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SUMMARY7

High resolution advection schemes have been developed and studied to model propagation of �ows
involving sharp fronts and shocks. So far the impact of these schemes in the framework of inverse9
problem solution has been studied only in the context of linear models. A detailed study of the impact
of various slope limiters and the piecewise parabolic method (PPM) on data assimilation is the subject11
of this work, using the nonlinear viscous Burgers equation in 1-D. Also provided are results obtained
in 2-D using a global shallow water equations model. The results obtained in this work may point13
out to suitability of these advection schemes for data assimilation in more complex higher dimensional
models. Copyright ? 2006 John Wiley & Sons, Ltd.15
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1. INTRODUCTION

Spatial discretization methods for solving partial di�erential equations (PDEs) can be broadly19
classi�ed as �nite di�erence (FD) [1, 2], �nite volume (FV) [3], �nite element (FE) [4–6]
and spectral methods [7] (including the discontinuous Galerkin (DG) methods [8]). All of21
these methods combined with explicit or implicit time integration schemes can be e�ectively
applied to solve PDEs (of various types such as hyperbolic, parabolic and elliptic).23
For numerical solutions of conservation laws, such as the Euler equations in gas dynam-

ics [9] which describe evolution and propagation of �ows involving sharp fronts and shocks,25
several methods have been suggested in the FD, FV, FE, spectral and DG methods litera-
ture. Some of the most popular methods in the FV context are Lax–Wendro�, Lax–Friedrichs,27

∗Correspondence to: I. M. Navon, School of Computational Science, Florida State University, Tallahassee,
FL 32306, U.S.A.

†E-mail: navon@csit.fsu.edu
‡E-mail: sakella@math.fsu.edu

Contract=grant sponsor: NSF; contract=grant number: ATM-9731472

Received 6 April 2005
Revised 23 September 2005

Copyright ? 2006 John Wiley & Sons, Ltd. Accepted 26 September 2005



UNCORRECTED P
ROOF

2 S. R. AKELLA AND I. M. NAVON

FLD1145

Roe’s, �ux corrected transport (FCT) methods of Boris–Book and Zalesak, slope limited meth-1
ods of van Leer, piecewise parabolic method (PPM) of Colella and Woodward, essentially
non-oscillatory (ENO) schemes of Harten–Shu–Osher (see References [3, 10, 11] for details3
of these methods), to name a few. In the FD context, please refer Reference [2], FE [6],
spectral and DG methods [7, 8], respectively, for details.5
In geophysical �uid dynamics problems, discontinuities usually do not develop from smooth

initial conditions; except in cases such as the formation of hydraulic jumps that evolve in the7
shallow-water �ows from smooth initial data. For instance in mid-latitudes, fronts can be
formed in low-pressure systems, yet these fronts are not entirely discontinuities. Atmospheric9
fronts (also substances such as chemical pollutants) are transported from one location to an-
other, described very well by a tracer advection model. Due to the deformation (stretching11
and shearing) of the velocity �eld that advects the front, discontinuities can be formed on
the resolution scale of the (computational) model, see Section 5.3 of Reference [11] for de-13
tails. As a result of �niteness of clouds, variables such as moisture (density) and temperature
are discontinuous (once again, on the scale of the model resolution) across the interface of15
the cloud [12]. Therefore, from a purely computational stand point, there is a need to apply
numerical schemes devised for numerical solutions of conservation laws which support discon-17
tinuous solutions, in the geophysical �uid �ows. Rood [13] provided a detailed analysis and
comparison of various advection schemes for a simple linear atmospheric transport model. Lin19
et al. [14] have analysed the e�ect of varying the slope limiters using an atmospheric general
circulation model. Lin and Rood [15] have compared the �rst-order upwind, central di�er-21
ence, PPM (modi�ed monotonic and positive de�nite) and monotonic van Leer schemes [16].
Towards the development of a fully operational atmospheric general circulation model based23
on FV discretization [17], Lin and Rood [18] have implemented slope limited van Leer
schemes and the PPM scheme on a shallow water equations model using a semi-Lagrangian25
semi-implicit time integration scheme. For a discussion and applications of other popular
schemes such as MPDATA of Smolarkiewicz [19, 20] and QUICK of Leonard [21–23], see27
Reference [24]. MPDATA is also used in the hybrid coordinate ocean model (HYCOM) [25]
for advection. Several numerical schemes that are ENO and total variation diminishing (TVD)29
type have been tested and compared using the rotational and deformational �ow-�eld test cases
by Sokol [26]. Iskandarani et al. [27] provide a comparison of the continuous Galerkin, dis-31
continuous Galerkin, spectral �nite volume (with a FCT limiter) and Taylor Galerkin least
square methods using a linear advection mathematical model.33
Fusing models with measurements (observations) and �nding response of a system to (ex-

ternal) disturbances, all require solving inverse problems and as such the minimization of a35
goal functional, whose gradient with respect to control variables is e�ciently provided via
adjoint methods, see References [28–30]. In aerodynamics applications, such as minimization37
of drag, maximization of lift (as target functionals) are often performed by considering the
geometry of the immersed body in the �uid as the control variable, which is called shape39
optimization [31], for other applications and details, see Reference [28].
Present weather forecasting system primarily utilizes meteorological data collected (temper-41

ature, wind velocity, pressure, humidity, etc.) from various sources (land stations, balloons,
buoys, ships, aircrafts, satellites, radiosondes, rawinsondes, etc.) and numerical weather pre-43
diction (NWP) models’ (or, the computer models) forecasts. The NWP models integrate
atmospheric models as initial-value problems, i.e. given one day’s weather observations, the45
evolution of the atmosphere in the next few days is obtained by integrating in time the NWP
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models (therefore, these are also referred to as forward models). Hence a good forecast re-1
quires that these NWP models represent accurately the dynamics of the atmosphere (including
the oceans) and the initial conditions supplied for integration (of the NWP models) be known3
accurately. Estimation of the state or evolution of the atmosphere using the information pro-
vided by NWP model prediction and observations of the atmosphere is carried out by data5
assimilation (DA) [30]. Current DA methods are based on either using results from estima-
tion theory (such as application of Kalman, extended Kalman, ensemble Kalman �ltering, for7
details, once again, please see Reference [30] and references therein) or variational methods,
which are based on minimization of a cost functional which measures the distance (in a9
suitable norm) between observations and NWP model forecasts. The objective of variational
data assimilation is to determine a model trajectory (by adjusting initial conditions used for11
model integration) that satis�es the model equations as a (strong or weak) constraint while
simultaneously minimizing the lack of �t between model predictions and heterogeneous ob-13
servations in a least-squares sense. Please see References [32, 33] for further details. Large
scale minimization algorithms which require availability of gradient of the cost functional with15
respect to the control variables (provided e�ciently by adjoint methods, which are integrated
backwards in time) are used for this purpose.17
The impact of di�erent discretization techniques for the advection term(s) in the framework

of inverse problems and problems related to DA have not been extensively tested, except for19
work by Vuki�cevi�c et al. [24] and Thuburn and Haine [34]. In Reference [24] the authors
performed DA experiments to reveal the relationships between their properties with respect21
to data assimilation with three di�erent (central di�erence: LEAPFROG, MPDATA, QUICK)
schemes for the advection of a passive tracer in two dimensions using a linear 2-D transport23
equation. Their results indicate that more accurate advection schemes need to be used to solve
both, forward and adjoint models in time to achieve higher accuracy regarding recovery of25
initial conditions for data assimilation; also the same discretization scheme should be applied
consistently both for forward and adjoint model integrations. Thuburn and Haine [34] recall27
Godunov’ s theorem (which states that any linear monotonic advection scheme cannot provide
more than �rst-order accuracy), they studied the a�ects on adjoint sensitivity computations29
using a nonlinear, nonoscillatory (QUICK) scheme on a one-dimensional linear advection
equation model. They also suggest modi�cations to advection schemes to obtain adjoint sen-31
sitivity results that are meaningful (in the particular physical setting considered by them). In
this context, a total variation diminishing (TVD) scheme based on a slope limiter has been33
suggested.
Since the mathematical models used to study �uid �ows and weather prediction are highly35

nonlinear, as a step towards understanding the e�ects of using high order advection schemes
in DA, we study in this work the impact of using FV methods that are slope limited using van37
Leer type and PPM for spatial discretization (in 1-D and 2-D). In one dimension, a nonlinear
viscous Burgers equation model and in 2-D the spherical global shallow water equations have39
been used as proxy for more complex NWP models. We show that for a particular smooth
initial condition, we obtain a smooth solution for these model problems (in the context of41
smoothness property of geophysical �ows as discussed above), and implement the adjoint
method to conduct DA experiments.43
The paper is organized as follows. In Section 2 we present the forward model as well

as describe numerical solution of the nonlinear Burgers equation using FV discretization.45
Section 3 describes the test case considered along with results obtained using several slope

Copyright ? 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids (in press)
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limited TVD schemes as described in Section 2. Section 4 describes the derivation of the1
adjoint and tangent linear models (which are used for DA) and veri�cation of these discrete
models. Section 5 provides a brief description of the minimization algorithm used. The per-3
formance of the various slope limited and PPM schemes for the minimization of a certain
cost functional, in other words, in DA experiments (1-D and 2-D) is presented in Section 6.5
Finally, in the section of summary and conclusions we discuss the impact of the di�erent
advection schemes in the framework of our numerical results.7

2. DESCRIPTION OF THE MATHEMATICAL AND NUMERICAL MODELS

The Burgers equation [35] will be used to present detailed formulation of the various slope9
limiters and the PPM advection scheme in one space dimension. The formulation extends
readily to 2-D for the global shallow water equations model, which will be discussed later in11
this section.
Let us consider the following 1-D (nonlinear) scalar conservation law (�(x; t)∈C2), the13

space of continuous functions that are at-least twice di�erentiable)

@�
@t
+
@f
@x
=
@S
@x

(1)15

where f is a convex �ux function given by �2=2 and S represents the source term(s).
Equation (1) is the well known Burgers equation which is a very important �uid dynam-17
ical model useful for conceptual understanding of nonlinear waves, shock formation [9, 36]
and turbulence [37]. Various numerical schemes (see Fletcher [38] for a detailed numeri-19
cal analysis) have been suggested and tested on this model equation to e�ciently capture
shocks.21
We will now describe and test a variety of �nite volume methods [3] to solve the above

equation, all di�ering in the way which we reconstruct the solution, �, in each cell using23
di�erent slope limiters. We will closely follow the approach taken by monotone upstream-
centred schemes for conservation laws (MUSCL), see References [16, 39–42].25
Let us start by writing the integral form of (1) within the ith cell, Ci,

@
@t

∫
Ci

�(x; t) dx=f[�(xi−1=2; t)]− f[�(xi+1=2; t)] + S(xi+1=2; t)− S(xi−1=2; t) (2)
27

Ci : x∈ [xi−1=2; xi+1=2].
We de�ne ith cell average at time interval tn (t ∈ [t0; t�nal] has been discretized into a number29

of time steps [t0; t1; : : : ; tn]) as

�ni ≈ 1
�xi

∫ xi+1=2

xi−1=2

�(x; tn) dx (3)
31

where �xi= xi+1=2 − xi−1=2 is the length of the ith cell.

Copyright ? 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids (in press)



UNCORRECTED P
ROOF

FLD1145

PERFORMANCE OF HIGH RESOLUTION ADVECTION SCHEMES 5

i-1 i i+1
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Figure 1. Finite volume discretization.

Integrating Equation (2) from tn to tn+1 yields1

∫
Ci

�(x; tn+1) dx −
∫
Ci

�(x; tn) dx=
∫ tn+1

tn
f[�(xi−1=2; t)] dt −

∫ tn+1

tn
f[�(xi+1=2; t)] dt

+
∫ tn+1

tn
[S(xi+1=2; t)− S(xi−1=2; t)] dt

dividing by �xi and rearranging

1
�xi

∫
Ci

�(x; tn+1) dx=
1
�xi

∫
Ci

�(x; tn) dx − 1
�xi

∫ tn+1

tn
{f[�(xi+1=2; t)]− f[�(xi−1=2; t)]} dt

+
1
�xi

∫ tn+1

tn
[S(xi+1=2; t)− S(xi−1=2; t)] dt

Assuming a viscous dissipative source S= ��x (� is the kinematic viscosity) and using3
Equation (3) we obtain

�n+1i = �ni − �t
�xi

[(Flux)ni+1=2 − (Flux)ni−1=2] + �
1
�xi

∫ tn+1

tn
[�x(xi+1=2; t)− �x(xi−1=2; t)] dt (4)

5

where (Flux)ni+1=2 ≈ 1
�t

∫ tn+1
tn
f[�(xi+1=2; t)] dt is some approximation of the average �ux (de-

scribed later in this section) along the cell interface at xi+1=2, see Figure 1 for an illustration7
of the grid cells.

2.1. MUSCL limiters9

Within each cell if we consider a piecewise constant approximation to the solution (i.e. slope
of the reconstruction is equal to zero), then we obtain a �rst-order method; however if we11

Copyright ? 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids (in press)
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use a piecewise linear approximation within each cell, Ci1

�(x∈ [xi−1=2; xi+1=2])=�i +��i(x − xi)
where �i is given by Equation (3), xi is the coordinate of the ith cell centre and ��i is3
equal to the di�erence between the values of the state at the right and left cell interfaces (it
denotes the slope of reconstructed solution in each cell), we obtain a family of second-order5
approximate schemes.
Conservation laws such as the Euler equations in gas dynamics [10] and the simple Burgers7

equation (1) support solutions that have discontinuities (or, shocks), expansion fans, contact
discontinuities. Apart from ensuring satisfaction of the Courant–Friedrichs–Lewy (CFL) con-9
dition [1], unless special treatment is taken, the numerical solutions will lead to excessive
dissipation, incorrect phase speeds, spurious oscillations; see Reference [10] for an extensive11
comparison of many numerical methods applied to solve simple linear and nonlinear advection
and Euler equations.13
One way to prevent such spurious oscillations and preserve TVD [3, 43, 44] property is by

limiting the values of the slopes (��i). Lin et al. [14] listed a number of consistent ways15
of deriving the limited slopes in various forms and compared their impact on the solution of
linear advection equation. We will follow their approach for arriving at various formulations17
of the slope (from now onwards we will assume an uniform grid, i.e. �xi=�x ∀ i).
1. Limiter 1 (�rst-order scheme):19

��ni ≡ 0 ∀i (5)

2. Limiter 2 (unconstrained van Leer scheme):21

[��ni ]avg =
1
�x

��ni−1=2 + ��
n
i+1=2

2
(6)

where ��ni+1=2 =�
n
i+1−�ni and ‘avg’ means the averaging operator in the above equation.23

This provides us a simple second-order accurate scheme, but the values of the slopes
are not limited, in other words, no limiter has yet been applied.25

3. Limiter 3 (simple positive de�nite scheme):

[��ni ]=
1
�x

SIGN([��ni ]avg) ·MIN[|[��ni ]avg|; 2DIM(�ni ;�min)] (7)27

the value of the slope has been limited using the least value (over all of xi) of �ni and
[��ni ]avg. DIM(p; q) is de�ned as the positive di�erence between p and q29

DIM(p; q)=

{
p− q ifp¿q

0 otherwise

4. Limiter 4 (monotonicity preserving scheme):31
Another form of slope limiter which ensures monotonicity, suggested by van Leer [16, 45]
is as follows:33

[��ni ]=

⎧⎨
⎩
1
�x
[��ni−1=2 · ��ni+1=2]=[��ni ]avg if SIGN(��ni−1=2)=SIGN(��

n
i+1=2)

0 otherwise
(8)

Copyright ? 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids (in press)
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5 Limiter 5 (constrained van Leer scheme):1
We can determine locally de�ned minimum and maximum values of the solution as

�mini =MIN[�ni−1;�
n
i ;�

n
i+1]

�maxi =MAX[�ni−1;�
n
i ;�

n
i+1]

(9)
3

and use them to limit the value of the slope as follows [16, 45] (also ensures mono-
tonicity):5

[��ni ]=
1
�x
SIGN([��ni ]avg) ·MIN[|[��ni ]avg|; 2DIM(�ni ;�mini ); 2DIM(�maxi ;�ni )] (10)

6. Limiter 6 (global min=max slope limited scheme):7
In the above formulation of the limiter, we used the locally computed minimum and
maximum values of the solution. Instead if the global minimum and maximum values of9
�ni are set to be equal to �

min
global and �

max
global, respectively, and replacing these in above

limiter formulation, we obtain11

[��ni ]=
1
�x
SIGN([��ni ]avg) ·MIN[|[��ni ]avg|; 2DIM(�ni ;�minglobal); 2DIM(�maxglobal;�

n
i )] (11)

We will now use these values of slopes and follow the approach of essentially nonoscillatory13
(ENO) schemes to arrive at an expression for the �ux at the cell interfaces.

2.2. ENO �ux15

To calculate the �ux at the right cell face xi+1=2, we used the ENO [10, 46–48] �ux formu-
lation. Using the ith and i + 1 cell reconstructed values evaluated at xi+1=2 (see Reference17
[10, Chapter 23] for details), we obtain

(Flux)ni+1=2 =f
G

[{
�ni+

��ni�x
2

(
1−�t
�x
�ni

)}
;
{
�ni+1−

��ni+1�x
2

(
1+
�t
�x
�ni+1

)}]
(12)19

where

fG[�ni ;�
n
i+1]=

{
MIN[f(�ni ); f(�

n
i+1); f(�∗)] if �ni 6�

n
i+1

MAX[f(�ni ); f(�
n
i+1); f(�∗)] if �ni ¿�

n
i+1

(13)
21

where �∗ is such that the �ow speed given by @f=@�= @�
2

2 =@�=�=�∗=0.

Remark23
If the slope in each cell is equal to zero, as in Equation (5), then the above ENO �ux form
reduces to Godunov �ux form [49].25

Instead of using a piecewise linear reconstruction within each cell, we can as well apply the
piecewise parabolic reconstruction approach of Colella and Woodward [50–52] within each27
cell.

Copyright ? 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids (in press)
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2.3. PPM reconstruction1

We have applied the PPM to reconstruct the state within each cell and to obtain the values
of the state at left and right cell interfaces.3

�(x∈ [xi−1=2; xi+1=2])=�L; i + x[��i +�6; i(1− x)]

�L; i and �R; i are approximations of the state at the left and right cell interface, as in MUSCL5
piecewise linear extrapolation, ��i=�R; i −�L; i and �6; i=6(�i − 1

2 (�L; i +�R; i)) for details
of the above reconstruction procedure, see Reference [50].7
The �uxes at the interfaces have been directly evaluated using the calculated values, �L; i

and �R; i for every ith cell. We have used a second-order Runge–Kutta (R–K) explicit scheme9
to integrate in time, described below.

2.4. Integration in time using a second-order optimal TVD R–K method11

Using Equations (12) and (13) or the PPM scheme for calculating the �ux and forward
di�erencing for the di�usion term, we can write the following simple forward Euler update13
formula for �n+1i :

�n+1i =�ni − �t
�x
[(Flux)ni+1=2 − (Flux)ni−1=2] + �

�t

�x2
[�ni+1 − 2�ni +�ni−1] (14)15

The above numerical scheme is at-least second-order accurate (MUSCL schemes: (6)–(9)
second-order, whereas PPM being third-order accurate) in space for su�ciently smooth �17
(�∈C2), but it is only �rst-order accurate in time, also it does not preserve the TVD property
for time integration. In order to overcome these drawbacks, we used a second-order (accurate19
in time) optimal TVD R–K scheme [53, 54], given by Gottlieb and Shu [55]. Following their
notation, let21

L(�ni )=− 1
�x

[(Flux)ni+1=2 − (Flux)ni−1=2] + �
1

�x2
[�ni+1 − 2�ni +�ni−1]

then the following sequence of two steps gives us:23

�(1)i =�ni +�t L(�
n
i )

�n+1i = 1
2�

n
i +

1
2�

(1)
i + 1

2�t L(�
(1)
i )

This completes the description of discretization in space (1-D) and time. We have tested
these various �nite volume methods using the aforementioned advection schemes. Comparison25
of the numerical results with the exact solution is provided for the following test cases (see
Section 3).27

Copyright ? 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids (in press)
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2.5. Extension to 2-D: global shallow water equations model1

The shallow water (SW) equations on the sphere describe the motion of a shallow (horizontal
scales of interest are much larger in comparison to the depth of the �uid) homogeneous3
incompressible and inviscid �uid layer. The solutions of these equations exhibit some of the
important properties of large scale atmospheric �ow and the equations have certain important5
features (such as, horizontal dynamical aspects) in common with more complicated NWP
models. NWP models couple such shallow water models vertically, using pressure as the7
vertical coordinate, see for e.g. References [17, 56] for details. The SW equations in spherical
coordinates in the vorticity divergence form can be written as9

@h
@t
+∇ · (Vh) = 0 (15)

@u
@t
= �v− 1

a cos �
@
@�
[�+ ’] (16)11

@v
@t
= −�u− 1

a
@
@�
[�+ ’] (17)

where h represents the �uid height (above the surface height, hs), V=(u; v), u and v represent13
the zonal (�: longitude) and meridional (�: latitude) wind velocity components, respectively,
! is the angular velocity of the earth, a is the radius of the earth. The free surface potential15
is given by

’=’s + gh17

’s = ghs, �= 1
2V ·V is the kinetic energy, and �=2! sin �+∇ ×V is the absolute vorticity.

Details on the other forms of writing the SW equations and their development can be found19
in References [57, 58].
The �nite volume shallow water equations model of Lin and Rood [18] has been used21

for integrating the above SW equations. The 1-D advection schemes described thus-far have
been implemented in two dimensions by using a sequential operator-split approach, details of23
which have been provided in Reference [15]. A two grid combination based on C-grid and
D-grids has been used while advancing from time step tn to tn +�t. In the �rst half of the25
time step, the advective winds (time centred winds on the C-grid: (u∗; v∗) are updated on the
C-grid, and in the other half of the time step, the prognostic variables (h; u; v) are updated27
on the D-grid (in this study, we will use the same advection scheme on both the grids). The
poles have been treated in a similar fashion as that in Reference [59] using a polar Fourier29
�lter.
In particular, it is to be noted that the algorithm conserves total mass (in other words,31

the height �eld, h, integrated on the surface of the sphere) for all the time of the numerical
integration and, after a 60 day integration of the model, the loss in total energy (total energy33
is de�ned as the integral of 1

2hV · V + 1
2g[(h + hs)

2 − hs2] on the surface of the sphere) is
approximately lost by 0:1%, and the loss in potential enstrophy (potential enstrophy is the35
integral of (1=2h)�2) is 1%. More details are available in Reference [18]. This represents
excellent conservation of integral invariants of the shallow water equations.37

Copyright ? 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids (in press)
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3. TEST CASES AND RESULTS1

3.1. Case 1: 1-D viscous Burgers equation

In 1-D we will consider the following Burgers equations:3

@�
@t
+
@
@x

(
�2

2

)
= �

(
@2�
@x2

)
(18)

for x∈ (−�; �) and t¿0, with boundary conditions, �(x=±�; t)=0.5
Benton and Platzman [60] provide an exact solution for the above Burgers equation (18),

with initial condition given by7

�(x; 0)=�(x; t=0)=−R sin(x) (19)

where R is the Reynolds number. It is related to the viscosity via the relationship, R=UL=�,9
here the values of (velocity scale) U and (length scale) L have been prescribed to be equal
to unity. Then the exact solution assumes the form11

�exact(x; t)=
4

∑∞
n=1 nane

−n2t sin(nx)
a0 + 2

∑∞
n=1 ane−n

2t cos(nx)
(20)

where an=(−1)nIn( 12R), In is the Bessel function of second kind. For small values of R,13
viscous dissipation dominates over advection and the solution decays uniformly as time, t
increases, as depicted in Figure 2 (which has been generated by setting R=1).15
The �rst-order scheme (limiter 1) and limiter 3 (simple positive de�nite scheme, which was

based on limiting the slope based on the least value of �ni and [��
n
i ]avg), both undershoot at17

the peak value of the numerical solution at x=±�=2. It is to be noted that all the numerical
solutions have the correct phase speed. In the case of the global min=max limiter 6, we19
prescribed �min =−1 and �max =1.
In Table I we show that the numerical solutions converge to the exact solution in both L221

and L∞ norms, at t=1. As expected the �rst-order scheme (limiter 1) has the largest error
compared to all other schemes. Lin et al. [14] compared limiters 3; 4; 5 and 6 on a linear ad-23
vection problem using a rectangular pulse. Based on their study, they concluded that limiter 4
provides the largest implicit di�usion among all the limiters considered, whereas limiter 225
provides the smallest implicit di�usion and the constrained van Leer scheme (limiter 5) is
less di�usive than limiter 4.27

3.2. Case 2: 1-D inviscid Burgers equation

To further investigate the performance of these limiters on a model problem with no viscosity,29
we tested them using the following inviscid nonlinear Burgers equation:

@�
@t
+
@
@x

(
�2

2

)
=031
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Figure 2. Exact solution at t=0; 0:5; 1:0; 1:5; 2:0; 2:5.

Table I. Errors in L2 and L∞ norms for di�erent advection schemes (based on changing the slope
limiter, lim.1 indicates limiter 1) in forward mode, with �t= 1:5708× 10−3 at t=1.

L2-Error

Nx lim:1× 10−2 lim:2× 10−3 lim:3× 10−3 lim:4× 10−3 lim:5× 10−3 lim:6× 10−3 PPM× 10−3

40 3.1357 1.39420 1.39419 1.4882 1.5252 1.3942 1.308409
80 2.2142 0.852385 0.852384 0.79215 0.83126 0.852384 1.037877
160 1.5716 0.70370324 0.70370321 0.69061 0.69817 0.70370317 0.81714

L∞-Error

Nx lim:1× 10−3 lim:2× 10−3 lim:3× 10−3 lim:4× 10−3 lim:5× 10−3 lim:6× 10−3 PPM× 10−3

40 8.0511 0.3200545 0.3200543 0.32797 0.34984 0.32004 0.3833
80 4.0426 0.17541576 0.17541570 0.16975 0.17335 0.1754155 0.1965
160 2.0321 0.087102731 0.087102728 0.086004 0.086741 0.087102723 0.0975

With the following initial condition (on the whole real line) [61]:1

�(x; 0)=

⎧⎪⎪⎨
⎪⎪⎩
0; x¡−1
1
2 ; −1¡x¡0
0; x¿0

(21)
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The solution develops into a shock and an expansion fan (for details of the solution, see1
Reference [61]), analytically given by (for t6 4, i.e. before the expansion fan meets the
shock)3

�(x; t)=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0; x¡−1
x + 1
t
; −1¡x¡ t

2
−1

1
2
;

t
2
−1¡x¡ t

4

0; x¿
t
4

(22)

As expected, the �rst-order accurate scheme is di�usive. The solutions obtained by using5
limiter 2 (unconstrained van Leer scheme) and limiter 3 (simple positive de�nite scheme), both
over shoot, indicating that there is a lack of (implicit) viscosity. Though the solution obtained7
by using limiter 4 (monotonicity preserving scheme) does not su�er from such problems, it is
di�usive, when compared to the computed solutions using limiters 5; 6 (constrained van Leer9
and global min=max slope limited schemes, respectively) and the PPM scheme.
Following arguments in Section 2 of Reference [15], limiter 3 (positive de�nite scheme)11

does not provide satisfactory solutions to 2-D tracer advection equation. Also it requires spec-
i�cation of the minimum values of the solution a priori, the same being the case with the13
global min=max scheme (limiter 6) which requires speci�cation of both minimum and max-
imum values of the solution a priori, which is not accurately possible for complex higher15
dimensional �ows. Limiter 5 (constrained van Leer scheme) has been shown to be better than
limiter 4 (monotonicity preserving scheme) in Reference [14] due to the fact than limiter 517
provides less implicit di�usion than limiter 4. Therefore limiter 1 (�rst-order scheme), lim-
iter 2 (unconstrained van Leer scheme), limiter 5 (constrained van Leer scheme) and PPM19
advection schemes are of interest to global NWP modelers, such as in Reference [17] (also
see the documentation of the Community Atmosphere Model 3.0 [62]) hence we will restrict21
our 2-D study to only these schemes.

3.3. Case 3: 2-D global SW equations23

The development of a numerical solver for the global spherical SW equations is usually a �rst
step towards the development of a NWP model. A suite of several test cases that have been25
widely used to compare di�erent algorithmic formulations and numerical schemes for the SW
equations was suggested by Williamson et al. [57]. Therefore, results obtained from these tests27
could be used as a guide towards developing more complex models in higher dimensions.
The test case number 6, is the Rossby–Haurwitz wave (wavenumber 4), �rst proposed by29
Phillips [63]. Although analytical solutions for this case in the global SW equations context
are not known, it is a very popular test case in the NWP modelling community for a number31
of reasons. Haurwitz [64] showed that the Rossby–Haurwitz waves are analytic solutions of
the nonlinear barotropic vorticity equation on the sphere. They are characterized by a pattern33
which moves from west to east without any change in shape.
Figures 3–10 provide results obtained by integration of the �nite volume SW equations35

model of Reference [18] using the di�erent advection schemes for 14 and 30 days, respectively
(the initial condition was speci�ed to be a Rossby–Haurwitz wave). The resolution of the37

Copyright ? 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids (in press)
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Figure 3. Height �eld isolines at Day-14 using the �rst-order advection scheme
(lim.1), for the Rossby–Haurwitz wavenumber 4 case using a �nite volume global

SW equations model. Contour interval is 100m.

model is the same as in Reference [18], 128 grid cells along the longitude and 64 along the1
latitude, and a time step of 600 s. The DAY-14 solution in the case of constrained van Leer
and PPM schemes is similar, whereas the DAY-30 solution obtained by using the constrained3
van Leer is more di�used than that of the PPM scheme. The �rst-order advection scheme is
extremely dissipative, as evident from Figures 3 and 4. Therefore, for 2-D DA experiments5
we will not be using the �rst-order advection scheme. The unconstrained van Leer scheme
is certainly less dissipative than the �rst-order scheme, but more di�usive when compared to7
the constrained van Leer and PPM schemes.

4. DERIVATION AND VERIFICATION OF THE ADJOINT AND9
TANGENT LINEAR MODELS

This section details the derivation of the development of the adjoint method, aimed at obtaining11
the gradient of the cost functional with respect to the control parameters e�ciently, closely
following [65].13
The following form of the cost functional is considered:

J(x)=
1
2

n∑
k=0
(x(tk)− xobs(tk))TW (tk) (x(tk)− xobs(tk)) (23)

15
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Figure 4. Same as Figure 3, but at Day-30.

Figure 5. Same as in Figure 3, but using unconstrained van Leer scheme (lim.2).

Copyright ? 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids (in press)
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Figure 6. Same as Figure 5, but at Day-30.

Figure 7. Same as in Figure 3, but using constrained van Leer scheme (lim.5).

Copyright ? 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids (in press)
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Figure 8. Same as Figure 7, but at Day-30.

Figure 9. Same as in Figure 3, but using PPM advection scheme.
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Figure 10. Same as Figure 9, but at Day-30.

where t ∈ [t0; tn] is the (data) assimilation time window comprised of n time steps, W (tk) is a1
diagonal weighting matrix, x(tk) is the evolving state vector and xobs(tk) is another (evolving)
vector, which is made up of the observations that are distributed in both space and time.3
The above convex cost functional is minimized (subject to the evolution of the state vector

by the nonlinear model as a strong constraint) using a robust unconstrained minimization5
method described in Section 5. The directional derivative of the above cost functional, in the
direction of �x is given by (∇xJ)T�x.7
From Equation (23)

�J(x)=
n∑
k=0
(W (tk)(x(tk)− xobs(tk)))T�x(tk) (24)

9

where �x(tk) is the perturbation of the state vector obtained from the perturbation of the
model parameters, x. Using the above two equations11

(∇xJ)T�x=
n∑
k=0
(W (tk)(x(tk)− xobs(tk)))T�x(tk) (25)

The evolution of the state vector using the nonlinear model can be symbolically written as13

x(tk+1)=F(x(tk))

Copyright ? 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids (in press)
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Linearizing the model about the current model solution, we obtain the equation for the evo-1
lution of perturbations

�x(tk+1)=
@F(x(tk))
@x

�x (26)3

Let L(t) represent the Jacobian, @F(x(tk))=@x, then we can rewrite the above equation as

�x(tk) = L(tk −�t)�x(tk −�t)

= L(tk −�t)L(tk − 2�t)�x(tk − 2�t)

= L(tk −�t)L(tk − 2�t)L(tk − 3�t)�x(tk − 3�t)

= · · ·

=Mk�x (27)

Thus �x(tk)=Mk�x, where Mk represents the application of all the linear operators to ob-5
tain �x(tk).
Using Equations (25) and (27) the gradient of the cost functional with respect to the control7

parameters, x is given by

∇xJ=
n∑
k=0
MT
k W (tk)(x(tk)− xobs(tk)) (28)

9

Using W (tk) (x(tk)− xobs(tk)) as the (initial) values of the adjoint variables x∗(tk) at time
tk , the adjoint equations11

x∗(t0)=MT
k (x

∗(tk)) (29)

are integrated backwards in time to obtain the values of the adjoint variables at initial time,13
t0. Therefore,

∇xJ=
0∑
k=n
x∗(tk) (30)

15

Now we will brie�y describe the method of programming the adjoint model, in other words,
Equations (27) and (29) and implementation of (30).17

4.1. Coding the adjoint model

We follow the approach of �rst discretize and then di�erentiate (see References [28, 32] for19
details). Discrete numerical operations in the nonlinear forward model are having unique cor-
responding operations in the adjoint model. The linear equation (26) is now onwards referred21
to as the Tangent Linear Model (TLM). The TLM code is programmed by linearizing line by
line, the nonlinear forward model code. Following Equation (27), the TLM can be formally23
viewed as a result of multiplying linear operators: Mk =L1; L2; : : : ; Lk , where each of the Lk
is either a DO-loop or a subroutine in the TLM. Then the adjoint model, MT

k is a product of25
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the (adjoint) linear operators, LT1 ; L
T
2 ; : : : ; L

T
k . Hence the adjoint model is the transpose of the1

TLM. This relationship is used to write the adjoint model code, using the TLM code (see
References [30, 66] for details), and to verify the same for the transposition property (all our3
subroutines satisfactorily passed this test). We have used TAMC [67–69] (an automatic di�er-
entiation software) to help us derive the TLM and adjoint model codes; however, we would5
like to emphasize that su�cient caution must be taken while di�erentiating functions such
as the ABS (absolute value function), SIGN (signum function), DIM (dimension function),7
MIN and MAX (minimum and maximum functions, respectively), these functions frequently
arise due to the nature of the formulation of the various slope limiters, such as limiters 3; 59
and 6 (Section 2.1). In Appendix A, we provide a segment of our FORTRAN code which
illustrates the di�erentiation of the MIN function.11
The adjoint model is integrated backwards in time to obtain the gradient of the cost func-

tional, ∇xJ in the following sequence of three steps:
13

1. Integrate the adjoint model backwards in time, from time step tk to t0 with zero �nal
conditions for the adjoint variables x∗.15

2. The forcing term W (tk) (x(tk) − xobs(tk)) is added to the value of adjoint variables
whenever time tk (k=1; 2; : : : ; n) is reached.17

3. Finally, at t0 the value of adjoint variables equals the gradient of the cost functional
with respect to the control variables.19

Using the Taylor series expansion of the cost functional, upto �rst-order

J(x+ �∇J)=J(x) + �(∇J)T∇J+O(�2) (31)21

where � is a scalar and the gradient, ∇J=∇xJ, is obtained by using the adjoint model. We
can rewrite the above equation as in Reference [32]23

	(�)=
J(x+ �∇J)− J(x)

�∇JT∇J
=1+O(�) (32)

Therefore, the gradient provided by the adjoint model is assumed to be accurate upto25
machine accuracy if lim�→0 	(�)=1:0 The truncation errors dominate for �¿10−3, whereas
for � near machine precision, roundo� errors accumulate. Tables II and III provide values of27
	(�) versus � obtained for the adjoint model using various limiters and the PPM advection
scheme case for the 1-D Burgers and 2-D global SW equations models, respectively. See29
Reference [70] for details of the adjoint model for the SW equations model used.

5. MINIMIZATION31

We used an unconstrained limited memory quasi-Newton (L-BFGS) minimization algorithm
[71, 72] (available for download at www.netlib.org=opt=lbfgs um.shar) for minimization of the33
cost functional J=J(xk), where xk is the n component (control) vector at the kth iteration.
gk = g(xk)=∇Jk is the gradient vector of size n, and Hk =∇2Jk is the n× n symmetric35
Hessian matrix of the second partial derivatives of J with respect to the control vector. The
new iterate is given by37

xk+1 =xk + 	kpk (33)
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Table II. Gradient check: values of 	(�) for di�erent � for slope limiters and PPM advection scheme
in adjoint mode for 1-D Burgers equation model.

− log10(�) lim.1 lim.2 lim.3 lim.4 lim.5 lim.6 PPM

	(�)

1 2.0768853 2.1463904 2.1032286 2.1440140 2.1455097 2.0595244 2.1503010
2 1.1346913 1.1427750 1.1397331 1.1426656 1.1427245 1.1366907 1.1429770
3 1.0137129 1.0144949 1.0143250 1.0144854 1.0144909 1.0141552 1.0145123
4 1.0013705 1.0014515 1.0014379 1.0014508 1.0014513 1.0014242 1.0014536
5 1.0001339 1.0001451 1.0001414 1.0001453 1.0001454 1.0001377 1.0001459
6 1.0000102 1.0000145 1.0000145 1.0000148 1.0000148 1.0000145 1.0000151
7 0.9999978 1.0000014 1.0000014 1.0000017 1.0000017 1.0000014 1.0000020
8 0.9999966 1.0000001 1.0000001 1.0000004 1.0000004 1.0000001 1.0000007
9 0.9999965 0.9999999 1.0000000 1.0000003 1.0000002 1.0000000 1.0000006
10 0.9999965 0.9999999 1.0000002 1.0000008 1.0000006 1.0000000 1.0000006
11 0.9999951 1.0000018 1.0000070 1.0000042 1.0000018 0.9999995 1.0000032

Table III. Gradient check: values of 	(�) for di�erent � for slope limiters and
PPM advection scheme in adjoint mode for 2-D global SW equations model.

− log10(�) lim.1 lim.2 lim.5 PPM

	(�)

1 1.716810 1.894919 1.086659 1.013195
2 1.085421 1.087817 1.007975 1.003011
3 1.009237 1.008724 1.000429 1.001268
4 1.001031 1.001104 0.999922 1.000770
5 1.000126 1.000337 0.999962 1.000825
6 1.000012 1.000304 1.000000 1.000000
7 1.000000 1.000000 1.000705 0.994831
8 0.999999 1.000496 1.001122 0.941435
9 0.999999 1.000872 1.001174 0.422035
10 0.999979 1.000966 1.001313 −4:817312

where pk is the descent direction (for instance, pk = −gk for the steepest descent method and1
pk = −H−1

k gk for the quasi-Newton methods), and 	k is the step length.
Iterations are terminated when (using the L2 norm)3

‖gk‖¡EPS ·MAX(1; ‖xk‖)

Here we speci�ed EPS=10−5 as our termination criteria.5
Given a sequence of two successive iterates, xk+1 and xk , gk =∇Jk and gk+1 =∇Jk+1.

Then gk+1 − gk =Hkpk which can be rewritten as qk =Hkpk . If the Hessian is constant, then7
qk =Hpk , and we can write the following quasi-Newton condition for 06 i6 k:

H−1
k+1qi= pi9
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In general, the evaluation of the Hessian matrix is impractical and costly. Quasi-Newton1
methods use an approximation of the inverse Hessian matrix. We start with an identity matrix
and then iteratively, a better approximation to the inverse Hessian matrix is built up, in such3
a way that Hk preserves positive de�niteness and symmetry.
The Broyden–Fletcher–Goldfarb–Shanno (BFGS) update formula for the Bk+1 (i.e. H−1

k+1)5
is given by

Bk+1 =Bk +
(1 + qTk Bkqk)

qTk pk
pkpTk
pTk qk

− pkqTk Bk + Bkqkp
T
k

qTk pk
(34)7

this is a symmetric rank two update, constructed using the vectors pk and Bkqk . Thus each
minimization iteration proceeds by �rst checking for termination criteria, �nding the direction9
of descent: pk (using the approximation to the inverse Hessian matrix), �nd an optimal step
length (	k) in the direction of pk , and �nally using Equation (33) �nd the next xk+1. The11
limited memory version, L-BFGS is an adaptation of the BFGS algorithm to large problems,
achieved by changing the above Hessian update formula, see for details References [71–75]13
for applications.

6. DATA ASSIMILATION EXPERIMENTS15

This section describes results obtained using the adjoint model described in the previous
section in order to conduct data assimilation for retrieval of optimal initial conditions which17
serve as control variables. Following work of Vuki�cevi�c et al. [24], we have consistently used
the same advection scheme both in the nonlinear forward and adjoint models. Our goal is to19
minimize the cost functional given in Equation (23), namely

J(x)=
1
2

n∑
k=0
(x(tk)− xobs(tk))TW (tk)(x(tk)− xobs(tk))21

with respect to the initial state x(t0) ≡ �(x; 0) as the control parameter and we have prescribed
W (tk) ≡ I , i.e. the identity matrix for the 1-D Burgers equation case. In the global 2-D SW23
equations model case, the control vector is given by x(t0)= (h; u; v) at the initial time and
W (tk) was prescribed to be equal to a block diagonal matrix with [10−4 I; I; I ] as the diagonal25
entries.
The framework of identical twin experiment has been used in this study, which has been27

frequently used to compare di�erent methods in developmental stages. In twin experiments,
observations are not obtained from reality, but are generated by using a version of the model29
which is slightly di�erent to the model used in DA. Twin experiments provide a good di-
agnostic tool for determining the quality of the method, since the errors are controlled; thus31
those methods that perform well in twin experiments are often considered as candidates for
conducting DA of real observations.33
In our 1-D twin experiments, we used the initial condition given in (19), run the forward

model up-to time step tk to obtain the observations, xobs(tk) and in the 2-D case, the Rossby35
wave has been used as the initial condition. The initial condition is then randomly perturbed

xpert(t0)=x(t0) + 
 · RAND · x(t0) (35)37
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where 
 has been assigned a value of 0:01 and RAND is a pseudo random number, such that1
RAND∈ [−0:5; 0:5].
The above perturbed initial condition is used as a �rst guess to minimize the cost func-3

tional, J, and to integrate the nonlinear model to tk , which yields x(tk). Thus the goal is to
recover the unperturbed initial condition, x (from now onwards denoted by xrecovered), which5
is close to x(t0) at the conclusion of the minimization process. An assimilation time window
of [0; 2:0] seconds has been used in the 1-D case and in the 2-D case, the length of the7
assimilation window was taken to be 6 h. The same discretization, in space and time, which
was used in Section 3 to test and compare the di�erent schemes for the smooth test cases, is9
used here as well.
Figures 11–14 show the variation of the cost functional, J, and gradient norm (in L211

norm) versus the number of iterations and in Table IV we compare the values of xrecovered

with x(t0) for di�erent advection schemes (limiters 1–6 and the PPM) in the 1-D case. For13
the 2-D case, please see Figures 15 and 16 and Table V, respectively. The cost functional
has been successfully reduced by about nine orders of magnitude in the 1-D case and in the15
2-D case by about four orders of magnitude. Whereas the gradient norm was reduced by
about �ve orders of magnitude (in Section 4, we described the termination criteria for the17
minimization process) for all the limiters in the 1-D case, and by about three for the 2-D case.
The fact that all of these schemes (in the 1-D case) achieve the same convergence criteria19
for successful termination in about 45–50 minimization iterations (limiter 1: 51 iterations,
limiter 2: 47, limiter 3: 43, limiter 4: 42, limiter 5: 52, limiter 6: 37), except for the PPM21
scheme, which took 65 iterations indicates that the approximation to the Hessian matrix that
is constructed by the L-BFGS minimization algorithm does not di�er from one advection23
scheme to the other (the spectrum of the eigenvalues of the Hessian matrix in�uences the
minimization process [73]). In the 2-D case, limiter 2: 577, limiter 5: 589 and PPM scheme25
took 575 minimization iterations to achieve the prescribed convergence criteria. It is to be

Figure 11. Variations of the normalized cost function J=J0 and normalized gradient ‖g‖=‖g0‖ versus
the number of minimization iterations using slope limiters 1 and 2 in forward and adjoint models for

the 1-D Burgers equation model (in log scale).
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Figure 12. Same as Figure 11, but with limiters 3 and 4.

Figure 13. Same as in Figure 11, but with limiters 5 and 6.

noted that though the PPM scheme is well known to be a very accurate scheme (third-order1
accurate), it requires more CPU time when compared to that required by other schemes (both
in forward and adjoint modes, since the adjoint model performs forward computations as3
well, this problem becomes compounded). We would like to mention that limiter 3 (simple
positive de�nite scheme), the local and global min=max (limiters 5 and 6, respectively) slope5
limited and PPM schemes all have switches, in other words, involve computation of min
and (or) max of certain variables to evaluate the slope limiter (see Equations (7), (9) and7
(11)). Programming these switches in the adjoint model proves to be a very tedious and time
consuming task.9
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Figure 14. Same as Figure 13, but with the PPM scheme.

Table IV. Comparison of the �recovered for di�erent advection schemes based on 1-D data assimilation
experiments, ‖�pert(x; 0)− �(x; 0)‖2 = 1:3004× 10−2 for all the schemes; forecast time, T =2:2 s.

Advection scheme ‖�recovered − �(x; 0)‖2 ‖�pert(x; T )− �(x; T )‖2 ‖�recovered(T )− �(x; T )‖2
Lim.1 3.1063× 10−6 1.2362× 10−3 7.7479× 10−8

Lim.2 7.1633× 10−6 1.245593× 10−3 1.3876× 10−8

Lim.3 4.9715× 10−6 1.245587× 10−3 1.0756× 10−8

Lim.4 8.3664× 10−6 1.24545× 10−3 1.1044× 10−8

Lim.5 4.1360× 10−6 1.24579× 10−3 1.2286× 10−8

Lim.6 6.3637× 10−6 1.245584× 10−3 6.7988× 10−8

PPM 1.3140× 10−5 1.24583× 10−3 9.7266× 10−8

The quality of the optimal initial conditions has often been compared by using them to1
forecast for a time period longer than the time window of DA. A comparison of such a
forecast using xpert and xrecovered to (T =2:2 s in 1-D case and T =7h in the 2-D case) is3
provided in Tables IV and V, respectively. The forecast errors are reduced for all the schemes,
in both 1-D and 2-D, when the xrecovered is used as the optimal initial condition. As evident, in5
the 1-D case, though the �rst-order scheme (limiter 1) yields the closest xrecovered (to x(t0)),
the forecast obtained by using the xrecovered is inferior to that obtained by using other limiters.7
Limiters 3 and 5 show the least errors in recovering the initial conditions and forecasting. In
the 2-D case, the PPM scheme provides the best recovery of the optimal initial conditions9
and least forecasting errors as well, when compared to limiters 2 and 5.

7. SUMMARY AND CONCLUSIONS11

We have studied the impact of various high resolution TVD, FV (which use MUSCL slope
limiters and PPM) schemes on data assimilation for two nonlinear model problems, namely13
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Figure 15. Variations of the normalized cost function J=J0 and normalized gradient ‖g‖=‖g0‖ versus
the number of minimization iterations using limiters 2 and 5 in forward and adjoint models for the 2-D

global spherical SW equations model (in log scale).

Figure 16. Same as Figure 15, but with the PPM scheme.

the viscous Burgers equation in one space dimension and the global SW equations model1
in two space dimensions. In both cases, smooth solutions (Section 3) have been considered.
To the best of our knowledge, the PPM scheme has not been used for data assimilation in3
adjoint model in any previous research work, thus-far. Using the recovered initial conditions
for forecasting and the closeness of the recovered optimal initial conditions to the unperturbed5
initial conditions as important criteria in DA, our preliminary twin experiment results indicate
that limiter 5 (constrained van Leer limiter) in 1-D and the PPM in 2-D yield better results,7
when compared to all other schemes. Following the results obtained here, future research
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Table V. Comparison of the xrecovered for di�erent advection schemes based on data assimila-
tion experiments, for slope limiters and PPM advection scheme in adjoint mode for 2-D global
SW equations model. RMS errors h(pert) − h(unpert)= 2:5993, u(pert) − u(unpert)= 0:1115 and

v(pert)− v(unpert)= 8:0081× 10−2 for all the schemes; T =7h.

RMS errors for u-wind

Advection scheme urecovered − u(x; 0) upert(x; T )− u(x; T ) urecovered(T )− u(x; T )

Lim.2 2.33491594196759075E-4 3.3630019845121123E-2 1.12476527351364601E-4
Lim.5 5.63382077564010195E-4 3.34702468842524234E-2 3.32149072340977508E-4
PPM 1.06535525977395802E-4 4.94900419576975101E-2 8.87413582912270193E-5

RMS errors for v-wind

Advection scheme vrecovered − v(x; 0) vpert(x; T )− v(x; T ) vrecovered(T )− v(x; T )

Lim.2 2.34466472857029914E-4 3.21712340658954488E-2 1.07142814969051091E-4
Lim.5 7.40685987310806394E-4 3.24462344953588347E-2 3.08314384762099097E-4
PPM 1.70534278238826311E-4 5.51154561503572893E-2 8.69239404161232235E-5

RMS errors for height �eld

Advection scheme hrecovered − h(x; 0) hpert(x; T )− h(x; T ) hrecovered(T )− h(x; T )

Lim.2 0.52938283634642536 3.0605303764849494 7.38576308190367625E-2
Lim.5 1.1119488545031126 3.1776765891059209 0.19626515182457319
PPM 0.13969535459251051 3.70379538782958 2.0670192049105484E-2

will focus on further investigation of validity of the above �ndings for a higher dimensional1
system with real observations. Another aspect of interest we aim to address is to compare
how the error covariance matrices are propagated by these various limiters in the context of3
sequential variational DA, in particular, in an ensemble Kalman �ltering framework. Of interest
to the computational �uid dynamics community is the issue of �uid �ow control, where the5
numerical model used for solving the governing equations are solved by FV methods, using
various slope limiters and, or the PPM scheme.7

APPENDIX A

In this appendix, we illustrate the di�erentiation of functions which require special care, such9
as the ABS, SIGN, DIM, MIN, MAX functions, etc. Following is an example which shows
a section from the forward code to obtain

11
phi_local_min = MIN(phi_old(i-1),phi_old(i),phi_old(i+1))

is rewritten as
13

IF(phi_old(i-1) .LE. phi_old(i))THEN
IF(phi_old(i-1) .LE. phi_old(i+1))THEN15

phi_local_min = phi_old(i-1)
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ELSE1
phi_local_min = phi_old(i+1)

END IF3
ELSE IF(phi_old(i) .LE. phi_old(i+1))THEN
phi_local_min = phi_old(i)5

ELSE
phi_local_min = phi_old(i+1)7

END IF

The linearization of the above segment is give by
9

if (phi_old(i-1) .le. phi_old(i)) then
if (phi_old(i-1) .le. phi_old(i+1)) then11
g_phi_local_min = g_phi_old(i-1)
phi_local_min = phi_old(i-1)13

else
g_phi_local_min = g_phi_old(i+1)15
phi_local_min = phi_old(i+1)

endif17
else if (phi_old(i) .le. phi_old(i+1)) then
g_phi_local_min = g_phi_old(i)19
phi_local_min = phi_old(i)

else21
g_phi_local_min = g_phi_old(i+1)
phi_local_min = phi_old(i+1)23

endif

the corresponding adjoint statements are as follows:
25

if (phi_old(i-1) .le. phi_old(i)) then
if (phi_old(i-1) .le. phi_old(i+1)) then27
adphi_old(i-1) = adphi_old(i-1)+adphi_local_min
adphi_local_min = 0.d029

else
adphi_old(i+1) = adphi_old(i+1)+adphi_local_min31
adphi_local_min = 0.d0

endif33
else if (phi_old(i) .le. phi_old(i+1)) then
adphi_old(i) = adphi_old(i)+adphi_local_min35
adphi_local_min = 0.d0

else37
adphi_old(i+1) = adphi_old(i+1)+adphi_local_min
adphi_local_min = 0.d039

endif

It should be noted that in order to compute the adjoint variables in the backward direction,41
we require forward states to be available (as evident from the above piece of adjoint code)
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in memory or recompute them, see research on checkpointing [76, 77] for discussion on the1
trade-o� between storing in memory and recomputation.
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