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Summary

This paper presents a fast numerical method, based on the indirect shooting
method and Proper Orthogonal Decomposition (POD) technique, for solving
distributed optimal control of the wave equation. To solve this problem, we
consider the first-order optimality conditions and then by using finite element
spatial discretization and shooting strategy, the solution of the optimality con-
ditions is reduced to the solution of a series of initial value problems (IVPs).
Generally, these IVPs are high-order and thus their solution is time-consuming.
To overcome this drawback, we present a POD indirect shooting method, which
uses the POD technique to approximate IVPs with smaller ones and faster run
times. Moreover, in the presence of the nonlinear term, to reduce the order of
the nonlinear calculations, a discrete empirical interpolation method (DEIM)
is applied and a POD/DEIM indirect shooting method is developed. We inves-
tigate the performance and accuracy of the proposed methods by means of 4
numerical experiments. We show that the presented POD and POD/DEIM indi-
rect shooting methods dramatically reduce the CPU time compared to the full
indirect shooting method, whereas there is no significant difference between the
accuracy of the reduced and full indirect shooting methods.
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1 INTRODUCTION

In this paper, we consider the distributed optimal control problems governed by linear and nonlinear wave-type
equations.1-3 Let Ω ⊆ Rd, d ∈ {1, 2, 3} be a bounded spatial domain with boundary 𝜕Ω, T ≥ 0 be the final time,
Q ∶= (0,T) × Ω and Σ ∶= (0,T) × 𝜕Ω. In the distributed optimal control problem for the wave equation, the aim is to find
control u(t, x) and state y(t, x) such that the following wave equation:

ytt − Δy +1(y) = f + u, in Q (1a)

with initial conditions
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y(0, x) = g(x), in Ω (1b)

yt(0, x) = h(x), in Ω (1c)
and boundary condition

y(t, x) = 0, on Σ (1d)
are satisfied and furthermore the following performance index is minimized:

 = 𝜅1

2 ∫∫Q

||||y(t, x) − z(t, x)
||||2dxdt + 𝜅2

2 ∫Ω

||||y (T, x) − w(x)
||||2dx + 1

2∫∫Q

||||u(t, x)||||2dxdt. (1e)

In this problem, z(t, x) and w(x) are target functions, g(x) and h(x) are initial conditions, f(t, x) is a given force function,
𝜅1, 𝜅2 ⩾ 0 are constants and 1(y) is a generally nonlinear function of y.

Control problems for the wave equations arise in several applications, eg, medical applications,4 acoustic problems as
noise suppression,5 and linear elasticity.6 As a consequence, several papers have been presented in this area. In other
works7-9 and the references therein, the controllability of the wave equation is investigated. Optimal boundary control of
the wave equation is considered in various publications. See for instance previous studies.10-15 Recently, several papers
have been presented for the numerical solution of the distributed control problem for the wave equation. In Luo et al,16

the finite volume element method is applied to the hyperbolic optimal control problems and a priori error estimation is
derived. A space-time finite element discretization, with a priori error estimation, is considered in Kröner,17 for the optimal
control of nonlinear wave equation. In Li et al,3 a new central finite difference scheme and in Kunisch and Reiterer,18

a Gautschi time-stepping scheme is proposed for optimal control problem of wave equations. The semi-smooth Newton
methods are investigated in Kroner et al,19 where the control is restricted by pointwise lower and upper bounds. For state
constrained optimal distributed control of the wave equation, the Lavrentiev regularization is considered in Gugat et al.20

In this work, we propose another method on the basis of the shooting method and proper orthogonal decomposition
method for solving the distributed optimal control problem (1). Our main aim is to develop an efficient algorithm with
low computational complexity for solving (1).

Shooting methods are an important class of numerical methods for solving optimal control problems that are applicable
in the framework of the direct and indirect approach. Direct shooting approach reformulates the optimal control problem
to an optimization problem, which can be solved by well-developed solvers. In contrast, indirect shooting methods peruse
first-optimize-then-shooting approach21 and apply the shooting method to the optimality conditions of optimal control
problem, which forms an initial terminal boundary value problem (ITBVP). Indirect shooting method converts the solu-
tion of ITBVP into an initial boundary value problem (IBVP) by considering guess values for some initial conditions.
These guess values are iteratively updated until the terminal conditions of the original ITBVP are met.

In general, the solution found by indirect methods satisfies the optimality conditions and usually is more accurate
than the solution of direct methods. On the other hand, the region of convergence for indirect methods may be smaller
than the region of convergence for direct methods; therefore, they require better initial guess.22 We note that a common
feature of the two classes of shooting methods is that they are time-consuming and this is more significant for large-scale
optimization problems. To overcome this drawback, it is necessary to use the techniques for reduction of computation
time for these methods.

Proper Orthogonal Decomposition (POD) is a well-known model reduction technique for nonlinear PDEs. This method
generates an optimal set of basis functions (so-called POD basis functions) where each of them has a global support and
involves information about the system obtained out of a computational or experimental database (snapshots). After this,
the solution is obtained as a linear combination of the POD basis functions by means of Galerkin projection method. We
can refer to other works23-26 for basic concepts in the POD method,27-32 for using POD technique on numerical solution of
PDEs,33 for application of POD in PDE optimal control,34-37 for error estimation of the POD method for optimal control
problems and to previous studies38-44 for other engineering applications.

In this paper, for solving the problem (1), the optimality conditions of this problem are considered. Then, using finite
element (FE) spatial discretization and shooting strategy, the solution of the optimality conditions reduces to the solution
of a series of initial value problems (IVPs). However, the dimension of these IVPs depends on the number of elements
in the FE spatial discretization. On the other hand, to get a reasonable accuracy, the required size of IVPs sometimes is
of the order of hundred thousands of variables. Consequently, the method is very time-consuming. To resolve this high
dimensionality and CPU usage, we use the POD method for reducing the order of IVPs. To do this, the constructing of
POD basis and applying the POD technique to the problem (1) are presented in details and an algorithm, for solving this
problem, is developed.
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In the absence of the nonlinear term 1, the POD shooting method is largely satisfactory. However, when the problem
is nonlinear, in the evaluation of nonlinear term, the mentioned computational savings in the POD technique are not
attained. As a result, the efficiency of POD strategy is reduced in the presence of the nonlinear term. Several approaches
have been proposed to overcome this computational inefficiency.45 One of these approaches is discrete empirical inter-
polation method (DEIM), which is used in this paper. DEIM technique approximates a nonlinear function by combining
projection with interpolation.45,46 DEIM is a discrete variant of empirical interpolation method that is based on the greedy
algorithms.24

The structure of this paper is outlined as follows: In Section 2, the necessary optimality conditions of the distributed
optimal control problem of the wave equation are introduced. A discussion of the shooting algorithm for solving the
optimality system is also presented in this section. In Section 3, an algorithm based on the indirect shooting method
and POD method is developed for solving the optimal control of the wave equation. In Section 4, an efficient algorithm,
based on DEIM strategy, is presented for the optimal control of nonlinear wave equation. Numerical examples are given
in Section 5 to demonstrate the effectiveness of the proposed method.

2 INDIRECT SHOOTING METHOD AND FINITE ELEMENT SPATIAL
DISCRETIZATION

The first-order necessary optimality conditions for optimal control problem (1) are well established in other studies.47,48

We briefly recall them here. Suppose that y(t, x) and u(t, x) are the optimal state and control, then there exists an adjoint
function p(t, x) such that (y(t, x),u(t, x), p(t, x)) satisfies the following first order necessary optimality conditions:

where 2(y, p) = p 𝜕1
𝜕y

(y). After eliminating u from (2a) by (2i), this system can be converted to a standard two-point
boundary value problem with respect to t. We note that the resulted boundary value system contains both initial and
terminal conditions in time. Accordingly, it cannot be solved by marching methods in time.3,49 However, the well-known
shooting method can be used for the numerical solution of it.

In the first step of shooting method for the numerical solution of (2), we consider a corresponding IBVP with unknown
initial conditions for the adjoint variable. If the unknown initial conditions are denoted by 𝜂, 𝛾 ∶ Ω → R, then the
corresponding IBVP is considered as follows:

It should be mentioned that the solution of IBVP (3) depends not only on t and x but also on the initial functions 𝜂(x) and
𝛾(x). To emphasize this dependence, we use notations y(t, x; 𝜂, 𝛾) and p(t, x; 𝜂, 𝛾) for the solution of IBVP (3). In the second
step of shooting method, we seek the initial functions 𝜂(x) and 𝛾(x) such that the solutions y(t, x; 𝜂, 𝛾) and p(t, x; 𝜂, 𝛾)
satisfy the following terminal conditions:
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F(x; 𝜂, 𝛾) =
[

p(T, x; 𝜂, 𝛾)
pt(T, x; 𝜂, 𝛾) + 𝜅2 (y (T, x; 𝜂, 𝛾) − w(x))

]
= 0. (4)

Therefore, solving the optimality system (2) is equivalent to finding initial functions 𝜂(x) and 𝛾(x) such that the solution
of IBVP (3) satisfies Equation 4. This strategy can be summarized as the following infinite shooting problem:

Infinite shooting problem (ISP): Find 𝜂, 𝛾 ∶ Ω → R such that the solutions y (t, x; 𝜂, 𝛾) and p (t, x; 𝜂, 𝛾) of Equation 3
fulfill the terminal condition (4).

In the following, for the sake of simplicity in notation, we will omit 𝜂 and 𝛾 from y(t, x; 𝜂, 𝛾) and p(t, x; 𝜂, 𝛾) and easily
write y(t, x) and p(t, x).

We note that ISP is an infinite dimensional problem and at first, we need to make a spatial discretization for its numerical
solution. In this paper, we consider the finite element method for spatial discretization of ISP. Suppose that functions
𝜑1(x), … , 𝜑m(x) be linearly independent nodal basis functions and

Xh = span{𝜑1(x), … , 𝜑m(x)} ⊂ L2(Ω). (5)

We approximate state y(t, x) and adjoint functions p(t, x) in the space Xh by yh(t, x) and ph(t, x) as follows:

yh(t, x) =
m∑

j=1
yj(t)𝜑j(x), ph(t, x) =

m∑
j=1

pj(t)𝜑j(x), (6)

as well as the functions 𝜂(x) and 𝛾(x) are approximated as follows:

𝜂h(x) =
m∑

j=1
𝜂j𝜑j(x), 𝛾h(x) =

m∑
j=1

𝛾j𝜑j(x), (7)

where yj, pj, 𝜂j, 𝛾j, j = 1, … ,m are unknown finite element coefficients and we set the following:

y(t) =
[
y1(t), … , ym(t)

]T
, p(t) =

[
p1(t), … , pm(t)

]T
,

𝜼 = [𝜂1, … , 𝜂m]T , 𝜸 = [𝛾1, … , 𝛾m]T .

By substituting approximations (6) and (7) in the weak form of (3), finally, we obtain the following IVP:

where
[M]ij = ⟨𝜑j, 𝜑i⟩, [K]ij = ⟨∇𝜑j,∇𝜑i⟩, [

f(t)
]

i = ⟨𝜑i, f ⟩, (9a)

[z(t)]i = ⟨𝜑i, z⟩, [
g
]

i = ⟨𝜑i, g⟩, [h]i = ⟨𝜑i, h⟩, (9b)

[N1(t)]i = ⟨𝜑i,1(yh)⟩, [N2(t)]i = ⟨𝜑i,2(yh, ph)⟩, (9c)

and ⟨·, ·⟩ stands for the L2 inner product. In a similar manner, the shooting function (4) is discretized to

Fh(𝜼, 𝜸) =
[

Mp(T)
Mṗ(T) + 𝜅2 (My(T) − w)

]
= 0, (10)

where
[w]i = ⟨𝜑i,w⟩. (11)

In summary, by using finite element method, ISP can be discretized to the following finite dimensional shooting problem

Finite shooting problem (FSP): Find 𝜼, 𝜸 ∈ Rm such that the solution of IVP (8) fulfills the discrete terminal condition
(10).

On the basis of the above discussions, we summarize the indirect shooting method, for solving the problem (1), in
Algorithm 1.
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In Algorithm 1, for solving IVP (8), generally, an appropriate Runge-Kutta time marching method can be used. The
dimension of IVP (8) depends on m, the number of considered basis functions in the finite element method. We note that
m should be extremely large when high accuracy is required. Moreover, IVP (8) must be iteratively solved with different
initial values during the solution of terminal Equation 10. Accordingly, the solution of the problem (1) by the indirect
shooting algorithm is very time-consuming. This is the motivation for us to use a reduced-order approach on the basis of
POD technique for improving the efficiency of the method.

3 PROPER ORTHOGONAL DECOMPOSITION(POD) METHOD FOR MODEL
REDUCTION OF ISP

In this section, we first review POD technique and develop a POD Galerkin scheme for discretization of ISP. By this, we
have a reduced-order initial value problem that must be iteratively solved in the shooting method.

3.1 Computation of POD basis for discretizing ISP
As mentioned in the last section, by using the finite element method with basis functions {𝜑1(x), … , 𝜑m(x)}, IBVP (3) is
discretized to IVP (8). For a given 𝜼 and 𝜸, let y(t) =

[
y1(t), … , ym(t)

]T and p(t) =
[
p1(t), … , pm(t)

]T be the obtained solu-
tions of IVP (8). Thus, in view of (6) and (7), yh(t, x) and ph(t, x) are approximate solutions for IBVP (3) with 𝜂(x) = 𝜂h(x)
and 𝛾(x) = 𝛾h(x). Indeed, yh(t, x) and ph(t, x) are approximate solutions of the problem (3). It is noted that by increas-
ing m, the accuracy of the obtained yh(t, x) and ph(t, x) is improved but the computational time is increased. In the POD
method by combining the basis functions {𝜑1(x), … , 𝜑m(x)}, another orthonormal set of functions {𝜓1(x), … , 𝜓𝓁(x)}
are constructed that well express the main properties of the underlying problem and in addition, 𝓁 is small in comparison
with m.

To construct {𝜓i}𝓁i=1, we need information about the solution of the problem (3). For this purpose, at first 0 ≤ t1 < t2
< · · · < tn ≤ T are selected as a partition of [0,T], and we set

yh
j (x) = yh(tj, x), ph

j (x) = ph(tj, x), j = 1, … ,n. (12)

For j = 1, … ,n, yh
j (x) and ph

j (x) are called snapshots of the state and adjoint functions, respectively. Note that yh(tj, x) and
ph(tj, x) are the solutions obtained by finite element method and from (6), we have

yh
j (x) =

m∑
i=1

yi(tj)𝜑i(x), ph
j (x) =

m∑
i=1

pi(tj)𝜑i(x). (13)
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Generally, the choice of snapshots is a critical question that arises in the POD methods. For example, in parametric
problems with a moderate or large number of parameters, we require sophisticated approaches, such as greedy sam-
pling technique, for generating snapshots.25 However, the considered problem (1) is a nonparametric and time-dependent
problem and according to Benner et al,25 equidistant ti, i = 1, … ,n can be simply selected, provided that a sufficiently
high number of snapshots, ie, n, is choosen.

Let  be the spanned space by all snapshots, ie,

 = span{yh
1 , … , yh

n, ph
1 , … , ph

n} ⊆ Xh ⊂ L2(Ω).

Clearly,  is a finite dimensional subspace of Xh and if d = dim() then d ≤ min{m, 2n}. Thus, there are orthonor-
mal basis sets with cardinality d for space  . In the POD technique, the aim is to find a complete orthonormal basis
{𝜓i}d

i=1, such that the mean square error between the snapshots and their orthonormal projection onto the first 𝓁 func-
tions {𝜓i}𝓁i=1 is minimized. Mathematically speaking, in the POD method, the POD basis functions {𝜓i}𝓁i=1 are obtained
from the following optimization problem⎧⎪⎨⎪⎩

min
𝜓1,… ,𝜓𝓁

n∑
j=1

𝛼j
||||||yh

j −
𝓁∑

i=1
⟨yh

j , 𝜓i⟩𝜓i
||||||2L2(Ω)

+ 𝛼j
||||||ph

j −
𝓁∑

i=1
⟨ph

j , 𝜓i⟩𝜓i
||||||2L2(Ω)

s.t. ⟨𝜓i, 𝜓j⟩ = 𝛿ij, 1 ≤ i, j ≤ 𝓁,
, (14)

where, 𝛼j, j = 1, … ,n are the trapezoidal weights,24,33 ie,

𝛼1 = t2 − t1

2
, 𝛼j =

tj+1 − tj−1

2
, for j = 2, … ,n − 1, 𝛼n = tn − tn−1

2
.

The solution set {𝜓i}𝓁i=1 to (14) is called a POD basis of rank 𝓁. We note that this optimization problem is not a classical
optimization problem. However, in Studinger and Volkwein,50 it is proved that the solution of the optimization problem
(14) is obtained by solving the following eigenvalue problem:

n𝜓i ∶=
n∑

j=1
𝛼j⟨yh

j , 𝜓i⟩yh
j + 𝛼j⟨ph

j , 𝜓i⟩ph
j = 𝜆i𝜓i, i = 1, … ,𝓁. (15)

Note that n ∶ Xh →  is a linear, bounded, nonnegative, compact, and selfadjoint operator.50 Thus, there exist nonneg-
ative eigenvalues 𝜆1 ≥ 𝜆2 ≥ … ≥ 𝜆d > 0 and an associated orthonormal set {𝜓i}d

i=1 of eigenfunctions that solve (15). It
is proved in previous works24,33 that the set of first 𝓁 eigenfunctions 𝜓1, … , 𝜓𝓁 is the solution of the problem (14).

For solving (15), by noting that 𝜓j ∈  = span{𝜑1, … , 𝜑m}, we can expand {𝜓j}𝓁j=1 based on {𝜑1, … , 𝜑m} as follows:

𝜓j (x) =
m∑

i=1
qij𝜑i (x) , j = 1, … ,𝓁. (16)

Let q ∈ Rm and Q ∈ Rm×𝓁 be defined as follows:

qj = [q1j, … , qmj]T , Q =

[ q11 · · · q1𝓁
⋮ ⋮

qm1 · · · qm𝓁

]
. (17)

Note that, qj is the jth column of Q and from (16), the components of qj can be interpreted as the finite element coefficients
of 𝜓 j(x), for j = 1, … ,𝓁. By substituting (13) and (16) in the eigenvalue problem (15) and by using of delta Kronecker
property of {𝜑i(x)}m

i=1 at the nodes of spatial discretization, finally, the eigenvalue problems (15) are converted to the
following matrix eigenvalue problem:

ZDZTMqj = 𝜆jqj, j = 1, … ,𝓁, (18)

where
Z = [y(t1), … , y(tn),p(t1), … ,p(tn)], (19a)

D = diag(𝛼1, … , 𝛼n, 𝛼1, … , 𝛼n), (19b)

and M is introduced in (9). To efficiently solve the above eigenvalue problem and some numerical consideration, we refer
to Studinger and Volkwein.50

By solving the eigenvalue problem (18), the coefficients qij are obtained and by using them in (16), the POD basis
functions are obtained.
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3.1.1 On choosing the value of 𝓁
In the POD method, to reduce the computational cost, the number of the POD basis functions must be chosen several
orders lower than the number of finite element basis functions, ie, 𝓁 ≪ m. However, this decreases the accuracy. The
crucial question is how to choose 𝓁? Indeed, we need to strike a balance between accuracy and efficiency. For this purpose,
following Xiao et al,51 we consider the following ratio of the eigenvalues:

𝜀(𝓁) =
Σ𝓁

i=1𝜆i

Σd
i=1𝜆i

. (20)

By this ratio, we can measure the quality of the approximation. The value of 𝜀(𝓁) will tend to 1 as 𝓁 increased to d. So,
this value can be used to provide an appropriate choice of 𝓁.52 Indeed, we have to choose the smallest 𝓁 such that 𝜀(𝓁) is
still sufficiently close to 1 (eg, 𝜀(𝓁) ≃ 0.99).

3.2 The presented POD Galerkin projection method
Suppose that {𝜓i}𝓁i=1 be the POD basis functions that are obtained by the mentioned procedure. We use this basis to
approximate the state y and adjoint p as follows:

y𝓁(t, x) =
𝓁∑

j=1
y𝓁j (t)𝜓j(x), p𝓁(t, x) =

𝓁∑
j=1

p𝓁
j (t)𝜓j(x), (21)

as well as the functions 𝜂(x) and 𝛾(x) are approximated as follows:

𝜂𝓁(x) =
𝓁∑

j=1
𝜂𝓁j 𝜓j(x), 𝛾𝓁(x) =

𝓁∑
j=1

𝛾𝓁j 𝜓j(x). (22)

Moreover, we set
y𝓁(t) =

[
y𝓁1 (t), … , y𝓁𝓁(t)

]T
, p𝓁(t) =

[
p𝓁

1 (t), … , p𝓁
𝓁(t)

]T
, (23a)

𝜼𝓁 =
[
𝜂𝓁1 , … , 𝜂𝓁𝓁

]T
, 𝜸𝓁 =

[
𝛾𝓁1 , … , 𝛾𝓁𝓁

]T
. (23b)

By substituting (21) and (22) in the weak form of (3), finally, we obtain the following IVP:

ÿ𝓁(t) + K𝓁y𝓁(t) + N𝓁
1 (t) = f𝓁(t) − p𝓁(t), (24a)

p̈𝓁(t) + K𝓁p𝓁(t) + N𝓁
2 (t) = 𝜅1

[
y𝓁(t) − z𝓁(t)

]
, (24b)

y𝓁(0) = g𝓁 , ẏ𝓁(0) = h𝓁 , (24c)

p𝓁(0) = 𝜼𝓁 , ṗ𝓁(0) = 𝜸𝓁 , (24d)

where [
K𝓁]

ij = ⟨∇𝜓j,∇𝜓i⟩, [
f𝓁(t)

]
i = ⟨𝜓i, f ⟩, (25a)[

z𝓁(t)
]

i = ⟨𝜓i, z⟩, [g𝓁]i = ⟨𝜓i, g⟩, [h𝓁]i = ⟨𝜓i, h⟩, (25b)[
N𝓁

1 (t)
]

i = ⟨𝜓i,1(y𝓁)⟩, [
N𝓁

2 (t)
]

i = ⟨𝜓i,2(y𝓁 , p𝓁)⟩. (25c)

In the same way, the terminal condition (4) is discretized to the following:

F𝓁(𝜼𝓁 , 𝜸𝓁) =
[

p𝓁(T)
ṗ𝓁(T) + 𝜅2

(
y𝓁(T) − w𝓁

) ] = 0, (26)

where
[w𝓁]i = ⟨𝜓i,w⟩. (27)

In short, by the POD Galerkin projection method, ISP is discretized to the following finite shooting problem

POD-shooting problem (POD-SP): Find 𝜼𝓁 , 𝜸𝓁 ∈ R𝓁 such that the solution of the IVP (24) satisfies the terminal
condition (26).
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To assemble IVP (24), we need to compute the matrix and vectors (25) and (27). However, note that obtaining the matrix
and vectors in (25) and (27) by the inner product is not straightforward. Since in contrast to the finite element basis
functions, POD basis functions typically have global support and are not cardinal. However, it can be seen that there exist
the following relation between the finite element matrices (9) and (11) and matrices in (25a), (25b), and (27):

K𝓁 = QTKQ, f𝓁(t) = QTf(t), z𝓁(t) = QTz(t), (28a)

g𝓁 = QTg, h𝓁 = QTh, w𝓁 = QTw, (28b)

where Q is defined in (17). Thanks to the above relations, the matrix K𝓁 and vectors f𝓁(t), z𝓁(t), g𝓁 , h𝓁 , and w𝓁 can be
obtained by simple matrix multiplication. However, for calculating N𝓁

1 (t) and N𝓁
2 (t), we need additional considerations. In

general, the inner products (25c), for computing N𝓁
1 (t) and N𝓁

2 (t), cannot be expressed in terms of finite element matrices
(9) and (11) and are commonly approximated by numerical quadratures such as Gauss quadrature. However, in Wang,53

a more efficient approach for computation of the inner products in (25c) is proposed. This approach uses an interpolation
operator h ∶ C(Ω) → Xh relative to the nodes of finite element discretization and approximates 1 and 2 as follows:

h1 (y (t, x)) =
m∑

i=1
1 (y (t, xi))𝜑i(x), (29)

h2 (y (t, x) , p (t, x)) =
m∑

i=1
2 (y (t, xi) , p (t, xi))𝜑i(x). (30)

This approximation also is known as the product approximation technique54 or group finite element method.55 For eval-
uation of the inner products in (25c), the nonlinear functions i are replaced by hi for i = 1, 2. For instance, the ith
row of nonlinear terms N𝓁

1 (t) is approximated as follows:[
N𝓁

1 (t)
]

i ≈
⟨
𝜓i(x),h1(y𝓁(t, x))

⟩
=

⟨ m∑
k=1

qki𝜑k(x),
m∑

j=1
1(y𝓁(t, xj))𝜑j(x)

⟩

=
m∑

k=1

m∑
j=1

qki
[1(Qy𝓁(t))

]
j

⟨
𝜑k(x), 𝜑j(x)

⟩
= qT

i M1(Qy𝓁(t)),

(31)

so we have the following:
N𝓁

1 (t) ≈ QTM1(Qy𝓁(t)). (32)

Similarly, we can get the following:
N𝓁

2 (t) ≈ QTM2(Qy𝓁(t),Qp𝓁(t)). (33)

In summary, by using (28), (32), and (33), we can assemble IVP (24) to use it in the POD-SP. If (𝜼*𝓁 , 𝜸*𝓁) be the solution of
POD-SP, then let y∗𝓁j (t) and p∗𝓁

j (t) be the obtained solutions of IVP (24) with 𝜼𝓁 = 𝜼*𝓁 and 𝜸𝓁 = 𝜸*𝓁 . Now, from (21) and
(2i), we can obtain the following approximations for the control and state functions

u(t, x) ≃ −
𝓁∑

j=1
p∗𝓁

j (t)𝜓j(x), (34)

y(t, x) ≃
𝓁∑

j=1
y∗𝓁j (t)𝜓j(x). (35)

Finally, the POD method presented in this section is summarized in Algorithm 2.

4 DISCRETE EMPIRICAL INTERPOLATION METHOD(DEIM)

In Algorithm 2, a POD method for solving the problem (1) is presented. In line 8 of this algorithm, for solving EQF(·, ·) = 0,
a nonlinear equation solver is used, which generally uses an iterative method. In each iteration of the solver, function
EQF is evaluated at least one time, so the complexity of the evaluation of this function is crucial in our method.
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In EQF, the IVP (24) is solved by an appropriate time stepping scheme and in the nonlinear cases, in each time step, we
need to compute N𝓁

1 (t) and N𝓁
2 (t). For obtaining the complexity of the evaluation of N𝓁

1 (t), let the complexity for evaluating
the nonlinear function 1 with q components be (𝜚(q)), where 𝜚 is some function of q. Thus, in each time step, the
complexity for computing N𝓁

1 (t) by (32) is (𝜚(m) + 4m𝓁). This means that the complexity of evaluation N𝓁
1 (t) depends

on m. Moreover, the complexity of evaluation of N𝓁
2 (t) depends on m too.

By noting that m is the number of the finite element basis functions and generally is a large number, thus in the presence
of the nonlinear term 1, the evaluation of function EQF is very time-consuming. As a result, the proposed Algorithm 2
is less efficient in the presence of nonlinearity. To overcome this drawback, we use DEIM, which is an efficient technique,
with low computational complexity, for approximating the nonlinear functions.45,56

In the following, we use DEIM to present efficient formulas for approximating N𝓁
1 (t) and N𝓁

2 (t). For this purpose, we
use the POD technique to construct a new basis for approximating the nonlinear functions 1 and 2. We define the
following:

n1(t) = 1(Qy𝓁(t)). (36)

For approximation n1(t), at first, we construct the POD basis {𝝓1
1, ..,𝝓

1
r1
} ⊂ Rm corresponding to the following snapshot

space:

1 = span{1(y(t1)), … ,1(y(tn))} ⊂ R
m, (37)

where r1 ≪ m denotes the size of the reduced representation of n1(t). For constructing the POD basis {𝝓1
1, ..,𝝓

1
r1
}, similar

to Section 3.1, we consider the following optimization problem:

⎧⎪⎨⎪⎩
min

𝝓1
1,… ,𝝓1

r1

n∑
j=1

𝛼j
||||||1(y(tj)) −

r1∑
i=1

⟨1(y(tj)),𝝓1
i ⟩M𝝓1

i
||||||2M

s.t. ⟨𝝓1
i ,𝝓

1
j ⟩M = 𝛿ij 1 ≤ i, j ≤ r1

(38)
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in which the notations ⟨·, ·⟩M and ||·||M are the weighted inner product and the corresponding weighted norm respectively,
which are defined as: ⟨u, v⟩M = uTMv ||u||M = (⟨u,u⟩M)1∕2 for u, v ∈ R

m. (39)

The optimization problem (38) can be reformulated as the following eigenvalue problem50,57:

E1D̂ET
1 M𝝓1

i = 𝜆i𝝓
1
i , (40)

where
E1 =

[1(y(t1)), … ,1(y(tn))
]
, (41a)

D̂ = diag(𝛼1, … , 𝛼n), (41b)

and M is defined in (9a). By using the constructed POD basis {𝝓1
1, ..,𝝓

1
r1
}, we can approximate n1(t) by the following

expansion:
n1(t) = Φ1c1(t), (42)

where Φ1 =
[
𝜙1

1, .., 𝜙
1
r1

]
∈ Rm×r1 and c1(t) =

[
c1

1(t), … , c1
r1
(t)
]T ∈ Rr1 is the unknown corresponding coefficient vector. To

evaluate the approximation (42), we need to obtain c1(t). DEIM algorithm selects r1 rows from the overdetermined system
(42) to specify c1(t). The row indices {𝜌1

1, … , 𝜌1
r1
}, which are used for determining the coefficient vector c1(t), are selected

inductively from the basis 𝜙1
1, … , 𝜙1

r1
by the DEIM algorithm. For use of this algorithm, we refer to Lass and Volkwein57

and assume that {𝜌1
1, … , 𝜌1

r1
} are the obtained row indices. We consider corresponding matrix P1 as follows:

P1 = [e𝜌1
1
, … , e𝜌1

r1
] ∈ R

m×r1 , (43)

where e𝜌1
i

is the 𝜌1
i th column of the identity matrix Im ∈ Rm×m, i = 1, … , r1. By multiplying (42) with PT

1 , r1 rows of it are
selected and with assumption PT

1Φ1 is invertible, we have the following:

c1(t) = (PT
1Φ1)−1PT

1 n1(t) = (PT
1Φ1)−1P1

T1(Qy𝓁(t)). (44)

We note that the nonlinear functions 1 and 2 are evaluated componentwise at their input vectors, thus the matrix PT
1

can be moved into the nonlinear function:

c1(t) = (PT
1Φ1)−11(PT

1 Qy𝓁(t)). (45)

Now, we have everything to approximate N𝓁
1 (t). By (32) and (42), we have

N𝓁
1 (t) = QTMΦ1c1(t), (46)

and from (45), we get
N𝓁

1 (t) ≈ Nr1
1 (t) = A11

(
B1y𝓁(t)

)
, (47)

where
A1 = QTMΦ1(PT

1Φ1)−1 ∈ R
𝓁×r1 and B1 = PT

1 Q ∈ R
r1×𝓁 . (48)

We note that matrices A1 and B1 can be precomputed and the nonlinear function 1 at each time step has to be computed
at a r1-dimensional vector, that r1 ≪ m. More precisely, the corresponding computational complexity of the nonlinear
term Nr1

1 (t) at each time step of IVP (24) is only (𝜚(r1) + 4r1𝓁). For approximation N𝓁
2 (t) in (24), we follow a similar

approach as that for N𝓁
1 (t) and finally, we get:

N𝓁
2 (t) ≈ Nr2

2 (t) = A22
(
B2y𝓁(t),B2p𝓁(t)

)
, (49)

where
A2 = QTMΦ2(PT

2Φ2)−1 ∈ R
𝓁×r2 and B2 = PT

2 Q ∈ R
r2×𝓁 . (50)

In summary, for using the DEIM in the POD indirect shooting method, we need to use the DEIM approximations (47) and
(49) instead of approximations (32) and (33). Thus, the shooting problem with POD/DEIM discretization can be written
as follows:

• POD/DEIM-shooting problem (POD/DEIM-SP): Find 𝜼𝓁 , 𝜸𝓁 ∈ R𝓁 such that the solutions y𝓁(t),p𝓁(t) ∶ [0,T] → R𝓁

of the IVP (24), by considering approximations (47) and (49), satisfy the terminal condition (26).

As a result, we have a POD/DEIM indirect shooting method whose computational complexity is independent of the
full dimension m. For the reader convenience, we summarize the POD/DEIM indirect shooting method in Algorithm 3.
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5 NUMERICAL RESULTS

This section is devoted to illustrating the methods presented above using numerical experiments. We implemented the
proposed Algorithms 1, 2, and 3 with matlab on a personal computer for four examples. In our implementations, we
used the matlab pde toolbox, for the finite element spatial discretization with piecewise linear basis function.58 Fur-
thermore, the matlab function ode45 was used for solving IVPs and for solving the system of equations, the matlab
function fsolve was used.

The underlying algorithm of ode45 makes use of 4∕5 Runge-Kutta integration with a variable time step. Further-
more, ode45 controls the error by two parameters RelTol and AbsTol. By these parameters, we can adjust the relative
and absolute error tolerances.59 In our simulations, the error tolerances are set to RelTol = 10−6 and AbsTol = 10−8.
These considerations guarantee that the relative and absolute errors in satisfying IVPs are less than 10−6 and 10−8,
respectively.

As we said, we used fsolve to solve the nonlinear systems of equations. Using this solver, we can adjust the accuracy
of the solution based on the two parameters TolFun and TolX, where the former specifies the termination tolerance on
the function value and the later specifies the termination tolerance on the variables.60 In our simulations, we continued
the iteration of fsolve until TolFun and TolX become less than 10−12.
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As numerical examples, we considered 4 examples, where the first two examples are linear with exact solution3 and
the last two examples are nonlinear without exact solution.61 In the cases that the exact solution is known, to assess the
accuracy of the methods, the following relative errors are reported

Em(y) =
||y∗ − ym||L2(Q)||y∗||L2(Q)

, Em(p) =
||p∗ − pm||L2(Q)||p∗||L2(Q)

,

where y* and p* are the exact solutions and ym and pm are the approximated solutions corresponding to the discretization
parameter m.

In addition, to further assess the quality of the obtained solutions, the root mean-square-error (RMSE) and the cor-
relation coefficient (Corr)62 are reported. For instance, let xi, i = 1, · · · ,m be the spatial nodes, tj be a time level
and

y∗j =
[
y∗(tj, x1), · · · , y∗(tj, xm)

]
, ŷj =

[
y𝓁(tj, x1), · · · , y𝓁(tj, xm)

]
,

where y* is the exact solution and y𝓁 denotes the approximated solutions by the POD-IS method. The RMSE and Corr
between the exact state and the obtained state by the POD-IS method at time level j is defined as follows:

RMSEy(y∗j, ŷj) =
||y∗j − ŷj||2√

m
,

Corry
(
y∗j, ŷj) = cov

(
y∗j, ŷ∗j)

𝜎y∗j𝜎ŷj
,

where, “cov” denotes covariance and 𝜎 denotes standard deviation.
In a similar manner, the RMSE and Corr between the obtained state or adjoint functions by the POD-IS and

POD/DEIM-IS at time level j can be defined.
It is added that, in all examples, equidistant ti, i = 1, … ,n are considered for generating snapshots in POD technique

and DEIM. Moreover, the zero initial conditions 𝜼s = 𝜸s = 0 are considered for all examples. It is noted that other initial
conditions may be considered.

5.1 Example 1
Let Ω = (0, 1), 𝜅2 = 0, T = 1 and 1(y) = 0. Choose g(x) = sin(𝜋x), h(x) = 0, f = −𝜅1sin(𝜋x)(t − T)2 and z = 2sin(𝜋x) +
𝜋2sin(𝜋x)(t − T)2 + sin(𝜋x)cos(𝜋t). The exact solution is y*(t, x) = sin(𝜋x)cos(𝜋t) and p*(t, x) = −𝜅1sin(𝜋x)(t − T)2.

For solving this example, the IS and POD-IS methods are used. In the POD-IS method, the initial conditions 𝜼s = 𝜸s = 0
are considered and 400 snapshots (n = 200) are generated from the obtained solution and POD basis is constructed by
selecting 𝜖 = 0.001.

In Table 1, we compare the relative errors and CPU time in the IS and POD-IS methods, for various values of 𝜅1 and
m. In this table, “POD setup” refers to the computation time in the lines 2 to 7 of Algorithm 2 and “SUM” refers to the
overall time of the algorithm.

It is seen that the CPU time of the POD-IS method is much time smaller than the CPU time of the IS method, whereas
there is no significant difference between the accuracy of two methods. Moreover, as m increases, the CPU time for solving
the POD-SP algorithm is decreased. This is because that, by increasing m, the problem is solved more accurately and the

TABLE 1 (Example 1) Comparison of error and CPU time for IS method versus POD-IS method
Parameters Indirect shooting method POD indirect shooting method
of methods Error CPU time Error CPU time
𝜅1 m Em(y) Em(p) FSP Em(y) Em(p) POD setup POD-SP SUM

10 50 5.3e-4 2.5e-4 476 5.3e-4 2.5e-4 0.47 2.9 3.4
10 100 1.3e-4 6.4e-5 9724 1.3e-4 6.4e-5 1.9 2.7 4.6
10 200 3.3e-5 1.6e-5 102897 3.3e-5 1.6e-5 10.6 2.5 13.1
10 400 - - - 8.3e-6 4.1e-6 53 2.5 55.5
100 50 6.8e-4 2.9e-4 4055 6.8e-4 2.9e-4 0.36 3.1 3.5
100 100 1.7e-4 7.3e-5 12342 1.7e-4 7.3e-5 1.3 3 4.3
100 200 4.2e-5 1.8e-5 120112 4.2e-5 1.8e-5 6.2 2.8 9
100 400 - - - 1.3e-5 7.1e-6 39 2.6 41.6
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FIGURE 1 (Example 1 with 𝜅1 = 10) The RMSE and Corr between the exact and POD-IS solutions [Colour figure can be viewed at
wileyonlinelibrary.com]

resulted snapshots can more accurately capture the solution space of the Equation 3. Consequently, the more suitable
POD basis is obtained, which help to speed up the solution time of the POD-SP algorithm.

We note that for m = 400, the IS method is not able to solve the problem within an acceptable computational time,
whereas the POD-IS method yields an accurate solution in a reasonable CPU time.

For further analyzing, the obtained state and adjoint functions by the POD-IS method, in Figure 1, the RMSE and
Corr between the exact and POD-IS solution are plotted for various values of m. It can be seen that by increasing m, the
RMSE becomes sufficiently small and the correlation coefficient approaches to 1. This means that, when m increases, the
obtained POD-IS solutions tend to closer agreement with the exact solutions.

5.2 Example 2
Let Ω = (0, 1)2, 𝜅2 = 0, T = 1, 1(y) = 0 and

g(x1, x2) = sin(𝜋x1) sin(𝜋x2), h(x1, x2) = sin(𝜋x1) sin(𝜋x2),
f = (1 + 2𝜋2)et sin(𝜋x1) sin(𝜋x2) − 𝜅1(t − T)2 sin(𝜋x1) sin(𝜋x2),
z = (et + 2 + 2𝜋2(t − T)2) sin(𝜋x1) sin(𝜋x2).

This problem has the following exact solution:

y∗(t, x) = et sin(𝜋x1) sin(𝜋x2), and p∗(t, x) = −𝜅1(t − T)2 sin(𝜋x1) sin(𝜋x2).

The results of applying the IS and POD-IS methods, with 𝜼s = 𝜸s = 0, n = 200, and 𝜖 = 0.001, are reported in Table 2.
As we see in this table, for m = 177, the POD technique significantly reduces the CPU time. Furthermore, for m ≥ 2577,

the POD-IS method get the solution in a reasonable time but the IS method is not able to solve the problem within an
acceptable computational time.

Figure 2 shows the RMSE and Corr between the exact solution and the obtained POD-IS solutions for various values of
m. It can be seen that improving the quality of POD basis (by increasing m) leads to improvement in the accuracy of the
POD-IS solutions.

http://wileyonlinelibrary.com
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TABLE 2 (Example 2) Comparison of error and CPU time for IS method versus POD-IS method
Parameters Indirect shooting method POD indirect shooting method
of Methods Error CPU time Error CPU time
𝜅1 m Em(y) Em(p) FSP Em(y) Em(p) POD setup POD-SP SUM

10 177 8.3e-3 5e-3 1893 8.3e-3 5e-3 3.7 2.5 6.2
10 2577 - - - 5.2e-4 3.1e-4 20.4 1.8 22.2
10 10145 - - - 1.3e-4 7.7e-5 63 1.7 64.7
10 40257 - - - 3.3e-5 1.9e-5 286 1.6 287.6
100 177 1e-2 4.5e-3 2751 1.1e-2 4.6e-3 3.7 2.1 5.8
100 2577 - - - 6.8e-4 2.8e-4 20.7 2 22.7
100 10145 - - - 1.7e-4 7.1e-5 64 1.8 65.8
100 40257 - - - 4.2e-5 1.8e-5 283 1.7 284.7
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FIGURE 2 (Example 2 with 𝜅1 = 10) RMSE and Corr between the exact solution and POD-IS solution [Colour figure can be viewed at
wileyonlinelibrary.com]

5.3 Example 3
In the problem (1), let

Ω = (0, 1)2, T = 1, 1(y) = y3 − y, g(x1, x2) = sin(𝜋x1) sin(𝜋x2), h = 0,
z(t, x1, x2) = cos(𝜋t) sin(𝜋x1) sin(𝜋x2), w(x1, x2) = cos(𝜋) sin(𝜋x1) sin(𝜋x2).

This problem is nonlinear, and we test the efficiency of the POD/DEIM-IS algorithm in comparison with the POD-IS
algorithm. In all simulations, we select the following input parameters

n = 200, 𝜼s = 𝜸s = 0 and 𝜖 = 𝜖1 = 𝜖2 = 0.001.

http://wileyonlinelibrary.com
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FIGURE 3 (Example 3 with 𝜅1 = 𝜅2 = 10) The POD/DEIM-IS solution with m = 2577 [Colour figure can be viewed at
wileyonlinelibrary.com]
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FIGURE 4 (Example 3 with 𝜅1 = 𝜅2 = 10) The first 40 points selected by DEIM for the nonlinear functions (left) 1 and (right) 2, with
m = 2577 [Colour figure can be viewed at wileyonlinelibrary.com]

By applying Algorithms 3 with m = 2577 on this example with 𝜅1 = 𝜅2 = 10, we get 𝓁 = 5 and r1 = r2 = 15. The obtained
state and adjoint functions at time levels t = 0.3 second, t = 0.6 second, and t = 1.0 second are plotted in Figure 3.
Moreover, the first 40 points selected by the DEIM for 1 and 2 are illustrated in Figure 4.

In this example, the exact solutions are unknown. So, for assessing the accuracy of POD/DEIM-IS algorithm, the RMSE
and correlation coefficient between POD-IS solutions and POD/DEIM-IS solutions are reported in Figure 5. We see, by
increasing the number of basis for approximation of the nonlinear functions 1 and 2, the RMSE is decreased. This
point is also highlighted by the correlation coefficient.

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com
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FIGURE 5 (Example 3 with 𝜅1 = 𝜅2 = 10) RMSE and Corr between the POD-IS and POD-IS-DEIM solutions with m = 2577 [Colour
figure can be viewed at wileyonlinelibrary.com]

TABLE 3 (Example 3) Comparison between the obtained value of cost functional and CPU time,
with POD-IS and POD/DEIM-IS methods, for various values of m and 𝜅1 = 𝜅2 = 𝜅

Parameters POD-IS POD-DEIM-IS
of methods  (y,u) CPU time  (y,u) CPU time
𝜅 m Setup time POD-SP Setup time POD/DEIM-SP

10 177 0.615689 7.5 5.05 0.615693 7.6 4.3
10 665 0.601846 27.4 5.3 0.601852 27.6 3.5
10 2577 0.583256 77.5 7.4 0.583256 77.9 2.7
10 10145 0.581629 362.3 13.5 0.581630 363.5 2.63
10 40257 0.581222 1887 41.9 0.581222 1890 2.61
102 177 2.463484 7.5 6.7 2.463496 7.6 5.8
102 665 2.373453 27.4 7.3 2.373487 27.6 5.3
102 2577 2.350955 77.5 8.5 2.350957 77.9 3.7
102 10145 2.345315 362.3 19.3 2.345315 363.5 3.2
102 40257 2.343904 1887 61.2 2.343904 1890 3.2
103 177 3.995542 7.5 7 3.995553 7.6 6.1
103 665 3.863917 27.4 8 3.863959 27.6 5.8
103 2577 3.832058 77.5 11.7 3.832059 77.9 5.2
103 10145 3.824125 362.3 23.5 3.824128 363.5 3.8
103 40257 3.822150 1887 70.3 3.822151 1890 3.8
104 177 4.664583 7.5 9.3 4.664720 7.6 8.5
104 665 4.449323 27.4 10 4.449358 27.6 8
104 2577 4.408258 77.5 16.4 4.408278 77.9 7.4
104 10145 4.398990 362.3 38.6 4.398991 363.5 6.3
104 40257 4.396715 1887 116 4.396715 1890 5.7
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In Table 3, for various values of m, 𝜅1, and 𝜅2, the obtained values of the cost functional and CPU times, with POD-IS
and POD/DEIM-IS methods, are summarized for comparison. In this table, “ Setup Time” for POD-IS (POD-DEIM-IS)
refers to computation time for steps 1 to 7 of Algorithm 2 (steps 1 to 14 of Algorithm 3.)

0
1

0.05

0.1

1

0.15

(0.3, x)

0.5
0.5

0 0

(0.6, x)

-1
1

-0.5

1
0.5

0

0.5

0 0

-0.02
1

-0.015

-0.01

1

-0.005

(1.0, x)

0.5

0

0.5

0 0

(a) The POD-DEIM-IS solution of state variable at time instances

-1.5
1

-1

1

-0.5

(0.3, x)

0.5
0.5

0 0

-2
1

-1.5

-1

1

-0.5

(0.6, x)

0.5

0

0.5

0 0

-1
1

-0.5

0

1

× 10-9

0.5

(1.0, x)

1

0.5
0.5

0 0

(b) The POD-DEIM-IS solution of adjoint variable at time instances

FIGURE 6 (Example 4 with 𝜅1 = 𝜅2 = 10) The POD/DEIM-IS solution with m = 2577 [Colour figure can be viewed at
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According to Table 3, we see that the obtained cost values by POD-IS and POD/DEIM-IS methods are very close to
each other; moreover, in the two algorithms, the setup steps take almost the same CPU time. But the CPU time for
POD/DEIM-IS algorithm is smaller than POD-SP algorithm and for larger m this difference is more significant.

On the other hand, it can be observed that by increasing m, the CPU time of POD-SP is increased. This is because
that the computational complexity of POD-SP is dependent to m. In contrast, by increasing m, the computational time of
POD/DEIM-IS algorithm not only does not increase but actually decreases. The reason lies in the fact that, the computa-
tional complexity of POD/DEIM-IS algorithm is independent of m. Moreover, as m increases, we can obtain more suitable
snapshots and thus more efficient POD and POD/DEIM bases are provided. Accordingly, the solution of POD/DEIM-IS
can be obtained in less computational time.

5.4 Example 4
In the problem (1), let

Ω = (0, 1)2, T = 1, 1(y) = sin(y), g(x1, x2) = sin(𝜋x1) sin(𝜋x2), h = 0,
z(t, x1, x2) = cos(t) sin(𝜋x1) sin(𝜋x2), w(x1, x2) = cos(1) sin(𝜋x1) sin(𝜋x2).

We select 𝜅1 = 𝜅2 = 10 and apply Algorithm 3 with the input parameters m = 2577, n = 200, 𝜼s = 𝜸s = 0, and
𝜖1 = 𝜖2 = 0.001. The obtained state and adjoint functions at time levels t = 0.3 second, t = 0.6 second, and t = 1.0
second are plotted in Figure 6. Moreover, the first 40 points selected by the DEIM for 1 and 2 are illustrated in
Figure 7. In Figure 8, the RMSE and Corr between POD-IS and POD/DEIM-IS solutions are given. Figure 8 shows that
the accuracy of DEIM is improved by increasing the number of basis for approximation of the nonlinear functions 1
and 2. Table 4 shows the results for various values of m, 𝜅1, and 𝜅2. The speedup when using DEIM approximation
is significant.
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TABLE 4 (Example 4) Comparison between the obtained value of cost functional and CPU time, with
POD-IS and POD/DEIM-IS methods, for various values of m and 𝜅1 = 𝜅2 = 𝜅

Parameters POD-IS POD-DEIM-IS
of methods  (y,u) CPU time  (y,u) CPU time
𝜅 m Setup time POD-SP Setup time POD/DEIM-SP

10 177 2.116025 8.2 4.4 2.116033 8.3 4.2
10 665 2.113724 23.2 4.6 2.113729 23.4 3.23
10 2577 2.113353 79.9 5.3 2.113355 80.1 2.35
10 10145 2.111856 362.7 7.9 2.111856 364 1.89
10 40257 2.083122 1833 21.2 2.083122 1836 1.88
102 177 12.167927 8.2 6.48 12.167935 8.3 6.33
102 665 12.166889 23.2 7.21 12.166896 23.4 4.25
102 2577 12.164032 79.9 9.46 12.164034 80.1 3.3
102 10145 12.163958 362.7 17.3 12.163959 364 2.99
102 40257 12.163841 1833 35.6 12.163841 1836 2.92
103 177 27.037811 8.2 8.08 27.037820 8.3 7.9
103 665 26.755052 23.2 8.17 26.755059 23.4 6.7
103 2577 26.683689 79.9 9.23 26.683694 80.1 5.7
103 10145 26.665662 362.7 25.2 26.665664 364 5.12
103 40257 26.665578 1833 52.9 26.665579 1836 4.68
104 177 32.560329 8.2 8.89 32.560335 8.3 8.84
104 665 32.069399 23.2 9.48 32.069412 23.4 7.66
104 2577 31.955331 79.9 12.92 31.955339 80.1 7.48
104 10145 31.954886 362.7 36.2 31.954887 364 6.32
104 40257 31.954873 1833 83.9 31.954873 1836 6.15

6 CONCLUSION

In this paper, we used the POD technique in the indirect shooting method for solving the optimal control of wave equation.
We showed that the POD technique greatly improves the ability of the indirect shooting method to obtain solutions
quickly, without significant decrease in solution accuracy. Moreover, in the presence of the nonlinear term in the wave
equation, to further speed up the solution time, a DEIM strategy is used for reducing the order of nonlinear calculations.
We find that DEIM shows its impact on the problems, which require fine mesh discretization for obtaining reasonable
accuracy. As a result, the reduced-order methods cause that the indirect shooting method becomes more applicable and
attractive for the considered optimal control problems. Of course, investigating the sensitivity of the presented algorithms
to the initial conditions and other input parameters would be desirable. This work is currently in progress. Another direc-
tion for further research would be to extend the presented method to the optimal control problems governed by PDE and
inequality constraints.
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27. Ştefănescu R, Navon IM. POD/DEIM nonlinear model order reduction of an ADI implicit shallow water equations model. J Comput Phys.

2013;237:95-114.
28. Xiao D, Fang F, Buchan AG, Pain CC, Navon IM, Muggeridge A. Non-intrusive reduced order modelling of the Navier-Stokes equations.

Comput Methods Appl Mech Eng. 2015;293:522-541.
29. Xiao D, Fang F, Pain C, Hu G. Non-intrusive reduced-order modelling of the Navier-Stokes equations based on RBF interpolation. Int J

Numer Methods Fluids. 2015;79(11):580-595.
30. Wang Y, Navon IM, Wang X, Cheng Y. 2D Burgers equation with large Reynolds number using POD/DEIM and calibration. Int J Numer

Methods Fluids. 2016;82(12):909-931.
31. Xiao D, Fang F, Pain C, Navon IM. A parameterized non-intrusive reduced order model and error analysis for general time-dependent

nonlinear partial differential equations and its applications. Comput Methods Appl Mech Eng. 2017;317:868-889.
32. Wang Z, Xiao D, Fang F, Govindan R, Pain CC, Guo Y. Model identification of reduced order fluid dynamics systems using deep learning.

Int J Numer Methods Fluids. 2017. https://doi.org/10.1002/fld.4416
33. Gubisch M, Volkwein S. Proper orthogonal decomposition for linear-quadratic optimal control. Technical Report, University of Konstanz;

2013. http://nbn-resolving.de/urn:nbn:de:bsz:352-250378
34. Troltzsch F, Volkwein S. POD a-posteriori error estimates for linear-quadratic optimal control problems. Comput Optim Appl.

2009;44(1):83-115.
35. Kammann E, Troltzsch F, Volkwein S. A posteriori error estimation for semilinear parabolic optimal control problems with application to

model reduction by POD. Math Model Numer Anal. 2013;47(2):555-581.
36. Sachs EW, Schu M. A priori error estimates for reduced order models in finance. ESAIM: Math Model Numer Anal. 2013;47(2):449-469.

https://doi.org/10.1002/fld.4416
http://nbn-resolving.de/urn:nbn:de:bsz:352-250378


SABEH ET AL. 21

37. Chaturantabut S. Temporal localized nonlinear model reduction with a priori error estimate. Appl Numer Math. 2017;119:225-238.
38. Lucia DJ, King PI, Beran PS. Reduced order modeling of a two-dimensional flow with moving shocks. Comput Fluids. 2003;32(7):917-938.
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