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Abstract

A novel variable-material non-intrusive reduced order model (NIROM)
based on a Smolyak sparse grid interpolation method, a radial basis func-
tion (RBF) method and proper orthogonal decomposition (POD) has been
developed for oil reservoirs with uncertain rock properties. This novel
NIROM is constructed by using a two level interpolation method. The
first level interpolation is constructed for the rock properties, and the
second level is for the fluid dynamics. The NIROM is independent of gov-
erning equations, therefore, this method is easy to implement and easy
to be extended for other applications as it does not require modifications
to the source code. The novelty of this work is the use of the presented
Smolyak gird and RBF interpolation based NIROM for oil reservoirs with
uncertain rock properties. Another novelty is the use of Smolyak sparse
grid to reduce the NR realisations of the reservoir simulator for construct-
ing the NIROM and reduce the computational effort involved in creating
the hyperspace of basis functions and coefficients from the snapshots of
all the different realisations.

The capability of this new NIROM has been numerically illustrated
in two multiphase flows in porous media: a reservoir with eight baffles
case and a 3D fluvial channel case with 22 uncertainties. By comparing
the results of the novel NIROM against the solutions obtained from the
high fidelity full model, it is shown that this model can result in a large
reduction in the CPU cost (by a factor of about three orders) while much
of the details of multiphase flow in porous media are captured.
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1 Introduction

Production optimisation and history matching are two applications that require
the engineer to run numerous flow simulations of flow in the subsurface. Each
flow simulation can be very computationally intensive, especially if a reservoir is
geologically complex. In some cases it may not be feasible to perform the opti-
misation sufficiently quickly for it to be useful. This has driven the development
of proxy reduced order modelling (ROM) techniques.

Reduced order modelling techniques are distinct from proxy modelling (or
neural networks) in that they work by projecting the solutions into a different
lower dimensional solution space. In contrast proxy models assume a simple
mathematical relationship between the inputs and the outputs of a model of a
physical system. The advantages of the reduced order modelling approach are
that it can be used to interpret the physical reasons behind an observed behavior
and also that, in principal, it can provide a measure of the error in the ROM
solution compared with that obtained from the full physics model from which
it was generated. ROM techniques have been widely used in various research
fields including fluid dynamics ([1, 2]), molecular dynamics ([3]), heat transfer
([4]), data assimilation ([5, 6]), elasticity problems ([7]), shape optimization
([8]), sensor optimization ([9]) and aeroplane components design ([10]) and are
becoming more widely discussed in the petroleum engineering literature [11, 12,
13, 14, 15].

Most ROMs have to be hard-coded into the flow simulator (they are intru-
sive). This means they cannot be used with the commercial simulators that are
used by most oil companies. A further problem is that most are derived using
POD and/or Galerkin methods. These approaches tend to suffer from non-linear
inefficiency and instability issues ([16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27]).

In order to avoid these issues, the non-intrusive reduced order model (NIROM)
has been introduced. Xiao et al presented a number of different NIROMs based
on a Taylor series based expansion, a Smolyak sparse grid, radial basis func-
tions (RBF) and deep learning ([28, 29, 30, 31]). Lin et al presented a NIROM
based on least squares fitting and a sparse grid [32]. They have applied this
RBF based NIROM to the modelling of inertial flows, multiphase porous media
problems, ocean problems as well as to a fluid and solid interaction problem
([33, 34, 33, 35]). Vasile and Winter proposed a non-intrusive approach based
on POD and a RBF neural network ([36, 37]). Han proposed a Black Box
Stencil interpolation non-intrusive method, and applied it to a 1-D chemical
reaction problem and 2-D porous media flow problems ([38]). Raisee et.al. have
presented a non-intrusive method for the polynomial chaos representation using
POD ([39]).

A number of reduced order methods have also been developed for modelling
waterflooding in oil reservoirs. Klie proposed a ROM based on the POD, RBF
neural network and Discrete Empirical Interpolation Method (DEIM) and used
it to predict the production of oil and gas reservoirs ([40]). Cardoso et al ap-
plied the POD and the trajectory piecewise linear (TPWL) method to model
reduction for application to oil production optimization ([11, 12]). The work
illustrated the different setting of the injector and the producer wells. Heijn
derived a reduced reservoir model through system-theoretical concepts ([13]).
He applied the POD-TPWL method into history matching of oil and water sys-
tems for production optimization ([14]). Insuasty et al presented a tensor based
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method for production optimization ([41]). However, geologically heterogeneous
reservoirs with varying structures were not discussed. In the work of xiao et al
[42], a NIROM was applied to multiphase porous media problems, but again was
not applied to problems in which the permeability distribution was uncertain.
This work firstly used Smolyak sparse grid, RBF and POD based parameterized
NIROM for oil reservoirs with uncertain rock properties.

In this paper we outline a non-intrusive ROM that can be used to evaluate
waterflooding performance in geologically heterogeneous reservoirs in which the
permeability of the different structures (e.g. faults) or deposits (e.g. channels in
a fluvial system) are uncertain. This has been implemented using an unstruc-
tured mesh finite element porous media flow model ([43]) as the underlying full
physics model. The NIROM is demonstrated using a synthetic geological model
in which the permeability of the heterogeneities is uncertain: a 2D model of a
reservoir with 8 partially communicating faults and a 3D fluvial channel with 3
and 22 uncertainties. The results compare well with those from the full physics
model and reduce the CPU time by a factor of a thousand.

The structure of the paper is as follows: Section 2 describes the general prob-
lem statement; Section 3 derives the NIROM method using Smolyak sparse grid,
RBF and POD method for variable rock properties multiphase flows in porous
media; Section 4 illustrates the methodology derived by means of two numer-
ical examples: eight rock layers with different permeabilities and a 3D fluvial
channel case are resolved. Finally in Section 5, the conclusion is presented.

2 General Problem Statement

The aim is to create a fast but approximate model that can be used to estimate
the spatial distributions of water saturation and pressure, at different times,
during the waterflooding of geologically heterogeneous oil reservoirs in which
the pattern of permeability is known (e.g. the locations of faults or the facies)
but the values of permeability within each element of the pattern are uncertain.
We assume that the locations of injection and production wells are fixed and
their flow rates are constant and known. A full physics numerical simulator is
used to create a number of training data sets. These take the form of a series of
snapshots formed of maps of water saturation and pressure at different, equally
spaced time instances for specified inputs to the reservoir simulator. These maps
of saturation and pressures are described on a fixed mesh. The mesh itself does
not have to be structured or uniform but it does not change in time. The steps
to create and use the NIROM is thus as follows:

1. the engineer describes the expected pattern of permeabilities within the
reservoir of interest;

2. the engineer chooses the range of permeability values that are possible
within each region of the pattern. It is assumed that each permeability
value within the range is equally probable;

3. NR realisations of the reservoir are created using a Smolyak sparse grid
approach or by random sampling. This specifies the permeability of each
region to be used in a given realisation, taken from the range specified in
step 2;
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4. run the full physics simulator for each of the permeability realisations, ki,
outputting snapshots of the total velocity, pressure and water saturation
distribution at Nt equally spaced time intervals covering the full range of
times of interest to the engineer. The output times of these snapshots are
the same for each simulation;

5. Create the NIROM:
When the engineer wants to use this NIROM to estimate the spatial dis-
tribution of the properties of interest (total velocity, water saturation,
pressure) at a particular time for a different realisation of permeabilities,
an interpolation is performed to estimate the pressure, water saturation
and total velocity fields at this time for the new realisation. This means
that the computer time taken to estimate the reservoir behaviour for each
new realisation is simply the time taken to perform this interpolation. The
creation of the NIROM and the interpolation are described in Section 3.

2.1 Full Physics Formulation

Darcy’s law for immiscible multiphase flow in porous media has the form:

qα = −Krα
µα

K (∇pα − suα) , (1)

where qα is the αth phase Darcy velocity. The Krα is the relative permeability
of the αth phase, and it is a function that is denoted by Krα (Sα) corresponding
to the phase saturation variable Sα. pα is the pressure of the αth phase. K
is the absolute permeability tensor of the porous medium. µα and suα are the
phase dynamic viscosity and source term respectively. In this work the fluids are
considered incompressible and no source terms are considered, i.e. no gravity
or capillary effects are considered.

The saturation equation can be written as:

φ
∂Sα
∂t

+∇ · (vαSα) = scty,α, (2)

where φ denotes the porosity. The t is time and scty,α is a source term of the
αth phase. Finally, equation (2) is bounded by the constraint:

Nα∑
α=1

Sα = 1, (3)

where Nα denotes the number of phases. For more details, see [43, 44, 45].
IC-FERST (Imperial College Finite Element Reservoir SimulaTor) is used

here for the forward simulations. However, the creation and use of NIROM
is independent of the forward simulator used. In this paper, the spatial dis-
cretisation considered is the commonly used Control Volume Finite Element
method ([46, 47, 48, 49, 43, 50]). Velocity and pressure are discretised using
finite elements, while the saturation is discretised using control volumes to en-
sure mass conservation. The element pair used in the numerical simulations is
the P1DGP1. The velocity is represented using linear discontinuous Galerkin
shape functions and pressure is discretised using linear continuous Galerkin
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(a) 2-D tensor product (b) random distribution

(c) Smolyak grid, level=1 (d) Smolyak grid, level=2

Figure 1: The figures displayed above shows the full tensor product grid, random
distribution points and 2-D Smolyak sparse grid with level 1 and 2.

shape functions. Saturation is discretised using control volumes. To discretise
time, a Θ-method is used, Θ varies between 1 (backward Euler) and 0.5 (Crank-
Nicholson) based on a total variation diminishing (TVD) criterion. Therefore,
the time discretisation is always implicit. The non-linear solver used is a modi-
fied version of the Anderson solver detailed in [51].

2.2 Creation of the Realisations

The realisations to be used to create the NIROM can be chosen either using a
Smolyak grid approach or via random sampling using a radial basis function.
These are illustrated schematically in Figure 1 for a system with two regions
of different permeability. The Smolyak sparse grid approach results in samples
that are spaced on orthogonal grid (1(c) and (d)) whereas the RBF approach
(1(b)) results in scattered sample. When interpolating, we need to obtain the
values of a function at some points on a grid. A 2D tensor product grid is a
set of points distributed regularly on a grid (1(a)), and has the number of Cm,
where C denotes the number of points at one dimension, and m is the number of
dimension. If the dimension size is high, the number of points can be very huge
(curse of dimensionality). This curse of dimensionality motivated the search for
a sparse grid. Sergey Smolyak presented a sparse grid ([52]), which selects a
relatively small number of nodes on the tensor-product grid. In this case, the
values of a function at only a small number of nodes are required, rather than
all the nodes on the tensor product grid.

3 Derivation of the NIROM

As discussed in the previous section, the NIROM is created from the snapshots
of water saturation and pressure distributions produced by the full physics sim-
ulator for each realisation. The workflow to create the NIROM includes two
main steps:

1. Determine NR sets of basis functions, one set for each realisation. Each
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set is generated from the Nt snapshots of water saturation and pressure
of that realisation using Proper Orthogonal Decomposition (POD);

2. A hypersurface describing the POD basis functions and POD coefficients
over all possible permeability values with the specified ranges is created
by interpolation using either RBF or the Smolyak sparse grid method;

Once the set of hypersurfaces has been created, the NIROM can then be used
to estimate the saturation and pressure distributions that would be obtained
for any permeability values within the chosen ranges. Both of Smolyak sparse
grid interpolation and RBF interpolation are very close to the full model. The
advantage of the Smolyak sparse grid interpolation is the ability to tackle the
issue of curse of dimensionality, which can be adopted to reduce the number of
training realisations. The details of the above workflow are described below:

3.1 Construction of basis function

A set of basis functions are obtained by the POD method. The POD method
projects the solutions from a large system onto a smaller number of orthogonal
basis functions. These basis functions are then combined linearly to represent
any variables in the large system, which has the form of,

ψ = ψ +

m∑
i=1

αiΦi, (4)

where ψ denotes any variables of interest (e.g. the saturation, pressure and
density distributions as a function of time), ψ is the mean of the variable over
the simulation time period, α denotes the POD coefficients, Φ denotes the POD
basis functions and m is the number of POD basis functions. The process of
obtaining basis functions can be expressed as follows,

(1) calculate solutions of the full physics system at time levels 1, ..., Nt ;

(2) Retrieve a snapshot matrix A from the solutions at all time levels at one
realisation;

(3) Subtract the mean of snapshot matrix A, i.e. A′ = A−Amean;

(4) Perform Singular Value Decomposition (SVD) on the snapshots matrix A′,
i.e. A′ = EΣFT , where E and F contain the left singular vectors and right
singular vectors of A;

(5) Choose the number of basis functions, m (m < Nt);

(6) Obtain the POD basis functions Φi = E:,i, for i ∈ {1, 2 . . .m} ;

The POD basis functions at the new unseen rock property point can be
obtained by either Smolyak sparse grid interpolation method or RBF interpo-
lation method. The procedure of obtaining the POD basis functions is similar
to that of POD coefficients as described in section 3.2.1 and 3.2. If sparse grid
interpolation method is chosen, the function values (f) in 20 are values of POD
basis functions. If the RBF interpolation method is chosen, the function values
(yi,j) in 10 are replaced by values of POD basis functions.
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3.2 Interpolation of POD basis functions and POD coef-
ficients between realisations

The POD basis functions and POD coefficients interpolation can be constructed
either by RBF interpolation or Smolyak sparse grid interpolation methods. The
distribution of model parameters can be scatter if we use RBF method. For the
Smolyak sparse grid interpolation method, the distribution of model parameters
must be regular.

3.2.1 Smolyak sparse grid interpolation method

The Smolyak sparse grid was firstly developed by the mathematician Sergey
Smolyak to integrate or interpolate functions with high dimensionality ([52]).
The Smolyak sparse grid interpolation is an efficient method that is used to
solve high dimensional linear tensor product problems.

One issue with the tensor product approximation is that it requires Ol1 ×
...×Old (Ol1 , Ol2 ...Old are number of knots used in each dimension respectively)
values of the function f on a grid, This increases exponentially with the number
of dimensions d. This means we need to the run full physical simulator for
Ol1 × ...×Old (Ol1 , Ol2 ...Old times, which is too time intensive.

The Smolyak sparse grid method can be used to resolve this ’curse of dimen-
sionality’ problem by choosing some of the nodes from the full tensor grid, thus
resulting in smaller number of running of full reservoir simulator.

In comparison to tensor product evaluations, computational efficiency is im-
proved, as the number of points no longer increases exponentially with the
dimensional size d, for more details, see [28].

The procedure of constructing a set of Smolyak sparse grid interpolation
functions for rock properties can be found in Appendix A.

3.2.2 Radial basis functions interpolation

The radial basis function interpolation method can also be used to construct a
set of surfaces representing the permeability space. The radial basis function
interpolation method is an efficient method to approximate a function using
a number of scattered data points. The radial basis functions interpolation
method constructs functional approximations in the form of

H(k) =

N∑
i=1

wi φ(‖k− ki‖), (5)

where the interpolation function H(k) is represented as a linear combination of
N radial basis functions(φ). Each RBF is associated with a different center ki
(other points), and weighted by a coefficient wi. ‖k− ki‖ is a scalar distance r
defined by the L2 norm.

In the RBF interpolation problem, the weight coefficients wi are determined
by ensuring that the interpolation function values H(k) matches the given data
y (basis functions) exactly. This is achieved by enforcing H(k) = y, which
produces a linear equation

Aw = y, (6)
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where

A =


φ (‖k1 − k1‖2) φ (‖k1 − k2‖2) · · ·φ (‖k1 − kn‖2)
φ (‖k2 − k1‖2) φ (‖k2 − k2‖2) · · ·φ (‖k2 − kn‖2)

...
...

...
φ (‖kn − k1‖2) φ (‖kn − k2‖2) · · ·φ (‖kn − kn‖2)

 , (7)

w = [w1, w2, ..., wn]T , y = [y1, y2, ..., yn]T (8)

The weight coefficients wj are then determined by solving the linear system (6).
y are the values of interpolation function. When we do interpolation of POD
coefficients, the y are values of POD coefficients. When we do interpolation of
POD basis functions, the y are values of POD basis functions. The process of
constructing a set of surfaces for the parameter space can be summarised as
Figure 2,

In the Figure 2, a set of surfaces (Hu,j , Hp,j , HS,j) can be obtained by

Hj(k) =

G∑
i=1

wi,j φj(‖k− ki‖), (9)

where weights wi,j can be calculated by,

Ajwi,j = yi,j i ∈ {1, 2, . . . , N}, (10)

After obtaining the NIROM, the current POD coefficients can be calculated by,

Hj(kk) =

G∑
i=1

wi,jφj(‖(kk)− (kj)‖). (11)
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Choose the varying parameters and find the maximum
and minimum values of them. The varying parameters

constitute a tensor product grid

Choose randomly a number of nodes G
on the tensor product grid

Choose a number of snapshots for each
node by solving the high fidelity model

j=1

j 6 m

Obtain a set of surfaces for
permeability distribution

Obtain POD coefficients for a new
unseen realisation

End

Yes

No

j++

Figure 2: Constructing a set of surfaces for permeability distribution space
based on RBF interpolation. m is the number of POD coefficients or POD basis
functions. j is the loop variable.
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Obtain the functional values yi

j=1

j 6 m

Calculate the weights W by solving
AW=y

Obtain a set of hyper-surfaces

End

Yes

No

j++

Figure 3: Constructing a set of hypersurfaces for reduced fluid dynamics based
on RBF interpolation

3.3 Calculation using the NIROM

The calculation using the NIROM includes offline and online procedures. The
offline procedure includes the procedure of constructing fluid dynamics hyper-
surfaces based on RBF.

3.3.1 offline: constructing fluid dynamics hyper-surfaces based on
RBF

In this section, the process of constructing the second level interpolation func-
tions representing the reduced fluid dynamics system using RBF method is
described. The set of hyper-surfaces representing the reduced fluid dynamics
are obtained according the Figure 3 below.

In Figure 3, functional value yi is the variable of interest (pressure saturation
etc) at the data point αt = (αtu, α

t
p, α

t
S) from the solutions from the high fidelity

model at time level t (t ∈ {1, 2, . . . Nt}), and it equals to αt+1
i .

The equation AW = y has the form of:
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φ (‖α1 −α1‖2) φ (‖α1 −α2‖2) · · ·φ (‖α1 −αNt‖2)
φ (‖α2 −α1‖2) φ (‖α2 −α2‖2) · · ·φ (‖α2 −αNt‖2)

...
...

...
φ (‖αNt −α1‖2) φ (‖αNt −α2‖2) · · ·φ (‖αNt −αNt‖2)



w1

w2

...
wNt

 =


y1

y2

...
yNt


A set of hyper-surfaces (fu,j , fp,j , fS,j) can be obtained by substituting the

weights into following equations,

fu,j(αu, αp, αS) =

Nt∑
i=1

wi,jφj(
∥∥(αu, αp, αS)− (αiu, α

i
p, α

i
S)
∥∥), (12)

fp,j(αu, αp, αS) =

Nt∑
i=1

wi,jφj(
∥∥(αu, αp, αS)− (αiu, α

i
p, α

i
S)
∥∥), (13)

fS,j(αu, αp, αS) =

Nt∑
i=1

wi,jφj(
∥∥(αu, αp, αS)− (αiu, α

i
p, α

i
S)
∥∥), (14)

3.3.2 Online calculation using NIROM

The online calculation process can be described in Figure 4:

In Figure 4, the initialisation is achieved by treating α0
u,j , α

0
p,j and α0

S,j as
the initial values. The solutions at current time level n can be obtained by
assigning a complete set of POD coefficients αn−1

u,j , αn−1
p,j and αn−1

S,j at previous
time level n− 1 into the hyper-surface f = (fu,j , fp,j , fS,j):

fu,j ← (αn−1
u , αn−1

v , αn−1
S ), fp,j ← (αn−1

u , αn−1
v , αn−1

S ), fS,j ← (αn−1
u , αn−1

v , αn−1
S ). (15)

Then, the POD coefficients of the current time level are,

αnu,j = fu,j =

Nt∑
i=1

wi,jφi,j(r), αnp,j = fp,j =

Nt∑
i=1

wi,jφi,j(r), αnS,j = fS,j =

Nt∑
i=1

wi,jφi,j(r), (16)

where, r =
∥∥(αu, αp, αS)− (αiu, α

i
p, α

i
S)
∥∥ .

After obtaining the POD coefficients, the solutions of the NIROM can be
obtained by projecting αnu,j , α

n
p,j and αnS,j onto the full space using the equa-

tions,

un =

m∑
j=1

αnu,jΦu,j , pn =

m∑
j=1

αnp,jΦp,j , Sn =

m∑
j=1

αnS,jΦS,j . (17)
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j 6 m

Assign a complete set of POD coefficient at previous
time level into hyper-surfaces

Calculate the POD coefficients at current time level

End

No

j++

Initialisation

n=1

j=1

n 6 Nt

Project the solutions from the reduced space to full space

Yes

Yes

n++

No

Figure 4: Online calculation procedure using NIROM
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4 Application of the NIROM

In this section full models are run with the reservoir simulator IC-FERST (Im-
perial College Finite Element Reservoir Simulator). IC-FERST is a multiphase
porous media flow simulator, based on surface based modelling, which includes:
high order time and space discretization, discontinuous and or control volume
pressure representation, unstructured dynamic mesh optimization and ability
to solve for high Courant numbers ([43, 44, 53, 54, 55]).

During the simulation, a number of full physics simulations are run first.
The number of runs is dependent of the number of nodes in the Smolyak sparse
grid. The NIROM then is created from snapshots obtained from a full physics
simulation of the fluid flows of interest. For the second numerical experiment the
range of the permeabilities of the different variations is not provided due to the
extent of the particular permeability values used, however, a range of values is
provided. To calculate the relative permeability values the Brooks-Corey ([56])
model is used:

krw (Sw) = k′w

(
Sw − Swirr

1− Swirr − Snwr

)nw
, (18)

krnw (Sw) = k′nw

(
Snw − Snwr

1− Swirr − Snwr

)nnw
, (19)

where k′w, k′nw, Swirr and Snwr are the endpoint water relative permeability,
endpoint oil relative permeability, the immobile fractions of the wetting and non-
wetting phase respectively. These properties are defined in Table 1. The mesh
sizes have been chosen as a balance between the coarsest mesh able to represent
the desired geology and to provide good numerical results in the forward model
and in the NIROM. In the first numerical example using a structured mesh and
in the second one using an unstructured mesh.

M0 Swirr = Snwr nw = nnw k′w k′nw φ # nodes
4.1 10 0.2 2 1.0 1.0 0.2 2646
4.2 4 0.2 2 0.3 0.8 0.2 31776

Table 1: Model set-up for the test cases 4.1 and 4.2; M0 is the viscosity contrast
between the phases.

4.1 Numerical example 1: reservoir with eight baffles

The first test case is comprised of eight low permeability barriers embedded
in a higher permeability domain as illustrated in Figure 5. The domain has a
non-dimensional size 10 × 10. The permeability of the eight barriers in this
test case are between 0.1 and 0.5 dimensionless permeability units, and the
permeability of the background is 10 dimensionless permeability units. The full
model simulation was run during the simulation period [0, 5] with a time step
size of 0.01. 50 snapshots of solutions were collected at regularly spaced time
intervals ∆t = 0.1 for each solution variable. The injection was controlled by
constant inlet velocity, v = (1, 1), from the lower left corner of the domain, see
Figure 5.
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In this example, the Smolyak sparse grid has a dimensional size of eight,
and there are 17 nodes in the sparse grid in terms of level one. Table 2 lists
permeability combinations of the eight-barrier case using level one-labelled E1-
E17. An unseen Smolyak sparse node (0.1, 0.5, 0.5, 0.5, 0.1, 0.5, 0.5, 0.5)-
labelled P1 is chosen to show the capabilities of the NIROM.

Table 2: Permeability combinations for the eight-barrier test case with level one
Cases \ Barriers 1 2 3 4 5 6 7 8

E1 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3
E2 0.1 0.3 0.3 0.3 0.3 0.3 0.3 0.3
E3 0.5 0.3 0.3 0.3 0.3 0.3 0.3 0.3
E4 0.3 0.1 0.3 0.3 0.3 0.3 0.3 0.3
E5 0.3 0.5 0.3 0.3 0.3 0.3 0.3 0.3
E6 0.3 0.3 0.1 0.3 0.3 0.3 0.3 0.3
E7 0.3 0.3 0.5 0.3 0.3 0.3 0.3 0.3
E8 0.3 0.3 0.3 0.1 0.3 0.3 0.3 0.3
E9 0.3 0.3 0.3 0.5 0.3 0.3 0.3 0.3
E10 0.3 0.3 0.3 0.3 0.1 0.3 0.3 0.3
E11 0.3 0.3 0.3 0.3 0.5 0.3 0.3 0.3
E12 0.3 0.3 0.3 0.3 0.3 0.1 0.3 0.3
E13 0.3 0.3 0.3 0.3 0.3 0.5 0.3 0.3
E14 0.3 0.3 0.3 0.3 0.3 0.3 0.1 0.3
E15 0.3 0.3 0.3 0.3 0.3 0.3 0.5 0.3
E16 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.1
E17 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.5
P1 0.1 0.5 0.5 0.5 0.1 0.5 0.5 0.5

Figure 6 shows the solutions of saturation from full model and the NIROM
with 6, 12 and 24 POD bases at dimensionless time instances 1.5 and 4.0 using
smolyak level one. It can be seen that the NIROMs has captured most of
the energy. The NIROM with 24 POD bases provides more accurate results,
compared with the high fidelity model, than NIROMs with 6 and 12 POD
bases. This is also reflected in Figure 7, which shows the error between the full
model and NIROM with 6, 12 and 24 POD basis functions at dimensionless
time instances 1.5 and 4.0. In the error figures, the errors are between 0 −
0.02. The solutions obtained from the high fidelity model and NIROMs at a
particular point in the domain are presented in Figure 8. It again shows that
the saturation solutions from NIROMs with 6, 12 and 24 POD bases are close
to the high fidelity full model. Again, the NIROM with larger number of POD
basis functions provides higher accuracy than that of with the smaller number
of POD basis functions. This is confirmed by the inspection of the RMSE and
correlation coefficient, shown in Figure 9.

In order to compare the performance of NIROMs using Smolyak sparse grid
and RBF, the saturation profile and saturation values comparison at a particu-
lar point (x=1.9048, y=2.381) are presented in figures 10 and 11, respectively.
Figure 10 shows the saturation profile of the high fidelity model, NIROM with
Smolyak sparse grid using 24 POD basis functions and NIROM with RBF using
24 POD basis functions. It can be seen that the saturation field provided by
NIROM with RBF is better, compared to the full model, than the saturation
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Figure 5: distribution of permeability in the domain, the permeability of the
eight barriers are between 0.1 and 0.5; The permeability of the background is
10 dimensionless units of permeability.

profile obtained by using NIROM with Smolyak sparse grid. This can also be
seen from Figure 11, where the two NIROMs perform well at the particular
point (x=1.9048, y=2.381). However, NIROM with RBF performs better than
NIROM with Smolyak sparse grid. Both methods have the same online and
offline CPU cost.

4.2 Numerical example 2: 3D fluvial channel case

The second case examined is a 3D model of a reservoir containing a number of
high permeability channels. There are three types of channels in the reservoir
and each type has a different permeability and associated uncertainty. The
different channel types are shown in different colors: blue, yellow and red. The
water is injected into the computational domain from the right side to the left
with a pressure gradient of (5.5 × 107 Pa). The simulation was run over the
simulation period [0, 1000days] with a time step size of 10 days. 20 snapshots
of solutions were taken at regularly spaced time intervals ∆t = 50 days for each
solution variable (pressure, saturation and velocity).

In this test case, 23 training simulations were used to construct the NIROM
with RBF interpolation. In order to test the capability of the NIROM, three
new cases with different permeabilities were simulated. In each of the 23 training
simulations, the permeabilities of two channels (the blue and the red channels
in Figure 12(b)) were modified randomly. The distribution of the 23 simulations
with the different permeabilities used is shown in Figure 12 using miliDarcies
(1mD = 9.869233 × 1016m2). The permeabilities were varied between 50 mD
and 1000 mD. The three new test simulations are points A, B and C in the
Figure 12 (a). Point A is the closest point to the training points, and point B is
further away from the training points. Point C is outside the training domain
[50− 1000]mD.

Figure 13 shows the saturation obtained from the full model and NIROM
after 15 days at point A (460, 360) mD. Figure (c) compares the saturation
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(a) Full model t = 1.5 (b) Full model t = 4.0

(c) NIROM 6 POD bases, t = 1.5 (d) NIROM 6 POD bases, t = 4.0

(e) NIROM 12 POD bases, t = 1.5 (f) NIROM 12 POD bases, t = 4.0

(g) NIROM 24 POD bases, t = 1.5 (h) NIROM 24 POD bases, t = 4.0

Figure 6: 8 baffles case: the figures displayed above show the solutions of satura-
tion from full model and the NIROM of 6, 12 and 24 POD bases at dimensionless
time instances 1.5 and 4.0 using smolyak level one.
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(a) NIROM, 6 POD t = 1.5 (b) NIROM, 6 POD t = 4.0

(c) NIROM, 12 POD, t = 1.5 (d) NIROM, 12 POD, t = 4.0

(e) NIROM, 24 POD, t = 1.5 (f) NIROM, 24 POD, t = 4.0

Figure 7: 8 baffles case: the figures displayed above show the error between the
full model and the NIROM of 6, 12 and 24 POD bases at dimensionless time
instances 1.5 and 4.0.
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Figure 8: 8 baffles case: the graphs show the saturation solutions predicted by
the full model, and the NIROM at position (0.95238, 0.95238).

obtained from two models at a particular location x = 184.25, y = 110 in the
computational domain, see Figure 12 (b). As can be seen from the figure,
the results of the NIROM using permeability values close to those used in the
training set better match with the results obtained from the full physics model.
Figure 14 shows the saturation profile from the full model and the NIROM
at time 25 days at point B (475, 750) mD. The saturation obtained from the
two models at a particular location x = 184.25, y = 110 in the computational
domain, see Figure 12 (b), is given in the sub-figure (c). The NIROM results
differ more from the simulation shown at point A. Figure 15 compares the
saturation profile of the full model and NIROM after time 30 days at point
C (450, 1250) mD. Figure 15 (c) compares the saturation value obtained by
the two models at x = 184.25, y = 110 in the computational domain. The
permeabilities of the widest channel and narrowest channel are (450,1250) mD,
which are outside the domain of the training points. NIROM results are less
accurate in this case, as expected.
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Figure 9: The graph shows the RMSE errors and correlation coefficient calcu-
lated for the NIROM model for the 8 layers case.

(a) Full model t = 5 (b) Smolyak, 24 POD, t = 5 (c) RBF, 24 POD, t = 5

Figure 10: 8 baffless case: saturation comparison between the high fidelity full
model, NIROM with Smolyak sparse grid and NIROM with RBF at time level
t = 5 dimensionless seconds.
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Figure 11: 8 baffless case: saturation values comparison between the full model,
NIROM with Smolyak grid and RBF using 24 POD basis functions at a partic-
ular point (x=1.9048, y=2.381) on the domain.

(a) (b)

Figure 12: (a) the different channel types: blue (wide channels), yellow (medium
width) and red (small channels); (b) the distribution of permeabilities used for
the red and blue channels (X-Y axis are in mD). The yellow channels has fixed
permeability equal to 200mD.
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Figure 13: Channel case: the saturation distribution obtained from the full
physical model and NIROM with 12 POD basis functions at time level t = 15
days for the permeabilities shown at point A (460, 360) in Figure 12 (b). Figure
(c) shows a comparison of the saturation value at x = 184.25, y = 110 in the
computational domain, see the pale blue square in Figure 12 (a).
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(a) Full model t = 25 days (b) NIROM, 12 POD, t = 25 days (c) Point B

Figure 14: Channel case: the saturation distribution obtained from the full
physical model and NIROM with 12 POD basis functions at time level t = 25
days at location B in Figure 12 (b).
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Figure 15: Channel case: the saturation distribution obtained from the full
physical model and NIROM with 12 POD basis functions at time level t = 30
days at location C in Figure 12 (a).
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(a) Full model (b) NIROM, 12pod

Figure 16: Channel case: Saturation from full model and NIROM with 22
varying input permeabilities.

In order to test the capabilities of the NIROM, The reservoir was divided into
22 types of channels; each channel has a different permeability and associated
uncertainty. 49 training simulations were used in this example.
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Figure 17: Reservoir with 22 types of channels: the graph shows the saturation
comparison between the full model and NIROM at an unseen point based on 49
training simulations particular point (x=-18.378, y=184.25, z=110.

4.3 Computational efficiency

Table 3 shows a comparison of the online CPU time required for running the
full model and NIROM. The simulations were performed on 12 cores machine
of an Intelr Xeonr X5680 processor with 3.3GHz and 48GB RAM. The test
cases were run in serial, which means only one core was used when simulating.
It can be seen that the online CPU time required for running the NIROM is
considerably less than that for the full model and is reduced by a factor of 2500.
It is worth noting that as the number of nodes increases, the CPU time required
for the full model also increases, while the CPU time for the NIROM remains
almost the same.

The offline CPU time required for constructing the NIROM includes the
time of forming the POD bases and interpolation functions. It is found that
the time for calculating the interpolation functions can be ignored. The offline
CPU time is dependent on the number of nodes in the computatioal domain and
POD bases. The offline CPU time has a linear relationship with the number of
POD bases and nodes. The number of nodes used in two examples is not big,
so the offline CPU cost is not too much.

Table 3: Comparison of the online CPU time (seconds) required for running the
full model and NIROM during one time step.

Cases Model Assembling Projection Interpolation Number Number Total
and solving of POD of nodes

Full 1.730 0 0 12 2646 1.731
Baffles NIROM 0 0.0003 0.0001 12 2646 0.00040

Full 74.9200 0 0 12 31776 74.920
Channels NIROM 0 0.0003 0.0001 12 31776 0.00040
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5 Conclusion

In this article a new non-intrusive reduced order model for multi-fluid flows in
oil reservoirs with uncertain rock properties is presented. It was constructed
by using a set of surfaces for the rock properties and a set of hyper-surfaces
for the fluid dynamics. This NIROM is easy to implement, modify and extend.
This model was implemented under the framework of a 3D unstructured mesh
multiphase porous media model, Imperial College Finite Element Reservoir Sim-
ulator (IC-FERST) and firstly applied to multi-fluid flows in oil reservoirs with
uncertain rock properties. The results of numerical examples show that the
NIROM solves accurately the multi-fluid flows in oil reservoirs with uncertain
rock properties with a high degree of computional efficiency. The errors of the
NIROM is analysed by RMSE and correlation coefficient.

Running always full physical systems may be unnecessarily time consum-
ing if exploring a parameter range of a numerical model. In these cases, using
NIROM can extraordinarily increase the computational efficiency while provid-
ing accurate enough results. In the NIROM, if we choose an unseen set of model
parameter outside the training data domain, we would not get satisfactory re-
sults, however, we can avoid this by choosing larger training data domain. It
would be interesting to apply this approach to commercial software, such as
ECLIPSE (reservoir simulator). It would be also interesting to apply this ap-
proach to uncertainty quantification and sensitivity analysis.
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Appendix A

The procedure of constructing a set of Smolyak sparse grid interpolation func-
tions for rock properties is described as following,

(1) Determine d rock property variables {k1, k2, · · · , kd} where d is the number
of varying rock types or permeability regions and calculate the minimum and
maximum values of those variables. Each rock property variable constitute
a dimension of a Smolyak sparse grid;

(2) Construct a d dimensional Smolyak sparse grid for the rock property vari-
ables;

(3) Obtain rock property values ki = {ki1, ki2, · · · , kid}, i ∈ (1, 2, · · · , NR) at each
dimension for NR Smolyak sparse grid nodes;
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(4) Create NR realisations using different permeability values in the chosen
pattern of permeability. Each Smolyak sparse grid node is associated with
a full physical simulation;

(5) Run a full physics simulation and generate a number of snapshots using
permeability values at the associated Smolyak sparse grid;

(6) Save the snapshots of the variables of interest at each time t where t ∈
(1, 2, · · · , Nt);

(7) Generate NR sets of POD basis functions {Φ1
u,Φ

1
p,Φ

1
S}, {Φ2

u,Φ
2
p,Φ

2
S}, · · · ,

{ΦNRu ,ΦNRp ,ΦNRS } for each Smolyak sparse grid node ki, i ∈ (1, 2, · · · , NR)
by performing a truncated SVD of the snapshots matrix obtained from
corresponding set of snapshots;

(8) Obtain a number of basis functions for a new rock property point ki within
the domain of the tensor product grid via the Smolyak sparse grid inter-
polation method. A tensor product grid has a total number of nodes of
Od where there are O points used in each dimension and d is the size of
dimensionality);

(9) Obtain a set of surfaces by using the Smolyak sparse grid interpolation
formulation,

Â(k, d) =
∑

max(d,l+1)≤|l|≤d+l

(−1)d+l−|l| ·
(

d− 1
d+ l − |l|

)
(U l1 ⊗ · · · ⊗ U ld), (20)

where |l| = l1 + · · · + ld, (U l)(f) =
∑Ol
i=1 f(kli).(H

l
i(k)), Â is the interpolation

function, l denotes the grid level, H l
i ∈ C([−1, 1])) is the approximation formulas

and f(kli) denotes the value of the function f at kli.
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