) is taken from the Euro-
pean Centre for Medium-Range Weather Forecasts
(ECMWF) ERA-40 500 hPa data valid for 0600
UTC 15 March 2002; the background estimate xb

to xt
0 is obtained from a 6h integration of the SW

model initialized at t0 − 6h with ECMWF ERA-40
500 hPa data valid for 0000 UTC 15 March 2002.
“Observational data” for the assimilation procedure
is generated from a model trajectory initialized with
xt

0 and corrupted with random errors from a nor-
mal distribution N(0, σ2). The standard deviation
is chosen σh = 5 m for the height and σu = σv = 0.5
m s−1 for the velocities and the observation errors
are assumed to be uncorrelated. The background
errors are assumed uncorrelated and are specified at
a ratio σ2

b/σ2 = 4 to the observations. Data sets are
provided at locations shown in Fig. 1 at a time incre-
ment of one hour over the data assimilation interval
[t0, t0 + 6h].

Figure 1: Observation locations and the verification
domain at tv = t0 + 30h.

The observation locations were obtained from the

actual locations of the radiosondes observations in a
realistic data assimilation system projected to the
closest model grid point. The observation operator
H is thus a matrix with entries 0 and 1 only and
there are 572 observation locations.
At the verification time tv = t0 + 30h we consider
as reference state xt

v = Mt0→tv
(xt

0) and the forecast
xf

v = Mt0→tv
(xa

0). The forecast error is displayed in
Fig. 2 using a total energy norm to obtain grid-point
values (units of m2 s−2). The verification domain is
taken Dv = [50◦N, 65◦N ] × [60◦W, 30◦W ] and the
functional Jv is defined as the forecast error over
Dv in a total energy metric

Jv = (xf
v − xt

v)T PT EP(xf
v − xt

v) (25)

where P is the projection operator on Dv.

Figure 2: Forecast error (m2 s−2) at tv = t0 + 30 h
and selection of the verification domain.

3.1 Observation-sensitivity analysis

The observation sensitivity analysis reveals that
the specified forecast aspect Jv exhibits a large sen-
sitivity with respect to only a few of the observations
in the DAS. As a measure of the forecast sensitivity
to observation and error variance at each data loca-
tion over the assimilation time interval we consider
the time cumulative magnitude of the sensitivities∑N

i=0 |∇yi
Jv| and

∑N
i=0 |∇σ2

i
Jv|, respectively. The

location of the observations and error variances of
largest forecast sensitivity is displayed in Fig. 3 for
each of u, v, and h data. A distinct configuration
and magnitude is noticed for each data component,
indicating that the location of observations and er-
ror variances that provide a potentially large forecast
impact depends on the data type.



Figure 3: Locations of data with forecast sensitivity of largest magnitude. Time cumulative magnitudes of
the observation and error-variance sensitivities are displayed.

Evaluation of the observation sensitivity in the
full state space requires the solution to the large-
scale linear system (4), whereas a low-dimensional
system (18) is solved in the reduced-order approach.
A second order adjoint model (SOA) has been used
to provide the Hessian-vector products required in
the CG iteration. The reduced-order approch en-
tailed significant computational savings and a re-
duction of as much as 75% in the CPU time using
a reduced-space of dimension k = 100. The velocity
components of the full state solution µ0 and the cor-
responding reduced order approximation Ψµ̂0 are
displayed in Fig. 4. It is noticed that the reduced or-
der approach is able to closely match the ”shape” of
the solution, however the amplitude of the solution
components is in general lower. To illustrate this as-
pect, in Fig. 5 we further provide the velocity com-

ponents of the full state solution µ0 and the reduced
order solution Ψµ̂0 corresponding a global forecast
error aspect (Dv = [90◦S, 90◦N ]× [180◦W, 180◦E]).
A comparison of the observation sensitivity esti-
mates in the full space to the reduced-order esti-
mates indicates that the reduced-order approach is
able to properly identify the data locations of largest
sensitivity magnitude. Illustrative results are shown
in Fig. 6 and Fig. 7 for u-wind data at t = 6 h corre-
sponding to Dv = [50◦N, 65◦N ]× [60◦W, 30◦W ] and
Dv = [90◦S, 90◦N ] × [180◦W, 180◦E], respectively.
The results also indicate that the observation sensi-
tivity estimates in the reduced-order approach have
larger magnitudes as compared to the full state es-
timates.

From Table 1 it is noticed that the sensitivity to



the background is evaluated according to ∇xb
Jv =

B−1µ0. Since in our experiments B is taken to
be a diagonal matrix, µ0 represents the sensitivity
to background multiplied by the background-error
variance, µ0 = σ2

b ◦ ∇xb
Jv. The reduced order ap-

proach is thus able to properly identify the locations
of high background and observation sensitivity, how-
ever it provides lower background sensitivity values
and higher observation sensitivity values, as com-
pared to the full state estimates.

Figure 4: The velocity components of the full state solution µ0 and the corresponding reduced order approx-
imation Ψµ̂0. The forecast error Jv is defined over the verification domain [50◦N, 65◦N ]× [60◦W, 30◦W ].



Figure 5: The velocity components of the full state solution µ0 and the corresponding reduced order ap-
proximation Ψµ̂0 for a forecast aspect Jv defined over the entire domain.



Figure 6: Data locations of largest sensitivity magnitude at t − t0 = 6 h for the forecast error defined over
the verification domain Dv = [50◦N, 65◦N ]× [60◦W, 30◦W ].

Figure 7: Data locations of largest sensitivity magnitude at t − t0 = 6 h for a global forecast error Dv =
[90◦S, 90◦N ]× [180◦W, 180◦E].

4. CONCLUDING REMARKS

The 4D-Var sensitivity analysis involves a signif-
icant software development and several simplifying
assumptions are required in NWP applications to
reduce the computational burden. In this study
a general framework to reduced-order observation
sensitivity is presented as a computationally feasi-
ble approach to practical applications. Identification
of a reduced-order space based on the information
accumulated during the 4D-Var minimization pro-
cess requires little additional computational effort
and software development. The simplicity of the SW

model allowed the implementation of a second order
adjoint model associated to the nonlinear 4D-Var
formulation and numerical estimation of the sensi-
tivities in both full and reduced-order space. Ide-
alized 4D-Var observation sensitivity experiments
indicate that the reduced-order approach is able to
properly identify data sets and observation loca-
tions of largest forecast sensitivity while providing
significant computational savings. If an increased
accuracy in the observation sensitivity estimates is
required, the reduced-order approach may be used to
provide an efficient initial guess to the full state sen-
sitivity estimation. Further applications to adaptive



data thinning and targeted observations are envis-
aged and valuable insight may be gained through
observing system simulation experiments (OSSE’s).
The 4D-Var framework allows a sensitivity analysis
with respect to time-space distributed data and it
is well suited for applications that involve multiple
observation targeting instants in the assimilation
window e.g., flight path design.
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