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Abstract. The retrieval of parameters related to an environmental model is
explored. We address computational challenges occurring due to a significant

numerical difference of up to two orders of magnitude between the two model

parameters we aim to retrieve. First, the corresponding optimization prob-
lem is poorly scaled, causing minimization algorithms to perform poorly (see

Gill et al.,practical optimization, AP,1981,401pp). This issue is addressed by

proper rescaling. Difficulties also arise from the presence of strong nonlinear-
ity and ill-posedness which means that the parameters do not converge to a

single deterministic set of values, but rather there exists a range of parameter

combinations that produce the same model behavior. We address these com-
putational issues by the addition of a regularization term in the cost function.

All these computational approaches are addressed in the framework of varia-

tional adjoint data assimilation. The used observational data are derived from
numerical simulation results located at only two spatial points. The effect of

different initial guess values of parameters on retrieval results is also consid-
ered. As indicated by results of numerical experiments, the method presented

in this paper achieves a near perfect parameter identification, and overcomes

the indefiniteness that may occur in inversion process even in the case of noisy
input data.

1. Introduction. In the atmospheric boundary layer (ABL), air pollution has in-
creasing importance in urban, industrialized regions. The pollutant transport is
frequently affected by many dynamic processes such as advection, diffusion etc.
due to the role played by turbulence of atmospheric motion. Many studies have
been carried out to understand the mechanisms of the pollutant transport and to
predict transport processes in the ABL by various means such as field measure-
ments, laboratory experiments, analytical studies, and numerical models. For the
purpose of pollutant prediction, numerical modeling is by far the most useful and
effective method. Difficulties in estimating model parameters resulting from both
laboratory experiments and field observations still prevent numerical modeling of
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pollutant transport from achieving a high level of predictability. In order to tackle
this problem, the authors have used Levenberg-Marquardt algorithm coupled with
the generalized eigenfunction expansion method to solve an inverse problem and
obtained a statistical agreement with the true value of the model parameters[25].
However there remain some challenges we face in practical application. First, the
computation of sensitivities required for performing iterative algorithm can be very
costly, rending it computationally impracticable for large-scale problems (as is the
case for a typical meteorological model, e.g. 107 variables). This is particularly true
if a straightforward way of computing the gradient (or sensitivity) is implemented in
the following manner: perturbing each control variable in turn and estimating the
change in the cost function; Second, it is indeed convenient to apply eigenfunction
to expand unknown function (or generalized Fourier series expansion) in a certain
direction. However, the eigenfunctions depend heavily on the boundary conditions
of the problem. Computing the eigenfunction will become quite a difficult task
when the boundary of the region of interest does not have a regular shape, which
will affect the application of method itself and further extension. In this case, ex-
ploring and selecting a more effective method becomes very important. For such
a situation, the variational adjoint method [14, 1, 16, 2] turns out to be the most
adequate option.

The variational adjoint approach is commonly used to compute the sensitivity
coefficients and the gradient of the cost function. The adjoint method of sensitivity
computation is particularly useful and has proven its efficiency in operational mete-
orology and other branches of geosciences [18, 17]. The variational adjoint method
can yield the exact gradient of the cost function with respect to the control variables
by integrating the adjoint model only once backwards in time. Such a backward
integration of the adjoint model is of similar complexity to a single integration of
the forward model. Another key advantage of adjoint variational data assimila-
tion is the possibility to minimize the cost function using standard unconstrained
minimization algorithms[30].

In this paper, we provide an application of variational adjoint method to the
retrieval of two model parameters namely the diffusivity and surface friction velocity.
This theoretical exploration will not only present an alternative means of solving
the problem, but, more significantly, provide an insight into practical measurements
for some important model parameters. According to the requirement of variational
adjoint method, we will transform the retrieval of the relevant parameters into an
optimal control problem constrained by a partial differential equation (PDE), and
the parameters to be estimated can be regarded as additional controls during the
procedure of minimizing the cost functional[12, 27, 24]. Some challenges remain to
be addressed. First, this optimization problem is poorly scaled, and minimization
algorithms that fail to rescale properly will fail to converge [8]. This issue can be
solved by proper rescaling. Second, difficulties arise from the presence of strong
nonlinearity and ill-posedness which means that the parameters do not converge to
a single deterministic set of values, but rather there exists a range of complementary
combinations that produce the same model behavior. We will deal with this lack of
identifiability by resorting to inclusion of a regularization term in the cost function.

The main contribution of this paper is to (a) develop a variational adjoint assim-
ilation system using the simulated observational data from only two spatial points
can retrieve the expected parameters, i.e., diffusivity and surface friction velocity
related to the ABL; (b) numerical experiments reveal that the regularization term
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included in cost function plays a key role in the process of estimation of parameters
when noise is present in measurement data; (c) studying the effects of different ini-
tial guess values on the retrieval results. The outcome of this paper will contribute
to the reduction of the practical field experimentation carried out for the determi-
nation of the relevant model parameters. The remainder of this paper is organized
as follows. In section 2 we provide the optimal control system based on the adjoint
method. In section 3, numerical simulation experiments are performed, and finally
conclusions are provided in section 4.

2. Variational data assimilation system.

2.1. Problem description. The forward (or direct) problem used in this paper is
the same as the one used in [25], which is based on the following 2-D mathematical
model:

∂c

∂t
+ U(z)

∂c

∂x
= K1

∂2c

∂x2
+

∂

∂z
(K2

∂c

∂z
) + sδ(x− xc)δ(z − zc)

(0 < x < A, 0 < z < H, t > 0) (2.1.1a)

subject to the initial-boundary conditions

∂c

∂z
|z=0 = 0,

∂c

∂z
|z=H = 0 (2.1.1b)

c|x=0 = 0,
∂c

∂x
|x=A = 0 (2.1.1c)

c|t=0 = 0 (2.1.1d)

where c is the time-averaged pollutant concentration, and K1 and K2 are the dif-
fusivities along horizontal and vertical directions, respectively, given by

K1 = Const., (2.1.2)

and
K2 = k(µ∗)0H(

z

H
)(1− z

H
)(1− 22

z

L
)1/4 (2.1.3)

U(z)is the velocity profile that depends on vertical height z like

U(z) =
(µ∗)0

k
ln(

z

z0
) + ln[

(1 + (u0)2)(1 + u0)2

(1 + u2)(1 + u)2
]

+
(µ∗)0

k
[2(arctan(u)− arctan(u0)) +

2L

33H
(u3 − u3

0)] (2.1.4)

and was assumed to be greater than zero here, while the parameters u and u0 are
given by

u = 1− 22
z

L
(2.1.5)

u0 = 1− 22
z0

L
(2.1.6)

k is the von Karman’s constant with the value of 0.4, z0 is the surface roughness
and L is the Monin-Obukov length, aiming to construct the stability-dependent
function H

L . When H
L is greater than zero, the stratification is stable; while if H

L is
smaller than zero, the profile behavior is unstable. And (µ∗)0 is the surface friction
velocity.

For the sake of illustrating our method, we selectK1,(µ∗)0 as the retrieved param-
eters due to their significant numerical difference of up to two orders of magnitude.
Assume K1,(µ∗)0 are given, the evolution of state variable with space and time can
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be obtained by solving the problem (2.1.1). This pertains to the direct problem.
On the contrary, given a set of prior measurements, we are required to determine
the parameters K1 and (µ∗)0 , which belong to the inverse problem. The present
research effort aims to retrieve the parameters K1 and (µ∗)0 in the framework of
variational adjoint data assimilation.

In order to determine simultaneously an optimal K1,(µ∗)0 such that a reasonable
solution satisfies the observed measurement data, we must first define an objective
function:

J(K1, (µ∗)0) =
1

2

∫ T

0

Ns∑
i=1

∫
Ω

(c(Q, t)− cobs(Q, t))2
δ(Q−Qi)dΩdt

+
γ

2

∫ T

0

∫
Ω

[(
∂c

∂x
)
2

+ (
∂c

∂z
)
2

]dΩdt (2.1.7)

which measures the discrepancy between the solution given by the original model
(2.1.1) for the continuous assimilations and the known observation data. The spatial
domain is referred to as [0, A] × [0, H]. Here Q represents spatial position(x, z) ,
and Ns stands for the number of spatial observational locations (in present study,
Ns = 2). While the second term appearing in the RHS of (2.1.7) is referred to
as regularization term which can stabilize the minimization process, and γ is a
regularization parameter. This kind of regularization term which we add to the
objective function J describes a priori constraint one would like the state function
to be subject to, instead of including a constraint for the inverse solution itself
like the one frequently used, [K2

1 + (µ∗)
2
0]. The main reasons for adopting this

regularization procedure stem from the following considerations:
(1). The effect of [K2

1 +(µ∗)
2
0] tends to seek for the minimum-norm solution. And

when the noisy components in the observation data lead to the changes of solution
which will induce larger H1

0 -seminorm of state function, we attempt to use the H1
0 -

seminorm constraint of state function, rather than the minimum-norm constraint
of inverse solution. It is shown experimentally later that imposing such a-priori
constraint will lead to a stable solution within a suitable range of observational
noise;

(2). From the point of view of physics, the H1
0 -seminorm is essentially a com-

ponent part of energy functional derived in variational setting from the equations
(2.1.1a-d). Addition of this term to the cost functional is equivalent to performing
a bound constrained minimization of energy seminorm. As for the [K2

1 + (µ∗)
2
0] ,

it is feasible in mathematics to regard it as a constraint, but its physical meaning

is unknown. So it is natural to select
∫ T

0

∫
Ω

[( ∂c∂x )
2

+ ( ∂c∂z )
2
]dΩdtα as a regularized

stable functional in the current study;
(3). The second term in the RHS of (2.1.7) can also serve as a forcing term of the

adjoint equation (2.2.6) and the relevant smooth information of the state function
c(x, z, t) is passed on to the calculated gradient obtained using the adjoint equation.

For simplicity of notation, we denoteK1,(µ∗)0 by P = [P1, P2] . So solving
K1,(µ∗)0 from the problem (2.1.1) and the corresponding observation data will be
transformed into the following optimal control problem: Find P opt such that

J [P opt] = minJ [P ] (2.1.8)
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where the control variable P is related to the state variable c(x, z, t) via the prob-
lem (2.1.1). The classical way to solve a problem such as (2.1.8) is usually called
gradient-type descent method. So the key issue is to find an efficient way to cal-
culate the gradient, with gradient components denoted as ∇K1

J and ∇(µ∗)0J of J
with respect to the parameters K1 and (µ∗)0 . Their calculation can be done by
using variational adjoint method [31].

2.2. Calculation of gradient and variational adjoint method. In this section,
we show that the calculation of gradient will be related to the derivation of the
adjoint problem. The whole process can be divided into the following steps.
Step one, the sensitivity equation (or tangent linear equation). Let us

consider the perturbation of P : P → P̃ = P + αP̂ , where α is a perturbation
parameter tending to zero, and the P̂ stands for the direction of perturbation.
Correspondingly, we have U(z) → Ũ(z) = U(z) + αÛ(z) , K2 → K̃2 = K2 + αK̂2

and c→ c̃ = c+ αĉ, where Û(z) , K̂2 , and ĉ may be defined as follows:

Û(z) = lim
α→0

Ũ(z)− U(z)

α
, K̂2 = lim

α→0

K̃2 −K2

α
, ĉ = lim

α→0

c̃− c
α

(2.2.1)

ĉ is the solution of the sensitivity equation

∂ĉ
∂t + U(z) ∂ĉ∂x = K1

∂2ĉ
∂x2 + ∂

∂z

(
K2

∂ĉ
∂z

)
+ K̂1

∂2c
∂x2−

Û(z) ∂c∂x + ∂
∂z

(
K̂2

∂c
∂z

)
∂ĉ
∂z |z=0 = 0 , ∂ĉ

∂z |z=H = 0
ĉ |x=0 = 0 , ∂ĉ

∂x |x=A = 0
ĉ |t=0 = 0

(2.2.2)

Step two, the change of the cost function. According to the definition of
gradient, we have

J ′[P ; P̂ ] = (∇PJ, P̂ ) = (∇P1
J, P̂1) + (∇P2

J, P̂2) (2.2.3)

On the other hand,

J ′[P, P̂ ] = lim
α→0

J [P + αP̂ ]− J [P ]

α

=

∫ T

0

∫
Ω

[

Ns∑
i=1

(c− cobs)δ(Q−Qi)− γ(
∂2c

∂x2
+
∂2c

∂z2
)]ĉdΩdt (2.2.4)

Step three, the adjoint problem. Multiplying each side of the first equation in
Eqs.(2.2.2) byλ(x, z, t) , and integrating the resulting equation on the domain[0, A]×
[0, H]× [0, T ] , we obtain∫ T

0

∫ A

0

∫ H

0

λ
∂ĉ

∂t
dzdxdt+

∫ T

0

∫ A

0

∫ H

0

λU(z)
∂ĉ

∂x
dzdxdt

+

∫ T

0

∫ A

0

∫ H

0

λÛ(z)
∂c
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dxdzdt

=

∫ T

0

∫ A

0

∫ H

0

λK̂1
∂2c

∂x2
dxdzdt+

∫ T

0

∫ A

0

∫ H

0
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∂2ĉ
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dxdzdt

+

∫ T

0

∫ A

0

∫ H

0

λ
∂

∂z

(
K̂2

∂c
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)
dzdxdt+

∫ T

0
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0

∫ H

0

λ
∂

∂z
(K2

∂ĉ

∂z
)dzdxdt (2.2.5)
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Applying the integration by parts, and assuming that the following relations (adjoint
problem) holds

−∂λ∂t − U(z)∂λ∂x − P1
∂2λ
∂x2 − ∂

∂z

(
K2

∂λ
∂z

)
=

Ns∑
i=1

(c− cobs)δ(Q−Qi)

−γ( ∂
2c
∂x2 + ∂2c

∂z2 )
∂λ
∂z

∣∣
z=0 = 0, ∂λ∂z |z=H = 0

λ
∣∣
x=0 = 0,

[
λU (z) + P1

∂λ
∂x

]
|x=A = 0

λ |t=T = 0

(2.2.6)

Then the following equation can be obtained

J ′[P ; P̂ ] = −
∫ T

0

∫ A

0

∫ H

0

∂c

∂z

∂λ

∂z

∂K2

∂P2
P̂2dzdxdt

−
∫ T

0

∫ A

0

∫ H

0

λ
∂c

∂x

∂U

∂P2
P̂2dxdzdt+

∫ T

0

∫ A

0

∫ H

0

λ
∂2c

∂x2
P̂1dxdzdt

=

∫ T

0

∫ A

0

∫ H

0

λ
∂2c

∂x2
P̂1dxdzdt

+

∫ T

0

∫ A

0

∫ H

0

(
−∂c
∂z

∂λ

∂z

∂K2

∂P2
− λ ∂c

∂x

∂U

∂P2

)
P̂2dzdxdt (2.2.7)

Step four, the gradient of cost function with respect to P = [K1, (µ∗)0].
Comparing the RHS of eqs. (2.2.3) and (2.2.7), the gradient of cost function with
respect to the unknown parameters is followed:

∂J

∂P1
=

∫ T

0

∫ A

0

∫ H

0

λ
∂2c

∂x2
dxdzdt (2.2.8)

∂J

∂P2
=

∫ T

0

∫ A

0

∫ H

0

(
−∂c
∂z

∂λ

∂z

∂K2

∂P2
− λ ∂c

∂x

∂U

∂P2

)
dzdxdt (2.2.9)

Step five, gradient test. The gradient obtained above by the adjoint method
[20] should satisfy numerically the relation below

ρ̃(α) =
J(P + αP̂ )− J(P )

α < ∇J(P ), P̂ >
(2.2.10)

where the ∇J(P ) = [ ∂J∂P1
; ∂J
∂P2

], denoted as g . And the variation of function with
perturbation α can be seen in Figure 1.

Having the gradient of the cost function at our disposal, we can use various
gradient-based unconstrained minimization algorithms. Compared with the steep-
est descent method and Newton method, evident advantages of the conjugate gra-
dient method are its convergence rate, and low memory requirements [19, 22]. To
obtain the optimal parameter P = [K1, (µ∗)0] , the main steps of the current non-
linear conjugate gradient (NCG) method include:

a). Start with an initial guess P g , if the J less than a given ε (stopping criterion),
then stop, otherwise continue the next step;

b). Solve the direct problem (2.1.1) and store intermediate steps;
c). Solve the adoint problem (2.2.6), and considering eqs. (2.2.8) and (2.2.9), we

obtain the desired gradient g(k) = ( ∂J∂P1
, ∂J∂P2

)(k);

d). Determine the conjugate descent direction D(k) = −g(k) + βk−1D
(k−1) by

βk−1 = g(k)T (g(k)−g(k−1))

g(k−1)T g(k−1)
(Polak-Ribiere);
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Figure 1. Gradient test

Table 1. Comparison between the methods of NCG, ncg, lbfgs
and tn with different initial guess. The true parameters are
(0.38,50).

PPPPPPPPCases
Method NCG ncg lbfgs tn

Iter. Result Iter. Result Iter. Result Iter. Result

[0.3;40] 2
[0.3751;

2
[0.3759;

5
[0.3752;

6
[0.3753;

50.6269] 50.7398] 50.7179] 50.7524]

[0.15;18] 3
[0.3794;

2
[0.3962;

11
[0.3791;

4
[0.3797;

50.0722] 52.4113] 50.1205] 50.0491]

[0.01;1.2] 3
[0.3771;

2
[0.6661;

10
[0.3773;

4
[0.3534;

50.4490] 89.1588] 50.4361] 54.4259]

e). Choose the step size ρ(k) = argminJ(P (k−1) + ρ(k)Dk) by linesearch;
f). The k−th iteration formulation can be expressed as P (k) = P (k−1)+ρ(k)D(k).

For a detailed description, please see Figure 2 below. Note that the adjoint model
used in the next numerical experiments is derived through the discretize-then-
differentiate approach[9, 7], in which one first discretizes the direct model (2.1.1),
then differentiates it by hand and obtains the discrete version of the adjoint model.
Different from the existing nonlinear conjugate gradient method (ncg)included in
the published optimal tool–Poblano V1.0 [4], the present nonlinear conjugate gra-
dient method (NCG) introduces the classical golden section search, and considers
the update β+

k−1 = max{0, βk−1} [22], which can be competitive for the current
problem in comparison with the algorithm (ncg) , as well as unconstrained mini-
mization algorithms (lbfgs) and (tn) included in Poblano. This can be found from
the Table 1, which is derived based on the whole observation data and without tak-
ing into account the regularization term temporarily. This is sufficient to outline
the differences between the NCG and other methods related to Poblano.
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Figure 2. Flow chart of parameter estimation with NCG method

3. Numerical experiments. As mentioned above in Section 2, we are required
to solve the direct problem (2.1.1). Since its analytical solution is very difficult to
obtain, so we had to employ finite difference numerical discretization.

The Alternating Direction Implicit (ADI) method, first introduced by Peaceman
and Rachford, is a finite difference method for solving the heat equation or the
diffusion equation [23]. From then on, it is used frequently to the numerical solution
of parabolic, hyperbolic [15] and elliptic partial differential equations. It can be
viewed as an iterative method to solve a higher dimensional problem by solving a
series of lower dimensional problems repeatedly. For the current 2D case, the ADI
iteration process from n to n+1 can be separated into two parts, the x-axis sweeping
at time level n and the z-axis sweeping at time level n + 1

2 . We use uniform grid
in both space and time. It is assumed that the discrete functions are defined on an
N ×M -grids in space, i.e. Ω = [0, A]× [0, H]. The following notation will be used:
xj = j∆x, zi = i∆z, tn = n∆t, cnij = c(xj , zi, t

n). Here ∆x = A
N , and ∆z = H

M .
And the central difference scheme is used for the first- and second-order derivatives
of c with respect to x. While the vertical diffusion term ∂

∂z (K2
∂c
∂z ) is approximated
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specially by the following formula at time level n,

1

4z2
{K2(zi +

4z
2

)cnj,i+1 − [K2(zi +
4z
2

) +K2(zi −
4z
2

)]cnj,i +K2(zi −
4z
2

)cnj,i−1}

When performing the numerical computation, where diffusion terms and convec-
tion term are in time implicit and explicit, respectively. Based on the numerical
scheme of the forward problem, the discretized version of the adjoint problem can
be formed through careful modification of boundary conditions, forced terms and
so on, and solved with almost the same routine as that of the forward problem. For
the purpose of the numerical experiments, we assume that the true parameters are
K1 = 50m2s−1, (µ∗)0 = 0.38ms−1, and in order to ensure the stability of numerical
computation, the other related parameters are also set as, respectively, A = 6000m,
H = 1120m, (xe, ze) = (100m, 115m), L = −71m, z0 = 0.6m, M = N = 40,
T = 560s, ∆t = 56s. The Dirac function δ(x − xc) in source term [29] is approxi-
mated by

δk(x− xc) =
k

2cosh2(k(x− xc))
. (3.1)

In this paper, we take k = 20 .
In order to retrieve the parameters P , we use simulated measurements in the

forthcoming analysis, which can be obtained from the solution of the direct problem
(2.1.1) at the two locations Q1(3, 3) := Q1(3∆x, 3∆z) and Q2(3, 4) , respectively.
More concretely, given the true value of P as seen above, the corresponding solu-
tion c(x, z, t) of the direct problem (2.1.1) is derived from which two time series
cobs(Q1, t

n) = c(Q1, t
n) and cobs(Q2, t

n) = c(Q2, t
n) can be extracted to serve as

observation data set. This can be regarded as a set of observation data without
noise, called observation data I. Additionally, if noise is present, then another set of
observation data, called observation data II, can be also obtained in the following
manner:

c(3, I, tn)obsnoise = c(3, I, tn) + σ ∗ rand(1, n), I = 3, 4 (3.2)

where σ is referred to as the noise level.
We first present a verification of the convergence of the current algorithm using

the observation data II, where σ = 0.02. The initial parameter guesses are set as
(1, 1), (10, 1), (30, 10), (20, 3) and (30, 1), respectively. As seen from Figure 3, the
parameter values will tend to evolve towards the ideal initial value (50, 0.38) with
minimization iterations, which shows that the algorithm is very robust with respect
to variations in the initial parameter guesses, although the initial guesses for the
parameters are far from the exact parameters. Next we will illustrate the role of
regularization term in improving the accuracy of the retrieved result.

The initial guesses for the unknown parameters are taken as(1, 1), i.e. P guess =
(1, 1). In this situation, we consider four groups of experiments. i), using observation
data I without regularization term (σ = 0, γ = 0); ii), using observation data
I with regularization term (σ = 0, γ 6= 0); iii), using observation data II without
regularization term (σ 6= 0, γ = 0); iv), using observation data II with regularization
term (σ 6= 0, γ 6= 0). Table 2 presents the results obtained for the estimated
parameters, wherein the descent process of the cost function with respect to the
number of minimization iterations also provided, see Figure 4. In addition, the
retrieval process of two parameters K1 and (µ∗)0 with iterations can be shown in
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Figure 3. Evolution of the value of parameters with iterations for
the initial guess values (1,1)(solid line -), (10,1)(dashed line - -),
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dotted-dashed line *-.), respectively.

Figure 5. The stopping criterion, whichever occurs first, is set as∣∣∣(µ∗)(k)
0 − (µ∗)0

∣∣∣
|(µ∗)0|

< ε1 or J
(k) < ε2

We see that in the case of initial guess value (1, 1) the expected results are
obtained by including the regularization term. In particular, when dealing with
noisy data [11], employing the regularization technique will help us get the desired
result, otherwise the recovery of the parameters may not be as good as it should be,
see Figure 6, even when performing a larger number of iterations (not limited to
15 iterations as in the present test). Generally in practical application, the related
parameters cannot be known in advance and no information is provided. With this
objective in mind, another set of initial guess value of parameters are also taken into
account, i.e., (20, 20). We see that there is still a significant difference between the
guess value and the true parameter (50, 0.38). The retrieval results are presented in
Table 2, which illustrates that the retrieval results match well the true value, as for
the descent process of the cost function versus the minimization iterations, a similar
behavior to the case of initial guess value (1, 1) can be found (not shown here). This
indicates that the current method has good stability. The successful model tests
demonstrate that parameter estimation with variational adjoint data assimilation
technique is feasible due to the addition of the regularization term allowing the
identification of poorly known model parameters using the simulated observational
data originating only from two spatial locations at different time instants.
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Table 2. Results obtained with several sets of experiments.

Guessed value Error level σ Iters J Estimated Value Regularization.Para.γ

(1,1) 0.00 12 2.339E-7 (49.4799,0.3974) 0

(1,1) 0.00 13 1.225E-6 (49.5557,0.3734) 3.5E-10

(1,1) 0.02 15 3.020E-6 (50.4796,0.2683) 0

(1,1) 0.02 14 4.900E-6 (50.2095,0.3864) 3.5E-10

(20,20) 0.02 5 4.1237E-6 (50.4308,0.3902) 3.0E-10

(20,20) 0.02 5 3.1178E-6 (50.0751,0.4118) 0

(20,20) 0.02 50 2.9000E-6 (49.1653,0.4669) 0

For the computational complexity of the current numerical algorithm of vari-
ational adjoint method, the most costly portion is related to the calculation of
objective function (2.1.7) and its gradient (2.2.8-9) in each minimization iteration,
while the key point requires one forward model run and additionally only a single
integration of the adjoint dynamical model backwards in time to obtain the required
gradient. Solving forward model (two sweeps in x and z direction, respectively) is
measured by the computational operation count (flops), i.e., O(nM2) , where n
stands for the number of time levels, and M is the number of spatial grids in x and
z direction, respectively. And we also note in current study that the integration of
the adjoint model backwards in time can be equivalent to several forward model
simulations and thus remains computationally expensive. This is mainly due to the
forcing term in the adjoint model originating from the model-data differences, and
therefore one needs to store the whole model trajectory to run the adjoint model.
For the objective function, its operation count is approximated by O(n) without
taking into account the regularization term, and O(nM2) when the regularization
term is included. When it comes to the gradients of the objective function with
respect to two parameters K1 and (µ∗)0 , their operation counts are then O(nM2),
respectively. The computation becomes expensive particularly when spatial mesh
resolution increases. This may not be an active factor for the current method. How-
ever, with the fast development of the reduced-order techniques [3, 26], it is also
possible to use this method in the framework of inverse problem of reduced-order
model. This issue will be addressed in follow-up research efforts.

4. Conclusions. Motivated by the work in [25] of parameter estimation, we have
developed an alternative approach in the framework of variational adjoint data
assimilation. Here when there is no priori information about the uncertain param-
eters to be relied on, we have successfully combined the variational adjoint data
assimilation with a regularization technique to construct a scheme that is capable
of recovering near-perfect parameter values, therefore improving our ability to pre-
dict future pollutant transport. To date the method has only been developed and
tested in the current 2D convection-diffusion model that has two uncertain param-
eters to be determined, but the results of this study are extremely positive, which
may be viewed as a first step towards solving practical optimal control problem
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Figure 5. Retrieval process of K1 and (µ∗)0 with iteration in
different cases: (a). σ = 0, γ = 0; (b). σ = 0, γ 6= 0; (c). σ 6= 0, γ =
0; (d). σ 6= 0, γ 6= 0.

by using more realistic observation data and models in order to assess the prac-
tical utility of the method. In addition, particular attention should also be paid
to the regularization technique. The combination of the Tikhonov regularization
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without regularization; (b). in Fig.5 (d) with regularization.

with the discrepancy principle can indeed overcome to some degree the difficulties
arising frequently due to the strong nonlinearity and the ill-posedness which result
in the parameters failing to converge to a unique value, yielding instead various
combinations that result in similar model behavior (i.e. lack of identifiability).
In our numerical experiments, when a typical minimization is encountered, which
is characterized by a fast decrease in the cost function during the first few tens
of iterations, followed by a slow decrease (almost flat) behavior, even if the solu-
tion keeps improving during this slow convergence period, practical considerations
should prompt us to stop the minimization. As for the Tikhonov regularization,
despite its success when equipped with an appropriate regularization parameter, it
is yet a challenge how to determine this regularization parameter except when a
clear corner of the L shape function is observable for L-curve method. As we all
know, this is one of the most active fields of inverse problem research[10, 21, 13].
The regularization parameter in this paper was determined after a large number of
trials and errors[6, 28], while some more advanced methods [28, 5] are not involved
in current study. This topic will constitute the subject of future research.
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