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ABSTRACT

This dissertation compares and contrasts three large-scale optimization algorithms in the use of
variational and sequential data assimilation on two novel problems chosen to emphasize the chal-
lenges in non-linear and non-smooth data assimilation. The first problem explores the impact of a
highly non-linear observation operator and highlights the importance of background information on
the data assimilation problem. Using the RTTOV version 10 multiple-scattering radiative transfer
model, the problem of the one-dimensional (column) data assimilation of all-sky infrared radiances
is investigated. The presence of clouds creates a sharp transition between clear and cloudy regimes
is a difficult case for data assimilation. Using six test cases of clear and cloudy skies with different
size perturbations, a reasonable compromise method is found for initializing the background that
allows both clear and cloudy skies to be assimilated. The second problem tackles large-scale data
assimilation with a non-smooth observation operator using the shallow water equations. This prob-
lem is appropriate for handling a “kink” in the observation operator, i.e. a discontinuity in the first
derivative or higher. Together, these two cases show both the importance of choosing an appropriate
data assimilation method and, when a variational or variationally-inspired method is chosen, the
importance of choosing the right optimization algorithm for the problem at hand.
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CHAPTER 1

INTRODUCTION

While data assimilation – i.e. the integration of available observations of a physical system to
improve the initial conditions, boundary conditions, or other model parameters – has been investi-
gated right from the very advent of digital computers ([103]), there are still many open issues and
challenges in the field. This dissertation research examines the overlap of data assimilation and
optimization – i.e. the field of applied math that investigates algorithms to find extremal values of
a cost or merit function. Using two medium-large size problems designed to highlight challenges
in variational data assimilation, three different optimization algorithms appropriate for large-scale
problems are compared and contrasted in order to investigate the suitability of the algorithms under
study in both of these situations.

Other works have investigated non-smooth algorithms appropriate for very large problems for
convex problems (e.g. [166]). The fully non-convex non-smooth variational data assimilation prob-
lem has also been investigated in [144], [90], [235], [101] and [12] on highly simplified problems.
However, the existing optimization algorithms at the time those studies were conducted were not
suitable for large-scale non-convex optimization [77]. The situation has now changed, however, due
to both theoretical and algorithmic advances. An excellent comparison of non-smooth optimiza-
tion algorithms for large-scale minimization is given in [106] showing positive results for problems
with as many as 4000 variables. This thesis, then, is studying the applicability of these methods
for highly non-linear and non-smooth problems with over 1000 variables. However, these methods
are expected to be scalable to operational Numerical Weather Prediction (NWP) data assimilation
scales, i.e. 106 – 107 variables.

The first application we consider is that of assimilating satellite radiant flux in the infrared spec-
trum within the atmosphere, which is a problem with a highly non-linear observation operator. Such
observations are known as “all-sky” infrared radiances since these observations may or may not in-
clude the presence of clouds. An observation operator is a model – in this case the RTTOV version
10 radiative transfer model – of the mapping from the state of the model – in this case, tempera-
ture, pressure, water vapor, and cloud microphysical parameters – to the observations – in this case,
radiant flux observed at the top of the atmosphere. In the infrared spectrum, there is a very steep
transition between cloudy and clear regimes, as nearly all infrared energy is absorbed by clouds. The
addition of these highly non-linear regime changes is challenging for the data assimilation problem
and is explored here in the form of the assimilation of a single column of the atmosphere.

The final application is that of a theoretically even more difficult case – an observation oper-
ator with non-smooth “kinks.” Such kinks may arise in practice when different parameterization
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schemes are used or shifts between different regimes leave discontinuities in the first derivative of
the observation operator. Using the shallow water equations – equations appropriate as a first-order
approximation for the Earth’s atmosphere – we study artificial non-smooth observation operators
with increasingly sharp edges. In order to approach such problems, specialized tools from non-
smooth optimization that are appropriate for large-scale problems are required. The differences and
similarities between specially designed non-smooth optimization algorithms and traditional smooth
optimization algorithms enlisted for non-smooth optimization will be highlighted.

This dissertation is organized as follows. Chapter 2 covers all of the optimization algorithms
that will be used in this study. Chapter 3 introduces the data assimilation problem and the various
approaches used here to solve it. Chapter 4 covers the highly non-linear cloudy IR assimilation
case, and chapter 5 introduces the non-smooth observation operators problem with the shallow
water equation model. Finally, chapter 6 relates the two test cases and makes conclusions regarding
data assimilation in the presence of non-linear and/or non-smooth observation operators.
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CHAPTER 2

OPTIMIZATION ALGORITHMS

In this dissertation, three optimization algorithms and their implementations are tested. These three
methods are: the limited-memory BFGS (L-BFGS) implementation in the Harwell library ([136]),
the non-linear conjugate gradient method CG-Descent of Hager and Zhang ([83]), and the limited-
memory bundle method (LMBM) aimed at non-smooth optimization designed by Karmitsa et al.
([77], [78]).

The smooth optimization L-BFGS method, originally proposed by Nocedal in [161], has long
been used in data assimilation (e.g. [242], [91]), and has recently been found to possess properties
of a non-smooth optimization algorithm in [130], [129], and [185]. This method may offer promise
for large-scale non-smooth optimal control problems, and these properties will be tested in this
dissertation.

The non-linear conjugate gradient method CG-Descent was found in [5] and [7] to be among the
most effective of conjugate gradient algorithms, and is thus used as a representative of the conjugate
gradient family of optimization algorithms. While there is no theoretical or numerical basis to
assume that this method will be suitable for non-smooth problems, it is included here nonetheless
as a control of sorts.

The LMBM algorithm is a globally convergent non-smooth optimization algorithm specifically
designed for large-scale, possibly non-convex minimization ([105], [78]). It is well-suited both
numerically and theoretically for handling non-smooth problems, although its utility on highly non-
linear realistic problems is, at present, unknown.

2.1 Non-Smooth Optimization

Since each of these methods will be used on a non-smooth problem, we develop each of the
methods in the framework of non-smooth optimization. Before further discussion we introduce a
few common definitions. In what follows we use an Euclidean norm, i.e. ||x|| =

(∑n
i=1 x

2
i

)1/2.

Definition 2.1.1. A function J : Rn → R is locally Lipschitz continuous at x ∈ Rn with a constant
L > 0 if there exists a positive number ε such that

|J(y)− J(z)| ≤ L||y − z||

for all y, z such that ||x− y|| ≤ ε, ||x− z|| ≤ ε.
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Intuitively, L is an upper limit of how fast the function changes at x within the sphere of radius
ε. Note that the function J itself cannot have a discontinuity, but the higher order derivatives may.

For a locally Lipschitz continuous function the classical directional derivative need not exist.
However, we can generalize the concept of differentiability by defining a generalized directional
derivative as follows.

Definition 2.1.2. Let J : Rn → R be a locally Lipschitz continuous function at a point x ∈ Rn.
The generalized directional derivative of J at x in the direction p ∈ Rn is defined by

Jo(x; p) = lim sup
y→x as t↓0

J(y + tp)− J(y)

t

where y ∈ Rn and t ∈ R.

Note that the only difference between this definition and the definition of a traditional direc-
tional derivative is the sup, meaning that the largest directional derivative along any direction y
is taken. At a differentiable point, these limits will be the same along any direction; however, at
a non-differentiable point, these values may be different, and choosing the largest is a choice of
convenience that will be exploited later.

Unlike a traditional gradient, which is unique, at non-smooth points in general infinite sub-
gradients exist as part of the sub-differential set, defined as follows:

Definition 2.1.3. Let J : Rn → R be a locally Lipschitz continuous function at a point x ∈ Rn.
Then the sub-differential of J at x is the set ∂J(x) of vectors ξ ∈ Rn such that

∂J(x) =
{
ξ ∈ Rn|Jo(x; p) ≥ ξTp for all p ∈ Rn

}
Each vector ξ ∈ ∂J(x) is called a sub-gradient of J at x.

In analogy to the traditional interpretation of the gradient as a tangent hyperplane to the function
J , intuitively, one can consider a sub-gradient at x to be a normal vector of any tangent hyperplane
that remains on or below the generalized directional derivatives Jo(x; p) in all directions p.

When J is differentiable at x, there is only one element of the sub-differential ∂J(x), and it is
the standard gradient. In the material that follows, the gradient of a variational cost function will
be replaced with a sub-gradient in order to allow for, in general, non-smooth optimization. Because
the gradient and the sub-gradient are identical at differentiable points, this change is primarily trans-
parent to the model and adjoint development, although care must be taken to ensure that a value for
the adjoint is chosen such that definition (2.1.3) holds at the discontinuities. In addition, the opti-
mization algorithms themselves must take special care, as we will see. More details on the theory of
non-smooth optimization can be found in the book of Makela and Neittaanmaki [144] and Bonnans
et al. [31].

2.1.1 Survey

There are two main classes of non-smooth optimization methods: sub-gradient methods, and
bundle methods ([144]). A sub-gradient method replaces the gradient from a traditional optimiza-
tion algorithm with an arbitrary sub-gradient, while a bundle method replaces the function with a
cutting-plane based on a bundle of sub-gradients.
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The history of sub-gradient methods begins in the 1960s with scientists from the Soviet Union
including N. Shor. The classic overview of these methods by Shor et al. can be found in [183]. De-
spite their simplicity and widespread adoption, one of the main handicaps of this family of methods
is that no general convergence criteria can be established when the optimal point occurs at a non-
smooth point. Smooth methods terminate based on the norm of the gradient becoming small, which
is a necessary (but not sufficient) criteria for optimality (see e.g. [162]). However, non-smooth
methods, which allow any arbitrary sub-gradient ξ ∈ ∂J , cannot rely upon the sub-gradient chosen
at the optimal point going to zero; consider the classic example of f(x) = |x|, of which at the op-
timal point of x = 0 the sub-gradient of ξ = 1 is perfectly valid. In practice, while one can choose
to terminate the optimization algorithm when changes in successive minimization algorithms are
below some threshold, this practice does not have a mathematical basis behind it.

The approach which seems most promising for nonsmooth optimization is the bundle method, a
survey of which can be found in [144], [143] and [77]. The basic approach of this method is to ag-
gregate information from previous iterations into a bundle which gives information about the func-
tion. This method was pioneered by Lemarechal in [127] and Wolfe in [226]. Kiwiel reimagined
bundle methods in terms of the cutting plane method in his book [110] by using the sub-gradients
to form a piecewise linear approximation to the objective function. Both Lemarechal and Kiwiel’s
methods suffered from practical drawbacks (see e.g. [144]), and work on overcoming these limi-
tations includes, among others [180] and [111]. The work of Vlcek and Luksan [212] for globally
convergent line-search and the extension to large-scale problems by Karmitsa et al., e.g. [77], [78],
[106] express the state-of-the-art in the field for the purposes of this dissertation.

In this work, we use two sub-gradient methods (the L-BFGS and CG-Descent methods) with no
or only minor modifications to the line search. We also use LMBM, a bundle method as the name
implies.

2.2 Optimization algorithms

In general, an iterative optimization algorithm can be formulated as

xk+1 = xk + αkpk (2.1)

where k is the iteration number, pk is the search direction and αk is the step length. This procedure
continues until some convergence criteria has been met.

If J(xk+1) ≤ J(xk) for all k, then an iterative method is called a descent method and the direc-
tion pk is called a descent direction. For smooth (continuously differentiable) objective functions, a
descent direction may be generated by exploiting the fact that the direction opposite to the gradient
is locally the direction of steepest descent. The step size αk can then be determined, for example,
by using a line search technique (see e.g. [162]). Furthermore, a necessary condition for local opti-
mality is that the gradient goes to zero and by continuity becomes small on approach of an optimal
point. This fact provides a useful stopping criterion for smooth iterative methods.

However, the direct application of smooth gradient-based methods to non-smooth problems may
lead to a failure in convergence, in optimality conditions, or in gradient approximation. The usage
of sub-gradients allows us to generalize well-developed gradient-based methods for non-smooth
problems. In this section, we detail the optimization algorithms used in this study. An in-general
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non-unique sub-gradient ∇J(xk) ∈ ∂J(xk) at each iteration step k, used below, is defined to be
∇Jk.

2.2.1 L-BFGS

In this work, we test an implementation of the limited-memory BFGS (Broyden-Fletcher-Goldfarb-
Shanno) algorithm version VA15 of [136] in the Harwell library. The version of L-BFGS with
sub-gradients is detailed in [252].

The L-BFGS method ([161]) is an adaptation of the BFGS method to large problems, achieved
by changing the generalized Hessian update of the latter. The generalized Hessian is a matrix of
second-order sub-derivatives generalized in analogy with the sub-gradient. The L-BFGS method
uses an approximation Hk to the inverse generalized Hessian which is updated at each time step
(the generalized Hessian is a matrix of the second-order subderivatives). The search direction is
found, in analogy to the Newton method, by

pk = −Hk∇Jk (2.2)

An inverse generalized Hessian approximation is updated at each iteration by

Hk+1 = V T
k HkVk + ρksks

T
k (2.3)

where sk = xk − xk−1,
Vk = I − ρkyksTk (2.4)

yk = ∇Jk −∇Jk−1, and ρk = 1/(yTk sk).
In the L-BFGS method, instead of forming the matrices Hk explicitly (which would require

a prohibitively large allocation of memory for even a medium-size problem), one only stores the
vectors sk and yk obtained in the last m iterations which define Hk implicitly; a cyclical procedure
is used to retain the latest vectors and discard the oldest ones. Thus, after the first k iterations,
equation (2.3) becomes

Hk+1 = ΠT
k−m̂H0Πk−m̂

+ ρk−m̂ΠT
k−m̂+1Sk−m̂Πk−m̂+1

+ ρk−m̂+1Π
T
k−m̂+2Sk−m̂+1Πk−m̂+2

...
+ ρkSk

(2.5)

where Πj = VjVj+1 · · ·Vk, Si = sis
T
i , m̂ = min(k,m − 1), and the initial approximation H0 is

taken to be I .
Thus, only at most 2m correction pairs si and yi for i = 1, . . . ,m are needed, and no full

matrix is ever stored in memory as equation (2.2) is solved. The only modification to the L-BFGS
algorithm for this work is that we change the line search from strong to weak Wolfe conditions, as
suggested in [130].

2.2.2 The nonlinear conjugate gradient algorithm CG-Descent

A generic conjugate gradient algorithm uses a step along the current negative gradient vector in
the first iteration; successive directions are constructed so that they form a set of mutually conjugate
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vectors with respect to the Hessian. At each step, the new iterate is calculated from equation (2.1),
and the search directions are expressed recursively as

pk = −∇Jk + βkpk−1 (2.6)

with p0 = −∇J0.
Each variant of the conjugate gradient method chooses βk in a different manner. The method

chosen here, the CG-Descent method by Hager and Zhang ([83]), choses βk by the relation:

βk = max
(
β̄k, ηk

)
(2.7)

where

β̄k =
1

pTk yk

(
yk − 2pk

||yk||2

pTk yk

)T

∇Jk (2.8)

(yk is defined as in subsection 2.2.1), and

ηk =
−1

||pk||min (η, ||∇Jk||)
(2.9)

where η is a configurable constant, set to 0.01 by default.
If J is a quadratic and αk is chosen to achieve the exact minimum of J in the direction pk, then

pTk∇Jk+1 = 0, and the formula for βk reduces to the traditional Hestenes-Stiefel scheme (see e.g.
[162]).

The advantages of the new conjugate-gradient scheme are described in [83]. One such advan-
tage is that this method has guaranteed descent with a smooth function and an inexact line search;
however, no such guarantee exists for non-smooth functions.

2.2.3 LMBM

Both L-BFGS and CG-Descent were originally created for smooth optimization, and both are
generalized for non-smooth methods by replacing the gradient with an arbitrary sub-gradient. How-
ever, there are some potentially serious drawbacks to this approach. First, it is theoretically possible
for a non-descent search direction to occur as the direction opposite an arbitrary sub-gradient does
not guarantee descent. Thus, a smooth line-search algorithm, used for step-size (αk) selection, may
fail. Secondly, due to the fact that the norm of an arbitrary sub-gradient does not necessarily become
small in the neighborhood of an optimal point, a convergence criterion based on this assumption,
valid for smooth gradients, will also fail when the optimal point occurs at a discontinuity. Moreover,
in general the convergence speed of sub-gradient methods can be poor ([144]).

In this subsection we describe the limited memory bundle method LMBM ([77], [78]) where
the above-mentioned drawbacks are avoided by using the so-called bundling technique and null
steps. The idea of bundling is that instead of using just one arbitrary sub-gradient, we approximate
the whole sub-differential (see definition (2.1.3)) of the objective function by gathering the sub-
gradients from previous iterations into a bundle, and null steps are used when the search direction
is not a descent direction. In this way, we obtain more information about the local behavior of the
function than what an individual arbitrary sub-gradient alone can yield.

LMBM was specifically developed for solving large-scale non-smooth optimization problems.
It is characterized by the usage of null steps together with a simple aggregation of sub-gradients.
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Moreover, as in L-BFGS, the limited memory approach is utilized in the calculation of the search
direction

pk = −Hk∇J̃k (2.10)

where ∇J̃k ∈ Rn is an aggregate sub-gradient and Hk is not formed explicitly but calculated by
the L-BFGS update (see equation (2.5)) after a serious step and by the L-SR1 update (see e.g. [34])
after a null step. The usage of null steps gives further information about the non-smooth objective
in the case that the search direction is not “good enough.” That is, a null step is taken when the
descent criterion

J(xk + tkRpk) ≤ J(xk) + εkR, (2.11)

is not satisfied. Here tkR is the step size and εkR > 0 is the desired descent of J at xk. In the case of
a null step, we set xk+1 = xk but information of the objective function is increased by storing the
auxiliary point x̃k+1 = xk+t

k
Rpk and the corresponding auxiliary sub-gradient∇Jk+1 ∈ ∂J(x̃k+1).

These values are used in the computation of the new aggregate sub-gradient that is used in the next
iteration. A simple aggregation of sub-gradients guarantees the global convergence of the method
(for more details see [78]) and make it possible to evaluate a sub-gradient based stopping criteria.

The pseudo-code of the LMBM algorithm is shown in table 2.1.

Table 2.1: LMBM Pseudo-code

PROGRAM LMBM
INITIALIZE x1 ∈ Rn, ∇J1 ∈ ∂J(x1), and εs > 0;
Set k = 1 and p1 = −∇J1;
WHILE the termination condition

wk ≤ εs is not met
Find step sizes tkL and tkR;
Set xk+1 = xk + tkLpk
Evaluate J(xk+1) and ∇Jk+1 ∈ ∂J(xk + tkRpk);
IF tkL > 0 THEN
Compute the search direction pk+1

using ∇Jk+1 and the L-BFGS update;
ELSE
Compute the aggregate
sub-gradient ∇J̃k+1;

Compute the search direction pk+1

using ∇J̃k+1 and the L-SR1 update;
END IF
Set k = k + 1;

END WHILE
RETURN final solution xk;

END LMBM
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CHAPTER 3

DATA ASSIMILATION

3.1 Introduction

Data assimilation (see e.g. [103]) aims to utilize observations of a system in combination with
an estimate of the initial state of the system known as the background. Both the background and
observations – along with their respective uncertainties – must be considered together in order to
produce an “optimal” initial condition.

An observation operator is a function mapping between model space and the observation space.
For example, an observation operator for satellite radiances may be a radiative transfer model that
can utilize the numerically-modeled state of the atmosphere to produce synthetic observations that
can be compared to actual satellite radiance observations. Non-linear observation operators are
operators which have a non-linearity within them, and non-smooth observation operators are those
that have a discontinuity in the derivative of order zero (function value) or higher. The lower the
order of the discontinuity, the more difficult the issue is to deal with numerically and mathematically
([144]). Note that non-smooth observations are also non-linear. In this work, we will focus on
highly non-linear observation operators and non-smooth operators with discontinuities in the first
derivative.

In a general setting with standard assumptions, the data assimilation problem is shown in Table
3.1.

The background state xb is assumed to be of the form

xb = x
(0)
true + ηb (3.1)

where x(0)true is the (unknown) true state of the system at the initial time and ηb is a random variable
with mean 0 and covariance matrixB. Note that ηb need not be Gaussian; only the first two moments
are required.

The observations y(i) are assumed to be of the form

y(i) = H
(
x
(i)
true

)
+ ηobs (3.2)

where ηobs is a random variable with mean 0 and covariance matrix R. The observation errors are
usually considered independent, so R is a diagonal matrix.
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Table 3.1: Data assimilation problem

Find an “optimal” trajectory x(i) ∈ RNstate at each time step {i = 1, . . . , NT} given:
• A “background” state of the model xb that approximates the true x(0) (from either a first

guess or a previous prediction)

• Complete or partial noisy observations of the system y(j) ∈ RN
(j)
obs for some or all

values 0 ≤ j ≤ NT
• Background error covariance matrix B ∈ RNstate×Nstate quantifying the covariance of the

error between the background xb and the unknown true state

• Observation error covariance matrix Rj ∈ RN
(j)
obs ×N

(j)
obs quantifying the covariance of the

error between the observations y(j) and the unknown true observations
• A modelM : RNstate → RNstate that maps x(i) to x(i+1) (assumed here to be perfect)

• An observation operatorHj : RNstate → RN
(j)
obs (also assumed to be perfect) that models the

mapping between x(j) to the observations y(j)

3.1.1 Bayesian framework

One can view data assimilation as a Bayesian problem ([140], [210]); that is, at time k, one
can view the background probability density function p(x(k−1)|y(1:k−1)) as the belief in the dis-
tribution of x(k−1) given the previous observations y(1:k−1). At time 0, the first two moments of
this distribution are given by xb and B. A common assumption is that the initial background is
Gaussian.

From the background distribution and observations y(k), one could then find the exact predicted
distribution p(x(k)|y(1:k−1)) based on the Chapman-Kolmogorov equation

p(x(k)|y(1:k−1)) =

∫
p(x(k)|x(k−1))p(x(k−1)|y(1:k−1))dx(k−1) (3.3)

where p(x(k)|x(k−1)) can be found based on the behavior of the modelM.
One could then use Bayes rule to find the posterior distribution p(x(k)|y(1:k)) by

p(x(k)|y(1:k)) ∝ p(y(k)|x(k))p(x(k)|y(1:k−1)) (3.4)

where p(y(k)|x(k)) is the likelihood of the observation y(k) given the state x(k) and can be inferred
from the observation operatorH. The value 1/

∫
p(y(k)|x(k))p(x(k)|y(1:k−1))dx(k) is the normaliz-

ing constant referred to as the evidence.

3.1.2 Methodology categorization

In practice, actually solving the integrals (3.3) and (3.4) for systems with a large dimension is far
too expensive, and thus approximations to these solutions are required. Many different algorithms
have been employed to solve the data assimilation problem in table 3.1. These approaches can be
divided into three main categories:

• Variational: treat DA as an optimal control problem
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– 1D-Var – a single vertical column of the model state with no time dependence

– 3D-Var – three dimensions with no explicit time dependence

– 4D-Var – three dimensions with explicit time dependence

• Probabilistic: treat DA as an inference problem with ensembles

– Ensemble Kalman filter (EnKF)

– Other flavors of EnKF, e.g. the Local Ensemble Transform Kalman Filter (LETKF)

– Particle filters

• Hybrid: try to combine the best of both approaches

– 3D-Var plus EnKF type approaches, represented by the Maximum Likelihood Ensemble
Filter (MLEF)

In this dissertation, we investigate a penalized 1D-Var problem for satellite radiances, and then
compare and contrast 3D-Var, 4D-Var, EnKF, LETKF and MLEF for non-smooth data assimilation
using the shallow water equations. A survey of data assimilation methods can be found in [27] and
[159]. A survey detailing the pros and cons of variational versus probabilistic methods can be found
in [104]. Reviews of Bayesian approaches include [196], [28], [30], and [29].

Because we intend to investigate non-linear and non-differentiable observation operators such
as all-sky radiances, we expect EnKF-based filters (including LETKF) to fail due to the lack of
theoretical support for non-linear operators as well as in view of studies such as [99]. In particular,
EnKF-based filters rely heavily upon the tangent-linear hypothesis for the observation operator.
The less accurate this is (i.e. the more non-linear the observation operator is), the worse these
methods will perform. In light of [252], we expect 1D-Var, MLEF and 4D-Var, modified to handle
non-smooth observations, to perform well. The reasoning behind this is that methods based on
variational approaches use an iterative approach at each time step, and therefore the algorithms have
multiple opportunities to re-apply the tangent linear hypothesis and thus use better approximations
to the non-linear observation operator.

In the following sections, we will detail these methods in brief.

3.2 Variational methods

Variational methods ([123], [124]) arise from treating data assimilation as an optimal control
problem. A cost function models the cost of a particular state, and this cost function is then mini-
mized over the control variables to produce a state that is locally optimal.

3.2.1 1D-Var

The so called “1D-Var” method (e.g. [175]) is an approach that minimizes a cost function with
a state of only a single column of the atmosphere, although in general this method can be applied to
any three-dimensional model. Assuming the probability density functions for the background and
model noise are Gaussian (although not necessarily assuming linearity of the cost function), one
can construct a maximum likelihood or minimum variance estimate from the Bayesian framework
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presented in section 3.1.1 (see e.g. section 3.3 of [45]). In iterative form ([140]), one minimizes a
cost function given as

J(x) =
1

2
δb(x)TB−1δb(x) +

1

2
δy(x)TR−1δy(x) (3.5)

where x ∈ Rnstate is both the control and state variable and contains the state variables; δb(x) =
x − xb ∈ Rnstate is the deviation from the background xb ∈ Rnstate , and δy(x) = y −H(x) ∈ Rnobs

is the deviation from the observations y ∈ Rnobs when the observation operator H : Rnstate → Rnobs

is applied to x. Here, again, B ∈ Rnstate × Rnstate is the background error covariance, and R ∈
Rnobs × Rnobs is the observation error covariance.

In order to solve (3.5), a subgradient of the function J is needed. An arbitrary subgradient for a
Lipschitz continuous operatorH is given by

∇xJ(x) = B−1δb(x)−HTR−1δy(x) (3.6)

where HT = ∂H
∂x

T
is called the adjoint of H, i.e. the transpose of the generalized Jacobian with

respect to x of the observation operator .
Using 1D-Var to assimilate a single column, and then passing these columns to either 3D-Var or

4D-Var is a common practice in data assimilation (see e.g. [96], [218]). This approach significantly
reduces the computational burden versus a full three- or four-dimensional approach.

3.2.2 3D-Var

Like 1D-Var, 3D-Var (e.g. [140], [201], [46]) seeks construct to a maximum likelihood or
minimum variance estimate from the Bayesian framework presented in section 3.1.1. The cost
function, very similar to 1D-Var, is given by

J(x) =
1

2
δb(x)TB−1δb(x) +

1

2
δyk(x)TR−1δyk(x) (3.7)

where x is the control variable containing the three-dimensional control variables at time k, δyk =
y(k) − H(x), where y(k) are the observations at time k, and the other variables are the same as in
the previous section. A subgradient is given by

∇xJ(x) = B−1δb(x)−HTR−1δyk(x) (3.8)

It is clear that, assuming the minimum of the cost function J(x) can be found, the 3D-Var
solution is only “optimal” in the sense that it finds the model state that best fits the observations
during each time step of a model. However, it is not necessarily the optimal trajectory over all the
observations available. 4D-Var is the extension of this method to assimilating the observations at all
available times.

3.2.3 4D-Var

Much like 1D-Var and 3D-Var, the 4D-Var approach to data assimilation is to minimize a cost
function with the lack-of-fit between background and observations scaled by their respective uncer-
tainties. The difference is now that observations at multiple times are assimilated. This translates to
seeking the value x∗ that minimizes
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J(x) = 1
2 δb(x)TB−1δb(x) + 1

2

∑NT
k=0 δyk(x)TR−1δyk(x) (3.9)

subject to the constraint

x(k)(x) =M
(
x(k−1)(x)

)
, x(0)(x) = x (3.10)

and the other variables are the same as in 3D-Var, with the exception of

δyk(x) = y(k) −H(x(k)(x)) (3.11)

which is the difference between the observation at time k, y(k), and the modelM at time k, x(k)(x),
acted on by the observation operatorH.

In this work, the modelM is taken as a strong constraint; in other words, the model constraint
equation (3.10) is satisfied at each time-step and the model is taken to be perfect.

Once the optimal initial conditions x∗ have been found, the optimal trajectory x(k)(x∗) at each
time step k can be found by evolving the model forward in time usingM.

As with the previous methods, the subgradient of the cost function (3.9) is required. For a
Lipschitz continuous modelM and operatorH, this is given by

∇xJ(x) = B−1δb(x) +

NT∑
k=0

(
∂x(k)

∂x

)T

HT(x)R−1δyk(x) (3.12)

where ∂x(k)

∂x ∈ RNstate×Nstate is the Jacobian of x(k) with respect to x, evaluated at x. From equation
(3.10),

(
∂x(k)

∂x

)T

=

(
∂x(k−1)

∂x

)T

M
(
x(k−1)(x)

)T
(3.13)

for k = 1, . . . , NT where M is the Jacobian of the model operator.
In order to compute this gradient, the adjoint of the tangent linear model is required. Either a

discretize-then-differentiate or differentiate-then-discretize approach can be used [74]. In this work,
we use adjoints calculated by the discretize-then-differentiate approach, i.e. a subderivative is found
by applying the chain rule to the discrete operatorM and reversing the order of the code.

By replacing the adjoints and gradients with their generalized counterparts, (3.6), (3.8) and
(3.12) allow for, in general, non-smooth optimization.

3.3 Probabilistic filters

Probabilistic filters treat data assimilation as if it were a statistical inference problem. Using an
ensemble of perturbed members and their statistics, a near-optimal inference can be gleaned under
certain restrictive situations. In this section, we will briefly survey two popular approaches.
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3.3.1 Ensemble Kalman Filter

The Kalman filter, first developed in [102], is the optimal predictor of state for the data assim-
ilation problem if: 1) the noise random variables ηb and ηobs are Gaussian and 2) the models M
and H are linear. These assumptions are rarely valid in the context of NWP. The Extended Kalman
Filter (EKF), first developed by [100], uses the Jacobian (i.e. tangent linear model) ofM and H,
although EKF is no longer an optimal predictor of state.

Because the dimension of the model state, Nstate, may be on the order of 106 to 107 (or even
larger), forming the covariance matrices directly can be a large challenge since the resulting covari-
ance matrix will require storage on the order of 1012 or 1014, i.e. on the order of 1–100 terabytes
for single precision data. The Ensemble Kalman Filter (EnKF), first introduced in [58], solves
this problem by creating an ensemble of members and estimating the population covariance matrix
through the ensemble sample covariance matrix.

We first define an ensemble of states that are perturbed replicates of the state.

X(k−1) =
[
x
(k−1)
1 , x

(k−1)
2 , . . . , x

(k−1)
Nens

]
(3.14)

where x(k−1)i ∈ RNstate is the ith ensemble at time k and Nens is the number of ensembles. At the
initial time, the ensemble members are given by x(0)i = x

(0)
true + ηb where ηb ∼ N(0, B).

The EnKF algorithm can be broken into two steps: forecast and analysis. In the forecast step,
the ensemble is moved forward in time by the model, and the sample covariance of the ensemble
is calculated. In the analysis step, the forecast values are used to predict a “near-optimal” update
given the ensemble statistics, state, observations, and corresponding models.

The ith member of the forecast ensemble X(k)
f at time k > 0 is given by(

X
(k)
f

)
i

=M
(
x
(k−1)
i

)
(3.15)

From this forecast ensemble, the sample forecast covariance that approximates the population
covariance can be found:

P
(k)
f =

1

Nens − 1

Nens∑
i=1

((
X

(k)
f

)
i
− x̄(k)f

)((
X

(k)
f

)
i
− x̄(k)f

)T
(3.16)

where x̄(k) ∈ RNstate is the ensemble average of X(k)
f . Note that this matrix is not actually stored in

memory, but can be created through the outer-product formulation when needed.
EnKF utilizes perturbed observations, which are given by

Y (k) =
[
y
(k)
1 , y

(k)
2 , . . . , y

(k)
Nens

]
(3.17)

where each y(k)i has independently sampled noise as

y
(k)
i = y(k) + ηobs (3.18)

with ηobs ∼ N(0, R). The reason for these perturbed observations. as first formulated in [33], is
that each of the observation replicates have the mean y(k)true and covariance R.

14



While each of the observation replicates have covariance R if y(k) is considered a constant, in
a realistic best-case scenario where the uncertainty R would be accurately quantified, y(k) would
already include noise from ηobs, that is:

y(k) = H
(
x
(k)
true

)
+ ηobs1 (3.19)

In other words,

y
(k)
i = H

(
x
(k)
true

)
+ ηobs1 + ηobs2 (3.20)

i.e. the noise is doubled. While the mean is still y(k)true = H
(
x
(k)
true

)
, this approach in essence adds

additional observation uncertainty and the use of R for the covariance is inaccurate. This issue is
overlooked or neglected by authors ranging from Burgers et al. ([33]) to Evensen ([59]).

If the noise covariance was additive (as is the case for Gaussian noise), and the matrix R was
used, this method would in fact underestimate the uncertainty by a factor of two, i.e.

Cov(y
(k)
i ) = Cov (ηobs1 + ηobs2) = 2R (3.21)

This error could lead to underutilization of the observations.
Whitaker and Hamill ([223]) present a formulation of EnKF that can be used without perturbing

the observations; methods based on this approach are called “deterministic” flavors of EnKF, and
unlike perturbed observation flavors, can be considered realistic methods that accurately quantify
the observation covariance.

Returning to the traditional formulation of EnKF, the new ensemble at time k is given by

X(k) = X
(k)
f +K(k)

(
Y (k) −HfX

(k)
f

)
(3.22)

where

K(k) = P
(k)
f HT

(
HP

(k)
f HT +R

)−1
(3.23)

is the Kalman gain matrix arising from the Kalman filter solution (see e.g. [100]).
The new covariance matrix is given by

P (k) =
(
I −K(k)

)
P

(k)
f (3.24)

where I is the identity matrix. This is theoretically identical to the sample covariance of the updated
ensemble X(k+1) from equation (3.16) and thus either equation can be used.

By taking ∇J = 0 in the 3D-Var gradient equation (3.8), and using P (k) = B, it can be shown
that the EnKF update is theoretically identical to the 3D-Var analysis. However, since the 3D-Var is
an iterative method, it may able to handle non-linearH better than EnKF-based approaches. On the
other-hand, because EnKF accurately evolves the uncertainty P (k) in the situation forward in time,
while 3D-Var in its most common formulation uses the fixed background error covariance model
B, EnKF has the ability to scale the background term in a more realistic way, and for near-linear
operators will find a superior solution when compared to 3D-Var. Thus, both 3D-Var and EnKF
have strengths and weaknesses.
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The matrix P (k) is a Nens rank estimate of the Nstate × Nstate matrix, where Nens << Nstate.
Thus, P (k) is highly rank deficient and displays spurious correlations. These issues can lead to
filter divergence where the EnKF error grows rapidly. One method for correcting these issues is
covariance localization, introduced by [94]. This method replaces the Kalman gainK(k) in equation
(3.22) with the modified Kalman gain K̂(k),

K̂(k) = ρ ◦ P (k)
f HT

(
Hρ ◦ P (k)

f HT +R
)−1

(3.25)

where ρ ◦ P (k) is the Schur product (i.e. element-wise multiplication) between ρ and P (k), where

ρi,j(Di,j) = exp

[
−
(
Di,j

`

)2]
(3.26)

is the correlation matrix, Di,j is the distance between two grid points (i, j), and ` is the correlation
length.

Furthermore, additive covariance inflation, first suggested by [6], is also often used to prevent
undesirable collapse of the covariance matrix P (k). This amounts to modifying each member i of
the ensemble by (

x
(k)
i

)′
= λ

(
x
(k)
i − x̄

(k)
)

+ x̄(k) (3.27)

where λ is the inflation parameter. For λ = 1, this does nothing, but for values of λ > 1, the
amounts to an artificial adjustment of the covariance that gives more weight to the observations.
This may be even more necessary considering the observation covariance error underestimation in
the standard EnKF formulation.

EnKF relies heavily on the tangent linear observation operator H and is best suited for Gaussian
noise. In the case of a highly non-linear or non-smooth observation operator, the tangent linear
hypothesis will be invalid near the areas of strong non-linearity or discontinuities in the derivative
and the ensemble noise would no longer be Gaussian. Therefore, one would expect EnKF to have
difficulties with such operators. In chapter 5 we will quantify these difficulties on a non-smooth
data assimilation problem.

3.3.2 Local Ensemble Transform Kalman Filter

The Ensemble Transform Kalman Filter (ETKF), first introduced by Bishop et al. in [26], is
based on EnKF but avoids perturbing the observations. It is thus a deterministic filter (although this
moniker is somewhat misleading as the ETKF is still a filter based upon statistical inference). It is
a type of square-root Kalman filter.

A closely related implementation with covariance localization, the Local Ensemble Transform
Kalman Filter (LETKF), is a popular choice. LETKF was first developed in [95] in 2007. While
there are many different flavors of EnKF, this version is one of the most recent developments and
seems to be one of the most promising methods in the EnKF family. It should therefore be very
useful to the scientific community to include this in a comparison with the variational and hybrid
methods, especially in the presence of non-linear and non-smooth observation operators.

In the development below, for convenience of notation, the time dependence (i.e. (k)) will be
dropped temporarily.
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LETKF distinguishes between global and local matrices. The global matrices are those defined
as above, while local matrices are selected copies of data that have been reduced in size through
covariance localization.

As with EnKF, the LETKF algorithm uses a global matrix X(k)
f of forecast states

X
(k)
f =M

(
X(k−1)

)
(3.28)

A global matrix Yp ∈ RNobs×Nens of the simulated observation perturbations for each ensemble
is also created, where

(Yp)i = (Yf )i − ȳf (3.29)

where Yf ∈ RNobs×Nens is

(Yf )i = H
((
X

(k)
f

)
i

)
(3.30)

and ȳf ∈ RNobs is the global average of observations.

ȳf =
1

Nens

Nens∑
i

(Yf )i (3.31)

The global perturbation matrix Xp ∈ RNstate×Nens is also used,

(Xp)i =
(
X

(k)
f

)
i
− x̄f (3.32)

where x̄f ∈ RNstate is

x̄f =
1

Nens

Nens∑
i

(
X

(k)
f

)
i

(3.33)

In LETKF, covariance localization is achieved by only including values that are “local” to a grid
point in the analysis. Locality can be determined by several potential methods, but here a point will
be considered local if its distance is less than the characteristic length, i.e. points i and j will be
considered co-local if Di,j ≤ `. Only those values local to a grid point will be used in the following
steps.

For each grid point n, copies of various variables are created, again only storing the local values.
The dependence on nwill be temporarily neglected again for the sake of notation. These local copies
are given by

X [`]
p ∈ RN

[`]
state×Nens (3.34)

x̄
[`]
f ∈ RN

[`]
state (3.35)

Y [`]
p ∈ RN

[`]
obs×Nens (3.36)

ȳ
[`]
f = RN

[`]
obs (3.37)

R[`] ∈ RN
[`]
obs×N

[`]
obs (3.38)

where N [`]
state and N [`]

obs are the number of local points for the grid point in question in the state and
observation space, respectively.
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The intermediate local matrix C ∈ RNens×N [`]
obs is then computed,

C =
(
Y [`]
p

)T (
R[`]
)−1

(3.39)

and the local analysis covariance matrix P̃a ∈ RNens×Nens is given by

P̃a =

[
(Nens)

λ
I + CY [`]

p

]−1
(3.40)

Here, as in EnKF, λ > 1 is a covariance inflation factor.
The matrix Wa ∈ RNens×Nens is calculated by

Wa =
[
(Nens − 1) P̃a

]1/2
(3.41)

where the square root is understood to be any symmetric square root decomposition such as the
generalized Cholesky decomposition.

The vector w̄a ∈ RNens is given by

w̄a = P̃aC
(
y(k) − ȳ[`]f

)
(3.42)

This vector is added to each column of Wa, i.e.

(Wa)i = (Wa)i + w̄a (3.43)

Finally, the new local analysis X [`]
a ∈ RN

[`]
state×Nens of the ith ensemble at the grid point n is given

by (
X [`]
a

)n
i

= X [`]
p (Wa)i + x̄

[`]
f (3.44)

In the simplest implementation of LETKF, this process is repeated for each grid point n. For
each grid point n and ensemble i, the updated ensemble analysis is given by(

X(k)
)
n,i

=
(
X [`]
a

)n
L(n),i

(3.45)

where L(n) is a function mapping global indexing into local indexing. Note that the subscript (n, i)
here indicates the nth row and ith column of the matrix.

It should be emphasized that LETKF avoids directly using the tangent linear model H or its
adjoint. However, it implicitly uses the assumption that the tangent linear hypothesis is valid in the
development of the method ([95]). Because, unlike variational methods, only one iteration is used, if
the tangent linear hypothesis is weak or even invalid, the method has no chance to correct for this. It
is thus hypothesized that LETKF will suffer from the same issues as EnKF when faced with highly
non-linear or non-smooth observation operators, although perhaps to a lesser extent since neither
the tangent linear model H nor its adjoint is explicitly used. Finally, since unlike some flavors of
EnKF, LETKF does not use perturbed observations, it will not underestimate the observation error
covariance.
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3.4 Hybrid filters

Hybrid filters take the best features from both the variational and probabilistic approaches. The
only hybrid filter we will investigate in my dissertation is the Maximum Likelihood Ensemble Filter,
although this is considered representative of all potential hybrid methods.

3.4.1 Maximum Likelihood Ensemble Filter

The Maximum Likelihood Ensemble Filter (MLEF) was first proposed by Zupanski in 2005
([250]). The MLEF approach to data assimilation shares similarities with both a variational ap-
proach such as 3D-Var and an ensemble approach such as the Ensemble Kalman Filter, and espe-
cially the Ensemble Square Root Filter [202] and Ensemble Kalman Transform Filter. The deriva-
tion presented below is similar to [65] and [252] in which additional details can be found.

Like the Kalman filter family, the MLEF algorithm proceeds in two-stages: forecast and anal-
ysis. Suppose that a square-root analysis covariance matrix

(
P (k−1))1/2 is available at time k − 1

such that

P (k−1) ≈
(
P (k−1)

)1/2 (
P (k−1)

)T/2
(3.46)

This is equal to the background B at time 0, i.e. P (0) = B. In MLEF, the columns of the forecast

error covariance
(
P

(k)
f

)1/2
at time k are given by(

P
(k)
f

)1/2
=

[
pf1 , p

f
2 , . . . , p

f
Nens

]
pfi = M

(
x
(k−1)
a + pi

)
−M

(
x
(k−1)
a

) (3.47)

where Nens are the number of ensembles, x(k−1)a is the previous analysis value (x(0)a = xb), and pi
is the ith column of

(
P (k−1))1/2.

Once the forecast covariance has been obtained, the analysis step can proceed. The analysis step
of MLEF takes inspiration from variational methods, in particular 3D-Var. MLEF seeks (conceptu-
ally) to find the analysis x(k)a that minimizes the cost function

J(x) =
1

2
δf (x)T P−1f δf (x) +

1

2
δyk(x)TR−1δyk(x) (3.48)

where δf = x− x(k)f , x(k)f =M
(
x
(k−1)
a

)
and the other variables are the same as in section 3.2.3.

In order to avoid inverting the matrix Pf – which will be rank deficient as it is approximated by
matrix of rank at most Nens – a change of variables is introduced, namely:

δf (x) = P
1/2
f (I + C(x))−T/2 ζ (3.49)

where ζ are the new control variables, defined in the Nens × 1 space of ensembles, and C ∈
RNens×Nens is a preconditioning matrix of the quadratic cost function (3.48). C is formed as fol-
lows.

C(x) = ZTZ (3.50)
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where
Zi(x) = R−1/2

[
H(x+ pfi )−H(x)

]
(3.51)

Because of the mutual dependency between the preconditioner and x, C is fixed to C(x = x
(k)
f ),

i.e. C does not change during the minimization process.
The inversion of the symmetric matrix (I + C), required by (3.49), is accomplished using a

spectral decomposition of the form

I + C = V ΛV T (3.52)

where V is an orthogonal matrix of eigenvectors and Λ is a diagonal matrix of eigenvalues. Once
this decomposition is found, the required square-root can be found by

(I + C)−1/2 = V Λ−1/2V T (3.53)

Finally, the square root analysis covariance matrix at time (k) is found by

P 1/2
a = P

1/2
f

[
I + C(x(k)a )

]−T/2
(3.54)

with the notation C(x
(k)
a ) denoting that C is recomputed at the solution x(k)a of (3.48).

This update to the covariance matrix is similar to that of [26]; however, the main difference is
that the observation operator is not restricted to be linear, and the Jacobian is not required.

Like the other ensemble-based methods listed here, MLEF also uses covariance localization.
The covariance localization method is similar to LETKF approaches such as ([156] and [232]).
However, unlike many LETKF approaches, MLEF only employs covariance localization in the
horizontal directions, i.e. the covariance in the vertical direction is not localized. The reasoning
behind this is that vertical localization can adversely affect vertical model balance, especially in the
presence of clouds.

In summary, MLEF is an ensemble method that directly maximizes the posterior probability
density function at each time step. It does not require the Jacobian of either the model or the
observation operator. In addition, as shown by Jardak et al. ([99]), MLEF can perform well when
the Gaussianity assumption for the model is no longer valid and/or when the observation operator
is non-linear.

3.5 Summary

Table 3.2 shows the various pros and cons of the different methods that will be investigated. MT

means that the adjoint of the model with respect to the state variables is required, while H means that
the tangent linear model (or potentially its adjoint) of the observation operator is required. “Batches”
refers to whether multiple observations (i.e. y(j) at multiple times j) values can be assimilated.
“Uncertainty” means how the uncertainty is quantified using these methods. Further explanation is
warranted here. For 3D-Var, at the optimal point, the Hessian singular values of the cost function at
each time step can be found, which gives an estimate of the inverse uncertainty matrix in the solution
at that time ([167]). Uncertainty quantification in 4D-Var functions in a similar fashion, although
the uncertainty is now with respect to all of the assimilated observations at the initial time. EnKF
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Table 3.2: Pros and cons of the various DA methods

Method name MT H Batches Uncertainty Iterative NLM NLH
3D-Var No Yes Single Hessian Yes Yes Yes
4D-Var Yes Yes Multiple Hessian Yes Yes Yes
EnKF No Yes Single Sample No Yes No
LETKF No No Single Deterministic No Yes Yes
MLEF No No Single Deterministic Yes Yes Yes

uses a sample covariance to estimate the population covariance, while LETKF uses a deterministic
approach that modifies the covariance matrix columns directly. MLEF also modifies this matrix
through a deterministic approach in a somewhat similar manner. “Iterative” means whether more
than one iteration is used per assimilation cycle – a hallmark of variational methods. “NLM” and
“NLH” denotes that the non-linear model or non-linear observation operator are used, respectively.
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CHAPTER 4

NON-LINEAR OBSERVATION OPERATORS:
ALL-SKY INFRARED RADIANCES

4.1 Introduction

In this chapter, we test an open data assimilation problem that has a highly non-linear observa-
tion operator and may potentially benefit from non-smooth optimization. The problem under con-
sideration is the reconstruction of a single column of the atmosphere that may or may not contain
clouds from satellite observations in the infrared spectrum. This problem exhibits a sharp transition
from clear to cloudy scenes. The problem is also ill-posed in the sense that multiple states of the at-
mosphere can produce the same observations at the top of the atmosphere. However, the problem is
regularized through the use of a background solution, which also provides a first-guess and prevents
the solution from straying “too far” from this first guess.

The objective of this chapter is to evaluate the performance of our chosen optimization operators
on the problem of data assimilation with highly non-linear observation operators. We also aim to
highlight the importance of choosing a good background and background error covariance model.

For this problem, we consider synthetic data from the Atmospheric Infrared Sounder (AIRS)
satellite with the Weather Research and Forecasting numerical weather prediction model and the
ECWMF RTTOV fast radiative transfer model. We test the performance of a penalized 1D-Var
algorithm with L-BFGS, CG-Descent, and the non-smooth optimization method LMBM with this
observation operator.

As we will survey below, the problem of clear-sky data assimilation using infrared satellites
is well understood, and while several studies have addressed cloud-fraction data assimilation, the
full all-sky infrared data assimilation problem is currently a topic of intense research, especially at
cloud-resolving scales.

At such scales, the presence of clouds introduces strong non-linearities in the observation (for-
ward) operator with respect to the cloud micro-physical control variables between cloudy and clear-
sky radiances due to the sharp transitions from clear skies to clouds within the atmosphere. This
high degree of non-linearity ([122]) in the cost function may become an issue for any optimization
algorithm being employed in a variational assimilation system. A highly non-linear or discontinu-
ous cost function may lead to a poor solution or even a divergence of the minimization algorithm
([73]). Different methods are used to try to work around these non-linear and discontinuous issues
including smoothing and regularization (e.g. [17], [97]); however, these resolutions are often ad-hoc
and it is not clear that these remedies can be applied in more general settings. In addition, it is not
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known how these workarounds impact the final data assimilation solution. Many issues in this area
still remain unresolved. For example, while in one recent study which contained cloud information
in the initial condition, the data assimilation converged and improved the cloud information based
on all-sky infrared radiances ([214]), in another study, where a cloud was not present in the initial
condition, data assimilation with a traditional 4D-Var method for the infrared all-sky problem fails
to reconstruct the desired cloud ([182]). In this chapter we will survey these problems and offer
a new solution that treats the non-linearities and non-discontinuities directly through the use of a
penalized 1D-Var with non-smooth optimization.

In Bauer et al. ([17]) and Geer et al. ([68]), some interesting statistics are given. While satellite
observations provide 90-95% of the data that is assimilated, over 75% of these observations must be
discarded due to cloud contamination and unknown surface emissivities. While all-sky microwave
data is currently used around the world in operational centers, all-sky infrared data is still being in-
vestigated. While many cloudy-infrared products are already available ([122]), these products focus
primarily on single-layer retrieval products from the infrared data such as cloud-top pressure and
temperature, which introduce a source of error ([182]). This work examines assimilating all-sky
infrared radiances directly through the use of a parameterized multiple-scattering radiative transfer
model. The potential benefits of this approach are many, and include improving initial conditions of
the optical depth and hydrometeor species and concentration of the cloudy column under investiga-
tion. When used in conjunction with microwave information, in particular, this method may greatly
enhance cloud information in the initial conditions ([16]).

The material in this chapter is the subject of an upcoming paper prepared for publication [195].

4.1.1 Survey

The problem of clear-sky data assimilation using infrared satellites is well understood (e.g. [62],
[43]). However, the full all-sky infrared data assimilation problem is currently a topic of active and
intense research, especially at cloud-resolving scales ([193]).

Because of the large amount of useful information within cloud-affected radiances, the assimi-
lation of such observations has long been a goal of numerical weather prediction. Thus the history
of assimilating infrared satellite data is long and storied. We begin with early attempts to use this
data in a meaningful way. We then switch our focus to the modern data assimilation of cloudy
radar data, which in many ways informs techniques that can be used for the assimilation of cloudy
infrared data. We then summarize modern attempts at assimilating microwave data, which is even
closer in nature to infrared data, and conclude with the modern early results of assimilating all-sky
infrared data.

Early utilization of satellite data to initialize clouds. The satellite era began on October 4th,
1957 when the Soviet Union successfully launched Sputnik I, the first artificial satellite. The United
States followed with Explorer-I in 1958, and on April 1st 1960, NASA launched TIROS-I, which
began providing observations of the earth from space for the purpose of improving meteorological
predictions. Unfortunately TIROS-I only provided 78 days worth of data before failing, but proved
that satellites could indeed provide useful information for NWP purposes. The TIROS series con-
tinued in the 1960s, with TIROS-7 in 1963 reaching an operational period of 1809 days before it
was deactivated. With the subsequent introduction of the NIMBUS series of satellites, launched
successively from 1964 until 1978, space-based remote-sensing of the atmosphere became an indis-
pensable tool for meteorological applications ([192], [1], [190]). A multitude of satellites that have
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provided and/or continue to provide potentially useful data has since literally filled the sky. This
survey focuses on the utilization of cloud data in numerical weather prediction models from satellite
sources.

While many early studies investigated the potential for deriving properties of clouds from space-
based instruments (e.g. Basharinov 1969 [13], Akvilonova 1973, [3]), this survey covers solely the
use of this information to initialize NWP models.

One of the earliest practical methods for cloudy moisture analysis using satellites involved the
“CO2 slicing” technique. The method uses differences between multiple (two to four) channels
of infrared data near the 15 µm CO2 absorption band to detect low, medium, and high clouds
with the assumption that clouds were blackbodies, a fairly reasonable assumption for the channels
investigated. In addition to cloud-top heights, the method could also estimate effective cloud amount
and even cloud motion winds based on tendencies (Chahine 1974, [38], 1977, [39], 1977 et al. [40]).
Authors using this method include Smith et al. (1974, [189])), Smith and Platt (1978, [188]), Menzel
et al. 1983, [153]), Schreiner et al. (1993, [181]), and Bayler et al. (2000, [21]). CO2 slicing still
remains in use as a first guess for modern implementations, e.g. Heilliette and Garand (2007, [87]).

Another early method for the usage of satellite data for initializing clouds was a technique
known as “nephanalysis” where visible and/or infrared satellite data was used to manually prepare
a synoptic scale chart with different types of clouds that was then used to assign vertical humidity
profiles. Perkey (1976, [170]) was the first to use this technique to initialize a hydrostatic primi-
tive equations model with predicted horizontal winds, virtual temperature, specific humidity, cloud
or suspended water, and precipitation water. Perkey manually (and subjectively) inserted “bogus
moisture soundings” based on the nephanalysis chart and found that precipitation was better pre-
dicted than by using radiosonde data alone. He concluded with the importance of investigating more
realistic initialization techniques for this data.

Mills (1983, [154]) described the use of nephanalysis with an operational limited area model of
250 km horizontal resolution and 6 vertical levels to predict precipitation from a tropical cyclone
over Australia. Starting from geostationary infrared data, cloud type and possible cloud-top heights
were assigned. Then, using surface observations and radiosonde data, they assigned cloud-base
heights and created vertical dew-point profiles. They found that their precipitation and low pressure
center were greatly improved using this technique, and concluded by discussing possible techniques
to make this system more objective and effective. One suggestion was that an “experienced operator
could, ... using an interactive graphics terminal, overlay the objective moisture analysis and satellite
imagery, and modify the moisture analysis in the cloudy areas as desired.”

Other authors to use nephanalysis to initialize their model include Wolcott and Warner (1981,
[225]), Cadet (1983, [35]), Mills and Davidson (1987, [155]), Norquist (1988, [163]), Mailhot et
al. (1989, [142]), Bell and Hammon (1989, [22]), and Hamill et al. (1992, [84]). A closely related
technique was used by Zou and Xiao (2000, [243]).

Another approach for initializing NWP methods from satellite observations was based on sta-
tistical methods. DesBois et al. (1982, [48]) used a clustering algorithm with one channel of visible
and two channels of infrared data. An automatic classification scheme was used to identify clusters
in the three-dimensional space of these three channels. Based on the pixels of data in a particular
area, a histogram was constructed of the dark vs. bright and warm vs. cold pixels, from which
different classes of clouds and surface albedo could be identified. This study allowed for partially
transparent clouds. The benefits of this method were that many different classes of cloud and sur-
face type could be quickly identified based on empirically trained models. Other authors to use this
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method for cloud classification include Koch et al. (1997, [112]).
Yet another early approach for utilizing model cloudy state based on satellite information is

known as physical or diabatic initialization. In this approach, inverse model parameterizations, sim-
ilarity theory, and relaxation were used to make the model be consistent with outgoing observations.
In essence the model was initialized with a background state, and the values were aimed at the ob-
servations and “nudged” towards the observation target. Authors employing this approach include
Krishnamurti et al. (1984, [117], 1988, [114], 1991, [116], 1993, [115]), Donner (1988, [51]), Puri
and Miller ([172]), Heckley et al. (1990, [85]), Turpeinen et al. (1990, [208]), Davidson and Puri
(1992, [47]), Manobianco et al. (1994, [145]), Raymond et al. (1995, [174]), and Kasahara et al.
(1996, [107]).

The final early approach we survey was the method of incorporating many different sources
to determine a three-dimensional cloud analysis. Macpherson et al. (1996, [141]) described the
Moisture Observations Preprocessing System (MOPS) used operationally in the UK Meteorolog-
ical Office, which converted a 31-level three-dimensional cloud analysis from a wide variety of
data sources (satellite, radar and surface observations) into a set of relative humidity profiles to be
used with a nudging scheme. Cloud-cover was determined by Meteosat infrared satellite brightness
temperatures, with cloud-cover indicated if the brightness temperature was more than 5K less than
the surface temperature. This is related to the so-called minimum residual method of Eyre et al.
(1989, [60], [61]). In this method, the cloud-top is moved through each level of the model to find
the brightness temperature that best matches the observations. While this approach is acceptable for
actual brightness temperature calculations at a single layer, in Macpherson et al. cloud-top pressure
was found by selecting the background temperature matched the infrared brightness temperature,
a risky approach because the measured brightness temperature depends on many factors including
temperature at all atmospheric levels, gas profiles, wavelength of the channel considered, zenith an-
gle, etc. ([192]). In this study alone, the same column of atmosphere gives brightness temperatures
of between 200 K and 300 K for various AIRS channels (see below); while some of these channels
clearly peak at higher points in the atmosphere than the channels investigated in Macpherson et al.,
the point is that the brightness temperature does not necessarily correspond in a direct way to phys-
ical temperature, and this introduces a large potential source of error. Similar approaches include
Albers et al. (1996, [4]), Zhang et al. (1998, [234], 1999 [233]), and Ducrocq et al. (2000, [53]).
These authors used a variety of sources (with some authors even including pilot reports); however,
they all employed the crude approximation that the highest cloud layer temperature corresponded
to the infrared brightness temperature.

Early variational approaches. In 1992, Wu and Smith ([228]) took steps towards the varia-
tional data assimilation of relative humidity as a proxy for clouds with infrared observations. They
minimized a cost function that measured the discrepancy between the model computed and observed
outgoing radiation. The 15-level cost function they considered was based on outgoing long-wave
radiation at the model initial time with no background or uncertainty term (thus making the problem
ill-posed), and the optimization algorithm considered was based on Newton’s method. The work of
Zupanski (1993, [245]), Zou et al. (1993, [244]), Zupanski and Messenger (1995, [246]), Tsuyuki
(1996, [206]), Zou and Kuo (1996, [241]), Kuo et al. (1997, [121]), Zhu and Navon (1999, [240]),
and Guo et al. (2000, [75]) helped put this type of approach on more stable theoretical and numeri-
cal footings, albeit with idealized observation operators (i.e. direct observations of model variables
rather than relating them to satellite observations) or with highly simplified observation operators
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and synthetic data.
One issue which hampered the development of effective variational methods was the presence of

on/off switches in the forward parameterizations – a very common occurence for modeling clouds
– which in turn lead to discontinuities in the model adjoint. This in turn could negatively affect the
minimization, which, with few exceptions, are based on algorithms originally designed for smooth
optimization. A variety of authors used smoothing methods and simplifications to address this
problem including Zupanski (1993, [245]), Zou et al. (1993, [244]), Verline and Cotton (1993,
[211]), Tsuyuki (1996, [206]), Xu (1996, [231]), and Janiskova (1999, [98]). This dissertation
treats the problem directly by using non-smooth optimization methods.

4.1.2 Modern cloudy radar assimilation

In this dissertation, we arbitrarily demarcate the use of cloud microphysical variables with ad-
vanced data assimilation techniques as the entry into the “modern” era of cloudy assimilation. As-
similation of cloudy radar data was the first foray into this field.

The rate of precipitation and radar reflectivities have a near-linear relationship (see e.g. [135]).
This allows radar data to be assimilated with near-linear observation operators, which makes the
data assimilation problem highly tractable. Because it relies so heavily on scattering, radar gives
detailed information about clouds and very little information about other areas. In some ways this
is therefore complementary to infrared satellite data, which gives more complete vertical profiles
away from clouds. Some of the earliest modern attempts at cloudy assimilation therefore were done
using radar data.

The first pre-modern study of initializing NWP models with radar was done by Lin et al. (1993,
[135]) using radar reflectivities and temperature retrievals to modify microphysical variables. They
used a heuristic approach to initialize most variables, then used an empirical relationship between
rain and radar reflectivity to determine initial model variables. No consideration for observational
errors in the observation was considered, and many variables were simply initialized to zero. Bielli
and Roux (1999, [25]) did a somewhat similar study using airborne Doppler radar.

Haddad et al. (1996, [80], [79]) describe both a full Bayesian and an extended Kalman filter
approach to deriving rain profiles from radar observations based on several variables in an idealized
observation operator using synthetic and actual data. They also included a “drift” parameter which
is similar to a model error term. They reported encouraging results, although the number of model
variables considered was small (less than 10). Similar studies include L’Ecuyer and Stephens (2002,
[125]).

Sun and Crook (1997, [198], 1998 [199]) used a 4D-Var system with simulated Doppler radar
data for three-dimensional wind, temperature and warm (no ice) microphysics. They included a
penalty term in their cost function for “spatial and temporal smoothness.” They used a six-equation
model based on the anelastic approximation with explicit warm rainwater and an idealized, smooth
and nearly linear observation operator (radial velocity and reflectivity) along with a simple, uncor-
related covariance model. Their model, like most modern models, had “on-off” parameterization
switches for processes such as evaporation and autoconversion. They used the L-BFGS minimiza-
tion method to solve their variational problem, and pointed out the problems associated with the
non-smooth switches and non-linear parameterizations. They found that the non-smooth problems
associated with their parameterizations were largely mitigated with no work needed, potentially
due non-smooth-optimization-like properties of L-BFGS, although the highly non-linear aspects of
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their parameterization caused the minimization to fail. They mitigated these problems by making
changes to the forward and adjoint models to smooth out the gradients. Their results showed that
they were able to obtain very decent results but required further improvement in error covariance
modeling and microphysics. This chapter looks at the non-linearity issue in the observation oper-
ator, and the non-smooth switches in observation operator in the next chapter. A future work will
address the issues in the non-smooth model parameterizations of 4D-Var implementations.

Wu et al. (2000, [227]) extended these results using a 4D-Var system assimilating dual polar-
ization radar data with the inclusion of hail for the same model and optimization algorithm. They
reported results that were orders of magnitude worse than Sun and Crook, ostensibly due to the in-
clusion of ice microphysics. They also reported that the problem may be with 4D-Var itself “which
inherently depends on linear approximations, (may be) unable to adequately assimilate the obser-
vations.” This statement is slightly inaccurate in that at each step of the 4D-Var optimization, the
algorithm relies upon the tangent linear model to come up with a search direction; for the smooth
case, if the search direction is consistent with the forward model and is a descent direction, with a
proper line-search 4D-Var is guaranteed to converge to a local minimum. No such guarantee exists
with the non-smooth case with L-BFGS, which they investigated. Their cost history graph shows
some irregularities with a non-uniform descent, which descent algorithms such as L-BFGS do not
usually allow, implying that there is either an issue with the gradient of their cost function or their
implementation of L-BFGS. Montmerle et al. (2001, [157]), Austin and Stephens (2001, [11]),
Weygandt et al. (2002, [221], [222]), and Benedetti et al. (2003, [23] and [24]) perform similar
studies but with better results.

Snyder and Zhang (2003, [191]) investigated using the Ensemble Kalman Filter (EnKF) with-
out perturbed observations. They assimilated synthetic radar data with warm rain microphysical
variables using the same model as Sun and Crook (1997, [198]). They also used an idealized,
nearly linear observation operator that simulates radar reflectivities. They found that even though
their observation operator was slightly non-linear, EnKF was still able to handle these observations
and reconstruct the hydrometeor profiles. By using EnKF, they were able to avoid the need for a
model adjoint or an observation operator adjoint and were also able to gather realistic sample error
covariances.

Tong and Xue (2005, [204]) extended the work of Synder and Zhang by using the more ad-
vanced ARPS model with five species of microphysical variables including ice crystals which is
quite similar to [92]. They used 100 ensemble members with observations assimilated every 5 min-
utes and obtained excellent results, even to the point of being able to distinguish different phases
of the cloud. This work unfortunately used multiple observations (100) with the mean as the cor-
rect true observation and the correct observation error covariance were taken. As shown in the
chapter on data assimilation, in the best case realistic scenario only one observation would be avail-
able with the noise already included; using multiple observations with the correct covariance model
for each ensemble to improve the ensemble statistics is in fact “cheating.” This is a flaw of all
perturbed-observation EnKF studies in general, and thus only studies such as Synder and Zhang
where unperturbed observations are used (or the covariance is doubled in the perturbed observation)
should be relied upon. Caya et al. (2005, [37]) performed a similar study to compare 4D-Var and
EnKF but did not use perturbed observations. Unfortunately they unrealistically only gave 4D-Var
access to 3 observations of information (10 minutes) at a time, thus hampering it almost to the point
of a “3.5 Var” method. Since 4D-Var theoretically (if not numerically) deals best with assimilating
as long of an observation window as possible (especially since the background error covariance B
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is only valid for 4D-Var at the initial time), this stacked the deck against 4D-Var somewhat. Even
so, they found that 4D-Var and EnKF were very competitive.

Koizumi et al. (2005, [113]) describes an implementation of the Japanese Meteorological
Agency (JMA) 4D-Var system with radar assimilation. They found that the assimilation of this
data improves both precipitation and improves cloud location.

In Lopez and Bauer (2007, [139]) the operational 1D-Var+4D-Var assimilation scheme was
tested on radar and hourly precipitation gage data. In this approach, rain rates were first assimi-
lated through 1D-Var, and these were then used as “psuedo-observations” in the four-dimensional
scheme. Lopez (2011, [138]) describes the full operational 4D-Var assimilation of National Cen-
ters for Environmental Prediction (NCEP) stage IV radar and rain gauge precipitation. A main
conclusion of the paper is that assimilating six-hour precipitation accumulation rather than hourly
data gives significantly better performance. This phenomenon may be attributable to the smoothing
feature of the averaging operation, and thus the highly non-linear and non-differentiable “on/off”
switches associated with precipitation can be appeased to some degree. Another major result of this
paper is that only areas where both the background and model observations are precipitating are
rainy can be assimilated. This dissertation will touch on these issues to some extent.

A plethora of studies of various different methods of assimilation of radar data have recently
been conducted. These include Xiao et al. (2007, [230]) with 3D-Var; Kawabata et al. (2007,
[109]) with 4D-Var with no microphysical variables; Sugimoto et al. (2009, [197]) with 3D-Var;
Aksoy et al. (2009, [2]) with EnKF; Caumont et al. (2010, [36]) with 1D-Var+3D-Var which
detailed microphysics – the benefit of the 1D-Var approach they use is that the model adjoint is
not needed, while the benefit of the 3D-Var method is that the model adjoint is not needed; Lee et
al. (2010, [126]), Routray et al. (2010, [178]), Li and Mecikalski (2010, [134]), Ha et al. (2011,
[76]), all with 3D-Var; Kawabata et al. (2011, [108]) with 4D-Var with full microphysical variables;
Dowell et al. (2011, [52]) with EnKF; and Zhao et al. (2011, [236]) with 3D-Var.

Modern microwave data assimilation. Except under heavy precipitation, the atmosphere is
semi-transparent in the microwave spectrum, meaning that the nature of the radiation is not dras-
tically changed in the presence of hydrometeors. The observation is also not highly non-linear
([17]). The situation is quite different for infrared radiation, however, where clouds are almost –
but not quite – a blackbody that perfectly absorb/emit infrared radiation. The assimilation of mi-
crowave radiation has particular challenges, however, including the fact that the surface emissivity
and polarization over the ocean are related to the wind speed ([56]). Despite these differences, like
radar, many of the methods that have been used for microwave data assimilation can inform our
assimilation of infrared brightness temperature.

Smith et al. (1992, [187]) and Mugnai et al. (1993, [158]) set the theoretical framework for data
assimilation using a cloud-resolving model with five cold microphysics and an observation operator
based on a full single-scattering radiative transfer model. They describe the nature of the microwave
brightness temperature problem in relation to microphysical variables in great detail, and set forth
a theoretical possibility of using an optimization method with a weighted combination of training
input profiles that they would then use to minimize the difference between observed and simulated
data in a “least-squares sense.” However, they appeared not to take several important practical is-
sues into account such as observation error, adjoints, well-posedness, uncertainty quantification or
optimization algorithms, but none-the-less put forth an impressive effort especially from the obser-
vation operator standpoint. Giglio (1994, [69]) describes a somewhat similar but more practical
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approach, with emphasis on selecting appropriate cloud models (e.g. over land or ocean) and nudg-
ing the results towards better fit with the observations using regression. Kummerow and Giglio
(1994, [118]) present this algorithm applied to actual SSM/I data and showed fair correlation with
radar, especially over the ocean.

Kummerow et al. (1996, [120], 2001, [119], used a microwave radiative transfer model with-
out/with scattering, respectively, along with a Bayesian approach that is essentially 1D-Var without
a background (making the problem ill-posed when there are more model variables than degrees of
freedom, see e.g. Stuart (2010, [196]) in order to derive three-dimensional cloud estimates and de-
velop a cloud database for use in data assimilation. They conclude that their method has significant
biases. Similar studies include Olson et al. (1996, [165]), Haddad et al. (1997, [81]), Marzano
et al. (1999, [147]), Bauer (2001, [14], [15]), Di Michele et al. (2003, [49]), Grecu et al. (2004,
[71]), Masunaga and Kummerow (2005, [148]), Di Michele et al. (2005, [50]), and Chiu and Petty
(2006, [44]). Zhou et al. (2007, [239]) compared that cloud-databases based on these methods
were not very accurate; a cloud-ensemble model run over 30 days without data assimilation (i.e.
with no observations used) provided better statistical estimates of precipitation than those based
directly on the observations. Ebert et al. (2007, [54]) reported similar results. This may be indica-
tive of: the importance of including a background in the inversion problem; the need for improved
models, microphysical schemes or prior distributions in the retrievals; the issue of the so-called
“spin-up” problem whereby the model is not initialized in a dynamically consistent way; the fact
that synoptic-scale dynamics have more impact on cloudy data than individual columns; or most
likely some combination of these factors.

Fillion and Errico (1997, [63]) first analyzed the theoretical 1D-Var assimilation of derived
rain-rate products for SSM/I microwave data. Using temperature, pressure, velocity, humidity and
pressure on five levels as their 20 control variables, they used the M1QN3 L-BFGS implementa-
tion to minimize the 1D-Var cost function. Because they worked with derived products (which
already contain major inaccuracies), their observation operator was simply the model parameteri-
zation schemes. They were able to make significant adjustments of model precipitation based on
synthetic observations, and presented important theoretical contributions to the 1D-Var of rainy
microwave data including a variable transform based on the eigenvalue decomposition of the back-
ground error covariance. Fillion and Mahfouf (2000, [64]) and Marecal and Mahfouf (2000, [146])
re-examined the 1D-Var technique on the Tropical Rainfall Measuring Mission (TRMM) microwave
satellite using derived instantaneous surface rainfall rate products with near linear observation op-
erators. They found that in areas where there was no precipitation in the background, 1D-Var was
not able to trigger precipitation; a related issue will be addressed in this dissertation.

Aonashi and Liu (1999, [8]) were the first to investigate the direct assimilation of all-sky SSM/I
polarized microwave radiance data using 1D-Var and a full radiative transfer model. Using sev-
eral simplifying assumptions (including that the temperature was constant) and parameterizations,
they assimilated both a derived rain flag product as well as the microwave brightness temperature
using the control variables of divergence and precipitable water in rainy areas and total water in
precipitation-free areas. Their four-stream microwave radiative transfer model allowed for cloud
water, rain, snow and ice. They used the Gauss-Newton optimization algorithm, which is noto-
riously unstable, but were still able to obtain improved precipitation forecasts but did not see an
improvement in humidity forecasts. Other authors such as Xiao et al. (2000, [229]) and Wiedner et
al. (2004, [224]) also assimilated this data in a similar fashion.

Treadon et al. (2002, [205]) describes how NCEP has introduced rain retrievals from rain-
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affected microwave data into the operational global data assimilation system, while Tsuyuki et al.
(2002, [207]) describes similar advances by the JMA.

Greenwald et al. (2002, [72]) describe a full all-weather radiative transfer observation opera-
tor and adjoint appropriate for visible and infrared data assimilation, while Weng and Liu (2003,
[219]) discuss a microwave radiative transfer model and adjoint appropriate for data assimilation.
Heidinger et al. (2006, [86]) and O’Dell et al. (2006, [164]) describe an observation operator and
adjoint appropriate from the microwave to the infrared spectrum.

Bauer et al. (2005, [20]) present results on the accuracy of retrieving hydrometeor profiles using
1D-Var with synthetic microwave data and a full multiple-scattering radiative transfer model. They
use the M1QN3 L-BFGS algorithm, and consider rain, snow and cloud, and found that they were
able to achieve accurate retrievals. Bauer et al. (2006, [18], [19]) give an operational implementation
of 1D-Var+4D-Var all-sky microwave assimilation at ECMWF, which has since been replaced by a
full 4D-Var implementation (2010, Bauer et al. [17], 2010, Geer et al. [68]). In this implementation
they use a full multiple-scattering radiative transfer model, RTTOV, which is used in this disserta-
tion for infrared data instead. Again, unlike infrared data, this observation operator for microwave
data is nearly linear. They showed that the 1D-Var+4D-Var and 4D-Var systems showed similar
performance, with the 1D-Var actually achieving better results for precipitation data. They once
again conclude that creating a cloud is much more difficult than removing it. Weng et al. (2007,
[220]) describe a similar 1D-Var+4D-Var variational scheme for the assimilation of rain-affected
microwave data, but they use the Community Radiative Transfer Model (CRTM), another multiple
scattering model appropriate for the data assimilation of cloudy data. Boukabara et al. (2007, [32])
describes an all-weather 1D-Var microwave implementation.

Meirold-Mautner et al. (2007, [152]) compared the output from a radiative transfer model to
that of observed satellite and infrared data and found good agreement. They concluded that the
microwave observations were very sensitive to microphysical parameters such as snow dipole pa-
rameters, thus providing a good basis to evaluate (and in turn assimilate) these parameters within
models.

Hou and Zhang (2007, [93]) generated a 4-year analysis by using a 1D-Var “variational con-
tinuous assimilation” that optimized the model error rather than the initial condition. The model
was related to the observations through a simplified moist physics, and model error alone was used
to account for the differences. The benefit of this approach is that a perfect model is no longer
assumed, which for precipitation and cloud models is a quite poor assumption. However, by not
considering any error in the initial conditions, however, the model dynamics are neglected entirely.
While Hou and Zhang recognized the benefit of considering both types of errors, they nonetheless
showed improvement in precipitation data by only considering model error.

Zupanski et al. (2011, [247]) discussed a prototype ensemble system based on WRF for the
assimilation of downscaled microwave precipitation data using MLEF. They used horizontal wind
components, temperature, pressure, water vapor, and five classes of hydrometeors. They included
data from the AMSR-E and TMI satellites and used a delta-Eddington two-stream radiative transfer
model with slant view. They tested a tropical storm case and found that the assimilation of precipi-
tating radiances caused excessive surface rainfall, highlighting the need for improved microphysical
schemes. Other studies using microwave data to initialize WRF have been conducted include Singh
et al. (2011, [184]) with 3D-Var and AMSU data.
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Modern infrared data assimilation. We now come to modern infrared data assimilation and
its particular challenges of high-degrees of non-linearity.

A near-modern attempt at assimilating infrared data was Bayler et al. (2000, [21]). A successive
correction algorithm was used for cloud initialization using infrared GOES sounder data with an 80
km resolution, Kessler microphysics (cloud, rain, and water vapor species) and a Kuo cumulus
parameterization scheme. However, rather than using actual microphysical variables, Bayler et. al.
used relative humidity above saturation to represent clouds. In addition, the Cressman scheme of
successive correction was used, meaning that the observations were taken to be perfect and these
observations were weighted by the distance from the analysis point. They used the CO2 slicing and
split window techniques to derive cloud-top pressure and effective cloud amount. Li et al. (2001,
[133]) published a similar study.

Janiskova et al. (2002, [96]) made preliminary investigations of the 1D-Var data assimilation
of temperature, humidity, and pressure as proxies for the development of stratiform clouds. Most
importantly for this work, careful development of the linearization of the observation operator and
cloud parameterization was described. This work used M1QN3, an implementation of the limited-
memory BFGS algorithm. The use of cloud microphysical variables as control variables was dis-
cussed, but it was decided that directly including these variables would be too difficult due to the
need for statistics of background errors and performance considerations. Finally, the authors noted
a difficulty in triggering new clouds when the atmospheric state was far from the conditions of cloud
formation.

McNally (2002, [150]) measured the cloud-modified, adjoint-derived sensitivity of the ECMWF
model error to clouds, and found that there was a high degree of correlation between areas of
baroclinic instability (which contributes to model error) and clouds. He also concluded that the
use of hyper-spectral cloudy IR radiances could have a large impact on improving model error,
although a great deal of effort would be needed to address various issues. The issues he noted
include specifying background error statistics, optimally selecting which channels to use, and the
large sensitivity of the observation to errors in cloud cover fraction.

Szyndel et al. (2004, [200]) examined 1D-Var assimilation of cloud data using a simplistic
single-layer cloud model with an ensemble of related synthetic satellite observations. Their control
variables consisted of an atmospheric profile without clouds, effective cloud amount and cloud-
top pressure of their single layer cloud using 4–6 infrared channels. They used the minimum-
residual method as a background first guess for their 1D-Var approach. The effective cloud amount
and cloud-top pressure were “clamped” to between 0.01 and 1.0, respectively. As detailed below,
this clamping can cause issues for the convergence of the algorithm, which indeed Szyndel et al.
acknowledged. Regarding optimization algorithms, they used a Gauss-Newton method and the
Levenberg-Marquardt method for least-squares fitting, both of which require storage on the order of
N2, where N is the number of control variables. Since the only control variables used in their study
were cloud-top pressure and effective cloud amount, this is not an issue. In this dissertation, where
the cloud variables are considered at each cloud-level, such optimization methods become compu-
tationally infeasible, and the limited-memory approaches detailed above become vital to success.

Chevallier et al. (2004, [42]) investigated the issue of 4D-Var of cloud-affected AIRS and
MVIRI infrared radiances using control variables of temperature, humidity, ozone, surface temper-
ature and pressure. Like Janiskova et al. (2002, [96]), the decision was made not to include cloud
variables as control variables due to the difficulty of specifying background errors and concerns
about the non-linearity of the observation operator. The observation operator was kept simple “so
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that thresholds and strong nonlinearities do not make the 4D-Var minimization stop before reaching
the absolute minimum of the cost function.” This statement alludes to the fact that discontinu-
ities and highly non-linear observation operators can cause the algorithms to terminate in their line
searches, especially if they are not set in the context of non-smooth optimization (however, 4D-Var
in general only converges to local minimums, not absolute ones). The model thus did not take scat-
tering into account, but was rather based on a simple cloud-top pressure model. 35 “near-linear”
channels of AIRS were chosen based on several criteria, and the recommendation is to assimilate
only 3 regions of AIRS. In a similar study, Tompkins and Janiskova (2004, [203]) describe a vari-
ational model that determines cloud cover from infrared observations based on parameterizations
and statistical properties.

Vukicevic (2004, [213]) investigated assimilating visible and infrared measurements for mesoscale
cloud-state estimation using a 4D-Var algorithm with the RAMS model with explicit microphysics
and an explicit visible and infrared radiative transfer observation operator. Vukicevic included
model error, and found that she was able to achieve some improvement in cloud cover when com-
pared to the background state; however, not much improvement was seen when the background
state was clear. Greenwald (2004, [73]) studied the adjoint sensitivity of three infrared channels and
found that these channels are sensitive to microphysical parameters. Wei et al. (2004, [216]) studied
the AIRS channels and found the same. Vukicevic (2006, [214]) found that increasing the number
of channels and frequency of observation had a clear impact on improving the assimilation results,
that infrared could not trigger clouds, and that a simple linear model error approach was insufficient
for controlling the error in boundary conditions.

Li et al. (2005, [131]) treat the 1D-Var problem with full microphysical particles including
particle size and radiative transfer for AIRS data. Similar studies on the benefits of assimilating
hyperspectral infrared channels were conducted by Smith et al. (2005, [190]) and Zhou et al. (2005,
[237], 2007, [238]). [193].

Errico et al. (2007, [57]) reports on the outcome of a 2005 international workshop where the
issues in assimilating cloudy satellite transfer was discussed. A variety of issues were identified
that needed to be improved including: issues with the observations (including improving utilization
of millimeter data); issues regarding models (including improved microphysical schemes, espe-
cially with ice); issues with radiative transfer (including quantifying satellite biases and standard
deviations, using improved microphysical schemes); and issues with the data assimilation itself
(including how to deal with highly non-linear and non-smooth processes, moving beyond perfect
model assumptions, and improving uncertainty quantification). Errico et al. emphasizes the truly
interdisciplinary nature of this problem.

Lopez (2007, [137]) reviews the issues facing the variational assimilation of cloud and precipita-
tion radiance data from the perspective of the models. Based on time-scale arguments, he concludes
that it is sufficient to assimilate humidity values as a proxy for cloud microphysics when the clouds
are precipitating or convective, but for cirrus clouds the microphysical variables are needed. Lopez
stresses the difficulties in dealing with a highly nonlinear observation operator. Lopez says that
“improved linearity is usually achieved either by using smooth functions to describe each physical
process or by artificially reducing or neglecting the perturbations of problematic quantities involved
in the parameterization.” This dissertation treats the non-linearities directly.

Weisz et al. (2007, [217]) demonstrate a model for determining cloud-top pressure for AIRS
data based on training of a global data model. They use an eigenvalue regression to determine re-
gression coefficients for either water or ice clouds. Li and Liu (2009, [132]) used this model and
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showed improved tracking of a hurricane using AIRS infrared data assimilation with the WRF/-
DART testbed, which uses an Ensemble Adjustment Kalman Filter.

Heilliette and Garand (2007, [87]) describe a method for assimilating infrared radiances using
a highly simplified cloud model with four parameters: single layer cloud height, 15 µm effective
emissivity, and effective particle size of water and ice. Scattering was not considered as they used the
RTTOV-8 model. They used a 1D-Var formulation for full columns of water vapor and temperature
in addition to the four cloud parameters mentioned above. They considered that these four cloud
parameters were independent and thus had a diagonal term in the background error covariance
matrix B, and assimilated synthetic radiances corresponding to 100 channels of AIRS. Starting
from a first guess for cloud parameters based on the CO2 slicing method, they found that they were
able to reduce the variance of these variables and have a significant impact on the retrieved values.
Pavelin et al. (2008, [169]) performed a similar study and found that while they achieved positive
results for temperature and humidity, their cloudy parameters showed less accuracy when multiple
channels were used, attributed in part to the lack of multiple scattering.

McNally (2009, [151]) describes a near-operational 4D-Var assimilation of infrared brightness
temperature using an infrared radiative model based on simple brightness temperatures (i.e. a single-
layer blackbody cloud with no multiple scattering). The background for this study was chosen using
the minimum-residual method ([60]) using two channels. Only completely clear or overcast values
were considered. i.e. no cloud fraction was chosen. By using the minimum residual method, no
error covariances on the cloud-top were required, and only the cloud-top pressure was adjusted.
This procedure showed slight positive impact on the RMS temperature and humidity. Pangaud et al.
(2009, [168]) publish a similar study and show positive impact on geopotential up to 72 hours.

Seaman et al. (2010, [182]) use 4D-Var system to assimilate infrared radiances, and find that if
no cloud is present in the initial condition, the analysis proceeds as if no cloud was present. In this
dissertation we explain why this occurred and an easy remedy.

Zupanski et al. (2011, [249]) describe a system for assimilating synthetic GOES-R infrared data
in cloudy conditions with the WRF model. This was a “non-identical twin” experiment as they used
the RAMS model for creating their observations. Using a single channel of infrared data with a two-
stream delta-Eddington radiative transfer model with a cloud optical property model, they examined
the assimilation of a hurricane with potential temperature, specific humidity, and five hydrometeor
classes as control variables, and experimented with leaving different hydrometeor classes out. They
concluded that it is essential to use as many classes of hydrometeor as possible in order to obtain the
maximum benefit of assimilating cloudy radiances, with the possible exception of rain or graupel.
Polkinghorne and Vukicevic (2011, [171]) describe a 4D-Var system for the assimilation of GOES-8
infrared cloudy radiances. A cloud-mask is first used so that only the same cloud type is considered.
They performed a wide variety of experiments including varying the assimilation window. They
conclude that “while increasing the length of the assimilation window does not lead to a greater
decrease in cost function, it does lead to a smoother dynamical response to the assimilation and
a better forecast.” That increasing the assimilation window does not decrease the cost function is
somewhat apparent since the cost function is a non-decreasing function of assimilation window, i.e.
the more non-exact observations considered, the greater the value of the cost function will be. They
conclude that their main hindrance to achieving better errors was the cloud location problem, which
may be fundamentally related to their cloud mask approach. It is probably better to solve the cloud
location problem through an all-sky observation assimilation approach rather than determining an
inaccurate cloud mask a priori; this is the approach is taken in this dissertation.
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Finally, Bauer (2011, [16]) concludes with a survey of the all-sky and microwave and infrared
schemes used operationally across the world. The focus is currently still on single-layer clouds for
infrared data across the world, although research is being conducted into full gray cloud, multiple
scattering infrared radiances. Most operational centers only assimilate fully clear or fully cloudy-
skies, and effective cloud amount is not considered. Lavanant et al. (2011, [122]) discuss the cloud-
derived products that are available for the Infrared Atmospheric Sounding Interferometer (IASI)
satellite.

Thus concludes what is hoped to be a near comprehensive survey of the state-of-the-art in
cloudy-sky assimilation.

4.1.3 Atmospheric Infrared Sounder

The Atmospheric Infrared Sounder (AIRS) satellite was launched on May 4th, 2002 by NASA
with the intent of providing high-resolution data for improving climate and weather prediction.
It has 2378 channels that range from 3.75 µm to 15.4 µm in wavelength ([10]). Each of these
channels has a different weighting function or sensitivity that peaks at a different location in the
atmosphere – figure 4.1 shows the weighting function for AIRS channel 300 (wavenumber 735.690
cm−1 or a wavelength of 13.593 µm), and figure 4.2 shows the location in the atmosphere where
the weighting function for each channel peaks. Both of these profiles were generated for a maritime
tropical clear-sky profile (see section 4.3 below) with the default CO2 profile from RTTOV (see
section 4.1.5). Both of these graphs were calculated by a model based on the HITRAN 2008 line-
by-line database ([177]) using only the primary isotopologues of CO2 and H2O. In these graphs, the
somewhat important effects of other gases such as O3, N2O, CH4, and CO have been neglected, and
thus should be taken as only an illustration of the fact that the weighting functions peak at different
levels in the atmosphere. In this dissertation outside of this section, we do not use a line-by-line
model, and instead use RTTOV; we assume the default RTTOV profile for all of the atmospheric
constituents enumerated above except for water.
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Figure 4.1: Weighting function for AIRS channel 300

Because each channel has a different weighting function with different sensitivity to the atmo-
sphere, in aggregate these channels can be used to reconstruct an atmospheric profile. These 2378
wavelengths will be used in this experiment to provide synthetic observations that are generated
from RTTOV v10, i.e. only infrared satellite observations will be used.
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Figure 4.2: Channel wavelength versus channel peak pressure (CO2 and H20 only, clear sky profile)

4.1.4 Weather Research and Forecasting model

For these experiments, we use the Weather Research and Forecasting (WRF) model ([186]) to
generate sample profiles of the atmosphere. WRF is a limited-area NWP model that has been used in
many applications. In this experiment we use the WSM 6-class microphysics scheme ([92]) which
has six species of hydrometeors: vapor, liquid cloud, rain, snow cloud, ice cloud, and graupel (hail).
Since this experiment focuses primarily on RTTOV and the 1D-Var problem, and WRF is merely
used to generate the initial profiles as exact values, we refer to ([186]) for more information about
WRF.

4.1.5 RTTOV Version 10

In this experiment we use RTTOV version 10 as our radiative transfer model. Longwave radi-
ation coming from the earth makes its way up to the top of the atmosphere, being absorbed along
the way. In addition, the atmosphere itself emits radiation which is also partially absorbed by lay-
ers above it. This emission and absorption depends on pressure, temperature, wavelength, and the
properties of gases such as water vapor, carbon dioxide, clouds and aerosols. A satellite pointed
towards the Earth’s atmosphere measures the upwelling radiation over a spectrum of frequencies.
RTTOV uses atmospheric variables at various levels of the atmosphere to provide synthetic mea-
surements of radiance that can be compared against the actual measurements from a satellite, and
these measurements can then be used for the purpose of reconstructing the atmospheric profile, i.e.
data assimilation can be performed.

RTTOV is the fast radiative transfer model originally written for the Tiros Operational Vertical
Sounder (TOVS) in the early 1990s. The model was created to allow rapid calculations of radiative
transfer for infrared and microwave satellites. It allows specification of temperature, gas concentra-
tions (including water vapor, clouds and aerosols), as well as cloud and surface properties. RTTOV
can either interpolate these values to user-defined pressure levels or use its own fixed pressure lev-
els. The native pressure levels extend well into the mesosphere (with a minimum pressure of 0.005
hPa) ([89]).

The RTTOV model is trained using more time-consuming line-by-line and multiple-scattering
models in order to derive a regression model. This means that RTTOV itself does not perform
line-by-line or multiple-scattering calculations. Instead, the prediction scheme is calculated as a
deviation from a reference profile, and is given by
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di,j = di,j−1 +
K∑
k=1

ai,j,kXk,j (4.1)

where di,j is the optical depth from level j to space for the satellite channel i, K is the number
of predictors, and Xk,j is the predictor k and level j. Examples of potential predictors include the
temperature, water vapor amount, cloud amount, carbon dioxide, etc. at the given level, although
not all variables are required as defaults can be used. Finally, ai,j,k are the regression coefficients
([179]).

For clear-sky IR radiation, scattering can be neglected ([192]). However, for accurate simula-
tion of cloudy-sky radiances – the target of this research – scattering must be taken into account,
especially for optically thin clouds. In RTTOV version 10, the latest version at the time of publi-
cation, multiple scattering of clouds is included for the IR spectrum, which allows radiances to be
calculated for multiple layer clouds. RTTOV is parameterized for six types of clouds: maritime
stratus, continental stratus, maritime cumulus, continental clean cumulus, continental polluted cu-
mulus, and cirrus (ice) clouds. Note that these are different designations than the clouds used in
WRF, as WRF deals with cloud microphysics, while RTTOV has been parameterized according to
large-scale cloud designations. Absolute cloud concentration (in g/m3) and cloud fraction (0 - 1)
at each layer can be specified for a maximum of two types of clouds per layer ([89]). The adjoint
and tangent linear model of RTTOV is also available, and is detailed in ([89]). This makes RTTOV
suitable at least in theory for cloudy-sky variational assimilation. This chapter will put that theory
to the test in a realistic way.

4.2 Experimental setup

The details of our experimental setup are detailed here, while the numerical results are presented
in the next section.

4.2.1 Choice of control variables

In this subsection we consider which atmospheric variables should be used as control variables.
Under clear skies, the most important variables for infrared radiation are temperature and water
vapor. It is apparent these two variables should be included as control variables. Pressure is another
important variable, but since in this experiment we use the predefined RTTOV pressure levels to
specify our remaining variables, we can treat pressure as a constant and not include it within the
control variable set. Carbon dioxide and ozone also have an important impact on the satellite ob-
servations, especially near the 4.3 and 15 µm carbon dioxide band and the Wulf ozone bands (e.g.
[192]), but in this study we choose to use the default RTTOV profiles.

Because RTTOV allows only two species of cloud to be specified at each layer, unfortunately not
all of the five cloud hydrometeor species available from WRF can be integrated with RTTOV in the
case of a mixed-phase cloud. Rather than trying to keep track of five variables in one case, and only
two variables in the case of a mixed-phase cloud, in this study we simplify matters by combining
QVapor (typically used for cumulus clouds) with QSnow (typically stratus clouds) from the WRF
simulation. We assign this combined concentration to either maritime cumulus or continental clean
cumulus, using the WRF LANDMASK variable to determine sea or land. As shown in section
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4.3.1, the brightness temperature from RTTOV responds in a similar way for cumulus and stratus
parameterizations, so we are somewhat justified in combining these two species together. We use
QIce for cirrus clouds. This leaves only QRain and QGraup. In this study, we choose a cloudy profile
that does not include rain or graupel in order to avoid the lack of a corresponding parameterization
in RTTOV. These issues would need to be addressed before attempting full-scale assimilation; since
rain and graupel would usually not be near the cloud top, and would be most likely to appear with
cumulus clouds ([176]), one strategy would be to simply ignore them, and another would be to
include their concentrations with the cumulus concentrations.

Cloud fraction at each level is also an important control variable. For RTTOV clouds, a maximum-
random cloud overlap is used ([149]), and the cloud fraction refers to the fraction of clear versus
cloudy radiance to use for all types of cloud at that particular layer. In other words,

dtotal
j = Cjd

cloudy
j + (1− Cj)dclear

j (4.2)

where dtotal
j is the total optical depth from level j to space, Cj is the cloud fraction at level j, and

d
cloudy
j and dclear

j are the cloudy and clear optical depths from level j to space.
While cloud fraction is included in the control set, the presentation below will be simplified by

showing effective clouds – that is, the cloud mixing ratio (kg/kg) for either QCloud or QIce times
the cloud fraction at each level, i.e.

QCloudeff = CjQCloud (4.3)

QIceeff = CjQIce (4.4)

One final issue of clarification is that while WRF uses the reasonable unit of mixing ratio
(kg/kg), which is the ratio of the mass of cloud species per kilogram of dry air, unfortunately (from a
user’s perspective) RTTOV chose to parameterize in terms of absolute concentration (g/m3), which
is the mass of the species per cubic meter of air. Because air at different pressures and temperatures
has different volumes, unlike mixing ratio, the absolute concentration depends on both pressure
and temperature, with the same amount of cloud species having a larger absolute concentration at
higher pressures and a smaller absolute concentration at higher temperatures (see figure 4.3). In
the graphs and results below, the cloud results will be given in mixing ratio (kg/kg) so as to avoid
this bias. However, during the optimization process the control variables themselves use the na-
tive units (g/m3) of absolute concentration and are only converted back to mixing ratio (kg/kg) in
post-processing.

The procedure for converting from mixing ratio (q) to absolute concentration (ac) is to calculate
the partial vapor pressure (pv) in Pa, which is the contribution to pressure due to the cloud species:

pv =
MR ∗ p

MR + Mwv/Mair
(4.5)

where p is the overall pressure in Pa, Mwv = 18.0152833 g/mol is the molecular weight of water
(which is the same for vapor, cloud, snow, or ice), and Mair = 28.9644 g/mol is the molecular
weight of dry air.

The absolute concentration ac can then be found as
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Figure 4.3: Absolute concentration of 1.0e-4 kg/kg of cloud species versus pressure and tempera-
ture. The pressure graph is fixed at 300 K, while the temperature graph is fixed at 200 hPa.

ac =
pv ∗Mwv

T ∗ R
(4.6)

where T is the temperature in K and R = 8.31447215 m3 Pa K−1 mol−1 is the universal gas
constant.

The conversion back from absolute concentration to mixing ratio simply reverses this process
and is straight-forward.

In summary, we choose the following five control variables, each specified at each of the nlev
native pressure levels of RTTOV: temperature (T), water vapor (QVapor), cloud fraction, water cloud
(QCloud), and ice cloud (QIce). Cloud fraction is rolled into the water and ice cloud concentrations
and presented as effective water cloud and effective ice cloud.

4.2.2 Twin experiment

In this chapter, we use a so-called “twin experiment” (see e.g. [58], [66]); that is, we start
with our exact solution, extract observations of the exact system through our observation operator
(in this case RTTOV), and perturb both the initial condition and the observations. We then use
the perturbed state and observations in our data assimilation algorithm and compare the solution to
our exact solution. This methodology allows us to assess and compare the success of our various
methods.

We assume an exact background error and observation error covariance model, meaning that
we perturb our true solution and observation so that the perturbations are Gaussian and have the
same error covariance as the background error covariance and observation error covariance matrix,
respectively.

4.2.3 Penalized 1D-Var Cost Function

Because RTTOV is based on a regression model, there are limits to which the regression was
applied. RTTOV will take any input data that falls outside of these limits and will, depending on
the option set, either generate an error or move it back within the limits. Because optimization
algorithms will use a line search to explore values in the control space along a certain direction that
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may take it outside of the feasible region, it is important that the model being used does not generate
errors in such a case, and therefore the only choice is to allow the values to be moved within the
regression limits. This can confuse the optimization algorithm, which would otherwise have no
knowledge of these regression limits, and instead see that the cost function appears to take on a
constant value with respect to the out-of-bounds variable. What’s worse, a constant value means a
zero-gradient – the termination criteria for gradient-based optimization algorithms – and so in the
worst case the algorithm may suspect that it has found a local minimum and terminate!

To avoid this highly undesirable situation, it is clear that the tools of constrained minimization
are necessary. There are many methods for achieving some form of constrained minimization that
range in complexity and effectiveness (see e.g. [162]). Because the true minimum would con-
ceivably always fall well inside the regression limits, and the case when the minimum lies on the
boundaries is by far the most difficult case, the “big guns” of constrained optimization such as the
sequential quadratic programming or augmented Lagrangian methods may be overkill in this case.
Thus, the relatively simple quadratic penalty method (again e.g. [162]) is chosen, and its formula-
tion is:

J(x) =
1

2
δb(x)TB−1δb(x) +

1

2
δy(x)TR−1δy(x) +

µ

2
δp(x)TL−1δp(x) (4.7)

where the variables are the same as in chapter 3, although here x ∈ Rnstate is both the control and state
variable and contains each of T (temperature in K), QVapor (water vapor in ppmv), QCloud (cloud
water vapor absolute concentration in g/m3), and QIce (ice absolute concentration in g/m3) at each
of the nlev RTTOV pressure levels; and δp(x) ∈ Rnstate is the deviation from the feasible area, and is
given by δp(x) = x− P (x; `;u), where P (x; `;u) is the projection of x into the hypercube defined
by (`, u). In addition, because of the clamping to the feasible region, δy(x) = y −H(P (x; `;u)).
Here again B ∈ Rnstate × Rnstate is the background error covariance, R ∈ Rnobs × Rnobs is the
observation error covariance, and L ∈ Rnstate×Rnstate can be considered a “penalty error covariance,”
although it is probably more convenient to consider it a scaling so that variables of drastically
different sizes are penalized in the same way. R and L are diagonal matrices, with

Ri,i = σ2obs (4.8)

and

L =


LT 0 0 0
0 LQVapor 0 0
0 0 LQCloud 0
0 0 0 LQIce

 (4.9)

where L∗ is a diagonal matrix and L∗i,i is a representative value for state level i for the variable ∗
(T, QVapor, etc.) designed to bring the penalties to approximately equal values.

` and u are the lower and upper bound for the state variables. For T and QVapor, the lower and
upper bounds are found in the RTTOV user guide ([89]). For QCloud and QIce, the lower bound is
0 and the upper bound is infinity. µ is a constant that scales the penalty term to a configurable level.
The ability to change µ allows the impact of the infeasible penalty on the cost function to be set
to a configurable level; the problem could also be solved repeatedly with the value of this penalty
steadily increased, although this is seen as overkill due to the nature of this problem.
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4.2.4 Background Error Covariance Model

The non-diagonal background error covariance model is an important part of the formulation of
the data assimilation problem. In this work we use an exact background error covariance matrix to
perturb the background xb. We assume that the perturbation to the background vector is given by

xb = xtrue + ηx (4.10)

where xtrue is the true state, ηx ∼ N(0, B), i.e. ηx is a multi-variate normally distributed variable
with mean 0 and covariance matrix B.

B is the block matrix

B =


BT 0 0 0
0 BQVapor 0 0
0 0 BQCloud 0
0 0 0 BQIce

 (4.11)

and

B−1 =


B−1T 0 0 0

0 B−1QVapor 0 0

0 0 B−1QCloud 0

0 0 0 B−1QIce

 (4.12)

Each of the different B∗ matrices are created by the exponential squared kernel of

B∗ = Σ
1/2
∗ Σ

T/2
∗ (4.13)

and

Σ
1/2
∗i,j = Σ

1/2
∗j,i =

σ∗i + σ∗j
2

exp(−r2i,j/L2
∗) (4.14)

Here, σ∗i is the standard deviation of the variable ∗ at level i, and r represents the vertical distance
in meters between two points, i.e.

r2i,j = |Hi −Hj | (4.15)

where Hi and Hj are the height, in meters, of levels i and j respectively. L∗ represents the cor-
relation length, in meters, required for the correlation between two points of variable ∗ to reach
1/e ≈ 0.36788. The correlation lengths in this study are chosen based on heuristic, first-guess
values to be (3000 m, 3000 m, 1000 m, 1000 m) for (T, QVapor, QCloud, QIce). Additional studies
such as ([251]) could provide more accurate and realistic correlation lengths.

The normal perturbation η∗ that is a component of ηx is created with the transformation η∗ =

Σ
1/2
∗ Z∗, where Z∗ ∈ Rnlev and the components of Z∗i ∼ N(0, 1) are independent identically

distributed standard normal variables.
The size of σTi and σQVapori are taken to be a percentage of the true profile values from section

4.3 with the percentage given in each test results. The size of σQCloud and σQIce are taken as a
percentage of 10−4 kg/kg, which are then converted to absolute concentration for RTTOV. These
same values (without the percentage) are also used as the penalty scaling for L.
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4.2.5 Transformed cost function

While the matrix B has, in theory, full rank, like many other background error covariances used
in practice, this background error covariance matrix is numerically rank deficient due to the effect
of having a much larger correlation length than the grid spacing. Thus, the inverse background error
covariance cannot be computed numerically. This issue is addressed in our 1D-Var implementation
by applying the change of variables transformation δb(x) = x − xb = B1/2z and using z as the
control variable such as in [63] and other studies. Since B1/2BT/2 = B, this removes the necessity
of obtaining the inverse from the cost function, so that (4.7) becomes

J(z) =
1

2
zTz +

1

2
δ′y(z)

T
R−1δ′y(z) +

1

2
δ′p(z)

T
L−1δ′p(z) (4.16)

where δ′y(z) = δy(B
1/2z+xb) = y−H(P (B1/2z+xb; `;u)) and δ′p(z) = B1/2z+xb−P (B1/2z+

xb; `;u). The gradient of (4.16) is

∇zJ(z) = z −B1/2∂P

∂z′

(
∂H
∂P

)T

R−1δ′y(z
′(z)) + µB1/2

(
I − ∂P

∂z′

)
L−1δp(z

′(z)) (4.17)

where z′(z) = B1/2z + xb, but since(
∂P

∂z′

)
i

=

{
1 if z′ ∈ (`i, ui)
0 else

(4.18)

and

δp(z
′)i =

{
0 if z′ ∈ (`i, ui)
z′ − P (z′; `;u) else

(4.19)

we have

∇zJ(z) = z −B1/2∂P

∂z′

(
∂H
∂P

)T

R−1δ′y(z
′(z)) + µB1/2L−1δp(z

′) (4.20)

4.2.6 Optimization settings

In this section we present the optimization settings used for each of our three algorithms. The
optimization settings used for LMBM are shown in table 4.1. Details for these parameters can
be found in the LMBM user’s manual ([105]). The optimization settings for L-BFGS are shown
in table 4.2, while the CG-Descent settings are shown in table 4.3. The L-BFGS parameters are
described in [136], while an explanation of the CG-Descent parameters can be found in [82].

4.3 Test profiles

We test our data assimilation algorithm against two different profiles: one, a clear-sky profile
taken over the Pacific ocean near the Baja peninsula, and a cloudy-sky profile of a cirrus cloud
over the Gulf of Mexico, both from a WRF prediction of August 29 2011 at 00:00 UTC started
from August 28 2011 at 00:00 UTC. Two maritime profiles were chosen at approximately the same
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Table 4.1: LMBM optimization settings

Parameter Value Parameter Value
NA 4 MCU 9
MC 9 NW Default
RPAR(1) 10−3 IPAR(1) 2
RPAR(2) 10−8 IPAR(2) 300
RPAR(3-5) 10−2 IPAR(3) 300
RPAR(6) 1 IPAR(4) 1
RPAR(7) 10−2 IPAR(6) 0
RPAR(8) 1 IPAR(7) 1

Table 4.2: L-BFGS optimization settings

Parameter Value Parameter Value
MSave 9 ε 10−1

Max iter 300 diagco false

Table 4.3: CG-Descent optimization settings

Parameter Value Parameter Value
grad_tol 10−3 δ 10−1

σ 0.9 eps 10−3

γ 0.66 ρ 2.0
η 10−2 psi0 10−2

psi1 10−1 psi2 2.0
QuadCutOff 10−5 StopFact 0.0
AWolfeFac 10−3 restart_fac 1.0
maxit_fac 0.125 feps 10−3

Qdecay 0.7 nexpand 50
nsecant 50 PertRule true
StopRule true AWolfe true
Step false debug true
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latitude so that comparable pressure levels and temperatures could be compared, although of course
the two profiles are from drastically different weather situations.

In order to simulate radiation coming from the earth, RTTOV uses pressure levels up to 0.005
hPa, which extends well into the thermosphere. Limited-area numerical weather prediction systems
have historically focused primarily the troposphere (from the surface to approximately 100 hPa)
while global weather systems extend into the stratosphere (≈ 100 – 1 hPa); however, few NWP
models have extended up into the mesosphere (≈ 1 hPa to 0.01) or thermosphere, although this
situation is changing for the very necessity of assimilating satellite radiance data ([55]). In this study,
we only focus on the assimilation of a single column and use the 101 native RTTOV pressure levels
for AIRS. The tropospheric and low stratospheric data are taken from a WRF simulation, while
the remaining data is interpolated to be the same percentage as the top of the WRF data between
RTTOV standard limits ([89]) at each pressure level. As discussed above, only temperature, water
vapor, cloud concentration, ice concentration and cloud fraction are taken as control variables that
are set at each level.
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Figure 4.4: Clear-sky profile for temperature, water vapor, effective cloud, and effective ice

Figure 4.4 shows the clear-sky profile, while figure 4.5 shows the cloudy profile used in this
study. As these figures show, there is no ice or cloud in the clear profile, while the cloudy-profile
has one large mixed-phase cirrus cloud that extends from around 300 hPa (approximately 9 km) to
200 hPa (approximately 11 km above the surface) and is thus approximately 2 km in depth. Several
other smaller cirrus clouds are present above and below this height. The main cloud is optically
thick and will prevent most if not all of the IR radiation from below this height to reach the top
of atmosphere. Thus we would expect anything below this cloud will not be visible to the top of
atmosphere.
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Figure 4.5: Cloudy-sky profile for temperature, water vapor, effective cloud, and effective ice

In all graphs below, in the interest of readability, we will display only up to the stratosphere (i.e.
from the surface to 1 hPa).

4.3.1 Impact of a single-layer cloud on brightness temperature

Before discussing cloudy-sky assimilation, it is worthwhile to examine what happens to the
brightness temperatures reaching the top of the atmosphere as a cloud forms. As previously men-
tioned, RTTOV is parameterized using six different cloud types over land and sea. Figure 4.6 shows
the response of increasing cloud mixing ratio from a clear profile to a cloudy profile at a layer ap-
proximately 6 km above the ground and 300 m thick for both continental and maritime clouds with
a logarithmic scale in x. The brightness temperatures are taken for AIRS channel 300 (wavenumber
735.690 or a wavelength of 13.593 µm).

The results show a sharp drop of about 20− 25K in brightness temperature as the mixing ratio
goes from 10−6 to approximately 10−4 for stratus and cumulus clouds, while the drop occurs at
about 10−2 for cirrus clouds.

In addition to the full-scattering model, RTTOV version 10 also includes a simple cloud model,
where scattering is not considered, but only a cloud-top pressure is used for calculations. This
simple model, here with a threshold of 10−4 kg/kg, is shown in figure 4.6 as the discontinuous jump
from clear to overcast. Since even the most modern methods of non-smooth optimization cannot
currently handle a jump in the function value, the simple model is considered unsuitable for direct
cloudy-sky data assimilation.

Figure 4.7 shows this same information, but now in terms of mixing ratio versus the percentage
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Figure 4.6: Continental and maritime brightness temperature response to increasing clouds on a
single 300 m thick layer

drop from the surface brightness temperature to the cloud-top brightness temperature for this case.
We will make use of this graph throughout our experiments in judging what impact clouds will have
on our profiles. While these results are specific to a particular channel, they give a rough baseline
for the impact of clouds on the rest of the AIRS channels.
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Figure 4.7: Cloud concentration versus percentage drop in continental and maritime brightness
temperature response to increasing clouds on a single 300 m thick layer

4.4 Clear-sky assimilation
Clear-sky assimilation has taken place operationally for quite some time. This test case is thus

for a solved problem; however, we also include the presence of clouds in the background, and
see if the 1D-Var algorithm is able to remove the clouds with each of our three main optimization
algorithms.

The experiment details are shown in table 4.4, and the reconstructed profiles are shown in figures
4.8 to 4.10 for LMBM, L-BFGS, and CG-Descent.

As we can see from the profiles reconstructed from a cloudy background, all three optimization
methods were able to completely remove the background clouds. Thus we can consider this test to
be a success for all three methods.
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Table 4.4: Clear-sky Experimental setup

T σ % QVapor σ % QCloud σ % QIce σ % Cloud fraction % σobs µ

0.1 0.1 10 10 10 0.1 1
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Figure 4.8: LMBM reconstructed clear-sky profile
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Figure 4.9: L-BFGS reconstructed clear-sky profile
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Figure 4.10: CG-Descent reconstructed clear-sky profile
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As shown in figure 4.11, all three methods converge to approximately the same value of the cost
function. L-BFGS and LMBM reach this value the most quickly with approximately 20 function and
gradient evaluations, while CG-Descent is the slowest with approximately 50 function and gradient
evaluations needed. However, here all three methods can be considered competitive and efficient,
as all three successfully remove the background clouds to converge to a cloud-free state.
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Figure 4.11: Optimization history for clear-sky profile

4.5 Cloudy-sky assimilation
The full cloudy-sky assimilation problem is that of trying to reconstruct an atmospheric profile

that contains one or more clouds. As mentioned above, in RTTOV v10 the cloud concentration
and cloud fraction at each layer can be specified for a maximum of two types of clouds per layer.
In addition, in the current version of RTTOV (v10.1), only half of the layers can contain clouds
([89]). Finally, due to current bugs in RTTOV v10.1, currently neither fully overcast layers (cloud
fraction = 100%) nor adjacent layers with identical cloud fractions are allowed. The workaround for
the first issue is to have a cloud fraction near 100% (such as 99.999999%), while the workaround
for the second is to offset identical layers by a small amount. These issues make coding the cost
function and an accurate gradient more difficult to handle, and thus careful attention was paid to the
so-called “alpha-test” of gradient consistency first derived in [160]. This is also an effective test for
the accuracy of the RTTOV model adjoint.

4.5.1 Alpha test of gradient correctness
Starting from a Taylor series expansion of J around x0 of x = x0 + αhT, where α is a small

number and h is a unit vector (such as∇J(x0)/||∇J(x0)||), we have:

J(x) = J(x0) + (x− x0)T∇J(x0) +O(α2) (4.21)

Rearranging,
J(x)− J(x0) = αhT∇J(x0) +O(α2) (4.22)

or
J(x)− J(x0)

αhT∇J(x0)
= 1 +O(α) (4.23)
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If we define

φ(α) = 1− J(x)− J(x0)

αhT∇J(x0)
(4.24)

φ(α) should be O(α) up to numerical precision.
The results for both clear and cloudy-skies in figure 4.12. We see in both cases the classic “V”

shape, and although the cloudy-sky alpha test has some small bumps below 10−6, these can be
attributed to loss of numerical precision. These results show that once the RTTOV issues mentioned
above have been taken into account, the gradient of the cost-function is indeed consistent.
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Figure 4.12: Alpha test of gradient consistency for clear and cloudy sky

4.5.2 First test case
The first test case for cloudy-sky assimilation involves small QVapor and temperature perturba-

tion but a large cloudy perturbation. Since QVapor and temperature both have such small perturba-
tions, the background error covariance model will constrain the solution to stay near these profiles.
The cost function will thus place more emphasis on reducing the clouds. The details of this exper-
iment are shown in table 4.5, and the results of the assimilation for this case are shown in figures
4.13 to 4.18.

Table 4.5: Cloudy-Sky Test Case 1 Experimental setup

T σ % QVapor σ % QCloud σ % QIce σ % Cloud fraction % σobs µ

0.01 0.01 100 100 100 10 1

We can see that the cloud background, especially for QIce, was particularly misleading, starting
with cirrus clouds scattered above the main cloud. This situation proved difficult for the three test
cases; LMBM was able to reduce most of the clouds slightly, but left spurious ice clouds on the
order of 1e-5 kg/kg in the stratosphere. LMBM was also able to slightly improve upon the back-
ground temperature error, but left the water vapor background untouched. The other methods did
not achieve as much reduction for these cirrus clouds and virtually no reduction for the temperature.
Most importantly, the RTTOV adjoint from all three methods guided the background water vapor
cloud from approximately 200 hPa up to 10 hPa, ostensibly to be near the large spurious cirrus
cloud. In short, this test was a failure.
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Figure 4.13: LMBM reconstructed cloudy-sky profile for test case 1
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Figure 4.14: L-BFGS reconstructed cloudy-sky profile for test case 1
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Figure 4.15: CG-Descent reconstructed cloudy-sky profile for test case 1
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Figure 4.16: LMBM reconstructed cloudy-sky profile error for test case 1
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Figure 4.17: L-BFGS reconstructed cloudy-sky profile error for test case 1
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Figure 4.18: CG-Descent reconstructed cloudy-sky profile error for test case 1
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The history of the minimization in terms of function evaluations is shown in figure 4.19, and it
becomes readily apparent why LMBM was able to achieve slightly better results. While the other
minimization algorithms terminated with an error in the line-search, LMBM was able to continue
to minimize the function for more than one additional order of magnitude before terminating.
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Figure 4.19: Optimization history for cloudy-sky test case 1

From this experiment, we see that with very large perturbations in background clouds, the opti-
mization methods can completely fail to converge to the true state. Starting with large spurious ice
clouds in the stratosphere, the methods converged to a false solution of a single stratus-like cloud.
Since this provided good agreement with the observations (the cost function for LMBM converged
to a solution on the order of 2e0), it is clear that this solution was able to explain the observations
to some degree. As the cloudy-sky assimilation problem is known to be ill-posed (see e.g. [182],
where water vapor and temperature were adjusted by the minimization algorithm rather than the
desired cloud), it is clear that a large background error, even with a corresponding large covariance,
can cause the final solution to converge to an erroneous cloudy state.

4.5.3 Second test case

In this test case, we test a medium standard deviation in both temperature and QVapor as well as
water and ice cloud. The gives the cost function more weight on the temperature and water vapor,
although it is still not as large in percentage as the cloud properties. The experiment details are
given in table 4.6 and the error results are shown in figures 4.20 to 4.25.

Table 4.6: Cloudy-Sky Test Case 2 Experimental setup

T σ % QVapor σ % QCloud σ % QIce σ % Cloud fraction % σobs µ

0.1 0.1 10 10 10 10 1

In this test case, as in the previous one, spurious cirrus clouds are present. However, since the
perturbation is only on the order of 10%, rather than 100%, these spurious clouds are much smaller
than the true cloud. All three methods are able to reduce the minor background clouds to a level
around 1e-6, which has little impact on the final solution, and also keep the cloud-top pressure near
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Figure 4.20: LMBM reconstructed cloudy-sky profile for test case 2
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Figure 4.21: L-BFGS reconstructed cloudy-sky profile error for test case 2
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Figure 4.22: CG-Descent reconstructed cloudy-sky profile error for test case 2
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Figure 4.23: LMBM reconstructed cloudy-sky profile error for test case 2
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Figure 4.24: L-BFGS reconstructed cloudy-sky profile error for test case 2
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Figure 4.25: CG-Descent reconstructed cloudy-sky profile error for test case 2
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the true cloud. Both methods are able to reduce the temperature somewhat, although the water vapor
background is again relatively untouched. This experiment can be considered a success.

Again, the history of the minimization in terms of function evaluations is shown in figure 4.26.
Here both L-BFGS and LMBM are able to achieve a similar solution that is about an order of
magnitude lower in cost, and unlike the previous experiment, all three methods terminate in less
than 100 function evaluations.
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Figure 4.26: Optimization history for cloudy-sky test case 2

We can conclude from these results that when the cloud perturbation is not too large, cloudy
assimilation assimilation is much more successful. All three methods did quite well on this test
case, possibly because the true cloud was the largest cloud present in the background.

4.5.4 Third test case

In this final case for cloudy-sky assimilation, we test a very large standard deviation in temper-
ature and QVapor and a small standard deviation in ice and cloud. The experiment details are given
in table 4.7 and the results are shown in figures 4.27 to 4.32.

Table 4.7: Cloudy-Sky Test Case 3 Experimental setup

T σ % QVapor σ % QCloud σ % QIce σ % Cloud fraction % σobs µ

10 10 1 1 1 1 1

These figures show that all three methods were able to achieve a very large reduction in error
with respect to temperature, while the error for QVapor exhibited strange behavior. The large erro-
neous dry lower atmosphere in the background was largely fixed; however, an approximately 80%
error in QVapor occurred above the cloud-top. This also corresponded with a large shift from too
large of a cirrus cloud in the background to an underpredicted cirrus cloud. We can conclude from
this that because the covariance for the water vapor was so large, the 1D-Var algorithm found it
easier to change water vapor than the cirrus cloud. These results were also seen in [182], where by
water vapor was changed rather than adding a cloud. We can conclude that water vapor and clouds
are somewhat in competition since they absorb infrared radiation in similar ways, and an overly
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Figure 4.27: LMBM reconstructed cloudy-sky profile for test case 3
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Figure 4.28: L-BFGS reconstructed cloudy-sky profile for test case 3
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Figure 4.29: CG-Descent reconstructed cloudy-sky profile for test case 3
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Figure 4.30: LMBM reconstructed cloudy-sky profile error for test case 3
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Figure 4.31: L-BFGS reconstructed cloudy-sky profile error for test case 3
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Figure 4.32: CG-Descent reconstructed cloudy-sky profile error for test case 3
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large background for water vapor can lead to a solution of an overly moist atmosphere rather than
clouds.

These figures also demonstrates why cloudy assimilation is so difficult when compared to clear
sky assimilation – the transition from clear to cloudy depends on a variable that scales from 0 to
10−2 with sharp transitions, while temperature and QVapor scale much more smoothly over a much
broader range.

Again, the history of the minimization in terms of function evaluations is shown in figure 4.26.
LMBM and L-BFGS are once again competitive, while CGD achieves an order of magnitude higher
cost.
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Figure 4.33: Optimization history for cloudy-sky test case 3

4.6 All-sky assimilation

All-sky data assimilation is the more realistic case where it is not known a priori whether the
profile under consideration is clear or cloudy. While a background state may be available, in prac-
tice the particular locations and types of clouds predicted by a numerical weather prediction model
are not considered to be particularly reliable at this time. The reasons for this include poorly un-
derstood and modeled cloud dynamics – consider that there are at least ten different microphysical
parameterizations schemes included in WRF, and all of them give different representations of clouds
([173]). Clearly not all of these representations can be correct, and which scheme(s) to use in what
situations is still an open question.

Furthermore, as we have seen above, it can be very difficult to clear an unwanted cloud that is
in the background through the data assimilation. Indeed, the effect of including a background term
is to constrain the solution so that the cost function is increased by moving away from it, and only
when the data fits the observations better will the solution move away from the background. While
this serves to regularize the problem, it can also be a hindrance; for a poor choice of background,
the background term is like a chain that prevents the solution from moving in the right direction.

For these reasons, it is clear that an alternative strategy without the need for a well-specified
cloud background is worth pursuing.
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4.6.1 Starting from a clear sky

As we saw in our test of a cloudy background with clear observations, our 1D-Var data assimi-
lation with RTTOV can clear clouds out quite effectively. It is natural to ask if the opposite might be
true – by starting from a clear sky, can RTTOV push the gradient of the cost function in the direction
of clouds?

Table 4.8: Cloudy-sky starting clear experimental setup

T σ % QVapor σ % QCloud σ % QIce σ % Cloud fraction % σobs µ

.1 .1 10 10 10 10 1
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Figure 4.34: LMBM reconstructed cloudy-sky profile error from starting clear

As we can see, no cloud was reconstructed by this test case – instead the data assimilation for
all three algorithms added additional water vapor and reduced the temperature near the location of
the cloud, even though these values were constrained by a very small covariance. In short, this test
is a complete failure.

Therefore, as evidenced by this test, unfortunately the answer to the question above is “no” – one
cannot go from a completely clear-sky (with QCloud and QIce set to zero) and hope to reconstruct
clouds with RTTOV. Because RTTOV does not use scattering for clear skies, when the profile is
perfectly clear, the RTTOV adjoint does not hit the code for calculating cloudy gradients, and thus
the gradient remains zero. This may explain, at least in part, the results seen in [182].
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Figure 4.35: L-BFGS reconstructed cloudy-sky profile error from starting clear
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Figure 4.36: CG-Descent reconstructed cloudy-sky profile error from starting clear
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4.6.2 Alternate approach

As we have seen above, when clouds are not present in the observations, starting from a cloudy
sky is not a hindrance; when spurious clouds are present in the background, it can be difficult to
remove them; and finally that one cannot start from a clear profile and hope to reconstruct a cloudy
profile with RTTOV. One potential alternative is to start with a very small cloud at all layers, so
that the adjoint code for scattering is invoked, but at the same time the effective clouds will be small
enough that they will not influence the actual brightness temperature much. However, since RTTOV
only allows the specification of clouds on half of the layers, and AIRS channels are designed to
peak in sensitivity in the lower atmosphere, we might eliminate clouds (i.e. start clear) in both the
mesosphere and the upper stratosphere, at the possible risk of sacrificing rare phenomenon such as
mesospheric noctilucent clouds ([67]). The details of this experiment are shown in figure 4.9, and
the results are shown in figures 4.37 to 4.41.

Table 4.9: Cloudy-sky starting with half minimum clouds experimental setup

T σ % QVapor σ % QCloud σ % QIce σ % Cloud fraction % σobs µ

.1 .1 10 10 10 10 1
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Figure 4.37: LMBM reconstructed cloudy-sky profile starting with half minimum clouds

As these results show, all three algorithms were able to reconstruct some measure of the main
cloud starting from a profile with half of the clouds at 10−12 kg/kg, although the cloud in all three
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Figure 4.38: L-BFGS reconstructed cloudy-sky profile starting with half minimum clouds
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Figure 4.39: CG-Descent reconstructed cloudy-sky profile starting with half minimum clouds
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Figure 4.40: LMBM reconstructed cloudy-sky profile error starting with half minimum clouds
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Figure 4.41: L-BFGS reconstructed cloudy-sky profile error starting with half minimum clouds
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Figure 4.42: CG-Descent reconstructed cloudy-sky profile error starting with half minimum clouds

cases, especially L-BFGS and CGD, were far too thick without enough intensity. This is another
case of ill-posedness, whereby a thin, strong cloud explains the observations as well as a thick
weak cloud. Nonetheless, considering the fact that the background contained no relevant cloud
information, the simulated AIRS observations had errors, and heuristic background error covariance
lengths were used, these results are impressive.

As is clear from the overall profile, the cloud tops from all three methods more or less perfectly
agrees with the location of the main cloud, and our algorithm was even able to reconstruct the
mixed-phase nature of the cirrus cloud to a remarkable extent. While the profile below the main
cloud is wrong, the IR observations would have no way of knowing this as the cloud is so optically
thick that nothing below is visible to the top of atmosphere. Thus we can consider that this method
is a complete success for all three methods.

The minimization history for this test case is shown in figure 4.43. As with most of the tests so
far, both LMBM and L-BFGS are competitive, with CG-Descent being slightly less effective.

4.6.3 Error measurements

In order to complement the somewhat subjective appraisals of each test case given above, this
section gives more quantitative descriptions of the error in the final solution.

Table 4.10 shows the reduction in root-mean-squared-error (RMSE) versus the background
achieved for each case. Negative values mean that the RMSE increased.

The RMSE of a variable ∗ is defined by
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Figure 4.43: Optimization history for cloudy-sky profile starting with half minimum clouds

RMSE(k)
∗ =

√√√√(∗(k)exact − ∗(k)
)T (
∗(k)exact − ∗(k)

)
N

(4.25)

where N is the size of the variable ∗.

Table 4.10: RMSE reduction, in percentage from background, of each test case

Type Case Method T % QVapor % QCloud % QIce %
clear start cloudy LMBM 360.01 5.79 Inf Inf
clear start cloudy LBFGS 355.99 7.05 Inf Inf
clear start cloudy CGD 354.00 5.44 Inf Inf

cloudy test case 1 LMBM 36.86 0.46 806.45 185.98
cloudy test case 1 LBFGS -0.43 0.02 2253.37 15.85
cloudy test case 1 CGD -0.49 0.02 1812.66 19.97
cloudy test case 2 LMBM 79.95 1.36 61.04 45.30
cloudy test case 2 LBFGS 58.28 0.69 48.55 -9.27
cloudy test case 2 CGD 10.34 0.07 114.13 -1.32
cloudy test case 3 LMBM 477.97 235.74 75.29 373.91
cloudy test case 3 LBFGS 504.91 429.85 194.14 490.14
cloudy test case 3 CGD 356.86 63.31 129.87 618.42
cloudy start clear LMBM -85.60 -97.17 0.00 0.00
cloudy start clear LBFGS -96.10 -91.08 0.00 0.00
cloudy start clear CGD -96.16 -75.17 0.00 0.00
cloudy st. half min LMBM 43.11 1.77 112.57 85.61
cloudy st. half min LBFGS 58.40 0.14 29.33 53.58
cloudy st. half min CGD 41.83 0.42 88.04 56.23

These results show that in all cases except test case 3 and cloudy start clear, LMBM was able to
attain the best reduction in RMSE. When it converged, L-BFGS also achieved impressive reductions
in RMSE, especially in test case 3; however, L-BFGS did not converge on the difficult test case 1.
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CGD behaved in a similar fashion to L-BFGS, but with generally slightly less impressive RMSE
results.

While RMSE is one error measure, because infrared is only able to provide information above
the optical cloud-tops, the RMSE contribution below the cloud is basically irrelevant. Another
measure that is more suitable and familiar in the field of meteorology is cloud-top pressure and
cloud-top temperature. These two fields, along with their respective absolute errors, are shown in
table 4.11. These two fields are calculated as the first layer when the cumulative cloud mixing ratio
reaches 10−4 kg/kg or higher.

Table 4.11: Cloud-top pressure (CTP) and cloud-top temperature (CTT) and their respective abso-
lute errors (true - final). Surface means that no clouds were detected.

Type Case Method CTP (hPa) CTT (K) CTP Err (hPa) CTT Err (K)
clear start cloudy LMBM Surface 297.66 0.00 0.05
clear start cloudy LBFGS Surface 297.61 0.00 0.10
clear start cloudy CGD Surface 297.65 0.00 0.05

cloudy test case 1 LMBM 18.58 204.91 193.44 19.06
cloudy test case 1 LBFGS 12.65 209.27 199.38 14.70
cloudy test case 1 CGD 12.65 209.27 199.38 14.70
cloudy test case 2 LMBM 200.99 221.99 11.04 1.98
cloudy test case 2 LBFGS 212.03 224.72 0.00 -0.76
cloudy test case 2 CGD 200.99 222.19 11.04 1.78
cloudy test case 3 LMBM 212.03 223.71 0.00 0.26
cloudy test case 3 LBFGS 212.03 223.48 0.00 0.49
cloudy test case 3 CGD 212.03 222.94 0.00 1.03
cloudy start clear LMBM Surface 296.10 -774.04 -72.13
cloudy start clear LBFGS Surface 252.42 -774.04 -28.46
cloudy start clear CGD Surface 255.05 -774.04 -31.08
cloudy st. half min LMBM 212.03 224.19 0.00 -0.22
cloudy st. half min LBFGS 200.99 221.73 11.04 2.23
cloudy st. half min CGD 200.99 221.80 11.04 2.16

This chart shows that for all but test case 1 and cloudy start clear, all three methods were able to
find the cloud top pressure within a single layer (11 hPa) and 1 - 2 K for cloud top pressure.

4.7 Conclusions

In this chapter we evaluated the behavior of LMBM, L-BFGS, and the non-linear conjugate
gradient CG-Descent method on the realistic problem of all-sky infrared satellite penalized 1D-Var
data assimilation using RTTOV version 10 with multiple scattering. The problem itself is highly
non-linear, with a sharp transition between clear and cloudy skies, and the penalty term introduces
a mild discontinuity in the first derivative at the regression limits, although this discontinuity is
not seen as having much impact on this particular problem after the first few iterations once the
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minimization algorithms focus on the feasible region. When started from clear-sky observations, the
algorithms were all able to effectively clear out the clouds; in the case of cloudy-sky observations,
all of the methods were also able to reduce the error generated from the background. For the difficult
test case 1, with a perturbation of 100% (1e-2 kg/kg) in the cloud background, all three methods
failed to reconstruct the desired profile, and both CG-Descent and L-BFGS terminated due to an
error in the line search. As shown, starting from a clear sky, a cloudy profile will not be created;
therefore, a method whereby a minimum cloudy profile is chosen was able to fully reconstruct the
desired cloud with impressive accuracy.

All three optimization methods achieved a good deal of success in minimizing the cost function.
However, when considering performance, RMSE reduction, and cloud-top errors for this problem,
LMBM emerged as the best choice, followed closely by L-BFGS, with CG-Descent in a distant
third. This may have been due in part to the CG-Descent optimization settings that were used with
only minimal changes for this problem; further tweaking of the various parameters within CG-
Descent, as in [5], may have made it more competitive. However, as seen from test case 1, when
difficult cloud-clearing is required, LMBM is better suited to achieve the desired goal while both
L-BFGS and CG-Descent fail in their line search routines. This is seen as a strength of LMBM’s
theoretically guaranteed descent line-search ([78]) even for problems that are not technically non-
smooth but contain sharp transitions that may appear as discontinuities to optimization algorithms.

As noted in [194] and [105], LMBM is not as numerically stable as L-BFGS (nor CG-Descent,
most likely), as LMBM requires double precision real numbers while L-BFGS can be operate well in
single precision. It is thus recommended that before using LMBM in an operational setting that the
main enhancements of LMBM – namely the bundling of sub-gradients, null-steps, and guaranteed
descent line-search – be ported to the core numerically-stable code of L-BFGS. This step is highly
recommended before any attempt is made to use LMBM operationally.

RTTOV version 10 is a sophisticated operational radiative transfer model which can be used for
solving the all-sky IR radiance data assimilation problem. There are currently several undesirable
features of RTTOV for this task, however. First of all, the fact that only two cloud types are allowable
at each layer prevents all of the available species from a detailed microphysical scheme such as the
WSM 6-class microphysics scheme ([92]) from being used. In addition, the limitation that only half
of the layers can specify clouds is arbitrary and cumbersome to handle (fortunately this limitation
will be removed in version 10.2, due to be released in 2012 [88]). Finally, because RTTOV is
parameterized based on cumulus, stratus, and cirrus rather than cloud vapor, snow and ice crystals,
rain and graupel along with their corresponding distributions, much of the detail that could be used
by a full multiple scattering model is lost. Specification of the clouds based on microphysical
properties would allow much finer detail of cloud properties to be derived and thus assimilated,
especially when cloudy IR was combined with microwave observations.

In this chapter we also saw the importance of correctly choosing both a background and a
background error covariance model. This problem was ill-posed as evidenced by the fact that sev-
eral drastically different profiles were found by the optimization algorithms – in particular, test
case 3, where QVapor was used incorrectly to compensate for the presence of a cloud. Having a
background has its pros and cons, however, as a bad choice of a background or background error
covariance could inadvertently hold the solution back. This was especially evident in the test case
where a cloudy profile was started from a clear background, and as a result the gradient of the cost
function forced the optimization algorithms to remain clear where clouds were needed. Therefore,
an approach where the background was set to have half of the levels contain a very small amount
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of clouds – needed to activate the RTTOV cloudy adjoint but not overly influencing the brightness
temperatures – was highly advantageous. This method, in conjunction with the enhanced LMBM,
is therefore recommended for solving the all-sky IR radiance data assimilation problem. Updating
RTTOV or another model to remove some or all of the limitations mentioned above would also be
most beneficial.
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CHAPTER 5

NON-SMOOTH OBSERVATION OPERATORS:
SHALLOW WATER EQUATIONS

5.1 Introduction

In this chapter, we investigate data assimilation of the shallow water equations with discon-
tinuous observation operators in order to compare the performance of large-scale non-smooth op-
timization methods. We compare and contrast variational (3D-Var and 4D-Var) approaches, en-
semble/probabilistic (EnKF and LETKF) methods, as well as the Maximum Likelihood Ensemble
Filter (MLEF) ([250], [248]) hybrid ensemble/variational data assimilation method. In light of
[252] showing that MLEF can be derived without a differentiability requirement for the predic-
tion model or the observation operator, we investigate the non-smooth optimization properties of
MLEF. As in the previous chapter, we also compare and contrast the results obtained by using the
L-BFGS, LMBM, and CG-Descent methods for large-scale non-smooth optimization within 4D-
Var and MLEF. However, given the derivation of EnKF and LETKF and the heavy reliance on the
linearity assumption of the observation operator, one would not expect these methods to perform
well for these types of tests. At the time of writing, this work (without the comparison of 3D-Var,
EnKF, and LETKF and without the conjugate gradient) has been accepted for publication in [194]
and is now in early view.

MLEF has been tested with the shallow water equations in [251], [209] and [65], and the optimal
control of the shallow water equations with a linear observation operator has been studied in e.g.
[41]. Appel studied sensitivities for discontinuous fluid flows in [9]. The fully non-convex non-
smooth variational data assimilation problem has been investigated in [144], [90], [235], [101] and
[12] on highly simplified problems, and Levy et al. ([128]) recently investigated a physical-based
approach for potentially discontinuous optimal interpolation of sea ice data assimilation for a model
with 15 physical control variables. The approach in this chapter suggests techniques suitable for
more general and larger-scale data assimilation problems, although combining these techniques is
certainly an intriguing possibility.

As stated in the introduction, the smooth optimization quasi-Newton limited memory BFGS
algorithm (L-BFGS), long used in data assimilation (e.g. [242], [91]), has recently been found to
possess properties of a non-smooth optimization algorithm in [130], [129], and [185]. This method
may offer promise for large-scale non-smooth optimal control problems.

We conduct our tests using a series of closely related optimal control problems with observation
operators containing varying degrees of non-smoothness. We run these tests on all of our data
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assimilation methods with each of the optimization algorithms used above in order to make contrasts
and comparisons.

5.2 Shallow Water Equations Model

We begin by describing the model that will be used in our optimal control problem.
Consider the limited area shallow water equation model as detailed in [215].

∂u

∂t
= −u∂u

∂x
− v∂u

∂y
+ fv − ∂φ

∂x
(5.1)

∂v

∂t
= −u∂v

∂x
− v∂v

∂y
− fu− ∂φ

∂y
(5.2)

∂φ

∂t
= −∂uφ

∂x
− ∂vφ

∂y
(5.3)

where u and v are the two components of the horizontal velocity in m/s, φ = gh is the geopotential
field in m2/s2, h is the free surface height in m, and f is the Coriolis factor in s−1.

The initial conditions used were based on those in [70], namely a channel on a β plane of length
L and depth D, with h given by

h(x, y) = h0 + h1 tanh
(
9(y−y0)

2D

)
+ h2 sech2

(
9(y−y0)

2D

)
sin
(
2πx
L

) (5.4)

where h0 = 2000 m, h1 = −220 m, h2 = 133 m, L = 6000 km, D = 4400 km, and y0 = D/2.
From equation (5.5), the initial conditions are derived through geostrophic balance by the rela-

tion

φ0(x, y) = gh(x, y)

u0(x, y) = − g
f
∂h
∂y (x, y)

v0(x, y) = g
f
∂h
∂x(x, y)

(5.5)

where g = 10 m s−2 and f = 10−4 s−1.
This model is discretized using the second-order quadratic conservation advective scheme de-

tailed in [70] referred to as “scheme F.” The space and time increments are ∆x = 300 km,
∆y = 220 km, and ∆t = 600 s, respectively, resulting in a mesh comprising 21 × 21 spatial
grid points. The model is integrated for 80 time steps, i.e. a window of assimilation of 13 hours 20
minutes in model time.

These initial conditions are shown in figure 5.1.
Because in this chapter the u and v velocity components will have separate observation operator

components as described in section 5.3.2, the contour plots for the initial values of these two fields
are shown in figure 5.2
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Figure 5.1: Initial conditions (u0, v0, φ0)
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Figure 5.2: Contour plot for u0, v0

The boundary conditions are given by a rigid wall homogeneous Neumann condition along the
south and north boundaries and a wrapping periodic conditions along the east/west boundary. In
other words,

u(xl, y, t) = u(xr, y, t)
v(xl, y, t) = v(xr, y, t)
φ(xl, y, t) = φ(xr, y, t)
∂u
∂y (x, yt, t) = 0
∂u
∂y (x, yb, t) = 0

v(x, yt, t) = 0
v(x, yb, t) = 0
∂φ
∂y (x, yt, t) = 0
∂φ
∂y (x, yb, t) = 0

(5.6)

where xl, xr, yt, yb are locations of the left, right, top and bottom boundaries, respectively.
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5.3 Experimental setup

We now consider data assimilation of the shallow water equations with a discontinuous obser-
vation operator detailed below.

Starting from the exact initial conditions given in (5.5) and boundary conditions in (5.6), the
model is evolved forward in time. Observations of the model state (u, v, φ) are taken at each time
step and every spatial grid point using an observation operator and are then perturbed with uncorre-
lated Gaussian noise of mean 0 and standard deviation σuobs , σvobs and σφobs , respectively. The exact
initial conditions are perturbed with correlated Gaussian noise of mean 0 and covariance matrix B.
The perturbed initial conditions are the background and the problem is to optimally reconstruct the
exact solution by using background and observations.

We will use our data assimilation algorithms outlined in chapter 3 to solve this problem.
In this research, observations at all grid points are available for each time step – perhaps the

best possible scenario for data assimilation. This removes the issue of sparsity of observations
from the experimental setup in order to focus on the impact of non-smooth observation operators.
Thus, assuming there are N,M non-boundary grid points in the x and y direction, respectively,
Nstate = Nobs = 3NM .

5.3.1 Observation error covariance matrix

For this experiment, the observation error covariance matrix R is taken to be diagonal. Thus,
R−1 is the diagonal inverse matrix with

R−1i,i =


1/σ2uobs 1 ≤ i ≤MN
1/σ2vobs MN + 1 ≤ i ≤ 2MN
1/σ2φobs 2MN + 1 ≤ i ≤ 3MN

(5.7)

In this experiment, σuobs = σvobs = 1 m/s and σφobs = 12 m2/s2 were chosen based on approx-
imate geostrophic considerations. A sample of this uncorrelated noise at time t0 is shown in figure
5.3.

5.3.2 Non-Smooth observation operator

In this section we detail an observation operator with varying levels of non-smoothness in its
components. This operator is not based on physical considerations but rather chosen solely to
demonstrate the behavior of the optimization algorithms.

The observation operatorH is given by

H(xi) =


H1(ui) 1 ≤ i ≤MN
H2(vi−MN ) MN + 1 ≤ i ≤ 2MN
H3(φi−2MN ) 2MN + 1 ≤ i ≤ 3MN

(5.8)

H1(ui) =


u3i /u

2
min ui < umin

u2i /umax ui ≥ umax
ui else

(5.9)

H2(vi) =

{
log(vi + δ) vi ≥ 0
log(−vi + δ) vi < 0

(5.10)
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Figure 5.3: Observation error sample for u, v, and φ at t0
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H3(φi) =

{
φi φi < Hmax

φ2i /Hmax φi ≥ Hmax
(5.11)

Here, umin = −5 m/s, umax = 5 m/s, and Hmax = 20000 m.
These components of the observation operator are shown in figure 5.4, and the observation

operator of the initial state plus observational noise is shown in figure 5.5.
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Due to the kinks in the observation operators, this becomes a non-smooth optimization problem.
The discontinuity in the piecewise derivative of H1 through H3 are shown in figure 5.6. Note that
the discontinuity becomes progressively more acute in ∇H3, ∇H1, and ∇H2, giving flexibility for
testing the behavior of non-smooth optimization algorithms. In ∇H2, the parameter δ controls the
size of the discontinuity. All of these functions are locally Lipschitz continuous, and the best global
Lipschitz constant forH2 is 1/δ.

5.3.3 Background error covariance matrix

In this work we use an exact background error covariance matrix to perturb the background xb.
The perturbation to the background vector is given by

ub = u0 + ηu
vb = v0 + ηv
φb = φ0 + ηφ

(5.12)

where (ui, vi, φi) are the exact initial conditions given in (5.5), ηu ∼ N(0,Σu), ηv ∼ N(0,Σv),
and ηφ ∼ N(0,Σφ) where Σu, Σv, Σφ ∈ RNM×NM are the covariance matrices of (u, v, φ). Thus,
B is the block matrix

B =

Σu 0 0
0 Σv 0
0 0 Σφ

 (5.13)

and

B−1 =

Σ−1u 0 0
0 Σ−1v 0

0 0 Σ−1φ

 (5.14)

Σu = σ2uΣ, Σv = σ2vΣ, and Σφ = σ2φΣ are created by the exponential squared kernel of

Σ = B1/2BT/2 (5.15)

and
B

1/2
i,j = B

1/2
j,i = exp(−r2i,j/L2) (5.16)

Here, r represents the Euclidean distance between two points in the grid, i.e. r2i,j = ∆x2i,j + ∆y2i,j
where ∆xi,j and ∆yi,j are the x– and y–coordinate distances, in meters, between the two points
with global indexes i and j, respectively. L represents the correlation length, in meters, required for
the correlation between two points to reach 1/e ≈ 0.36788.

The normal perturbation ηu is created with the transformation ηu = Σ
1/2
u Zu, where Zu ∈ RNM

and the components of Zui ∼ N(0, 1) are i.i.d. standard normal variables. ηv and ηφ are created
the same manner with Σv, Σφ, Zv and Zφ uncorrelated standard normal variables, respectively.

Based on the results in [251], a correlation length of L = 7000 km and background perturbation
magnitudes of σu = σv = 20 m and σφ = 200 m2/s2 were chosen. As discussed below, the
background used in the data assimilation experiments are found by taking an ensemble average
over 96 realizations of (ub, vb, φb). The actual perturbation versus the exact solution used as the
background is shown in figure 5.7.
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Figure 5.7: η = xb − xtrue

5.3.4 Transformed cost function

As in the previous chapter for 1D-Var, we once again have a matrix B that has, in theory,
full rank, but is numerically rank deficient due to the effect of having a much larger correlation
length than the grid spacing. We once again apply the change of variables transformation δb(x) =
x−xb = B1/2z and use z as the control variable. Since B1/2BT/2 = B, this removes the necessity
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of obtaining the inverse from the cost function, so that the 3D-Var cost function (3.7) becomes

J(z) =
1

2
zTz +

1

2
δyk(z′(z))

T
R−1δyk(z′(z)) (5.17)

where z′(z) = B1/2z + xb, and δyk(z′(z)) = yk −H(B1/2z + xb) at the model time step k, while
the subgradient becomes

∇zJ(z) = z −B1/2

(
∂H
∂z′

)T

R−1δyk(z′(z)) (5.18)

The transformation is similar for 4D-Var, with the cost function given by

J(z) =
1

2
zTz +

1

2

NT∑
k=0

δyk(x(k)(z′(z)))
T
R−1δyk(x(k)(z′(z))) (5.19)

where x(k)(z′(z)) =M(x(k−1)(z′(z)), x(0)(z′(z)) = z′(z), and the subgradient becomes

∇zJ(z) = z −
NT∑
k=0

B1/2

(
∂x(k)

∂z′

)T(
∂H
∂x(k)

)T

R−1δ′yk (5.20)

5.3.5 Design
In order to compare our various methods in the presence of non-smooth observation operators,

the following procedure is used:

1) The initial condition for h is listed in equation (5.4). From this, u0, v0, and φ0 are created by
(5.5).

2) These conditions are evolved forward in time by solving (5.1) through (5.3) to create xexact =
(uexact, vexact, φexact) at times t = 0, . . . , NT .

3) Observations: Gaussian noise, as detailed in section 5.3.1, is added toH (xexact) to create the
observations

Ensemble methods (including MLEF):

4a) Ensemble members: each member of the initial ensemble is created by sampling from a
correlated Gaussian random variable with mean xexact and covariance matrix B as discussed
in section 5.3.3.

5a) Control/mean state: the mean of the ensemble created in 4a) is used as the control state

Variational methods:

4b) Background value: the MLEF initial control state from 5a) is used as the background value

5b) Background error covariance matrix: the matrix B used in 4a) to create the ensemble is used.
The matrix B1/2 is found using an eigenvalue decomposition.

All methods:

6) The experiment is then run and the RMSE is taken at each time step versus (uexact, vexact, φexact)
as detailed in section 5.3.7.
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5.3.6 Experiments

Within the context above, we now design three numerical experiments to test the performance of
L-BFGS and LMBM within the data assimilation frameworks in order to assess their performance in
data assimilation in the presence of non-differentiable observation operators of increasing difficulty.
The experimental setup is shown in table 5.1. Experiment 1 is the most favorable experimental setup
for data assimilation with all linear (and thus differentiable) observation operators. Experiment 2
possesses only a “slight” non-smoothness in the observation operator for φ, experiment 3 has a
discontinuity in both u and φ, while experiment 4 constitutes the most difficult case with a sharp
discontinuity in the observation operator for v and the same operator as experiment 3 for u and φ.

Table 5.1: Experimental setup

Experiment # u obs op v obs op φ obs op
1 linear linear linear
2 linear linear H3

3 H1 linear H3

4 H1 H2 H3

5.3.7 Success criteria

We now define our success criteria for the experiments listed in section 5.3.6.
To judge the quality of the assimilation results, we use the root mean squared error (RMSE) of

the calculated solution versus the exact solution. In the same fashion as equation (4.25), the RMSE
for cycle (k) is calculated as follows:

RMSE(k)
u =

√(
u
(k)
exact−u(k)

)T(
u
(k)
exact−u(k)

)
NM

RMSE(k)
v =

√(
v
(k)
exact−v(k)

)T(
v
(k)
exact−v(k)

)
NM

RMSE(k)
φ =

√(
φ
(k)
exact−φ(k)

)T(
φ
(k)
exact−φ(k)

)
NM

(5.21)

As is common in data assimilation experiments, success is judged by the assimilation achieving
an RMSE that is lower than both the observation and background errors. In this case, the expected
RMSE from simply using the observations is much lower than that the expected RMSE of the
background. Thus, in order for the data assimilation procedure to be considered a success, the
RMSE must reach a level lower than the observational noise (σuobs , σvobs .σφobs) from section 5.3.1.

5.3.8 Optimization settings

As in the previous chapter, in this section we present the optimization settings used for each
of our three algorithms. The LMBM optimization settings are shown in table 5.2, the settings for
L-BFGS are shown in table 5.3, and the CG-Descent settings are shown in table 5.4. Again details
for these parameters can be found in [105], [136], and [82], respectively.
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Table 5.2: LMBM optimization settings

Parameter Value Parameter Value
NA 4 MCU 9
MC 9 NW Default
RPAR(1-2) 10−4 IPAR(1) 1
RPAR(3) 0 IPAR(2) 300
RPAR(4-5) 10−16 IPAR(3) 300
RPAR(6) 1 IPAR(4) 5
RPAR(7) 10−8 IPAR(6) 0
RPAR(8) 1 IPAR(7) 1

Table 5.3: L-BFGS optimization settings

Parameter Value Parameter Value
MSave 9 ε 10−16

Max iter 300 diagco false

Table 5.4: CG-Descent optimization settings

Parameter Value Parameter Value
grad_tol 10−16 δ 10−1

σ 0.9 eps 10−3

γ 0.66 ρ 2.0
η 10−2 psi0 10−2

psi1 10−1 psi2 2.0
QuadCutOff 10−5 StopFact 10−4

AWolfeFac 10−3 restart_fac 1.0
maxit_fac 0.1 feps 10−5

Qdecay 0.7 nexpand 50
nsecant 50 PertRule true
StopRule true AWolfe true
Step false debug false
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Note that for MLEF, LMBM benefited from a larger maximum allowable step-size (RPAR(8)
= 103) than that used for 3D-Var or 4D-Var. The other parameters were the same. A similar tweak-
ing of parameters for MLEF was not thought to be of benefit to either CG-Descent or L-BFGS as
they have adaptive step-size parameters. As discussed in [105], selecting the RPAR(8) parameter
is an important part of tuning LMBM that is problem dependent; as MLEF and 3/4D-Var use dif-
ferently scaled cost functions, it makes sense that this parameter would behave differently for these
problems. This a priori knowledge of the maximum step-size may give LMBM somewhat of an
advantage over the other methods; however, based it is not anticipated that this parameter plays a
determining role in a comparison of these method’s performance.

The other parameters were cursorily tested for stability versus the optimization results, and all
were found to be fairly stable with the exception of MC/MCU for LMBM and MSave for L-BFGS.
These two parameters serve approximately the same purpose in their respective algorithms; namely
this parameter represents the number of correction pairs of the inverse generalized Hessian to store.
It was found that on this problem, these values need to be above 7 to achieve decent results, while
values between 8-20 gave nearly identical results as those presented below for both LMBM and
L-BFGS.

5.4 Numerical results

In this section we present the numerical results for our data assimilation methods with the ex-
perimental setup detailed in section 5.3.

5.4.1 Timings

In the sections that following, timings are presented for each method from start until finish.
These timings are from a Macintosh Intel Core 2 Duo 2.13 GHz Processor with 2 GB of RAM
running OS X 10.6.8 (64-bit). The code was compiled using gfortran with an optimization level
of -O3. If the method in question failed to converge or diverged for a given experiment, a marker of
either ∗ or †, respectively, is given next to the timing in seconds. Failure to converge means that the
one or more variables in the assimilated state spent more than 10% of the model time steps outside
of the success region defined in section 5.3.7; divergence means that one or assimilated variables
more spent more than 10% of the model time steps above the level of background error in RMSE
for that variable.

In the tables that follow the code was run ten times, and the average time is presented in seconds.
The standard deviation presented is the sample standard deviation, i.e. a correction of n − 1 was
used inside the square-root.

5.4.2 Ensemble filter results

For EnKF and LETKF, the four experiments from section 5.3.6 are run with an ensemble of 96
members started from the procedure described in section 5.3.5. The δ parameter for H2 is set to
δ = 10−4, and the covariance localization length for LETKF, discussed in chapter 3 was set to 7000
km.

The results for EnKF and LETKF are shown in figures 5.9 and 5.10, respectively. As evi-
denced by experiment 1, both EnKF and LETKF are able to handle linear observation operators

83



quite nicely, as expected. Surprisingly, however, both EnKF and LETKF have nearly identical re-
sults for experiment 2, which involves both a slight non-linearity as well as non-smoothness. After
the first iteration, both EnKF and LETKF were able to remain within the successful region. These
results suggest that EnKF and LETKF can both be used with the observation operator is only mildly
non-linear or non-smooth. However, as evidenced by experiment 3 and 4, when the non-smoothness
is strong these methods both diverge.

The timings for EnKF and LETKF are shown in table 5.5 in accordance with section 5.4.1.

Table 5.5: Timings for EnKF and LETKF. A ∗ denotes that the method failed to converge, while †

denotes that the method diverged.

Method Obs. operator Opt. algorithm Time in sec Std. dev.
EnKF 1 – 9.54 0.1865
EnKF 2 – 9.47 0.01728
EnKF 3 – 9.51† 0.04586
EnKF 4 – 9.57† 0.01895

LETKF 1 – 7.69 0.05028
LETKF 2 – 7.73 0.01278
LETKF 3 – 7.93† 0.1260
LETKF 4 – 1.90† 0.05719

5.4.3 3D-Var results

The four experiments from section 5.3.6 are run for the cost function (5.17) with the setup
described in section 5.3.5. The assimilated state at time k is moved forward in time using the model
operatorM, and this becomes the new background at time k + 1. As with the ensemble case, the δ
parameter forH2 is set to δ = 10−4.

The results for LMBM, L-BFGS, and CG-Descent are shown in figure 5.11 through 5.13. As
these results show, all three methods were able to handle the first two experiments, although only
LMBM and L-BFGS were able to handle experiment 3. None of the optimization methods were
able to handle the fourth case successfully with the 3D-Var algorithm, although at least LMBM and
CG-D are able to reduce the RMSE from the level of the background while L-BFGS diverges on
this test case. These results suggest that the fourth experiment with straight 3D-Var – where the
covariance model is static, and no covariance localization or preconditioning of the cost function is
applied – is too difficult for these algorithms to handle.

The timings for 3D-Var is shown in table 5.6 in accordance with section 5.4.1.

5.4.4 4D-Var results

For 4D-Var, the four experiments from section 5.3.6 are run for the cost function (5.19) with the
setup described in section 5.3.5. As with the previous cases, δ = 10−4.

The results of using 4D-Var are shown in figure 5.14 to 5.16. LMBM is able to converge for all
four experiments, while CG-Descent only converges for experiments 1 and 2. As shown in figure
5.8, the reason is because of the excessive function evaluations that force termination after 300
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Table 5.6: Timings for 3D-Var. A ∗ denotes that the method failed to converge, while † denotes that
the method diverged.

Method Obs. operator Opt. algorithm Time in sec Std. dev.
3D-Var 1 L-BFGS 7.08 0.116
3D-Var 1 LMBM 21.10 1.440
3D-Var 1 CG-D 11.44 0.6081
3D-Var 2 L-BFGS 10.33 0.5984
3D-Var 2 LMBM 20.69 0.6462
3D-Var 2 CG-D 20.59 1.030
3D-Var 3 L-BFGS 19.67 0.5915
3D-Var 3 LMBM 38.48 0.8057
3D-Var 3 CG-D 37.73∗ 1.298
3D-Var 4 L-BFGS 30.00† 0.7822
3D-Var 4 LMBM 41.61∗ 1.114
3D-Var 4 CG-D 40.95∗ 1.219

function evaluations. For the fourth experiment, L-BFGS does not successfully reduce the RMSE
below that expected only from observations, and thus has failed on this challenging non-smooth
case. Changing the line search from strong to weak Wolfe conditions, as suggested in [130], does
not remedy the situation. LMBM, however, is able to handle this situation with the same level of
accuracy as the other cases.

The timings for 4D-Var are shown in table 5.7.

Table 5.7: Timings for 4D-Var. A ∗ denotes that the method failed to converge, while † denotes that
the method diverged.

Method Obs. operator Opt. algorithm Time in sec Std. dev.
4D-Var 1 L-BFGS 3.83 0.129
4D-Var 1 LMBM 3.87 0.126
4D-Var 1 CG-D 3.67 0.134
4D-Var 2 L-BFGS 3.94 0.0127
4D-Var 2 LMBM 4.03 0.126
4D-Var 2 CG-D 3.86 0.131
4D-Var 3 L-BFGS 4.31 0.0200
4D-Var 3 LMBM 4.51 0.104
4D-Var 3 CG-D 4.26 0.0692
4D-Var 4 L-BFGS 4.94∗ 0.213
4D-Var 4 LMBM 4.92 0.0455
4D-Var 4 CG-D 4.91∗ 0.0557

The performance of the LMBM, L-BFGS, and CG-Descent methods (measured in terms of
cost function value versus number of cost function evaluations) is shown in figure 5.8. The results
demonstrate that the more challenging non-smooth experiments require more iterations, especially
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for L-BFGS and CG-Descent.

5.4.5 MLEF results

For MLEF, 96 ensemble members are used with the experimental setup detailed in section 5.3.5
to test experiments 1-4 using MLEF. Recall from chapter 3 that MLEF minimizes the cost func-
tion given in equation (3.48) in the ensemble space rather than state space; thus there are only 96
members of the control variable.

The RMSE for the four experiments using MLEF and the smooth optimization algorithm are
shown for the u and v components of the velocity field along with the geopotential field φ in figures
5.17 through 5.19. The δ parameter is again set to δ = 10−4.

The results show that both CG-Descent and L-BFGS are able to handle the first three exper-
iments with MLEF, only failing to converge on the final difficult experiment. LMBM, as with
4D-Var, is able to handle all four experiments. These results demonstrate, as predicted by theory
in [250], MLEF can handle slightly non-smooth cases even with an algorithm originally designed
for smooth optimization in place. However, the RMSE from experiment 4 shows that MLEF with
the smooth L-BFGS and CG-Descent algorithms have difficulty with a highly non-smooth data
assimilation case.

The timings for MLEF are shown in table 5.8.

Table 5.8: Timings for MLEF. A ∗ denotes that the method failed to converge, while † denotes that
the method diverged.

Method Obs. operator Opt. algorithm Time in sec Std. dev.
MLEF 1 L-BFGS 13.05 0.05416
MLEF 1 LMBM 15.94 0.2420
MLEF 1 CG-D 19.61 0.1104
MLEF 2 L-BFGS 13.12 0.01653
MLEF 2 LMBM 16.01 0.2337
MLEF 2 CG-D 20.07 0.1238
MLEF 3 L-BFGS 14.03 0.02670
MLEF 3 LMBM 17.62 0.5439
MLEF 3 CG-D 24.34 0.1119
MLEF 4 L-BFGS 15.24∗ 0.1109
MLEF 4 LMBM 29.74 0.3023
MLEF 4 CG-D 49.86∗ 0.1674
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Figure 5.8: 4D-Var cost history. The x-axis shows the number of cost function evaluations re-
quired for the minimization, while the y-axis shows the cost function achieved at that point in the
optimization.
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Figure 5.9: EnKF
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Figure 5.10: LETKF
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Figure 5.11: 3D-Var, LMBM
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Figure 5.12: 3D-Var, L-BFGS
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Figure 5.13: 3D-Var, CG-Descent
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Figure 5.14: 4D-Var, LMBM
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Figure 5.15: 4D-Var, L-BFGS
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Figure 5.16: 4D-Var, CG-Descent
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Figure 5.17: MLEF, LMBM
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Figure 5.18: MLEF, L-BFGS
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Figure 5.19: MLEF, CG-Descent
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5.4.6 Varying the delta parameter

By adjusting the parameter δ, we can control the Lipschitz parameter of the observation operator
H2, thus increasing the difficulty of the non-smooth optimization. The results of varying δ for 4D-
Var with L-BFGS and LMBM are shown in figures 5.20 and 5.21, respectively. These results show
that 4D-Var with LMBM can successfully handle even the case where δ = 10−8.
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Figure 5.20: 4D-Var: impact of δ on RMSE
vs data assimilation cycle for experiment 4, L-
BFGS
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Figure 5.21: 4D-Var: impact of δ on RMSE vs
data assimilation cycle for experiment 4, LMBM
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5.4.7 Final solution error

The error in the final solution versus the exact solution found by LMBM for experiment 4 is
shown in figure 5.22 for δ = 10−4. The error is small and has evolved in time away from the
smooth background error in figure 5.7.

5.5 Conclusions

In this research, we tested the impact of non-differentiable observation operators on the data
assimilation of a limited-area shallow water equations model. By simply replacing the gradient
of the cost function with an arbitrary sub-gradient, all of the methods tested are able to assimilate
the non-smooth observations to varying degrees of success with a smooth optimization algorithm,
especially when the non-smoothness is not severe, as is the case of experiment 2. However, most
methodologies encounter difficulties with the more sharply non-smooth experiments 3 and 4. This
difficulty can be remedied in both MLEF and 4D-Var with the use of an algorithm specifically
designed for non-smooth optimization, which in this research was the limited memory bundle algo-
rithm (LMBM). With an unsophisticated 3D-Var approach, however, even LMBM was not able to
salvage the situation.

As the timings in the above sections demonstrate, 4D-Var is the fastest approach of all the
methods tested on this problem. In addition, the best RMSE results are also achieved with 4D-Var,
especially when paired with LMBM. The reason for the superiority in terms of both speed and error
of 4D-Var is that all observations are considered at once, and the model adjoint is used to guide the
best trajectory. Only one minimization procedure takes place for the initial conditions rather than a
minimization algorithm or statistical inference being performed at each time step.

The algorithms other than 4D-Var are not able to incorporate observations beyond a single time-
step. As these data assimilation algorithms do not use the model as a constraint, this can lead to
solutions that satisfy the minimization algorithm but are unphysical, and in particular can create
shocks as the transition between two successive states is not smooth. If the optimization at each
time step is successful, this leads to oscillations that dampen out. However, if these errors are large,
they begin to accumulate as the background for the next iteration includes these errors, and therefore
the data assimilation begins to diverge.

While the benefits of using the model adjoint in 4D-Var are large, the model adjoint itself can
be very difficult to develop and maintain. Each time the code of the model evolves, the adjoint
also must be updated and kept in sync; these issues can prove very challenging from a software de-
velopment standpoint, and for complex models, developing, testing and maintaining these adjoints
represent a major investment. Therefore, one major strength of MLEF is that, unlike 4D-Var, nei-
ther the adjoint/tangent linear model of eitherM norH is required. Likewise, LETKF also does not
require an adjoint, while EnKF and 3D-Var only require the adjoint ofH. The results of MLEF, ap-
proximately equal to those of 4D-Var, may be more than sufficient for solving problems with highly
non-smooth observation operators, while EnKF, LETKF, and 3D-Var (even with LMBM) as imple-
mented were not able to solve the difficult experiment 4. Thus, 4D-Var and MLEF are the only two
methodologies recommended for steep discontinuities. One downside of MLEF is the additional
computational time needed to compute the finite differences betweenH acting on the ensembles, as
discussed in chapter 3, while a downside of 4D-Var is the need for a both the model and observation
operator adjoints. The choice of methodology for this type of problem may come down to whether
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computational time or development time and effort is a larger concern.
With regards to the optimization algorithms, LMBM, L-BFGS, and CG-Descent were all tested.

L-BFGS handled the first three non-smooth cases well for all methods, but failed on the more dif-
ficult experiment 4 for δ < 10−3. This translates into an observation operator with a Lipschitz
constant greater than 1000. This suggests L-BFGS performs well as a non-smooth optimization
algorithm when the Lipschitz constants are not extreme. CG-Descent, which has no theoretical
non-smooth properties, did not fare as well, failing to converge for experiment 2–4 for 4D-Var, 3–4
for 3D-Var, and experiment 4 for MLEF. The true hero, though not without faults, was LMBM,
which benefited from paying careful attention to line search and convergence issues, enabling it to
perform successfully in practice far beyond the range in which L-BFGS fails for all methods but
3D-Var. The use of “null-steps” which do not progress the optimization algorithm but only add ad-
ditional information about the function allow LMBM to handle such difficult cases. In addition, the
use of a modified line-search and avoiding convergence criterion based on small gradients ensures
the global convergence of LMBM. While it is possible to have some measure of success without
paying attention to these issues, as shown the adverse effects on the data assimilation become in-
creasingly apparent with larger Lipschitz constants. A globally convergent line search such as the
null-step approach used by LMBM is thus recommended for non-smooth data assimilation with
large Lipschitz constants.

While data assimilation of non-smooth observation operators using this model – with control
variables on the order of 103 – was successful, it remains to be seen if similar results may be ob-
tained in the case of data assimilation using realistic non-smooth observation operators and an actual
operational weather prediction model with the number of variables on the order of 107. Continued
research in this area is needed in order to be of practical benefit to operational weather prediction
centers and other large-scale data assimilation optimal control problems. Combining the satellite
assimilated 1D-Var results from the previous chapter with MLEF and 4D-Var is the most logical
next step in this process.
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CHAPTER 6

CONCLUSIONS

In this dissertation, two difficult cases in variational data assimilation were studied in order to com-
pare and contrast the L-BFGS, CG-Descent, and LMBM optimization algorithms.

The assimilation of all-sky infrared radiances is an important outstanding problem in numerical
weather prediction with a highly non-linear transition between clear and cloudy regimes that com-
plicates the data assimilation significantly. By testing data assimilation of the RTTOV observation
operator, we see that each of the optimization methods tested have their strengths and weaknesses;
LMBM is able to handle difficult highly non-linear cloudy-sky cases, while L-BFGS, being bet-
ter behaved numerically, exhibited better performance on cases where the variables of temperature
and water vapor, which have a less highly non-linear relationship to the observation operator, were
primarily modified rather than the cloud species. The performance of CG-Descent lagged behind
LMBM and L-BFGS somewhat on the investigated problems.

The second problem is a mathematically challenging problem: non-smooth observation opera-
tors, i.e. observation operators that have a “kink” in them. Mathematically, this translates to a dis-
continuity in the first derivative, perhaps arising from different parameterizations or phase changes
in the model space. This problem was demonstrated using the shallow water equations, a model
appropriate to tracking the geopotential height of the earth’s atmosphere along with the velocity at
the free surface. Here, traditional optimization algorithms such as CG-Descent and L-BFGS are
out of their original comfort-zones – the performance of these algorithms relies primarily upon the
theory of sub-gradients. Because of this, an additional algorithm, known as the Limited-Memory
Bundle Method, a descendant of the L-BFGS method specifically designed for non-smooth opti-
mization, was employed. When the discontinuity in the derivative is not severe, both CG-Descent
and L-BFGS perform well. However, when the Lipschitz constant – a measure of the size of the dis-
continuity in the derivative – becomes very large, both CG-Descent and L-BFGS fail, while LMBM
is able to handle these cases quite well for all but the 3D-Var data assimilation methodology. The
main issue for the smooth-based methodologies is the failure of their line search, while LMBM
utilizes a guaranteed descent strategy through bundling sub-gradient information.

In this problem, we also compared and contrasted EnKF, LETKF, 3D-Var, 4D-Var, and MLEF
for four non-smooth experiments. EnKF and LETKF, as expected, were not able to handle highly
non-smooth cases, since they have no opportunity to iteratively revisit the tangent linear hypothesis
which will be invalid precisely on the types of problems investigated; however, surprisingly, they
were able to handle mild non-linearity and non-smoothness well. An unsophisticated 3D-Var imple-
mentation faired slightly better than EnKF and LETKF, but was not able to handle the most difficult
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non-smooth case even with LMBM. Thus the choice for highly non-smooth data assimilation prob-
lems appears to come down to 4D-Var or MLEF, with the main determining factor in the decision
being whether accurate model and observation operator adjoints are available. On the problem
tested here, 4D-Var exhibits superior computational performance; however, in realistic cases such
as data assimilation with WRF, where a full-physics, reliable model adjoint is not reliable, MLEF is
very likely a superior choice.

LMBM is not quite ready for “prime-time” as it exhibits numerical instability. However, by
modifying the numerically stable and mature code of L-BFGS to include the innovations of LMBM,
it is expected that improved performance can be achieved. It is thus recommended that before
attempting to use LMBM operationally that additional investment into the numerical stability be
made. However, even with the code as it currently stands, LMBM is a strong competitor for highly
non-linear data assimilation cases such as the assimilation of all-sky IR radiances and stands alone
as a realistic optimization algorithm for large scale non-smooth optimization.

6.0.1 Next steps

The next steps for this research include developing/testing a radiative transfer model and adjoint
appropriate for all-sky data assimilation that integrates all microphysical information that is avail-
able to a modern NWP model such as WRF. This model should be able to handle both microwave
and infrared observations as well as process multiple scattering in an efficient way. RTTOV ver-
sion 10.2 may well meet these requirements. Additionally, the numerical stability of LMBM will
be improved by porting it to the L-BFGS codebase. Finally, a practical and accurate method for
determining background error covariance must be developed. Once these tasks are accomplished,
the integration between 1D-Var and either MLEF and 4D-Var can be utilized to fully solve the all-
sky data assimilation problem with both infrared and microwave. It is anticipated that infrared and
microwave cloud data will be mutually beneficial to each other. When little to no microwave or
infrared satellite data is thrown away and is instead efficiently utilized, we will have come a long
way towards the task of accurately predicting the weather and climate.

Furthermore, as I have implemented most of the main modern data assimilation techniques as
part of this dissertation, I would like to continue to develop an open-source framework for data
assimilation, uncertainty quantification, and numerical weather prediction that I began with Dr.
Emil Constantinescu at Argonne National Labs known as Æolus, named after the Greek god of the
wind. Using a high-level XML framework to describe work-flows in a system- and even model-
independent way, this project would no doubt be highly beneficial to promoting the adoption of
wind-powered green energy and advancing the adoption of data assimilation techniques across the
world.
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