
ORIGINAL PAPER

Parameter estimation of subsurface flow models using iterative
regularized ensemble Kalman filter

A. H. ELSheikh • C. C. Pain • F. Fang •

J. L. M. A. Gomes • I. M. Navon

Published online: 15 August 2012

� Springer-Verlag 2012

Abstract A new parameter estimation algorithm based

on ensemble Kalman filter (EnKF) is developed. The

developed algorithm combined with the proposed problem

parametrization offers an efficient parameter estimation

method that converges using very small ensembles. The

inverse problem is formulated as a sequential data inte-

gration problem. Gaussian process regression is used to

integrate the prior knowledge (static data). The search

space is further parameterized using Karhunen–Loève

expansion to build a set of basis functions that spans the

search space. Optimal weights of the reduced basis func-

tions are estimated by an iterative regularized EnKF

algorithm. The filter is converted to an optimization algo-

rithm by using a pseudo time-stepping technique such that

the model output matches the time dependent data. The

EnKF Kalman gain matrix is regularized using truncated

SVD to filter out noisy correlations. Numerical results

show that the proposed algorithm is a promising approach

for parameter estimation of subsurface flow models.
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1 Introduction

Inference of subsurface geological properties is essential

for many fields. Accurate prediction of groundwater flow

and the fate of subsurface contaminants is one example

(McLaughlin and Townley 1996; Carrera et al 2005). The

multiphase flow of hydrocarbons in an oil reservoir is

another example where accurate predictions have large

economic impact (Naevdal et al. 2005). Subsurface

domains are generally heterogeneous and shows wide

range of heterogeneities in many physical attributes such as

permeability and porosity fields. In order to build high-

fidelity subsurface flow models for environmental risk

assessment and/or for future predictions, a large number of

parameters have to be specified. These parameters are

obtained through a parameter estimation step. However,

the amount of available data to constrain the inverse

problem is usually limited in both quantity and quality.

This results in an ill-posed inverse problem that might

admit many different solutions.

Two types of data are available to constrain subsurface

flow models. Static data collected at well bores and dynamic

data measured as a time series of observations at few loca-

tions in the model. In the context of model calibration, there

are two difficulties to consider (Fu and Gomez-Hernandez

2009). The first is to build a model that produces realizations

conforming to static data. The second problem is to sample

from these realizations in order to build a posterior distri-

bution conforming to dynamic production data. For the first

problem, Geostatistical analysis is commonly used to gen-

erate a set of subsurface models assuming a certain corre-

lation length between the samples. These models are good

initial solutions for the inverse problem. For the second

problem, different parameter estimation techniques can be

applied. These techniques can be classified into Bayesian
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methods based on Markov Chain Monte Carlo (MCMC)

methods (Oliver et al. 1997; Ma et al. 2008; Fu and Gomez-

Hernandez 2009), gradient based optimization methods

(McLaughlin and Townley 1996; Carrera et al. 2005) and

ensemble Kalman filter (EnKF) methods (Moradkhani et al.

2005; Naevdal et al. 2005).

EnKF is a parallel sequential Monte Carlo method (SMC)

for data assimilation. EnKF was introduced by Evensen

(1994) and since then have been used for subsurface model

update (Moradkhani et al. 2005; Naevdal et al. 2005; Tong

et al. 2010). Both model parameters (e.g. permeability and

porosity) and state variables (e.g. phase saturation and

pressure values) can be updated by EnKF. In EnKF a number

of simulations are run in parallel and are sequentially

updated based on their average response and the measured

data. Standard implementation of EnKF methods incorpo-

rates time dependent data in an online fashion during the

flow simulation as observations become available.

Different variants of ensemble filters have been pro-

posed (Pham et al. 1998; Tippett et al. 2003; Ott et al.

2004). These methods differ in how the ensemble members

are updated (i.e., the analysis step) and can be generally

categorized into perturbation-based or deterministic filters

(Sun et al. 2009). Perturbation-based ensemble filters add

random noise to each observation and this added obser-

vation noise, becomes an extra source of inaccuracy.

Deterministic ensemble filters apply linear algebraic

transformations to produce analysis ensembles that match

the desired sample mean and covariance. It was observed

that deterministic ensemble filters are more robust than

perturbation-based methods especially for small-sized

ensembles (Tippett et al. 2003; Sun et al. 2009). The use of

relatively small ensemble size fails to produce meaningful

statistics about the complete distribution of the model state

variables conditional on the available observations. Tech-

niques to improve the covariance estimates include

covariance localization (Gaspari and Cohn 1999; Houtek-

amer and Mitchell 2001; Tong et al. 2012) and local

approximation of the state error covariance using Local

Analysis (LA) (Anderson 2003; Ott et al. 2004). EnKF

might underestimate the background error covariance due

to sampling errors as well as due to the presence of model

errors. This might lead to poor performance and in severe

cases to filter divergence where the filter no longer

responds to the observations. Covariance inflation algo-

rithms address this issue by pushing ensemble members

away from the ensemble mean (Anderson and Anderson

1999; Anderson 2001). In EnKF, the ensemble perturba-

tions are assumed to be Gaussian but in comparison to

Kalman filters, EnKF can handle some nonlinearities by

using the nonlinear model in the ensemble forecast step.

Several studies were carried out to extend EnKF to handle

non-Gaussian estimation problems especially by adopting

the method of anamorphosis (Bengtsson et al. 2003; Smith

2007; Simon and Bertino 2009; Zhou et al. 2011).

In this paper, a flexible parameter estimation algorithm is

developed. The algorithm starts with a stochastic interpola-

tion using Gaussian process regression (GPR) (Rasmussen

and Williams 2005) to integrate prior knowledge about the

unknown field. Following that, the search space is parame-

terized using a Karhunen–Loève (KL) dimension reduction

technique (Kac and Siegert 1947; Loève 1948; Karhunen

1947). The parameter estimation problem is then solved by

an iterative regularized EnKF algorithm on the reduced

space. EnKF for parameter estimation uses a pseudo-time

stepping technique and time dependant data are matched in a

batch mode to evaluate the likelihood of the estimated

parameters. This algorithm requires repeated flow simula-

tions of the entire simulation time. A Kalman gain regulari-

zation based on truncated singular value decomposition

(TSVD) (Hansen 1998) is used to filter out noisy correlations

and to deal with the estimated covariance matrix rank defi-

ciency. SVD is used in square root filters (Tippett et al. 2003)

to generate new ensemble members that preserve the forecast

covariance. However, TSVD is used in the proposed algo-

rithm for regularization instead of the Bayesian regulariza-

tion via the measurement error covariance matrix and

standard covariance localization techniques. The resulting

algorithm offers a flexible and efficient alternative to gradient

based optimization techniques. It converges after a small

number of iterations while using very small ensemble sizes.

The proposed algorithm presents several novelties that

differentiate it from previously published work. First, EnKF

is applied iteratively in a batch mode for parameter estima-

tion. This is inspired by related methods for converting filters

into optimization methods (Zhou et al. 2008; Wan and Van

Der Merwe 2000; Zupanski et al. 2008). However, it is dif-

ferent from ensemble Kalman smoothers that operate on the

state variables (Evensen and van Leeuwen 2000; Chen and

Oliver 2012). The proposed algorithm exhibits some simi-

larities with Maximum Likelihood Ensemble Filter (MLEF)

(Zupanski et al. 2008) but the error covariance is not updated

using an analysis step as in filtering methods. Instead, a

random perturbation is applied to mimic a random stencil in a

stochastic Newton like method. The perturbation magnitude

is gradually reduced as the solution approaches the optimal

solution. Second, the proposed algorithm utilizes GPR for

static data integration instead of kriging (Chilès and Delfiner

1999). In kriging, models are usually fitted using a variogram

which measures the dissimilarity between samples versus the

separating distance. This fitting is commonly performed

using a least square method. However, GPR with Gaussian

measurement noise have analytically tractable integrals over

the parameter space. This enables an efficient solution of the

model comparison problem. The optimal correlation length

can be evaluated efficiently by maximizing the logarithm of
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the marginal likelihood. Thirdly, model reduction using KL

expansion is applied at the start of the algorithm to para-

metrize the unknown field. This step is similar to KL used in

Efendiev et al. (2005) and Dostert et al. (2009). However, in

these studies pre-set correlation lengths were used. In the

current work, the mean and covariance matrices are obtained

by the static data integration step using GPR. The utilized

KL-model reduction is different from the Dimension-

Reduced Kalman Filter (Zhang et al. 2007) as we do not

assimilate the state variables. For the Hydraulic conductivity

we use a standard parameterization following (Ghanem and

Spanos 1991) where the updated parameters are the weights

of the eigen functions of the stochastic field. These are a set of

random variables with a predefined prior of zero mean and a

unit standard deviations. The eigen functions (KL basis) are

evaluated once at the start of the algorithm. In the numerical

testing we use very limited amount of dynamic data to con-

strain the subsurface flow models as it is the case for many

practical problems. The efficiency of the proposed algorithm

is evident in the size of ensembles used in the presented

numerical testing and the total number of forward runs

required to reduce the mismatch errors. These small

ensembles enable extensive exploration of the parameter

space for uncertainty quantification studies.

The organization of this paper is as follows: Sect. 2

presents two tools for parametrizing the search space, GPR

for static data integration and KL-dimension reduction

technique. Section 3 provides a simple description of the

standard EnKF algorithm followed by a full description of

EnKF method for parameter estimation and the TSVD

regularization as it is used within the developed algorithm.

Section 4 presents a brief formulation of the subsurface

flow problem followed by an application of the proposed

algorithm on several test problems. In Sect. 5, the relation

between the proposed algorithm and other iterative EnKF

methods is highlighted. Also, numerical results utilizing

the Simultaneous Perturbation Stochastic Approximation

(SPSA) (Sadegh and Spall 1998) for parameter estimation

is presented for numerical comparison. The conclusions of

the current work are drawn in Sect. 6.

2 Search space parameterization

In this section we present two parameterization techniques

for the subsurface flow inverse problem. Trying to solve the

inverse problem on a the simulation grid results in a very

large search space. Further, it neglects any spatial correla-

tions between the unknown field values. In subsurface flow

problems, the unknown field is usually known at few points

where well bores exits. Accounting for these point data is

commonly denoted as a static data integration process. We

utilized GPR for solving the static data integration problem.

The output of the GPR is then subjected to a dimension

reduction technique using KL expansion. The combined use

of these two methods provide a consistent and straight for-

ward method for parameterizing the inverse problem.

2.1 Gaussian process regression

In the context of regression problems, it is required to find a

function that maps from the spatial coordinate x to a real

value y. For example, y could be the log-permeability field

and it is required to find its value over the domain of interest.

Formally, the input data D for the regression problem, is a set

of data pairs of observation fðxi; yiÞji ¼ 1; . . .; ng;where n is

the number of observations and yi is the target or collected

data at the spatial position xi 2 R
2: The objective of the

regression is to make predictions about new targets ey given

the corresponding input ex: In addition to the input data set,

one has to make additional assumptions about the distribu-

tions of the data points to get a well-posed problem.

A Gaussian process (GP) is a collection of random

variables, any finite number of which have a joint Gaussian

distribution (Rasmussen and Williams 2005). If we assume

a set of data points fðxi; yiÞgn
i¼1; where yi ¼ yðxiÞ are

samples form y ¼ ðy1; . . .; ynÞT ; then GP is defined as

y�Nðl;CÞ; l 2 R
n;C 2 R

n�n; ð1Þ

where l is the mean function and C is the covariance

matrix. The covariance matrix is specified as ½C�i;j ¼
covðyi; yjÞ ¼ Cðxi; xjÞ; where C defines the covariance

function. The covariance function specifies the similarity

between two function values y(xi) and y(xj) based on their

corresponding spatial vectors xi, xj. The covariance

function can take many forms and one of widely used

functions is the squared exponential function defined as

CSEðxi; xjÞ ¼ r2
c exp � 1

2

ðxi � xjÞ2

l2

 !

ð2Þ

where rc is the signal variance and l is a normalization

length that defines the global smoothness of the function y.

The set of covariance function parameters and the mea-

surement noise variance rn are known as the hyperpa-

rameters of the GP w ¼ hrc; l; rni:
Making predictions using a GP is equivalent to estimating

pðeyjex;DÞ;where ey is the new function value at the location

ex: Using vector notations, the input data is defined as

X = [x1, x2, …, xn] and y = [ y1, y2, …, yn]. Assuming a

predefined mean and covariance functions for GP with the

associated hyperparameters, the inference problem on the

new data set eX is defined using the following distribution

y
ey

� �

�N m
em

� �

;
Cxx þ r2

nI
� �

C
xex

C
exx

C
exex

� �� �

ð3Þ
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where, m is a vector of means corresponding to the input

data vector X; em contains prior mean values for the new

data points eX; ey is a vector of the posterior means for each

new data points, Cxx is the covariance matrix of the input

data, C
xex
;C
exx

are the two cross covariance matrices, C
exex

is

the prior covariance matrix for the new data points, and I is

the identity matrix. The conditional distribution

pðeyjex; y;XÞ is a normal distribution with the mean el ¼
em þ C

exx
ðCxx þ r2

nIÞ�1ðy�mÞ and covariance eC ¼ C
exex
�

C
exx
ðCxx þ r2

nIÞ�1C
xex

(see Rasmussen and Williams 2005,

Appendix A.2). Obtaining a realization from this distribu-

tion involves generating correlated Gaussian random

numbers.

2.1.1 Covariance function specification

The covariance function Cðxi; xjÞ controls the correlation

and dependence of the function values yðxiÞ and yðxjÞ on

the spatial input vectors xi; xj: The covariance function

must be symmetric positive semi-definite function (i.e.,

aT Ca� 0 for all a 2 R
n;where aT denotes the transpose of

a). In the current work, we use the Matérn covariance

function (Rasmussen and Williams 2005) defined as

CMaternðrÞ ¼
21�m

CðmÞ
ffiffiffiffiffi

2m
p r

l

	 
m
Km

ffiffiffiffiffi

2m
p r

l

	 


ð4Þ

where m is an order parameter, C denotes the Gamma

function, Km is the modified Bessel function of the second

kind of order m[ 0; r ¼ x� x0 is the Euclidean distance

between two points and l is the correlation length.

Learning a GP model is the process of finding appro-

priate kernel for the problem at hand as well as the

covariance function parameterization. This process falls in

the class of model selection. Given a parametric covariance

function, model selection tries to find the hyperparameters

vector w ¼ hm; l; rni that maximizes the conditional

evidence

w� ¼ arg max
w

pðyjX;wÞ ð5Þ

If the elements of y are independent samples from the

Gaussian process, the distribution pðyjX;wÞ is a

multivariate Gaussian density defined as (Rasmussen and

Williams 2005)

pðyjX;wÞ¼ ð2pÞ
n
2Cy

1
2

	 
�1

� exp �1

2
ðy�mÞT C�1

y ðy�mÞ
� �

ð6Þ

where Cy¼Cxxþr2
nI;rn is the measurement noise

variance. The logarithm of the marginal likelihood is

simple to evaluate as

ln pðyjX;wÞ ¼ � n

2
ln 2p� 1

2
ln Cy

� 1

2
ðy�mÞT C�1

y ðy�mÞ ð7Þ

This value is also called the logarithm of the evidence and

is maximized with respect to the hyperparameters to obtain

an optimal set of parameters given the observed data (see

Rasmussen and Williams 2005, Algorithm 5.1). The esti-

mated optimal set of hyperparameters is called the Maxi-

mum Likelihood type II (ML-II) estimate. These

parameters are found by solving a non-convex optimization

problem using conjugate gradient optimization with ran-

dom restarts (MacKay 1999). Selecting the optimal order

parameter m of the Matérn covariance function is a model

choice problem which can be solved within a Bayesian

framework (ELsheikh et al. 2012). In this paper, m is preset

to 3 as it produces realizations that are neither very smooth

nor very noisy.

2.2 Karhunen–Loève dimension reduction

The KL expansion (Kac and Siegert 1947; Loève 1948;

Karhunen 1947), is a classical method for Gaussian random

vectors quantization. It is also known as proper orthogonal

decomposition (POD) or principal component analysis

(PCA) in the finite dimensional case. The result of the GPR

is a real-valued random field K with mean l(x) and a

covariance function Cðx1; x2Þ: Let Kðx; nÞ be a function of

the position vector x defined over the problem domain and

n belonging to space of random events. KL expansion

provides a Fourier-like series form of Kðx; nÞ as

Kðx; nÞ ¼ lðxÞ þ
X

1

k¼1

ffiffiffiffiffi

kk

p

nkwkðxÞ ð8Þ

where nk is a set of random variables, kk is a set of real

constants and wkðxÞ are an orthonormal set of deterministic

functions. The covariance function C is symmetric and

positive semidefinite and has the spectral decomposition

Cðx1; x2Þ ¼
X

1

k¼1

kkwkðx1Þwkðx2Þ ð9Þ

where kk [ 0 are the eigenvalues, wk are the corresponding

eigenvectors. The orthogonal basis functions wkðxÞ satisfy

the following equation (Ghanem and Spanos 1991)
Z

X

Cðx1; x2Þwkðx2Þdx2 ¼ kkwkðx1Þ; k ¼ 1; 2; . . . ð10Þ

The basis functions wk, are the eigenvectors of the

covariance matrix and can be obtained by principal

component analysis (PCA) or solving an eigenvalue
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problem. The eigenvectors are orthogonal and are

normalized as follows
Z

X

wkðxÞwjðxÞdx ¼ dkj ð11Þ

where dkj is the Kronecker delta. The random variables nk

are uncorrelated with zero mean and unit variance

ðE½nk� ¼ 0;E½nknj� ¼ dkjÞ. For the case where K is a GP,

nk is an i.i.d sequence of normal random variables with

zero mean and unit variance Nð0; 1Þ; the general form for

nn can be obtained from

nk ¼
1

kk

Z

Kðx; nÞ � lðxÞð ÞwkðxÞdx ð12Þ

KL expansion using the eigenvectors of the covariance

kernel is optimal in minimizing the mean-square-error

from a finite representation of the process (Ghanem and

Spanos 1991). This property makes KL expansion an

efficient method for model reduction by truncating the

summation in Eq. 8 to a finite set of n-terms as

Knðx; nÞ ¼ lðxÞ þ
X

n

k¼1

ffiffiffiffiffi

kk

p

nkwkðxÞ ð13Þ

Due to the orthogonality of the basis functions, the total

variance (energy) of the truncated K converges to the

complete version as n tends to infinity.

Z

E½Knðx; nÞ � lðxÞ�2dx ¼
Z

Cnðx; xÞdx ¼
X

n

k¼1

kk ð14Þ

The summation of the eigenvalues represents the amount of

variance explained by the structure associated to the corre-

sponding eigenvectors. The logarithm of the permeability

field can be parameterized using a limited number of eigen-

vectors as in Eq. 13. Different realizations can be generated

for different values of nk: The dynamic data integration

problem is concerned with finding values of nk such that the

measured production data matches the simulation results.

3 Ensemble Kalman filter

The EnKF is a parallel SMC for data assimilation. This

method was introduced by Evensen (1994). EnKF relies on

two steps: prediction and update. For a discrete time non-

linear system

xtþ1 ¼MðxtÞ þ wt ð15Þ
ytþ1 ¼ HðxtÞ þ rt ð16Þ

where x is the state vector, y is the observation vector, wt and

rt are zero-mean white noises with covariance matrices W

and R, respectively andM;H are the parameter update and

the measurement operator, respectively. For an ensemble of

size n, at each time step, a set of realizations of the state

vector Xt ¼ ½x1
t ; x

2
t ; . . .; xn

t � are generated and the

corresponding measurements are Yt ¼ ½y1
t ; y

2
t ; . . .; yn

t �: The

matrix Y is of size n� p where n is the ensemble size and p is

the number of observations. The state variables are updated

using the following steps (Houtekamer and Mitchell 2005;

Blum et al. 2008)

xf
i ¼Mðxa

i ðt � 1ÞÞ þ wi; i ¼ 1; . . .; n ð17Þ

wi�Nð0;WÞ ð18Þ

K ¼ CxyðCyy þ RÞ�1; ð19Þ

yo
i ¼ yo þ ri; i ¼ 1; . . .; n; ð20Þ

ri�Nð0;RÞ ð21Þ

xa
i ðtÞ ¼ xf

i þKðyo
i �Hðx

f
i ÞÞ; i ¼ 1; . . .; n ð22Þ

where the superscripts a and f are for the analysis and

forecast steps respectively, Cxy is state-measurement cross

covariance matrix, Cyy is the measurement covariance

matrix, K is the Kalman gain matrix and yo are the

unperturbed observations.

3.1 EnKF for parameter estimation

The objective of the current paper is to calibrate the model

parameters (i.e. permeability field) to conform with the

dynamic (production) data. The time stepping in data

assimilation EnKF will be used as a pseudo time stepping to

represent the iterative nature of the solution. Similar for-

mulation was used for modifying filtering algorithms to solve

optimization and parameter estimation problems (Zhou et al.

2008; Wan and Van Der Merwe 2000). The proposed method

is also related to parameter estimation by extended Kalman

filter as highlighted in (Navon 1998). However, the state

variables are limited to only the model parameters. The

unknown field (permeability in this study) will be assigned to

the state vector x in Eq. 17 and the state update equation will

have the form xf
i ¼ xa

i þ �kwi where, �k is a scaling factor in

the iteration k and wi is a zero-mean white noise sampled

from a Gaussian distributionNð0; 1Þ: In the current study, a

scaling factor of the form �k ¼ c=log ðk þ 1Þ is used, where c

is a user input constant (e.g. 0.01) and k is the iteration

number (Kushner 1987). The measurement equation 16,

corresponds to the simulator output of the production data

yf
i ¼ SIMðx

f
i Þ; i ¼ 1; . . .; n ð23Þ

where SIM represents the nonlinear operator defined by

the numerical simulator. Given a set of n realizations of the

state parameters, the covariance between the different

production data generated by the simulator can be

calculated using the sample covariance matrix as

Stoch Environ Res Risk Assess (2013) 27:877–897 881
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Cyy ¼
1

n� 1
Yf ðIn �

1

n
11TÞðYf ÞT ð24Þ

where n is the ensemble size, In is an identity matrix of size

n, 1 is a vector of n ones and Yf is the output matrix.

Similarly, the cross covariance between the different

realizations of the field xi
f arranged as rows of Xf and the

corresponding outputs Yf is defined as

Cxy ¼
1

n� 1
Xf In �

1

n
11T

� �

ðYf ÞT ð25Þ

At the analysis step each ensemble member is updated

using the Kalman gain relation

xa
i ðtÞ ¼ xf

i þKðyobs � yf
i Þ; i ¼ 1; . . .; n ð26Þ

where yobs is the observed data and K is the Kalman gain

matrix defined as

K ¼ CxyðCyy þ RÞ�1 ð27Þ

The Kalman gain equation can be thought of as a corrector

step utilizing an approximate Hessian (Thacker 1989; Cohn

1997). In the current paper, the parameter space is modeled

with reduced order basis and no clear distance function can

be assumed for covariance localization methods (Gaspari

and Cohn 1999; Houtekamer and Mitchell 2001). A stan-

dard regularization based on truncated SVD is proposed as

a reliable general method for filtering spurious correlations

in estimating the Kalman gain matrix.

3.2 Truncated SVD regularization

Regularization was developed to solve ill-posed problems

of the form Az ¼ b (Hansen 1998). The matrix A can be

decomposed using singular value decomposition, to obtain

a set of orthogonal basis functions satisfying

A ¼ USVT ð28Þ

where U and V are orthogonal matrices, satisfying UUT ¼
Ik;V

T V ¼ Ik and S is a diagonal matrix with non-negative

entries r1� r1� � � � � rk � 0 corresponding to the

singular values. The matrix A will have a condition

number condðAÞ ¼ r1=rk: Given the SVD decomposition

the solution of the system is equal to

z ¼ A�1b ¼ VS�1UT b ¼
X

k

i¼1

uT
i b

ri
vi ð29Þ

If A has some small singular values, the solution z will be

dominated by the corresponding singular vectors vi.

Regularization methods attempt to reduce the effects of

the small singular values on the solution vector z. This can

be done by truncated SVD (TSVD) or by Tikhonov

Regularization (Hansen 1998). In the TSVD, all terms

corresponding to small singular values are truncated from

the calculation of the solution vector. TSVD can be

reduced to the following form (Hansen 1998)

zf ¼
X

k

i¼1

/i

uT
i b

ri
vi ð30Þ

where zf is the filtered solution and 0	/i	 1 is a filtering

factor defined as

/i 

1; i ¼ 1; 2; . . .; t
0; i ¼ t þ 1; t þ 2; . . .; k

�

ð31Þ

The parameter t is the number of SVD components main-

tained in the regularized solution. In the current study, we

retain a number of SVD components corresponding to

99 % of the total variance.

3.3 Regularization of the Kalman gain matrix

Regularizing the inverse of the matrix Cyy þ R
� �

appearing

in the Kalman gain matrix is essential in order that small

singular values do not dominate the update equation. This

is easily achieved by first performing SVD on this matrix,

similar to Eq. 28, then regularizing the inverse using

ð gCyy þ RÞ�1 ¼ VSþUT ð32Þ

where S? is the pseudoinverse of S, which is formed by

replacing every diagonal entry that is larger than a pre-specified

threshold by its reciprocal and transposing the resulting matrix.

The current application of TSVD for covariance regularization

has some similarities with recent work by Dovera and Della

Rossa (2011) but they were concerned with initial ensemble

generation which is different from the current work. Recently,

Sætrom and Omre (2011) used shrinkage based regularization

techniques for regularizing the Kalman gain matrix within

standard EnKF method for parameters and states estimation.

The regularized Kalman gain matrix is defined as

eK ¼ Cxyð gCyy þ RÞ�1 ð33Þ

The TSVD regularization solves the problem of rank

deficiency with the added cost of calculating SVD for the

matrix Y. However, the size of the observations vector is

usually limited and efficient methods for SVD calculations

can be used (Golub and Van Loan 1996).

3.4 Algorithmic details

We presented all the elements of a parameter estimation

algorithm that is general and can be applied to any inverse

problem that can be formulated as a nonlinear least square

problem. Any numerical simulator can be viewed as a

nonlinear function that takes an input parameter vector xi

and produces an output vector yi ¼ H xið Þ: Given a set of
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observations yosb, the Kalman filter estimates xest obtained

by iterative application of Eq. 26 can be viewed as the

Maximum A Posteriori (MAP) estimator of the following

objective function (Sørensen and Madsen 2004)

J ðxÞ ¼ 1

2
x� xmð ÞT B�1 x� xmð Þ

þ 1

2
yosb �H xð Þð ÞT R�1 yosb �H xð Þð Þ ð34Þ

where J is the objective function, B the parameter

covariance prior to the parameter estimation (Background

error covariance), R is the output error covariance matrix,

xm is the mean of the parameters prior distribution. The

derivation of the Kalman update Eq. 26 assumes that the

parameters follows a Gaussian distribution. These equa-

tions can also be derived from the least square approach as

the Best Linear Unbiased Estimator (BLUE) (Jazwinski

1970; Anderson and Moore 1979).

We want to reiterate that the proposed algorithm is

simple and requires a limited number of input constants

that need to be adjusted. Different forms of observation

data can be included in the observation vector yobs to

account for any data than need to be assimilated. The

outline of the Iterative regularized EnKF algorithm for

parameter estimation is listed in Algorithm.

˜
˜

This algorithm can be considered as an iterative Wiener

filter (Hillery and Chin 1991) because we assume a non-

stationary problem for the unknown parameters. Also it can

be considered as a quasi-Newton type algorithm with a

random stencil. The Kalman gain equation can be thought

of as a corrector step utilizing an approximate Hessian

(Thacker 1989; Cohn 1997; Zupanski 2005).

3.5 Different forms of perturbation

In the current algorithm, the background error covariance is

not updated. Instead, a random perturbation is used where

the perturbation magnitude was decreased as we approach

the solution. In all our numerical testing we used a loga-

rithmic rule proposed by Kushner (1987) for specifying �k

as c=log ðk þ 1Þ;where c is a user input and k is the iteration

number. However, other forms for decaying sequences can

be used as proposed by Gelfand and Mitter (1991)

ck ¼
c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðk þ 1Þ log log ðk þ 1Þ
p ð35Þ

or by Fang et al. (1997)

ck ¼
c

ðk þ 1Þa=2
log ðk þ 1Þ

; 0\a\1 ð36Þ

4 Problem formulation and numerical testing

A two-phase immiscible flow in a heterogeneous porous

subsurface region is considered. For clarity of exposition,

gravity and capillary effects are neglected. However, the

proposed 1 model calibration algorithm is independent of

the selected physical mechanisms. The two phases will be

referred to as water with the subscript w for the aqueous

phase and oil with the subscript o for the non-aqueous

phase. This subsurface flow problem is described by the

mass conservation equation and Darcy’s law

r � vt ¼ q; vt ¼ �KktðSwÞrp over X ð37Þ

where vt is the total Darcy velocity of the engaging fluids,

q ¼ Qo=qo þ Qw=qw is the normalized source or sink term,

K is the absolute permeability tensor, Sw is the water

saturation, ktðSwÞ ¼ kwðSwÞ þ koðSwÞ is the total mobility

and p ¼ po ¼ pw is the pressure. In which, qw; qo are the

water and oil fluid densities, respectively. These equations

can be combined to produce the pressure equation

�r � KktðSwÞrpð Þ ¼ q ð38Þ

The pore space is assumed to be filled with fluids and thus

the sum of the fluid saturations should add up to one (i.e.,

So þ Sw ¼ 1). Then, only the water saturation equations is

solved

/
oSw

ot
þr � f ðSwÞvtð Þ ¼ Qw

qw

ð39Þ

where / is the porosity, f ðSwÞ ¼ kw=kt is the fractional

flow function. The relative mobilities are modeled using

polynomial equations of the form

kwðSwÞ ¼
ðSnwÞ2

lw

; koðSwÞ ¼
ð1� SnwÞ2

lo

;

Snw ¼
Sw � Swc

1� Sor � Swc

ð40Þ

where Swc is the connate or irreducible water saturation, Sor

is the irreducible oil saturation and lw, lo are the water

and oil fluid viscosities, respectively. The pressure Eq. 38
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is discretized using standard two-point flux approximation

(TPFA) method and the saturation equation 39 is discret-

ized using an implicit solver with standard Newton–

Raphson iteration (Chen 2007). For simplicity, we limit the

parameter estimation to the subsurface permeability map

K: We also assumed this permeability map as a lognormal

random variable as it is usually heterogeneous and shows a

high range of variability.

The proposed parameter estimation algorithm will be

applied to three test cases. All three test cases simulate

water flooding cases with no flow boundary conditions on

the domain boundaries. The true permeability map is

sampled at certain number of locations and these values are

used to construct the GP. The Matérn covariance is used for

all GPR analysis and the value of m = 3 is selected.

Dynamic data is obtained by running the simulator on the

reference permeability map and the resulting water-cut

curve is considered to be true and replaces real calibration

date in our testing. Each water-cut curve was sampled at 50

points and these samples were used for calculating the

errors and the update equation. The measurement errors

were set to a small value of 10-12 to test the algorithm

convergence in an optimization setting.

4.1 Test case 1

In this test case, the model is based on a 2D regular grid of

41� 41 blocks in the x and y directions, respectively. The

size of each grid block is 10 meters in each direction and a

unit thickness in the z direction. The porosity is constant in

all grid blocks and equals 0.2. The water viscosity

lw is 0:3� 10�3 Pa s and the oil viscosity lo is set to

0:3� 10�3 Pa s. The irreducible water saturation and irre-

ducible oil saturation are set as Sor ¼ Swc ¼ 0:2: For this

test case, an injector-producer pattern is used.

Figure 1a shows the logarithm of the reference perme-

ability field (permeability units is Darcy ¼ 9:869233�
10�13m2). On the reference field, the location of the

injection well is plotted as a black dot and the production

well is plotted as a white dot. This field was sampled at 15

points and the sampled values are used as an input to the

GPR for static data integration. The correlation lengths are

optimized using the ML-II estimator and Fig. 1b shows the

mean log-permeability field obtained from the GP regres-

sion. The reference and the mean regression fields along

with the ±2 standard deviations bounds are shown in

Fig. 2, where the reference field is plotted in red and the

interpolated mean field is shown in blue color. The first six

scaled eigen modes of the GPR covariance matrix are

shown in Fig. 3. The first 40 modes obtained by KL-

expansion were retained and all higher order modes were

truncated. Figure 4 shows the decay of the variance of each

term versus the number of KL terms. For the current

problem, 40 KL terms preserve 92 % of the total variance

of the GPR results. The number of retained basis functions

is usually selected heuristically as long as we are able to

match the data (Efendiev et al. 2005; Dostert et al. 2009).

However, this problem of selecting the optimal number of

KL terms can be formulated as a model choice problem

which can be solved within a Bayesian framework (Buly-

gina and Gupta 2010; ELsheikh et al. 2012). This is in
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(b)(a)Fig. 1 Log-permeability map

for test case 1: a Reference and

b GPR mean field

Fig. 2 GP regression result along with the two standard deviations

bounds for test case 1 (reference field in red, estimated mean in blue
and two standard deviations bounds in white). (Color figure online)
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contrast to model reduction techniques where most of the

energy has to be retained by the utilized KL terms (Fang

et al. 2009).

Figure 5 shows the water fraction flow curve at the

production cell for a set of ensembles with different sizes.

The results are shown in terms of dimensionless time

defined by the pore volume injected (PVI). It is noted that

the water fraction flow curves converge to the reference

data after 100 forward runs regardless of the ensemble size.

Figure 6 shows the optimized log-permeability field at

the end of the EnKF iterations for two different ensemble

sizes.

Figure 7 shows the root-mean-square error (RMSE) in

the water fractional flow curve versus the number of EnKF

forward runs. The ensemble of 5 members showed the best

performance and did converge to the reference solution

significantly faster than larger ensemble runs. This can be

attributed to the smoothness of the problem. However, all

ensembles have exhibited significant reduction in the

RMSE with the increase of the number of forward runs.

The difference in performance between small ensembles

and large ensembles might suggest running smaller

ensembles for the first few iterations followed by running

larger ensemble for fine tuning the optimized parameters.

The results from this example show that the proposed

method for integrating static data using GP regression

along with the regularized EnKF for dynamic data inte-

gration is successful for conditioning the permeability

maps to all measured and observed data. The ensemble

regularization using TSVD is also successful in guiding the

Fig. 3 First six eigen modes

obtained by KL-expansion of

the GPR covariance matrix for

test case 1
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optimization iteration from the mean GPR values to a

solution that fits the production data.

4.2 Test case 2

This problem uses layer 20 of the Tenth SPE comparative

test case (Christie and Blunt 1995) as the reference per-

meability field. The porosity is set to 0.2 over all grid

blocks and the parameters lw ¼ 0:3� 10�3 Pa s and lo ¼
3� 10�3 Pa s are used. The irreducible water and oil sat-

urations are set as Swc ¼ Sor ¼ 0:2: Figure 8a shows the

logarithm of the reference permeability field (in Darcy

¼ 9:869233 � 10�13m2). We tested this problem under two

wells pattern. The first wells pattern have one injector

(black dot) and one producer (white dot) as plotted in

Fig. 8a. The second wells pattern have two injectors and

four produces located close the four corners of the domain

as shown in Fig. 8b. The reference permeability field was

sampled at 24 points and these values are used to constrain

the GPR. The mean regression field obtained from the GPR

is shown in Fig. 8c. The reference and the mean regression

fields along with the ± 2 standard deviations bounds are

shown in Fig. 9, where the reference field is plotted in red

and the interpolated mean field is shown in blue color. The

uncertainty in the GPR interpolated solution collapsed at

the location of sampling points. KL-expansion was applied

to reduce the search space and Fig. 4 shows the decay of

the variance of each KL term versus the number of KL

terms. A black vertical line corresponds to the cut off

number of 40 retained KL terms. These terms preserved

63 % of the total variance of the GPR covariance matrix.

Figure 10a–c shows the optimized log-permeability map

after running the EnKF using ensembles of 5,10 and 20

members. All runs were terminated after 100 forward runs

regardless of the ensemble size. The corresponding opti-

mized fractional flow curves are shown in Fig. 11. The

water-cut curve fully matches the reference water cut curve

after the optimization run. Figure 12 shows the RMSE in

the fractional flow curve versus the number of EnKF iter-

ations. A smooth convergence is observed for all ensemble

sizes, with the small ensembles outperforming all other

ensembles sizes in terms of error reduction. This is

attributed to the success of the TSVD regularization in

identifying the major search directions at each iteration.

These search directions are adaptively updated at each

iteration and smaller ensembles perform this step more

frequently than larger ensembles. We also observe that as

the ensemble approaches the solution, smaller ensembles

fails in attaining further error reduction in comparison to

larger ensembles. This is attributed to the approximate

nature of the estimated gradients with small ensembles.

The regularized EnKF algorithm relies on the state

update step (Eq. 15) that has a random component. This

random component is scaled by a constant that vanishes

with the number of EnKF iterations. However, the initial

value of the scaling factor depends on the constant c which

is set to 0.01 in all our testing. In order to study the effect

of c on the convergence of the algorithm, two different runs

were performed using different values of c. Figure 13

shows the RMSE of the water-cut curve for multiple runs
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with two different values for c = 0.01, 0.04. An ensemble

of 10 members was used and all runs were initialized by the

GPR mean. The convergence of the mean from different

runs is observed for both cases. However, some runs

showed local divergence. In order to increase the reliability

of the algorithm, an adaptive step size might be applied

within a line search strategy (Nocedal and Wright 2006).

Figure 14a–c shows the optimized log-permeability

maps after running the EnKF using ensembles of 5,10 and

20 members for test case 2 under the wells pattern 2. All

runs were terminated after 100 forward runs regardless of

the ensemble size.

Figure 15 shows the corresponding RMSE in the frac-

tional flow curve versus the number of forward runs. This

wells pattern is considered more challenging as the inte-

grated data is spatially distributed. Generally speaking all

ensemble sizes managed to reduce the errors. However, it

is observed that smaller ensembles performed initially

better than larger ensembles for detecting major error

reduction directions. Later in the iterative scheme, larger

ensembles outperformed smaller ensembles as more accu-

rate search direction were required.

4.3 Test case 3

This problem uses layer 80 of the Tenth SPE comparative

test case as the reference permeability field. The porosity is

set to 0.2 over all grid blocks and the water viscosity lw is

set to 0:3� 10�3 Pa s and the oil viscosity lo is set to

3� 10�3 Pa s. The irreducible water and oil saturations are

Swc ¼ Sor ¼ 0:2: This test case has a channel along the

length of the model as shown in Fig. 16a. Similar to test

case 2, two wells pattern are tested. The first wells pattern

have one injector (black dot) and one producer (white dot)

as plotted in Fig. 16a. The second wells pattern have two

injectors and four produces as shown in Fig. 16b. A set of

24 values of the permeability field are used for the GPR.

The resulting mean field is shown in Fig. 16c. The refer-

ence and the mean regression fields along with the ± 2

standard deviations bounds are shown in Fig. 17. The GPR

optimized correlation lengths are relatively short to

accommodate the sharp features. Figure 4 shows the decay

of the variance of each KL term versus the number of KL

terms. Only 40 terms were retained and they preserved

62 % of the total variance of the GPR covariance matrix.

For the first injection pattern, the EnKF optimized log-

permeability fields are plotted in Fig. 18a–c for ensembles

of size 5,10 and 20 members, respectively. This figure

shows that different ensembles have recovered different

modes of the solution as the problem is ill-posed and might

admit different solutions. The EnKF optimized water-cut

curves are shown in Fig. 19 and a full agreement with the

reference water-cut curve is observed. The regularized

EnKF algorithm successfully solved the inverse problem

and converged to the true curve regardless of the utilized

ensemble size. Figure 20 shows RMSE in the water-cut

curve versus the number of EnKF iterations and a clear
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convergence is observed after few iterations. The initial

performance of the very small size ensemble with 5

members is very good. However, after 40 forward runs it

fails in further reduction of the errors.

For the second injection pattern, the EnKF optimized

log-permeability fields are plotted in Fig. 21a–c for

ensembles of size 5,10 and 20 members, respectively.

These realization have less extreme values in compari-

son to those obtained for injection pattern 1. This might be

attributed to the higher information content from four

production wells that enables better model calibration.

Figure 22 shows RMSE in the water-cut curve versus the

number of EnKF iterations and a clear convergence is

observed after few iterations. The initial performance of

the very small size ensemble with 5 members is very good.

However, larger ensembles of 10 members performed

better after 20 forward runs. It is surprising that larger

ensembles did not perform favourably. This can be attrib-

uted to the addition of the noise at each iteration and the

magnitude of the error is related to iteration number and

not to the number of forward runs.

4.4 Search Space Exploration

The proposed algorithm, similar to gradient based algo-

rithms, might be attracted to a local minimum of the

solution. A standard way to solve this problem is to

restart the parameter estimation algorithm with different

random initial values. In our setting, due to the limited

amount of data, the inverse problem might admit many

different solutions. Here, the objective is not to find the

global minimum, instead we are interested in exploring

the search space and recovering many different models

that can be used for future forecasts. Problems 2 and 3

(wells pattern 1) were tested using a set of independent

runs initialized by values that are different from the mean

permeability maps obtained by GPR. The 40 parameters

were initialized using random numbers following the

Gaussian distribution Nð0; 1Þ: These initial realizations

conform to all static data even if they are different from

the GPR mean.

Fig. 9 GP regression result along with the two standard deviations

bounds for test case 2 (reference field in red, estimated mean in blue
and two standard deviations bounds in white). (Color figure online)
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Figure 23 shows the initial ensemble water fractional

flow curves versus the optimized curves for test case 2.

Ensembles of 10 members were used and the optimization

was done using the data up to PVI ¼ 0:32: This is marked

by a black vertical line in Fig. 23b. The rest of the frac-

tional flow curve is an out-of-sample data that can be used

effectively for future forecasts. Similarly, parallel simula-

tions with random starting points were performed for test

case 3 with calibration date up to PVI ¼ 0:20: The results

are shown in Fig. 24 in terms of water cut curves. The

accuracy of the optimized ensembles is evident in the out-

of-sample data.
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5 Discussion and comparison

Recently, iterative ensemble based methods have attracted

a large amount of research effort. Gu and Oliver (2007)

introduced the ensemble randomized maximum likelihood

(EnRML) method that is based on a formulation for

nonlinear least square problems. The sensitivities were

calculated using an ensemble based method. However, in

high-dimensional problems the ensemble approximation of

the sensitivity matrix is often poor (Chen and Oliver

2012). Li and Reynolds (2009) presented two iterative

EnKF algorithms that relied on adjoint solutions. The first

algorithm relied on estimating the sensitivities using an

adjoint solution from the current data assimilation time

back to time zero. The second algorithm relied on the

adjoint solution over a single time step instead of all the

way back to time zero. The presented results showed

superior performance in comparison to standard EnKF

Method.

Krymskaya et al. (2009) proposed a straight forward

iteration of EnKF for both state and parameter estimation.

This method was inspired by an outer loop iterative Kal-

man filter method (Jazwinski 1970). In this method, the

mean of the estimated parameters at the end of the EnKF

were used to initialize the ensemble for the next iteration.

Interestingly, when re-running the filter, the mean estima-

tor of initial guess was updated but the background error

covariance was not changed during the iteration. Lorentzen

and Naevdal (2011) presented an iterative EnKF method

where an early stopping criteria was introduced. A likeli-

hood function (similar to Eq. 34) was evaluated for each

ensemble member and if the value of this likelihood

function is higher or equal to value of the pervious itera-

tion, the member is not updated. The iterations are stopped

when no members are updated. The stopping criteria,

provided a balance between the prior information and the

overfitting of observations.

Sakov et al. (2012) presented an iterative EnKF algo-

rithm for strongly nonlinear problems. The iterative EnKF

algorithm has many similarities with EnRML (Gu and

Oliver 2007). However, an ensemble square root filter was

used within the iterative algorithm. The update equation

have the form

xiþ1 ¼ xf
i þKðyo �Hðxf

i ÞÞ þ Biþ1B�1
0 x0 � xið Þ ð41Þ

where Biþ1 is the updated background error covariance.

The last term tries to penalize the iterative procedure by

including the prior information. As noted by the authors,

the evaluation of the background error covariance Biþ1 is

technically difficult in the iterative process and a standard

formula that rely on the linearity of the solution was used.

Recently, Chen and Oliver (2012) presented an ensemble

Kalman smoother based on EnRML where all the data are

assimilated at once. The estimation of the sensitivities

matrix based on sampling required large ensembles to

provide reliable estimates.

All these iterative schemes have many commonalities

and relied on almost the same assumptions. However, the

difference between these methods are noticed in dealing

with the following two questions: how to update uncer-

tainties in nonlinear problems and how to regularize the

estimated sensitivities. The first problem of updating

uncertainties in nonlinear problems is challenging. In cases

of large search space, the curse of dimensionality implies

0 20 40 60 80 100

10−1.9

10−1.8

10−1.7

10−1.6

10−1.5

10−1.4

Number of forward runs

E
rr

or
 in

 W
at

er
 F

ra
ct

io
na

l F
lo

w
 c

ur
ve

 (
R

M
S

E
)

random runs
mean value

(a)

0 20 40 60 80 100

10−1.9

10−1.8

10−1.7

10−1.6

10−1.5

10−1.4

Number of forward runs

E
rr

or
 in

 W
at

er
 F

ra
ct

io
na

l F
lo

w
 c

ur
ve

 (
R

M
S

E
)

random runs
mean value

(b)

Fig. 13 RMSE in water fractional flow curve versus the number of
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that the support of the posterior PDF is likely to by much

smaller than the prior. This increases the probability of the

case where none of the sampled parameters lies in that

region. This might result in over estimation of the posterior

PDF spread. On the other hand, Allen et al. (2006) high-

lighted that repeated use of the data will result in an

underestimation of uncertainty or what is called data

overfitting. The major question is how to balance the

underestimation and the overestimation of uncertainties

and how that affects the convergence of the solution.

Different iterative algorithms tried to deal with this

problem by early stopping of the iterative update

(Lorentzen and Naevdal 2011) or by including the prior in

the Kalman update equation (Gu and Oliver 2007; Sakov

et al. 2012) or by not updating the error covariance in the

iterative scheme (Krymskaya et al. 2009). The second

problem is related to regularization of the Kalman gain

matrix to avoid divergence. Generally speaking, including

the prior in the objective function introduces some sort of

regularization for the ill-posed problem as some prefer-

ence is given to solutions that are close to the prior.

However, regularization by TSVD penalizes the magni-

tude of the solution and gives a preference to solutions

with minimum L2 norm.

The proposed algorithm deals with the previously

mentioned two questions in a different way. First, the

proposed algorithm is a parameter estimation algorithm

and does not try to update the error covariance. During

initial numerical testing, we observed that updating the

error covariance similar to the work presented by Sakov

et al. (2012) have a negative effect on the convergence

rates. We decided to use a standard technique utilized in

many stochastic optimization methods where a gain

sequence is formulated with a decaying magnitude to

describe the random perturbations (Kushner 1987). If one

is interested in evaluating the parameters uncertainties,

Eq. 21 in (Zupanski et al. 2008) can be utilized at the

converged solution.
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As for regularization, we note that for the current

parameterization using KL-expansion the parameters prior

is centered around zero. This means that regularization

using TSVD by minimizing the solution L2 norm is

equivalent to the Bayesian regularization by including the

prior term. Once that is realized, only one type of regu-

larization is applied and we decided to use TSVD as the

filtering threshold is updated at each iteration. We notice

the difference between our approach and the recent work of

Chen and Oliver (2012) where Bayesian regularization was

performed by including the prior in the update equation and

then the sensitivities were evaluated from a rank deficient

system after regularization. After that, the evaluation of the

Kalman gain required the inverse of singular matrix that

needed one more step of regularization. The repeated

application of different regularization steps with different

thresholds might result in excessive information loss. In the

proposed algorithm, only one regularization operation is

applied at each iteration.

5.1 Simultaneous Perturbation Stochastic

Approximation

In this section, we compare the proposed algorithm to the

SPSA method (Spall 2003). Both the proposed algorithm

and the SPSA method are stochastic optimization algo-

rithms that use a randomly selected stencil (Spall 2003)

where all the unknowns are perturbed simultaneously to

generate the stochastic gradient. SPSA relies on the fol-

lowing iterative scheme

xkþ1 ¼ xk þ akĝðxkÞ ð42Þ

where xk is the parameters vector at iteration k, ak is

the step size and ĝðxkÞ is the approximate gradient of the

objective function. The two sided SPSA relies on the

gradient calculated as

ĝðxkÞ ¼
J ðxk þ ckDkÞ � J ðxk � ckDkÞ

2ck
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Fig. 17 GP regression result along with the two standard deviations
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where ck is the perturbation magnitude and Dki is ith

component of the perturbation vector Dk: The perturbation

vector is generally sampled from a symmetric Bernoulli ± 1

distribution (Spall 2003). The convergence of the SPSA

iterations relies on the sequences ak and ck, as they should go

to 0 at the appropriate rates. The values of Dki are

independent and symmetrically distributed around 0. The

SPSA gain sequences ak and ck are selected as (Spall 2003)

ak ¼
a

ðAþ k þ 1Þa ; ck ¼
c

ðk þ 1Þc ð44Þ

where k is the iteration number starting from 0; a;A; a and c
are a set of positive constants. Spall (2003) provided

guidelines on how to pick these constants. For ensuring

convergence of the algorithm the gain sequences have to

satisfy the following conditions
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ak [ 0; ck [ 0; ak ! 0; ck ! 0;
X

1

k¼0

ak ¼ 1;

X

1

k¼0

�

ak

ck

�2

\1 ð45Þ

Also the constants a and c should satisfy

a� 2c[ 0; 3c� 0:5a� 0 ð46Þ

The stability constant A is recommended to be about 10 %

of the allowed or expected number of search iterations

(Spall 2003). The practical values for a and c are 0.602 and

0.101, respectively. These are the smallest values the sat-

isfy the conditions in Eqs. 45 and 46.

In the current numerical study, we set A to 10 which is

about 10 % of the maximum 100 forward runs. The value

of a was adjusted to have a unit step size in the first iter-

ation. We tested the algorithm with two different values of

c = 0.1 and c = 0.01. Figure 25 shows the convergence

rates of the SPSA method for problem 2 with wells pattern

1. Five different stochastic gradient were averaged at each

iteration to produce an ensemble of 10 members. A total of

80 different runs were performed and both the individual

convergence curves and their average are plotted. These

results should be compared to results in Fig. 13. The pro-

posed iterative regularized EnKF algorithm have higher

convergence rates and clearly outperformed SPSA in

reducing the RMSE in the first two iterations. Similar

results for test problem 3 (wells pattern 1) are presented in

Fig. 26. In comparison to the SPSA, the iterative regular-

ized EnKF method produces signification error reduction in

the first few iterations as shown in Fig. 20.

6 Conclusions

In this paper, a new parameter estimation method for

subsurface flow models was presented. The proposed

algorithm can be applied to any simulator and eliminates
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the need for expensive derivative evaluation required for

gradient based algorithms. The algorithm relied on a novel

combination of GPR, KL model reduction and TSVD

regularized EnKF. GPR provided an easy method for

incorporating static data into the model. Correlation

lengths were obtained by maximizing the logarithm of the

model evidence. KL expansion (aka. POD) was used as an

effective dimension reduction tool. The use of GPR

estimated mean field and covariance matrix for the KL

dimension reduction eliminated the need for any pre-set

parameters. This parameterization technique is essential for

the smooth convergence of the inverse problem.

The inverse problem solution (dynamic data integration)

was performed using an iterative regularized EnKF algo-

rithm. EnKF was used in a batch mode where each time

step corresponded to an iteration of a Newton like

0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Pore Volume Injected (PVI)

W
at

er
 F

ra
ct

io
na

l F
lo

w

 Ensembles Prior
 Reference

0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Pore Volume Injected (PVI)

W
at

er
 F

ra
ct

io
na

l F
lo

w
 Optimized Ensembles
 Reference

(b)(a)Fig. 24 Results of a search

space exploration study for test

case 3, wells pattern 1. EnKF

optimized versus initial

ensemble fractional flow curves

obtained using ensembles of 10

members, a initial ensembles

members and b optimized

ensembles members

0 0.2 0.4 0.6 0.8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Pore Volume Injected (PVI)

W
at

er
 F

ra
ct

io
na

l F
lo

w
 Ensembles Prior
 Reference

0 0.2 0.4 0.6 0.8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Pore Volume Injected (PVI)

W
at

er
 F

ra
ct

io
na

l F
lo

w

 Optimized Ensembles
 Reference

(b)(a)Fig. 23 Results of a search

space exploration study for test

case 2, wells pattern 1. EnKF

optimized versus initial

ensemble fractional flow curves

obtained using ensembles of 10

members, a Initial ensembles

members and b Optimized

ensembles members

0 20 40 60 80 100
10−1.9

10−1.8

10−1.7

10−1.6

10−1.5

10−1.4

Number of forward runs

Random runs
Mean value

0 20 40 60 80 100
10−1.9

10−1.8

10−1.7

10−1.6

10−1.5

10−1.4

Number of forward runs

Random runs
Mean value

(b)(a)

E
rr

or
 in

 W
at

er
 F

ra
ct

io
na

l
F

lo
w

 c
ur

ve
 (

R
M

S
E

)

E
rr

or
 in

 W
at

er
 F

ra
ct

io
na

l
F

lo
w

 c
ur

ve
 (

R
M

S
E

)

Fig. 25 RMSE in water

fractional flow curve versus the

number of forward runs using

SPSA with different magnitudes

of the random perturbation for

test case 2 (wells pattern 1) with

ensembles of 10 members,

a c = 0.1 and b c = 0.01

Stoch Environ Res Risk Assess (2013) 27:877–897 895

123



correction step. These iterations were repeated until con-

vergence or a maximum number of steps was reached. The

Kalman gain matrix was filtered using TSVD to eliminates

spurious correlations. This method is automatic and is

based on a standard regularization technique. Other meth-

ods based on covariance localization cannot be easily

adopted as the de-correlation length is hard to define once

the KL model reduction is applied.

The algorithms showed smooth convergence for very

small ensembles of 5 or 10 members. The use of small

ensembles enables extensive search space exploration as

demonstrated in the examples. As a general optimization

tool, this algorithm can get trapped at local minima similar

to any unconstrained minimization gradient based algo-

rithm. Also, the convergence of the algorithm will be

dependent on step size. Here, we used a unit step size in all

our numerical testing. Augmenting the algorithm with a

line search step to automatically adjust the update step size

might improve the convergence rates of the algorithm.
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