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SUMMARY

A novel proper orthogonal decomposition (POD) inverse model, developed for an adaptive mesh ocean
model (the Imperial College Ocean Model, ICOM), is presented here. The new POD model is validated
using the Munk gyre flow test case, where it inverts for initial conditions. The optimized velocity fields
exhibit overall good agreement with those generated by the full model. The correlation between the
inverted and the true velocity is 80–98% over the majority of the domain. Error estimation was used to
judge the quality of reduced-order adaptive mesh models. The cost function is reduced by 20% of its
original value, and further by 70% after the POD bases are updated.

In this study, the reduced adjoint model is derived directly from the discretized reduced forward model.
The whole optimization procedure is undertaken completely in reduced space. The computational cost
for the four-dimensional variational (4D-Var) data assimilation is significantly reduced (here a decrease
of 70% in the test case) by decreasing the dimensional size of the control space, in both the forward and
adjoint models. Computational efficiency is further enhanced since both the reduced forward and adjoint
models are constructed by a series of time-independent sub-matrices. The reduced forward and adjoint
models can be run repeatedly with negligible computational costs.

An adaptive POD 4D-Var is employed to update the POD bases as minimization advances and loses
control, thus adaptive updating of the POD bases is necessary. Previously developed numerical approaches
Fang et al. (Int. J. Numer. Meth. Fluids 2008) are employed to accurately represent the geostrophic balance
and improve the efficiency of the POD simulation. Copyright q 2008 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The threat of impending climate change highlights the importance of improving the predictive
capabilities of models of the oceans, as well as other components of the Earth system. Data
assimilation techniques are a critical component of ocean modelling. By assimilating observations
(such as in situ measurements and remote sensing) into models, unknown inputs such as initial and
boundary conditions, bottom friction coefficients, turbulent viscosity parameters and wind stresses,
can be optimized [1–8].

A variety of approaches have been used in the past to facilitate data assimilation and include
statistical interpolation methods, nudging data assimilation and variational methods along with
sequential estimation such as Kalman filter, extended Kalman filter and Ensemble Kalman filter.
In particular, the four-dimensional variational (4D-Var) method has proved an efficient means of
assimilating observed data into simulations [9, 10]. The 4D-Var method is capable of producing a
best estimate model solution by fitting a numerical simulation to observational data over both space
and time. The technique also facilitates the estimation of the error sources caused by uncertainties
(boundary conditions, initial condition and parameters) in the model. The solution is derived by
minimizing a cost function that contains the misfits between the data and dynamical model, as well
as the covariances specifying spatial and temporal correlations of errors. 4D-Var data assimilation
has been used widely in both atmospheric and oceanographic models over the past two decades
[4, 6–9, 11–20]. However, the major difficulty in the implementation of 4D-Var data assimilation
in an ocean model is the large dimensionality of the control space (for a discrete realistic model,
the size of the control variables is typically in the range 106–108), and hence the 4D-Var method
incurs high memory and computational costs. However, the computational cost can be reduced
by decreasing the dimensions of the control space thus ensuring that the minimization of the cost
function (or error covariances) is carried out within a low-dimensional space. This can be achieved
through an incremental 4D-Var [21] whereby a succession of quadratic problems are generated
over increasing time periods. The successive quadratic minimization problems can then be solved
by running tangent linear model and adjoint model approximations using a coarse resolution in the
inner-loop of the minimization. Using this approach, the dimension of the minimization problem
can be decreased by one or two orders of magnitude. Although such an incremental approach
is currently used in operational atmospheric models, the dimensions of the control space remain
quite large in realistic applications [22–24].

The use of empirical orthogonal functions (EOF) analysis has been advocated as an approach that
can lead to reduced-order ocean modelling [25]. The implementation of this method additionally
results in a drastic reduction of the dimension of the control space and thus the iterative minimiza-
tion process [22, 26]. Reduced-order 4D-Var can also be used to precondition 4D-Var and reduce
computational cost [27]. It has been further proposed [28] that efficiencies can be enhanced if the
adjoint model can be directly implemented in a subspace of the reduced-order model (determined
by the leading EOFs) and then used to approximate the gradient of the cost function. The mini-
mization process can thus be solved completely in reduced space with negligible computational
costs.
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Proper orthogonal decomposition (POD) methodologies, in combination with the Galerkin
projection procedure, have additionally provided an efficient means of generating reduced-order
models [29–31]. This technique essentially identifies the most energetic modes in a time-dependent
system, thus providing a means of obtaining a low-dimensional description of the system’s
dynamics. POD has been widely and successfully applied to diverse disciplines, including signal
analysis and pattern recognition [32], fluid dynamics and coherent structures [29, 33, 34] and image
reconstruction [35]. To improve the accuracy of reduced-order models, a goal-oriented approach
has been used to optimize the POD bases [36, 37]. The dual-weighted POD approach provides an
‘enriched’ set of basis functions combining information from both model dynamics and the data
assimilation system. The practical utility of this approach has been extended to include ocean and
climate modelling and the solution of inverse problems [22, 24, 30, 38]. The POD-based 4D-Var
not only reduces the dimension of control space, but also reduces the size of the dynamical model,
both in dramatic ways [38–40].

Herein we describe a POD reduced-order 4D-Var for an adaptive mesh ocean model. A POD-
based reduced-order forward model [41] has been developed for the Imperial College Ocean Model
(ICOM) that can simultaneously resolve both small- and large-scale ocean flows while smoothly
varying mesh resolution and conforming to complex coastlines and bathymetry. In this work, a
further step has been made to introduce the POD approach into an adaptive mesh refinement adjoint
model. Using the POD and Galerkin projection approaches, the reduced-order forward model is
derived in a subspace (details in [41]). Once the reduced-order forward model is available, the
reduced-order adjoint model can be directly obtained from the POD reduced-order forward model
in the subspace, instead of the original forward model. The minimization procedure is then carried
out in the reduced space.

When adaptive meshes are employed in both the forward and adjoint models, the mesh resolution
requirements for each model may be spatially and temporally different, as the meshes are adapted
according to the flow features of each model. This poses additional challenges for the implementa-
tion of an inverse POD-based reduced adaptive model, which include snapshots of varying length
at time levels. To overcome these difficulties, a standard reference fixed mesh is adopted for both
the forward and adjoint reduced-order models. The solutions for both are interpolated from their
own mesh onto the same reference fixed mesh at each time level. This allows the same number of
base modes for both the reduced-order forward and adjoint models. However, this also introduces
an interpolation error into snapshots and the POD reduced-order model. To reduce the interpolation
error, high-order interpolation approaches are employed. Here, a quantitative comparison of POD
solutions with the use of the linear, quadratic and cubic interpolation schemes has been carried out.

In this work, an adaptive POD procedure is employed to improve the reduced-order model by
updating the POD basis. The original reduced basis for inverse problems is calculated using a set
of snapshots based on the results from the full forward model with the specified control variables.
The re-calculation of the reduced basis is needed when the resulting control variables from the
optimization procedure are significantly different from those that the POD model is based on.
Ravindran [42, 43] proposed an adaptive procedure that successively updates the reduced-order
model being used via a Sequential Quadratic Programming constrained optimization algorithm.
Cao et al. [38] introduced an adaptive POD approach into POD inverse (adjoint) models. In this
approach the reduced basis is re-calculated using a refreshed set of snapshots based on the latest
results obtained from the full forward model using a restart criterion of the adaptive POD procedure
based on convergence of the minimization process. One can also consider the trust region method
for restart criteria [44].
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2. POD REDUCED MODEL

POD (also known as the Karhunen–Loéve decomposition method, principal components analysis
and EOF) is the most efficient choice among linear decompositions in the sense that it can
capture the greatest possible energy. A three-dimensional (3D) dynamical flow model is generally
expressed as

�u
�t

= f (u, t,x) (1)

where f is a general function representing 3D nonlinear flow dynamics (here, the incompressible
Navier–Stokes equations), u is a vector containing all variables to be solved (e.g. velocities, pressure
and temperature), t is time and x=(x, y, z)T represents the Cartesian coordinate position.

2.1. Proper orthogonal decomposition

The model variables u are sampled at defined checkpoint times during the simulation period
[t1, . . . , tK ], also referred to as snapshots U =(U1, . . . ,UK )T where K is the number of snap-
shots. The snapshots can be obtained either from a numerical model of the phenomenon or from
experiments/observations. The sampled values of variables at the snapshot k are stored in a vector
Uk with N entries, Uk =(Uk,1, . . . ,Uk,i , . . . ,Uk,N), where N is the number of nodes and U
represents one of variables u,v,w, p, etc. The average of the ensemble of snapshots is defined as

Ūi = 1

K

K∑
k=1

Uk,i , 1�i�N (2)

where Uk,i is the model variable value at the snapshot k and node i . Taking the deviation from
the mean of variables yields

Vk,i =Uk,i −Ūi , 1�i�N (3)

A collection of all Vk,i constructs a rectangular N×K matrix A. The aim of POD is to find a set
of orthogonal basis functions, which can represent the most energy in the original flow system.
The N×N eigenvalue problem is established as

AATxk =�k xk, 1�k�K (4)

The order N for matrix AAT is far larger than the order K for matrix ATA in realistic ocean
cases. Therefore, the K ×K eigenvalue problem is solved as

ATAyk =�k yk, 1�k�K (5)

This procedure is equivalent to a singular value decomposition. The eigenvalues �k are real and
positive and for reasons that will be apparent, should be sorted in descending order. The POD
basis vectors �k associated with the eigenvalues �k are orthogonal (normalized in the L2 norm)
and expressed as follows:

�k = Ayk/�k = Ayk/
√

�k (6)

where the kth eigenvalue is a measure of the energy transferred within the kth basis mode. If the
POD spectrum (energy) decays fast enough, practically all the support of the invariant measure is
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contained in a compact set. Roughly speaking, all the likely realizations in the ensemble can be
found in a relatively small set of bounded extent. By neglecting modes corresponding to the small
eigenvalues, the following formula is therefore defined to choose a low-dimensional basis of size
M , where M�K :

I (M)=
∑M

i=1 �i∑K
i=1 �i

(7)

where I (M) represents the percentage of energy that is captured by the POD basis �1, . . . ,

�m, . . . ,�M .

2.2. Reduced-order model

The variables in (1) can be expressed as an expansion of the POD basis functions {�1, . . . ,�M }:

u(t, x, y, z)= ū+
M∑

m=1
�m(t)�m(x) (8)

where ū is the mean of the ensemble of snapshots for the variables u(t), �m (1�m�M) are the
time-dependent coefficients to be determined and �m(0) are the coefficients at the initial time level.
Substituting (8) into (1) and taking the POD basis function as the test function, then integrating
over the computational domain � yields the POD reduced-order model

�� j

�t
=
〈
f

((
ū+

M∑
m=1

�m(t)�m(x)
)

, t,x
)

, � j

〉
, 1� j�M (9)

subject to the initial condition

� j (0)=((u(0,x)− ū(x)),� j ) (10)

where 〈·, ·〉 is the canonical inner product in the L2 norm. In the finite element method, the POD
basis �m(x)=∑N

i=1 Ni (x)�m,i ; hence, (9) can be expressed as

�� j

�t
=
〈
f

((
ū+

M∑
m=1

�m(t)
N∑
i=1

Ni�m,i

)
, t,x

)
,� j

〉
(11)

where Ni is the basis function in the finite element and N is the number of nodes in the
computational domain.

3. REDUCED-ORDER 4D-VAR

The aim of 4D-Var is to determine optimal control variables (e.g. initial conditions). The optimal
solution for (1) is obtained by minimizing the functional �(U 0):

�(U 0)= 1

2
(U 0−Ub)

TB−1(U 0−Ub)+ 1

2

Nt∑
n=1

(HUn− yno )TR−1(HUn− yno ) (12)
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where B is the background error covariance matrix, R−1 is the observation error covariance
matrix, H is the observation operator, U 0 is a vector containing the control variables (here, initial
conditions), Un is a vector containing the solution of variables from the model (the reduced-order
model) at the time level n (here, Nt is the number of time levels) and yno is the observation at
time level n. In a POD reduced model, the initial value U 0 and the reduced-order solution Un are
expressed as

U 0=Ū+
M∑

m=1
�m(0)�m(x) (13)

Un =Ū+
M∑

m=1
�m(tn)�m(x) (14)

Substituting (13) and (14) into (12) yields

�(�(0)) = 1

2

((
Ū+

M∑
m=1

�m(0)�m(x)
)

−Ub

)T

B−1
((

Ū+
M∑

m=1
�m(0)�m(x)

)
−Ub

)

+1

2

Nt∑
n=1

(
H
(
Ū+

M∑
m=1

�m(tn)�m(x),
)

− yno

)T

R−1
(
H
(
Ū+

M∑
m=1

�m(tn)�m(x),
)

− yno

)

(15)

where the snapshots are chosen at time intervals with a constant time interval between them during
the simulation period.

3.1. Discrete reduced-order adjoint equations

Here, the POD reduced-order model (11) for the incompressible Navier–Stokes equations can be
expressed as

�� j (t)

�t
+
〈
�u, j ,

((
ū+

M∑
m=1

�u,m(t)�u,m(x)
)

·∇
(
ū+

M∑
m=1

�u,m(t)�u,m

))〉

+
〈
�u, j ,

(
f k×

(
ū+

M∑
m=1

�u,m(t)�u,m(x)
))〉

+
〈
�u, j ,

(
∇ p−�∇2

(
ū+

M∑
m=1

�u,m(t)�u,m(x)
))〉

=0 (16)

where ū is the mean of the ensemble of snapshots for velocity field u=(u,v,w)T, p is the pressure,
f represents the Coriolis inertial force, � is the kinematic viscosity and k=(0,0,1)T. Taking
into account second-order Crank–Nicolson time stepping, for example, the above equation can be
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re-expressed as

�� j (t)

�t
+
〈
�u, j ,

((
ū+

M∑
m=1

�n−1
u,m �u,m

)
·∇
(
ū+

M∑
m=1

(0.5�n−1
u,m +0.5�n

u,m)�u,m

))〉

+
〈
�u, j ,

(
f k×

(
ū+

M∑
m=1

(0.5�n−1
u,m +0.5�n

u,m)�u,m

))〉

+
〈
�u, j ,

(
∇ p−�∇2

(
ū+

M∑
m=1

(0.5�n−1
u,m +0.5�n

u,m)�u,m

))〉
=0 (17)

The discrete model of (17) at the time level n can be expressed in a general form in a subspace

An�n =sn (18)

where

sn =Bn�n−1+ fs (19)

An and Bn (An,Bn ∈ RM×M , where M is the number of POD bases) are the matrices at the time level
n, which include all the discretization of (17) or (9), �n =(�n1, . . . ,�

n
M ) and �n−1=(�n−1

1 , . . . ,�n−1
M )

are the vectors of variables to be solved at the time levels n and n−1, respectively, here including
the coefficients related to the POD basis functions for state variables u in (1), sn is a discretized
source term at the time level n and fs is a source term including the forcing terms on the boundaries.

For a nonlinear simulation, the matrices An and Bn can be expressed as

An = Ân
0+

M∑
m=1

�n−1
m Ân

m (20)

Bn = B̂n
0+

M∑
m=1

�n−1
m B̂n

m (21)

where An,Bn, Ân
0, B̂

n
0, Â

n
m, B̂n

m ∈ RM×M (dependent on the governing equations and corresponding
discretization). The components of the matrices An and Bn in (17) can be expressed as

Ân
0,i, j =1+〈�u,i ,0.5�t (ū·∇�u, j + f k×�u, j +∇ p−�∇2�u, j )〉, 1�i, j�M (22)

Ân
m,i, j =〈�u,i ,0.5�t (�u,m ·∇�u, j )〉, 1�i, j�M (23)

B̂n
0,i, j = 1+〈�u,i ,0.5�t (ū·∇�u, j + f k×�u, j +∇ p−�∇2�u, j )+�t�u, j ·∇ū〉

1�i, j�M (24)

B̂n
m,i, j =〈�u,i ,0.5�t (�u,m ·∇�u, j )〉, 1�i, j�M (25)
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Equations (20) and (21) can be re-expressed as

An = Ân
0+Ân�n−1 (26)

Bn = B̂n
0+B̂n�n−1 (27)

where Ân =(Ân
1, . . . , Â

n
M ) and B̂=(B̂n

1, . . . , B̂
n
M ), see [41].

Taking into account (18), the discrete forward equation during the simulation period [t1, . . . , tNt]
can be expressed as

A�=s (28)

where

A=

⎛
⎜⎜⎜⎜⎜⎜⎝

A1

−B2 A2

. . .
. . .

−BNt ANt

⎞
⎟⎟⎟⎟⎟⎟⎠

(29)

and

�=(�1,�2, . . . ,�Nt)T (30)

s=(B1�0,0, . . . ,0)T+ fs (31)

Differentiating (28) with respect to the control variables to be optimized (i.e. the initial coefficient,
�0=�(0)), the tangent linear model is obtained

Ā�+A�̄= s̄ (32)

where the overbar is defined as the differentiation with respect to the control variables �0

Ā= �A
��0

=

⎛
⎜⎜⎜⎜⎜⎜⎝

Ā1

−B̄2 Ā2

. . .
. . .

−B̄Nt ĀNt

⎞
⎟⎟⎟⎟⎟⎟⎠

(33)

and

�̄= ��

��0
=(�̄1, �̄2, . . . , �̄Nt)T (34)

s̄= �s
��0

=(B̄1�0,0, . . . ,0)T+(B1�̄0,0, . . . ,0)T (35)
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where taking into account (26) and (27)

Ān = �An

��0
= Â�̄n−1 (36)

B̄n = �Bn

��0
= B̂�̄n−1 (37)

where n describes time levels, 1�n�Nt. Equation (32) can be therefore re-expressed as

⎛
⎜⎜⎜⎜⎜⎜⎝

Ā1

−B̄2 Ā2

. . .
. . .

−B̄Nt ĀNt

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

�1

�2

...

�Nt

⎞
⎟⎟⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎜⎜⎝

A1

−B2 A2

. . .
. . .

−BNt ANt

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

�̄1

�̄2

...

�̄Nt

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

B̂1�0�̄0

0

...

0

⎞
⎟⎟⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎜⎜⎝

B1�̄0

0

...

0

⎞
⎟⎟⎟⎟⎟⎟⎠

(38)

The tangent linear model is then derived

(A+Aextra)
��

��0
= �s

��0
(39)

where A is calculated in (29) and Aextra originates from the nonlinear terms and is expressed as

Aextra=

⎛
⎜⎜⎜⎜⎜⎜⎝

0

Â�2−B̂�1 0

. . .
. . .

Â�Nt −B̂�Nt−1 0

⎞
⎟⎟⎟⎟⎟⎟⎠

(40)

The variation of the objective function (12) with respect to the control variables �0 is

��
��0

=
(

��

��0

)T ��
��

(41)

Taking into account Equation (39), yields

��
��0

=
(

�s
��0

)T

(A+Aextra)
−T ��

��
(42)
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The gradient of the objective function can then be expressed as

��
��0

=
(

�s
��0

)T

�∗ (43)

where �∗ is the adjoint variable and can be calculated by solving the following adjoint equation:

(A+Aextra)
T�∗ = ��

��
(44)

3.2. Adaptive POD

In this work, the POD model is based on the solution of the original model for specified control
variables (e.g. initial and boundary conditions). It is therefore necessary to reconstruct the POD
model when the resulting control variables from the latest optimization iteration are significantly
different from the ones upon which the POD model is based. An adaptive POD 4D-Var procedure
is used to periodically update the POD basis, and the reduced-order direct and inverse models (for
detail see [42, 43]). The inversion procedure starts with the initial estimation of the control variables.
An initial set of snapshots is obtained by running the full forward model, and the corresponding
POD subspace and reduced-order model are constructed. The adaptive POD procedure proposed
is as follows:

1. Set the POD iteration level it=1 and the initial guess controls cit.
2. Set up the snapshots Uit from the solution of the full forward model with the controls cit.
3. Calculate the POD bases (the number of POD bases is chosen to capture a prescribed energy

level).
4. Project the controls cit on the reduced space �it, j t ( j t=1).
5. Optimize the initial controls �it, j t (note: the optimization procedure is carried out completely

on the reduced space. The Polak–Ribière nonlinear conjugate gradient (CG) technique is
employed here and j t is the Nonlinear CG iteration level).

6. (a) check the value of cost function (12). If |� j t |<� (where � is the tolerance for the
optimization), then go to step 7;

(b) if |� j t |>� and |� j t −� j t−1|>10−3 (where j t−1 and j t are the consecutive optimization
iteration levels), then set j t= j t+1 and go back step 5;

(c) if |� j t |>� and |� j t −� j t−1|<10−3, then update the POD bases:

(i) find the new controls cit+1 by projecting the optimization controls �it, j onto the
original flow domain and

(ii) set it= it+1 and go back step 2.

7. The adaptive POD optimization procedure is completed.

4. MESH ADAPTIVITY IN REDUCED MODELS

4.1. Description of ICOM and anisotropic mesh adaptivity

The POD-based reduced model presented was implemented for ICOM. This unstructured adaptive
mesh model can simultaneously resolve both small- and large-scale ocean flows while smoothly
varying resolution and conforming to complex coastlines and bathymetry. With more appropriate
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focused numerical resolution (e.g. adaptive and anisotropic resolution of fronts and boundary
layers, and optimal representation of vertical structures in the ocean) ocean dynamics may be accu-
rately predicted. The underlying model equations consist of the 3D incompressible Navier–Stokes
equations. To accurately represent local flow around steep topography, the hydrostatic assumption
is not made. The pressure is split into the geostrophic and ageostrophic parts, which are solved for
separately. This allows the accurate representation of hydrostatic/geostrophic balance [45, 46].

A dynamically adapting anisotropic mesh in 3D is used here [47, 48]. Mesh adaptivity or
optimization relies on the derivation of appropriate error measures, which dictate how the mesh is
to be modified [47]. A metric tensor is used to calculate the required edge lengths and orientation
of the mesh elements to control solution errors. It is constructed so that an ideal edge length is
unity when measured in metric space. Since the metric is dependent on both location and direction
it is able to reflect locally anisotropic information within the solution. Thus inhomogeneous and
anisotropic meshes result from this approach. By defining an objective functional, which is based
on the element quality in this metric space, an optimization technique is used to improve the
overall quality of the mesh. Local operations (based on a series of mesh connectivity and node
position searches) are performed on a 3D tetrahedral mesh and include: edge collapsing/splitting;
face to edge and edge to face swapping; edge to edge swapping; and local node movement or mesh
smoothing in a fashion similar to Freitag and Ollivier-Gooch [49] and Buscaglia and Dari [50].
Constraints are imposed on these operations so as to preserve the integrity of non-planar geometrical
boundaries [47, 48].

To reduce the interpolation error, high-order interpolation approaches are employed. For each
node in the reference mesh, the element of the adapted mesh in which the node lies is identified.
Then, a local higher-order polynomial is fitted with a least-squares approach on a patch of nodes
around this element. In the work presented here, the polynomial is either quadratic or cubic. This
polynomial is then evaluated at the location of the node in the reference mesh to determine the
interpolated value. This scheme is exact for polynomials up to the degree of the fitted polynomial,
and thus is more accurate than linear interpolation, but it comes at a higher cost as a dense matrix
(10×10 for cubic in two-dimensional (2D), 20×20 in 3D), must be inverted for each element in
the original mesh to compute the interpolated solution.

4.2. Adaptive mesh technique in POD and error estimate

When adaptive meshes are employed, the mesh resolution requirements vary spatially and tempo-
rally, as the meshes are adapted according to the flow features through the whole simulation.
The dimensional size of the variable vectors is different at each time level since the number of
nodes varies during the simulation. Snapshots can therefore be of different lengths at different time
levels. This unavoidably brings difficulties in the implementation of a POD-based reduced model
for an adaptive mesh model. To overcome these difficulties, a standard reference fixed mesh is
adopted for the reduced-order model. The solutions from the original full model are interpolated
from their own mesh onto the same reference fixed mesh at each time level, and then stored in the
snapshots. The information at the snapshots is used to find the optimal POD basis. This allows the
same length of base modes to be obtained at each time level. The resolution of the reference mesh
and the interpolation errors between the two meshes (the adaptive mesh and the fixed reference
mesh) may affect the accuracy of the POD simulation, and thus the reference mesh must be chosen
carefully so that it is at least as fine as the finest adapted mesh at a given location. To reduce the
interpolation error, high-order interpolation approaches are employed.
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5. APPLICATION AND DISCUSSION

The new model has been applied to 2D gyre flows in a computational domain, 1000km by 1000km
with a depth of H =500m. The underlying model equations consist of the 3D incompressible
Navier–Stokes equations (for 2D flow cases, one element in the vertical). The initial conditions
are optimized using the POD reduced-order adjoint model. The accuracy and validation of the
reduced-order POD adjoint model have been evaluated. Error estimation is undertaken through the
comparison of the results obtained from the original (full) and POD reduced models. Furthermore,
the adaptive POD approach is employed to update the POD bases (when the value of the cost
function cannot be decreased by more than 10−3 between the consecutive iterations), and its effec-
tiveness is discussed. The Polak–Ribière nonlinear CG multivariate unconstrained minimization is
employed in the implementation of the inversion.

5.1. Description of the case: Gyre

The POD reduced adjoint model is tested in a computational domain, 1000km by 1000km with
a depth of H =500m. The wind forcing on the free surface is given as

�y =�0 cos(�y/L), �x =0.0 (45)

where �x and �y are the wind stresses on the free surface along the x and y directions, respectively,
and L=1000km. A maximum zonal wind stress of �0=0.1Nm−1 is applied in the latitude (y)
direction. The Coriolis terms are taken into account with the beta-plane approximation ( f =	y)
where 	=1.8×10−11 and the reference density 
0=1000kgm−1.

The problem is non-dimensionalized with the maximum Sverdrup balance velocity

	H
0v= ��

�y
��0�

L
⇒v�3.5×10−2ms−1 (46)

(and so the velocity scale U =3.5×10−2ms−1 is used here), and the length scale L=1000km.
Time is non-dimensionalized with T = L/U . Incorporating the beta-plane approximation gives
a non-dimensional 	∗ = L2	/U =514.286. The non-dimensional wind stress (applied as a body
force here averaged over the depth of the domain) takes the same cosine of latitude profile with
�∗
0=�0L/(U 2
0H)=163.2653. The Reynolds number is defined as Re=UL/�=250 (here the
kinematic viscosity is 140m2 s−1). The time step is 3.78×10−4, equivalent to 3h. No-slip boundary
conditions are applied to the lateral boundaries. The pseudo-observational data are taken on days
125, 150 and 175 over the computational domain. The starting guess values of the initial conditions
are given by the background flow (here, taken from the ‘true’ flow fields on days either 107.5 or
137.5 in the experiments).

The POD bases are constructed by the snapshots that are obtained from the numerical solutions
by forcing the full forward model with the background flow. Forty snapshots with 35 POD bases
for the velocity field u,v,w and pressure are chosen, which capture more than 99.5% of energy
(calculated by the first 35 leading eigenvalues (7)).

To accurately represent geostrophic pressure, its basis functions are split into two sets: �pgu and
�pgv , which are associated with the u- and v-velocity components. Furthermore the geostrophic

Copyright q 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2009; 60:709–732
DOI: 10.1002/fld



A POD REDUCED-ORDER 4D-VAR ADAPTIVE MESH OCEAN MODELLING APPROACH 721

pressure can be represented by a summation of the two sets of geostrophic basis functions:

pg = p̄g+
M∑

m=1
�pgu,m�u,m+

M∑
m=1

�v,m�pgv,m (47)

Figure 1. Optimization problem (local minimum) introduced by an unappropriate choice of initial guess
controls (the initial guess controls is taken from the true flow field on the 137.5th day). Left panel: inverted
model velocity field; right panel: error for the velocity field: (a) at the initial time level; (b) at the initial
time level; (c) at time level t=125 days; (d) at time level t=125 days; (e) at time level t=175 days;

and (f) at time level t=175 days.
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where p̄g is the mean of the ensemble of snapshots for the variable p. The geostrophic basis
functions are calculated by solving the elliptic equations (the geostrophic balance equations) using
a CG iterative method:

−∇2�pgu,m = �( f �u,m)

�y

−∇2�pgv,m = �(− f �v,m)

�x

(48)

The geostrophic pressure has a quadratic finite element representation while linear finite element
representations are used for the velocity components.

An adaptive mesh is adopted in the full model. The mesh for the full model adapts every 19
time steps with maximum and minimum allowed mesh size of 0.2 and 0.001 (non-dimensional),
respectively. To allow the same length of POD bases at the snapshots for both the reduced forward
and adjoint models, a reference fixed mesh is chosen for the POD inversion (right panel in Figure 9).
To build up the snapshots, the solutions from the full forward model are interpolated from the
adaptive mesh (left panel in Figure 9) onto the reference fixed mesh.

5.2. Issues with adaptive reduced 4D-Var

As discussed in Section 3.2, the POD reduced model based on the background flow can be improved
by updating the POD bases. Here, the POD bases are re-calculated when the value of the cost
function cannot be decreased by more than 10−3 between the consecutive optimization iterations.
The resulting control variables from the latest optimization iteration are applied back to the full
model to generate the new POD bases. The new POD bases then replace the previous ones to
derive a new POD reduced-order model [42].

However, in the experiments the updated POD bases may be unacceptable if the control variables
optimized during the latest POD iteration are far from the true values. As an example, the initial
guess controls (background flow) are taken from the true flow field on the 137.5th day. By fitting
the numerical solution to observational data, the errors of the inverted model velocity field at the
time levels (t=125,150,175 days) are reduced to small values (less than 8ms−1 in Figure 1).

200 250 300 350 400

Time (day)
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3

4
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R
M

SE

Intergration error
Intergration + subspace errors

Figure 2. Error of the POD reduced forward model. Solid line: integration error (41
snapshots and 41 POD bases); dashed line: total reduced model error (integration error

plus project error, 41 snapshots and 35 POD bases).
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Figure 3. Error in the velocity field from the POD reduced model with the true initial conditions at time
levels (a) t=125 days; (b) t=150 days; and (c) t=175 days.

The cost function (12) is reduced by 73% of its original value during the optimization procedure.
However, the optimized initial controls during the current POD inversion iteration are far from
what it is expected (inverted model velocity on the top panel in Figure 1 and the true value in
Figure 7(a)). It is assumed that a local minimum was attained in this case. Obviously, the optimized
initial conditions cannot be used to update the POD bases. An appropriate choice of initial guess
controls is needed to improve the adaptive reduced 4D-Var solution (here, taken from the true flow
field on the 107.5th day, see Section 6.3.2).

5.3. Error estimation and POD results

The total error of the inverted model results comprises: (a) the integration error of the POD
reduced model and the projection error (including the interpolation error when adaptive meshes
are adopted) and (b) the error introduced by the optimized controls (including the error of the
POD reduced-order adjoint model).

5.3.1. Error estimation for the POD reduced-order model. The error of the POD reduced-order
model is split into the projection error and the error from the integration in the subspace (see [51]).
The two-norm of the projection error can be calculated by [51]

‖eproj‖L2 =
√

K∑
i=M+1

�i (49)

Copyright q 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2009; 60:709–732
DOI: 10.1002/fld



724 F. FANG ET AL.

(a) (b)

(c) (d)

(e) (f)

Figure 4. Contours of velocity at time levels t=150 days (left panel) and t=200 days (right
panel). The thick lines represent the results from the full model while the thin lines from the POD
reduced-order model with the use of the (a,b) linear mesh to mesh interpolation; (c,d) quadratic
mesh to mesh interpolation; and (e, f) cubic mesh to mesh interpolation: (a) linear (t=150 days);
(b) linear (t=200 days); (c) quadratic (t=150 days); (d) quadratic (t=200 days); (e) cubic

(t=150 days); and (f) cubic (t=200 days).

where K is the number of snapshots and M is the number of POD bases (i.e. the subspace size).

Here M=35, the two-norm of the projection error is therefore
√∑K

i=M+1 �i =1.22,1.3 and 1.37
for the velocity components u, v and pressure p, respectively.

To isolate the error of the reduced model, the POD reduced model is driven by the true controls
rather than the optimized ones. The results from the POD reduced model are compared with those
from the full model. The root mean square error (RMSE) between the POD velocity solution and
the true one at the time level n is used to estimate the error of the POD model:

RMSEn =
√∑N

i=1(U
n
i −Un

0,i )
2

N
(50)
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where Un
i and Un

o,i are the vectors containing the POD velocity components and true ones at the
node i , respectively, N is the total number of nodes over the domain. The RMSE during the
simulation period is provided in Figure 2. The dashed line represents the total reduced model error
(the integration error plus project error) when 41 snapshots with 35 POD bases are chosen, while
the solid line shows the integration error isolated by eliminating the projection error (the number
of POD bases being the same as that of snapshots). The total reduced model error (RMSE) remains
small (less than 2ms−1) when t�150 days, and increases to 4ms−1 at t=175 days. Since adaptive
meshes are employed in the full model, the RMSE shown in Figure 2 includes the interpolation
error as well. The absolute error between the POD solution and true flow state over the domain at
the different time levels (t=125,150,175 days) is shown in Figure 3. The maximum error is less
than 8ms−1 during the first half simulation period and increases as the simulation time accrues.

When adaptive meshes are adopted in the original model, an interpolation error between the
adaptive and reference meshes is introduced to snapshots and the POD reduced-order model.
To reduce the interpolation error and improve the quality of snapshots, high-order interpolation
schemes are employed. To evaluate the interpolation error, a comparison of POD results is carried
out with linear and high-order (quadratic and cubic) interpolation schemes. Figure 4 shows the
velocity contour at time levels (t=150 and 200 days) where the thick and thin lines represent
the solutions from the full and POD reduced-order models. It is shown that the accuracy of POD
results is improved by introducing the high-order interpolation operators during the second half
of the simulation period [150,200] days where highly structured turbulent flows (eddies) develop.
Compared with that, with the use of the linear interpolation, the RMSE of the velocity results
(between the POD and full models) with the use of the quadratic and cubic interpolation schemes
is reduced by half (the RMSE remains small—less than 2ms−1) while the correlation of velocity
results is increased to 95% (Figure 5).

5.3.2. Optimized results and error estimation. In this case, the guess values of the initial conditions
(background flows) are taken from the true flow state on the 107.5th day. The POD reduced-order
forward and adjoint models are used to optimize the initial conditions. The POD bases are updated
once during the optimization procedure. The comparison between the optimized and true initial

(a) (b)

Figure 5. RMSE (a) and correlation coefficient (b) of velocity results between the POD model
and the full model with the use of the linear (solid line), quadratic (dashed line) and cubic (dotted

line) mesh to mesh interpolation schemes.
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Figure 6. Error in the velocity of the POD forward model driven by the optimized initial
conditions at time levels. Left panel: the first POD iteration; right panel: the second POD
iteration (after updating the snapshots): (a) t=125 days; (b) t=125 days; (c) t=150 days;

(d) t=150 days; (e) t=175 days; and (f) t=175 days.

velocity conditions is shown in Figure 7. The error between the inverted model velocity and the true
value (Figure 6) decreases by 10–50% in the larger part of flow after updating the snapshots (right
panel). The cost function (taking into account only the error introduced by the optimized controls)
is reduced by 20% of its original value at the first POD inversion iteration. It is further reduced
by 70% at the second adaptive POD iteration, i.e. after the snapshots are updated (Figure 7(d)).

The correlation cor defined below is also used to evaluate the quality of the inversion simulation

cor= cov12
�1�2
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Figure 7. The comparison between the optimized and true initial velocity conditions: (a) the true initial
conditions; (b) the optimized initial conditions; (c) the error between the optimized and true initial
conditions; and (d) the cost functional (misfit between the optimized and true velocities (the solid line:

the first adaptive POD iteration; the dashed line: the second adaptive POD iteration).

where

�1(x) =
Nt∑
n=1

(Un(x)−Ū (x))2, �2(x)=
Nt∑
n=1

(Un
o (x)−Ūo(x))2

cov12(x) =
Nt∑
n=1

(Un(x)−Ū (x))(Uo(x)n−Ūo(x))

(51)

where Un and Un
o are the vectors containing the optimal and true velocity components (u,v) at

the time level n over the domain, respectively, their respective means over the simulation period
are Ū and Ūo, n is the time level and Nt is the total number of time levels, x=(x, y, z). The
correlation between the true and modelled velocity in the case of running the POD model with the
initial guess control (background flow) is low, mostly less than 0.5 over the domain (Figure 8(b)).
It is improved after the initial conditions are optimized (Figure 8(c)), especially after updating
the POD bases (at the second adaptive POD iteration, Figure 8(d)). The correlation between the
inverted model and true velocity varies between 0.80 and 0.98 over the domain. The optimized
velocity fields are drawn in Figure 9 and exhibit an overall good agreement with the true ones
while the POD bases are updated only once for the entire optimization process.
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Figure 8. Correlation between the inverted model velocity and the true one. The inverted model
velocity is obtained from the POD model driven by (a) the true control; (b) the initial guess controls;
(c) the optimized controls at the first POD iteration; and (d) the optimized controls after the second

POD iteration, i.e. after updating the POD bases.

5.4. Computational efficiency of reduced-order 4D-Var

In this test case, it takes 10 h to run the full model and 3 h to run the reduced-order model. Thus,
running the reduced-order model results in a decrease of 70% in the CPU time. As a consequence,
the computational time required for reduced 4D-Var is reduced by a factor of 3N (where N is the
number of times needed to run the models until the optimality is satisfied). POD preconditions the
minimization process, which results in less minimization iterations.

It is also noted that 99% of the CPU time required for the reduced-order model is used to
calculate the discretized matrix. The numerical technique developed in [41] is adopted to accelerate
the POD inversion, that is, the matrices in the discretized POD forward and adjoint equations can
be constructed by sets of time-independent sub-matrices (see Equations (20) and (21)) prior to
running the reduced forward and adjoint models. These sub-matrices remain the same until the
POD bases are updated.

In total, the computer time required for the inverse simulation in this test case is given below:

• Running the full forward model to set up the snapshots and calculate the POD bases (10 h).
• Calculating the time-independent sub-matrices in preparation for running both the reduced

order forward and adjoint models (2.5 h).
• Running the reduced-order forward and adjoint models during the optimization procedure

(10 min, where the Polak–Ribière nonlinear CG approach for large-scale unconstrained mini-
mization is employed).
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Figure 9. Comparison between the true velocity field and that from the POD reduced model
(driven by the optimized initial conditions) at the time levels. Left panel: the true velocity field;
right panel: the optimized velocity field: (a) t=125 days; (b) t=125 days; (c) t=150 days;

(d) t=150 days; (e) t=175 days; and (f) t=175 days.

6. CONCLUSION

The development of the POD reduced-order 4D-Var model for an adaptive mesh, non-hydrostatic
finite element ocean model is presented here. Using the POD and Galerkin projection approaches,
the reduced-order forward model is derived in a reduced subspace (details in [41]). Once the
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forward reduced-order model is available, the reduced-order adjoint model can be directly obtained
from the POD reduced-order forward model in the subspace, instead of the original forward model.
The minimization procedure is then carried out in the reduced space. The matrix for the discretized
forward and adjoint models is constructed by a series of time-independent sub-matrices which
remain unchanged until the POD bases are updated [41]. The reduced-order forward and adjoint
models can thus be run repeatedly with negligible computational cost.

The performance of the POD 4D-Var model is demonstrated by inverting for the initial conditions
of a wind driven gyre in an idealized geometry. The correlation between the inverted model and
true velocity is of the order of 80–98% over the majority of the domain. The cost function (taking
into account only the error introduced by the optimized controls) is reduced by 20% of its original
value at the first POD inversion iteration. It is further reduced by 70% after the snapshots are
updated.

In general, the advantages of the POD reduced-order inverse model developed here over existing
POD approaches consist of the ability:

• to implement the reduced-order adjoint model from the discretized forward model easily;
• to use dynamically adaptive meshes in the reduced-order 4D-Var;
• to significantly reduce the computation cost for 4D-Var by carrying out the optimization in

the reduced space;
• to accurately represent the geostrophic balance by two sets of POD bases for the velocity

components u and v.
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