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Abstract

We test the ability of non-smooth optimization algorithms to improve the
variational data assimilation of all-sky infrared satellite observations from
the Atmospheric Infrared Sounder (AIRS). Such observations are challeng-
ing to assimilate because of the sharp transition between clear to cloudy con-
ditions in the observation operator. Using empirically derived background
and observation error covariance matrices, we test the relative performance of
several large-scale optimization algorithms, including the non-smooth LMBM
method of Karmitsa etȧl, to run identical and non-identical observing sys-
tem simulation experiments (OSSEs) with the RTTOV and CRTM radiative
transfer models. We conclude that non-smooth optimization offers significant
promise for the assimilation of all-sky infrared radiances.

Keywords: reduced order model, principal component analysis, proper
orthogonal decomposition, error covariance matrix

1. Introduction

The problem of clear-sky data assimilation using infrared satellites is well
understood (e.g. [8], [5]), and while several studies have addressed cloud-
fraction data assimilation, the full all-sky infrared data assimilation problem
is currently a topic of intense research, especially at cloud-resolving scales.

At such scales, the presence of clouds introduces strong non-linearities in
the observation (forward) operator with respect to the cloud micro-physical
control variables between cloudy and clear-sky radiances due to the sharp
transitions from clear skies to clouds within the atmosphere. This high de-
gree of non-linearity ([14]) in the cost function may become an issue for any
optimization algorithm being employed in a variational assimilation system.
A highly non-linear or discontinuous cost function may lead to a poor so-
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lution or even a divergence of the minimization algorithm ([10]). Different
methods are used to try to work around these non-linear and discontinuous
issues including smoothing and regularization (e.g. [2], [13]); however, these
resolutions are often ad-hoc and it is not clear that these remedies can be
applied in more general settings. In addition, it is not known how these
workarounds impact the final data assimilation solution. Many issues in this
area still remain unresolved. For example, while in one recent study which
contained cloud information in the initial condition, the data assimilation
converged and improved the cloud information based on all-sky infrared ra-
diances ([29]), in another study, where a cloud was not present in the initial
condition, data assimilation with a traditional 4D-Var method for the in-
frared all-sky problem fails to reconstruct the desired cloud ([23]). We will
survey these problems and offer a new solution that treats the non-linearities
and non-discontinuities directly. through the use of a penalized 1D-Var with
non-smooth optimization. State of the art non-smooth optimization algo-
rithms may be beneficial in handling the sharp transitions between clear and
cloudy conditions. Steward et al 2012 showed the potential for non-smooth
optimization algorithms in similar circumstances.

In Bauer et al. ([2]) and Geer et al. ([9]), some interesting statistics are
given. While satellite observations provide 90-95% of the data that is as-
similated, over 75% of these observations must be discarded due to cloud
contamination and unknown surface emissivities. While all-sky microwave
data is currently used around the world in operational centers, all-sky in-
frared data is still being investigated. While many cloudy-infrared products
are already available ([14]), these products focus primarily on single-layer
retrieval products from the infrared data such as cloud-top pressure and
temperature, which introduce a source of error ([23]). This work examines
assimilating all-sky infrared radiances directly through the use of a param-
eterized multiple-scattering radiative transfer model. The potential benefits
of this approach are many, and include improving initial conditions of the op-
tical depth and hydrometeor species and concentration of the cloudy column
under investigation. When used in conjunction with microwave information,
in particular, this method may greatly enhance cloud information in the
initial conditions ([1]).

Another challenge in assimilating these observations is the development
of realistic background and observation error covariance representations. Us-
ing sample statistics from training data from the WRF atmospheric model,
we give realistic approximations to the background and observation error
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covariance matrices. We use the Singular Value Decomposition of these ma-
trices to obtain a reduced-order basis that accounts for 99% of the variance
with only 200 principal components. In addition, by neglecting small-scale
components of the error covariance matrices, we effectively regularize the
variational problem.

In this paper we compare the relative performance of four state-of-the-
art optimization methods: the Limited-Memory Broyden-Fletcher-Goldberg-
Shanno (L-BFGS, citations) Quasi-Newton method; the Limited-Memory
Bundle Method (LMBM, citations) non-smooth optimization method; and
the conjugate gradient methods of Hager and Zhang (CG-Descent, citations)
and Andrei (DESCON, citations).

We test our method on all-sky conditions: a clear column, retrievals of
which have been used in operational assimilation for many years (add e.g.
citation); optically thin overcast settings (with cirrus, stratus, and cumu-
lus clouds); and optically thick convective clouds (cumulonimbus with and
without precipitation). We show how this method behaves in all of these sit-
uations starting from a near-clear sky (i.e. no cloud background information)
and has good potential to retrieve cloud-top properties.

We consider synthetic data from the Atmospheric Infrared Sounder (AIRS)
satellite with the Weather Research and Forecasting numerical weather pre-
diction model. We use the ECWMF RTTOV fast radiative transfer model
(citation) and Joint Center for Satellite Data Assimilation Community Ra-
diative Transfer Model (CRTM, citation). We use these two for identical and
non-identical twin OSSE experiments.

1.1. Survey

Bayler et al. (2000, [3]) used a successive correction algorithm for cloud
initialization using infrared GOES sounder data with an 80 km resolution,
Kessler microphysics (cloud, rain, and water vapor species) and a Kuo cumu-
lus parameterization scheme. Janiskova et al. (2002, [12]) made preliminary
investigations of the 1D-Var data assimilation of temperature, humidity, and
pressure as proxies for the development of stratiform clouds. Most impor-
tantly for this work, careful development of the linearization of the obser-
vation operator and cloud parameterization was described. This work used
M1QN3, an implementation of the limited- memory BFGS algorithm. The
use of cloud microphysical variables as control variables was discussed, but
it was decided that directly including these variables would be too difficult
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due to the need for statistics of background errors and performance consider-
ations. Finally, the authors noted a difficulty in triggering new clouds when
the atmospheric state was far from the conditions of cloud formation. Mc-
Nally (2002, [18]) measured the cloud-modified, adjoint-derived sensitivity of
the ECMWF model error to clouds, and found that there was a high degree
of correlation between areas of baroclinic instability (which contributes to
model error) and clouds. He also concluded that the use of hyper-spectral
cloudy IR radiances could have a large impact on improving model error,
although a great deal of effort would be needed to address various issues.
The issues he noted include specifying background error statistics, optimally
selecting which channels to use, and the large sensitivity of the observation
to errors in cloud cover fraction. Szyndel et al. (2004, [26]) examined 1D-Var
assimilation of cloud data using a simplistic single-layer cloud model with an
ensemble of related synthetic satellite observations. Their control variables
consisted of an atmospheric profile without clouds, effective cloud amount
and cloud-top pressure of their single layer cloud using 4–6 infrared chan-
nels. They used the minimum-residual method as a background first guess
for their 1D-Var approach. The effective cloud amount and cloud-top pres-
sure were “clamped” to between 0.01 and 1.0, respectively. As detailed below,
this clamping can cause issues for the convergence of the algorithm, which
indeed Szyndel et al. acknowledged. They used a Gauss-Newton method and
the Levenberg-Marquardt method for least-squares fitting, both of which re-
quire storage on the order of N2, where N is the number of control variables.
Since the only control variables used in their study were cloud-top pressure
and effective cloud amount, this is not an issue. In this work, where the
cloud variables are considered at each cloud-level, such optimization meth-
ods become computationally infeasible, and the limited-memory approaches
detailed above become vital to success.

Chevallier et al. (2004, [4]) investigated the issue of 4D-Var of cloud-
affected AIRS and MVIRI infrared radiances using control variables of tem-
perature, humidity, ozone, surface temperature and pressure. Like Janiskova
et al. (2002, [12]), the decision was made not to include cloud variables as
control variables due to the difficulty of specifying background errors and con-
cerns about the non-linearity of the observation operator. The observation
operator was kept simple “so that thresholds and strong nonlinearities do not
make the 4D-Var minimization stop before reaching the absolute minimum
of the cost function.” This statement alludes to the fact that discontinuities
and highly non-linear observation operators can cause the algorithms to ter-
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minate in their line searches, especially if they are not set in the context of
non-smooth optimization. In a similar study, Tompkins and Janiskova (2004,
[27]) describe a variational model that determines cloud cover from infrared
observations based on parameterizations and statistical properties.

Vukicevic (2004, [28]) investigated assimilating visible and infrared mea-
surements for mesoscale cloud-state estimation using a 4D-Var algorithm
with the RAMS model with explicit microphysics and an explicit visible and
infrared radiative transfer observation operator. Vukicevic included model
error, and found that she was able to achieve some improvement in cloud
cover when compared to the background state; however, not much improve-
ment was seen when the background state was clear. Greenwald (2004, [10])
studied the adjoint sensitivity of three infrared channels and found that these
channels are sensitive to microphysical parameters. Wei et al. (2004, [30])
studied the AIRS channels and found the same. Vukicevic (2006, [29]) found
that increasing the number of channels and frequency of observation had a
clear impact on improving the assimilation results, that infrared could not
trigger clouds, and that a simple linear model error approach was insufficient
for controlling the error in boundary conditions.

Li et al. (2005, [15]) treat the 1D-Var problem with full microphysical
particles including particle size and radiative transfer for AIRS data. Similar
studies on the benefits of assimilating hyperspectral infrared channels were
conducted by Smith et al. (2005, [24]) and Zhou et al. (2005, [32], 2007,
[33]). [25].

Errico et al. (2007, [6]) reports on the outcome of a 2005 international
workshop where the issues in assimilating cloudy satellite transfer was dis-
cussed. A variety of issues were identified that needed to be improved in-
cluding: issues with the observations (including improving utilization of mil-
limeter data); issues regarding models (including improved microphysical
schemes, especially with ice); issues with radiative transfer (including quan-
tifying satellite biases and standard deviations, using improved microphysical
schemes); and issues with the data assimilation itself (including how to deal
with highly non-linear and non-smooth processes, moving beyond perfect
model assumptions, and improving uncertainty quantification). Errico et al.
emphasizes the interdisciplinary nature of this problem.

Lopez (2007, [17]) reviews the issues facing the variational assimilation
of cloud and precipitation radiance data from the perspective of the models.
Based on time-scale arguments, he concludes that it is sufficient to assimilate
humidity values as a proxy for cloud microphysics when the clouds are pre-
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cipitating or convective, but for cirrus clouds the microphysical variables are
needed. Lopez stresses the difficulties in dealing with a highly nonlinear ob-
servation operator. Lopez says that “improved linearity is usually achieved
either by using smooth functions to describe each physical process or by
artificially reducing or neglecting the perturbations of problematic quanti-
ties involved in the parameterization.” This work treats the non-linearities
directly.

Weisz et al. (2007, [31]) demonstrate a model for determining cloud-top
pressure for AIRS data based on training of a global data model. They use
an eigenvalue regression to determine regression coefficients for either water
or ice clouds. Li and Liu (2009, [16]) used this model and showed improved
tracking of a hurricane using AIRS infrared data assimilation with the WR-
F/DART testbed, which uses an Ensemble Adjustment Kalman Filter.

Heilliette and Garand (2007, [11]) describe a method for assimilating
infrared radiances using a highly simplified cloud model with four parameters:
single layer cloud height, 15 µm effective emissivity, and effective particle size
of water and ice. Scattering was not considered as they used the RTTOV-8
model. They used a 1D-Var formulation for full columns of water vapor and
temperature in addition to the four cloud parameters mentioned above. They
considered that these four cloud parameters were independent and thus had a
diagonal term in the background error covariance matrix B, and assimilated
synthetic radiances corresponding to 100 channels of AIRS. Starting from
a first guess for cloud parameters based on the CO2 slicing method, they
found that they were able to reduce the variance of these variables and have
a significant impact on the retrieved values. Pavelin et al. (2008, [21])
performed a similar study and found that while they achieved positive results
for temperature and humidity, their cloudy parameters showed less accuracy
when multiple channels were used, attributed in part to the lack of multiple
scattering.

McNally (2009, [19]) describes a near-operational 4D-Var assimilation of
infrared brightness temperature using an infrared radiative model based on
simple brightness temperatures (i.e. a single-layer blackbody cloud with no
multiple scattering). The background for this study was chosen using the
minimum-residual method ([7]) using two channels. Only completely clear
or overcast values were considered. i.e. no cloud fraction was chosen. By
using the minimum residual method, no error covariances on the cloud-top
were required, and only the cloud-top pressure was adjusted. This procedure
showed slight positive impact on the RMS temperature and humidity. Pan-
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gaud et al. (2009, [20]) publish a similar study and show positive impact on
geopotential up to 72 hours.

Seaman et al. (2010, [23]) use 4D-Var system to assimilate infrared radi-
ances, and find that if no cloud is present in the initial condition, the analysis
proceeds as if no cloud was present. In this dissertation we explain why this
occurred and an easy remedy.

Zupanski et al. (2011, [34]) describe a system for assimilating synthetic
GOES-R infrared data in cloudy conditions with the WRF model. This
was a “non-identical twin” experiment as they used the RAMS model for
creating their observations. Using a single channel of infrared data with
a two-stream delta-Eddington radiative transfer model with a cloud optical
property model, they examined the assimilation of a hurricane with potential
temperature, specific humidity, and five hydrometeor classes as control vari-
ables, and experimented with leaving different hydrometeor classes out. They
concluded that it is essential to use as many classes of hydrometeor as possi-
ble in order to obtain the maximum benefit of assimilating cloudy radiances,
with the possible exception of rain or graupel. Polkinghorne and Vukicevic
(2011, [22]) describe a 4D-Var system for the assimilation of GOES-8 infrared
cloudy radiances. A cloud-mask is first used so that only the same cloud
type is considered. They performed a wide variety of experiments including
varying the assimilation window. They conclude that “while increasing the
length of the assimilation window does not lead to a greater decrease in cost
function, it does lead to a smoother dynamical response to the assimilation
and a better forecast.” That increasing the assimilation window does not
decrease the cost function is somewhat apparent since the cost function is
a non-decreasing function of assimilation window, i.e. the more non-exact
observations considered, the greater the value of the cost function will be.
They conclude that their main hindrance to achieving better errors was the
cloud location problem, which may be fundamentally related to their cloud
mask approach. It is probably better to solve the cloud location problem
through an all-sky observation assimilation approach rather than determin-
ing an inaccurate cloud mask a priori; this is the approach is taken in this
dissertation.

Finally, Bauer (2011, [1]) concludes with a survey of the all-sky and mi-
crowave and infrared schemes used operationally across the world. The focus
is currently still on single-layer clouds for infrared data across the world, al-
though research is being conducted into full gray cloud, multiple scattering
infrared radiances. Most operational centers only assimilate fully clear or
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fully cloudy-skies, and effective cloud amount is not considered. Lavanant et
al. (2011, [14]) discuss the cloud-derived products that are available for the
Infrared Atmospheric Sounding Interferometer (IASI) satellite.
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