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SUMMARY

In this article, we describe a non-intrusive reduction method for porous media multiphase flows using
Smolyak sparse grids. This is the first attempt at applying such an non-intrusive reduced-order modelling
(NIROM) based on Smolyak sparse grids to porous media multiphase flows. The advantage of this NIROM
for porous media multiphase flows resides in that its non-intrusiveness, which means it does not require
modifications to the source code of full model. Another novelty is that it uses Smolyak sparse grids to
construct a set of hypersurfaces representing the reduced-porous media multiphase problem. This NIROM
is implemented under the framework of an unstructured mesh control volume finite element multiphase
model. Numerical examples show that the NIROM accuracy relative to the high-fidelity model is maintained,
whilst the computational cost is reduced by several orders of magnitude. Copyright © 2016 John Wiley &
Sons, Ltd.
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1. INTRODUCTION

The numerical simulation of porous media multiphase flows is very important, especially in
petroleum reservoir simulation. However, in the context of uncertainty studies, sensitivity analy-
ses or optimal design, hundreds or thousands of runs of the reservoir model are needed in order
to analyse the parameters statistically. This high-computational cost renders the analysis almost
impractical. In these cases, model reduction technology is a viable way to mitigate the computa-
tional cost as it offers the potential to simulate systems with substantially increased computation
efficiency while maintaining accuracy.

A variety of model reduction methods have been proposed to ease the intensive computational
cost in porous media multiphase flow problems. For example, reduced-physics models that simplify
the physics [1, 2], upscaling methods that solve the system using a coarser grid [3], multiscale meth-
ods that solve the equations on coarse grids using basis functions captured on the fine grids [4, 5]
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and snapshot-based methods that record results from solutions at each time step. The snapshot-based
model reduction method are based on proper orthogonal decomposition (POD) and its variants [6].

Streamline methods are one type of reduced-physics model. The idea of the streamline method
is that it decouples the flow and transport equations into a set of one dimensional problems and
then solves it sequentially. It is used in reservoir simulations [7, 8] and history matching [9]. These
reduced-physics models result in a considerable speed-up for some problems, however, is still nec-
essary to solve for the pressure in the full model [6]. Upscaling methods allow the problem to be
simulated on a much coarser mesh [10]. This can result in a considerable improvement in CPU time,
but the methods themselves tend to be empirical and the resulting coarse grid model may not always
reproduce the results obtained from a fine grid simulation [11, 12]. Multiscale models use different
scale grids (fine and coarse) to discretise the underlying governing equations. This method has been
reported to provide a factor of 10-20 speed-up in the finite-volume framework for reservoir simu-
lation [13]. Reduced-basis methods are also used to approximate the coupled Stokes equations and
darcy flow in porous media [14].

Reduced-order models are used widely in many engineering fields. POD is the most popular
method in the framework of reduced-order modelling. It has proven to be an efficient means of
deriving a reduced basis for high-dimensional problems and has been used in a variety of research
areas including ocean modelling [15-22], convective Boussinesq flows [23], inversion problems
[24], fluid mechanics [16, 17, 25], convection diffusion reaction equations [26], elastic plastic struc-
tural problem [27], shape optimisation [28], molecular dynamics simulation [29], fluid-structure
interactions problems [30], porous media [31, 32] and air pollution [33]. It is also used combined
with the trajectory piecewise linearisation method to simulate two-phase subsurface flows [34] and
production optimisation [35].

In most cases. the source code that describes the physical system has to be modified in order to
adapt to new requirements. These modifications can be complex, especially in legacy codes, or may
be impossible (e.g. in commercial software) [36]. To circumvent this shortcoming, more recently,
non-intrusive methods have been introduced into ROMs. Walton et al. [17] presented a method
based on POD and radial basis function(RBF) interpolation and applied it to modelling unsteady
fluid flows [37]. Xiao et al. also presented a non-intrusive reduced-order modelling (NIROM) based
on POD-RBF [38]. Klie proposed a NIROM based on POD, RBF and the discrete empirical inter-
polation method [39]. However, most NIROMs still suffer from computational costs because of the
exponential increase of the number of discretisation variables. To cope with this ’curse of dimen-
sionality’, the Smolyak sparse grid interpolation method [40] was introduced to NIROM [41]. In this
paper, we apply Smolyak sparse grid interpolation to the non-intrusive reduced-order modelling of
porous media flows for the first time. The NIROM is implemented under the framework of a high-
fidelity unstructured finite element mesh fluid model (Multiphase-Fluidity, developed by Applied
Modelling and Computation Group at Imperial College London) [42]. In this NIROM, a number
of snapshots are recorded at regular time intervals from numerical solutions. The POD method is
then used to generate a small number of basis functions. Using the Smolyak sparse grid method, a
set of interpolation functions (hypersurface) is constructed to represent the reduced system. Having
obtained the hypersurface, solutions of ROM for current time step can be calculated by inputting
results from previous time steps.

The structure of the paper is as follows. Section 2 describes the governing equations. Section 3
presents the standard POD method. Section 4 derives the methods of constructing a NIROM
using the POD and Smolyak sparse grid method for multiphase porous media problems. Section 5
demonstrates the method’s capabilities in three porous media multiphase flow test cases. Finally, in
section 6, the summary and conclusions are drawn.

2. GOVERNING EQUATIONS

The unstructured finite-element mesh model (Multiphase-Fluidity) is applied to the Darcy’s law
for immiscible porous media multiphase flows. Assume that a volume of an incompressible porous
medium contains N, immiscible fluid phases, and each phase V), assumes the form of,
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Vn = 1//571’ (1)

where the subscript, 7, denotes the phase, and S, is the saturation of that phase, ' is porosity of
porous medium and ZnNil Sy = 1. Darcy’s Law has the following form [43],

4y = —TK (VP — py). 2
Hn
where q; denotes a volumetric flux rate (Darcy velocity) of phase 7; k., denotes the relative perme-
ability of the phase 1 and is a function of Sy; u, denotes the dynamic viscosity of the fluid phase 7;
Py, denotes the fluid pressure of phase n; K denotes a second rank tensor describing the permeabil-
ity of the porous medium; p,, denotes the mass density of phase 7n; and g denotes the gravitational
acceleration vector.
The Darcy velocity can be rewritten as in terms of the (average or interstitial) fluid velocity vy,

Ay = VyVn = ¥Syvy. (3)
Then, Equation 2 can be rewritten as,
SnAnVyn = =V Py + ppg, (4)
where
Vyn = YV, (%)
and
A, =LK1 ©6)
ken

3. PROPER ORTHOGONAL DECOMPOSITION

For the POD method, a new set of modes (basis functions) is constructed from a collection of
snapshots E recording the solutions of high-fidelity full model at a regular time intervals. In the POD
formulation presented here, snapshots of each solution field, that is, velocity components solutions
Uy, Uy, Uy, pressure solutions p and saturation solutions S are recorded individually. The fields are
stored in separate snapshot matrices Ey x, Ey,y, Eu,z, Ep and Eg. Because each snapshot matrix is
treated in an identical way, a generic snapshot matrix E is used here to describe the POD formulation
for the sake of simplicity.
Taking the mean of snapshots from the snapshots matrix,

E=E-E, (7

where
E=—Y Ey, (8)

A set of basis functions {¢} is obtained by means of the POD method. This involves performing
a singular value decomposition of the snapshot matrix E given in the form,

E=UxVT, 9

The terms U and V denote the matrices that consist of the orthogonal vectors for E l*:? T and ETE,
respectively, (X being a diagonal matrix). The singular values of snapshot matrix E are listed in
order of decreasing magnitude in matrix X. A set of POD basis functions can be obtained by the
first m columns of matrix U,
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O = Ui €{1,2...m} (10)

The POD basis functions are optimal in the sense that these vectors can be the closest to the snapshot
matrix £ in Frobenius norm.

In POD formulation, any variable v (for example, the velocity, pressure and saturation compo-
nents) can be expressed by,

P
V=Y+ ) ;) (11)

Jj=1

where «; denotes the ;' h POD coefficient, and ¥ is the mean of the snapshots for the variable .

4. THE SMOLYAK SPARSE GRID METHOD FOR CALCULATING THE PROPER
ORTHOGONAL DECOMPOSITION COEFFICIENTS

In this section, the process of calculating the solutions of reduced-order multiphase porous media
model (POD coefficients) is described. The Smolyak sparse grid interpolation method is used to
construct a set of hypersurfaces representing the reduced-multiphase porous media system. Then,
we use those hypersurfaces to calculate the solutions of the ROM.

The Smolyak sparse grid interpolation is an efficient method to cope with the high-dimensional
problems [40]. It has been used in a number of research fields such as stochastic collocation
approach for solving partial differential equations [44], model reduction problems [45]. In the work
of [45], sparse grid is combined with a multilevel greedy method to derive a reduced-basis method
in order to deal with the intensive computational cost.

An approximation of a d-dimensional function in a full tensor product form can be written as

o o
(Un®...®de)<f>=_lel-.-ilf(xff,---,xf;’)-(H!:®--~®H!:)7 a2
1= ig=

1 l
o, xd
i iq

xfj); 0, = 2la=! 4 1, 0; (1 € N) denotes the number of

knots; Hil € C([-1, 1])) is the approximation formulas and f (xll ) denotes the value of the function
f at xf .

The disadvantage of the full tensor product approximation earlier is that it requires Oy, x---x Oy,
function values on the full tensor product grid. The number of function values increases exponen-
tially with dimensions size d. In this case, the Smolyak sparse grid approach is used to cope with
the ’curse of dimensionality’ problem and has the form of

Ag.dy= Y (=pr. ( d-1 ) (Ull ®® U’d) : (13)

— 1
qg—d+1<|l|<q g =M

where Oy, , Oy, ... O;, denote the number of knots in each dimension; f (x

Iy
i

) represent

the function values at (x

where [l = Iy +--+14, (U') (f) = Zio=’1 £ (x1). (H!(x)), the spatial dimensional size d equals
to the the size of the reduced-order space (i.e. the number of POD bases m). A set of Smolyak
sparse grid interpolation functions A; (g, d) is then used to estimate the POD coefficient oc;? at time
level n + 1,

oz;fH:fj(af,a;‘,...,afn), je{l,2,...m}, (14)
where f is the hypersurface calculated by equation (13).

The algorithmic process of constructing a set of hypersurfaces and calculating the solutions of
ROM can be posed as follows:
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(a) Choose a number of sparse interpolation nodes a™® = (a{’o,a;’o, ... ,a,r,;o) (where r €
{1,2,..., R} on the full tensor product grid, R is the number of sparse points to be chosen

and is much less than the number of nodes of the full tensor product grid, O denotes the initial
time step), which lie in the product interval

[Amim Amax] = [al,mim O‘l,max] e ® [O‘j,min, O‘j,max] e ® [O‘m,min, Olm,max]

(where o/ min and & j ;may are the minimum and maximum values of the j th POD coefficient,
Jje{l1,2,...,m});

(b) Calculate a corresponding set of the function values a;’l = fj(a"?) located at the sparse
nodes ”>? through running the full model one time step from time level O to time level 1:

(c) After obtaining a set of a;’l, then construct a set of interpolation functions 4;(q.d), j €
{1,2,...,m} using Equation 13;

(d) Calculate the current time step’s POD coefficient «”*! using the interpolation formula (14)
by inputting POD coefficient ¢” at previous time step.

(e) Calculate the velocity, pressure and saturation solutions u”, p" and S” on full space at current

time step n + 1 by projecting o} It a;’, ; and al ; onto the full space.

m m m
n+1 __ n . n __ n . n __ n X
u = § :Olu,jcbll,]’p = § op i Ppjs St = E :aS,jq)S,J’
j=1 Jj=1 Jj=1

The advantage of using the Smolyak sparse grid interpolation method is that the interpolation func-
tion values need to be determined only at the sparse grid mesh points rather than at all the points on
the full tensor product grid, thus resulting in an impressive computational economy.

5. NUMERICAL EXAMPLES

A demonstration of application of the NIROM based on POD and Smolyak sparse grid method to
porous media multiphase is presented in this section. Three porous media multiphase test cases are
1D Buckley-Leverett, 2D Buckley—Leverett and a fracture problems. The test cases were simulated
at the platform of the framework of an unstructured mesh control volume finite element (CVFEM)
multiphase model, Multiphase-Fluidity [42]. The solutions from the fidelity full model provided
the exact solutions for model comparison, as well as the snapshots for the POD basis function
generation. An error analysis was carried out comprising the root mean square error (RMSE) and
correlation coefficient, which considers all the nodes on the full finite element mesh and all the
time steps.

5.1. Case 1: 1D Buckley—Leverett test case

The first application is a water-flooding test case. Water-flooding is a widely technique in oil reser-
voir engineering. As illustrated in Figure 1, the water is injected into the reservoir to increase the
reservoir pressure, the oil is then displaced toward the production well [46]. The analytical solution
(the Buckley Leverett solution) for a water-flooding in a 1D homogeneous reservoir predicts the for-
mation of a self sharpening shock front between the water and the oil. This is challenging to model
with a fine grid model let alone a ROM. In this case, the results of the NIROM are compared with
the high-fidelity full model. From the high-fidelity full model simulation, with a mesh of 225 nodes,
120 snapshots were obtained by running the full order model and outputting all solution variables
at regularly spaced time intervals of A¢ = 30. The simulation period was dimensionless [0 — 3600],
and a time step of At = 3 was used for all models.

Figure 2 shows the saturation solutions at time instances 1200 and 3600. The solutions compare
the predictions from NIROM based on POD and Smolyak sparse grid using 12, 24 and 36 POD
bases functions with full model.

Figure 3 compares the saturations predicted by the full model and the Smolyak sparse grid ROM
at a particular position using 12, 24 and 36 POD bases. In order to demonstrate clearly the effects,
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Figure 1. Water-flooding technique for oil production.
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(e) Smolyak sparse grid ROM 24 POD bases, ¢t = 1200 (f) Smolyak sparse grid ROM 24 POD bases, t = 3600
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Figure 2. The figures displayed earlier show the saturation solutions of the Buckley—Leverett problem at
time instances 1200 and 3600. The solutions compare the predictions from NIROM using 12, 24 and 36
POD bases functions with high-fidelity model.
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Figure 3. The graphs show the solution saturations predicted by the full model and the Smolyak sparse grid
NIROM at a point(x=0.021, y=0.167) using 12, 24 and 36 POD bases. The figure below the is a zoom of the
figure above.

an enlarged figure is also provided, which shows the saturation values only between 0.6 and 0.7. As
shown in the figure, there are some wiggles in the solutions. These wiggles are caused by the error
of truncation of the basis functions. The wiggles are almost eliminated by using a larger number of
POD basis functions.

Figure 4 shows some of the POD basis functions of this test case. They are the first, second, third,
fourth, fifth, 12th, 24th and 36th POD bases functions, respectively. As shown in the figure, the 1st—
4th POD basis functions capture most of the energy in the flows as well as major flow structures,
the 1st—4th POD basis functions capture the details of small-scale flows.

Figure 5 shows the saturation profile at the first time step, the 50th time step, the 80th time step
and the 120th time step. As can be seen from the figure, the results are closer to the high-fidelity full
model when a larger number of POD basis functions is chosen.

5.2. Case 2: 2D High-permeability domain embedded in a low-permeability domain

The second case is comprised of a high-permeability domain embedded in a lower permeability
domain. Water is injected over the left-hand boundary and oil and water are produced at a constant
rate from the right hand face. From the full model simulation, with a mesh of 12 390 nodes, 50 snap-
shots were obtained by running full order model at regularly spaced time intervals of Az = 0.001
for each solution variables. The simulation period is [0 — 0.05], and a time step of At = 0.0001 is
used for all models.
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Figure 4. The figures displayed above show some of the POD bases functions of the 1-D Buckley-Leverett
problem.
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Figure 5. The graph shows the saturation profile from the full model and the NIROM using Smolyak sparse
grid using 12, 24 and 36 POD bases at the first, 50th, 80th and 120th time interval.
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Figure 6 shows the solutions of the 2D Buckley—Leverett problem at times 0.03 and 0.045. We
compare the solutions from the NIROM based on POD and the Smolyak sparse grid using 12 and 36
POD basis functions with those from the full model. As we can see from the Figure 6(d), the water
saturation in the high-permeability domain is not well predicted when 12 POD bases functions are
used. This is improved by increasing the number of POD basis functions to 36, as shown in the

phase1::PhaseVolumeFraction ase 1::PhaseVolumeFraction
03 04 05 06 03 04 05 06
(a) full model, ¢t = 0.03 (b) full model, ¢t = 0.045

phase1::PhaseVolumeFraction phasel::PhaseVolumeFraction
03 04 05 06 03 04 05 06

(c) NIROM, 12 POD bases, t = 0.03  (d) NIROM, 12 POD bases, t = 0.045

/)

phasal::FqumaFruc!ion phasel ::PhaseVolumeFraction

03 04 05 04 03 04 05 06

(g) NIROM, 36 POD bases, t = 0.03  (h) NIROM, 36 POD bases, t = 0.045

Figure 6. The figures displayed earlier show the solutions of the 2D Buckley—Leverett problem at time
instances 0.03 and 0.045. The solutions compare the predictions from NIROM based on POD and Smolyak
sparse grid using 12 and 36 POD bases functions, respectively, with the high-fidelity model.
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Figure 6(f). To further demonstrate the capability of NIROMs, the model solution at a particular
point along the domain is given in Figure 7. This figure shows the saturation solution predicted by
the full model and the NIROM using 12 and 36 POD bases at the position (x = 0.608, y = 0.924)
within the reservoir domain. The figure clearly illustrates that the solutions of NIROM using 36
POD basis functions are much more closer to those from the full model. They perform better than
NIROM using 12 POD basis functions.

Table I shows a comparison of CPU (unit: s) required for running the full model and the NIROM
for each time step. It can be seen that the NIROM is CPU time efficient once it has been constructed,

0.55[

Full model
12 POD bases
0.5 - =~ 36 POD bases

0.451

0.4

Saturation

0351

0.3F

0.25

0.2

1 1
0 5 10 15 20 25 30 35 40 45
Timesteps

Figure 7. The graph shows the saturation solutions predicted by the full model, and the NIROM using 12
and 36 POD bases at a location (x = 0.608, y = 0.924).

Table I. Comparison of CPU (unit: s) required for running the full model and
NIROM for each time step.

Model Assembling and solving  Projection Interpolation  Total
Full model 11.050 0.000 0.000 11.050
NIROM 0.000 0.008 0.003200 0.011

NIROM, non-intrusive reduced-order modelling.

phase 1::PhaseVolumeFraction
0.1 072 0|.3 0:4 0.5 0.6 0.7

— ]

(a) full model solution

phase 1::PhaseVolumeFraction
0.1 072 073 0;4 0:5 0.6 0.7

(b) Smolyak sparse grid ROM 12 POD bases

phase 1::PhaseVolumeFraction
0.1 072 073 0;4 0.5 0.6 0.7

(c) Smolyak sparse grid ROM 18 POD bases

Figure 8. Water saturation distribution of the fracture problem at times 0.1. The solutions compare the pre-
dictions from NIROM based on POD and Smolyak sparse grid using 12 and 18 POD bases functions with
full model.
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because it does not involve assembling and solving the matrices process, thus resulting in a speed-up
of computational cost by three orders of magnitude.

5.3. Case 3: High-permeability, high-aspect ratio domain embedded in a low-permeability domain

The third case is comprised of a high-permeability and high-aspect ratio domain embedded in a
low-permeability domain. The high-permeability domain has a permeability 100 times bigger than
the low-permeability domain. A thin, high-permeability domain is ubiquitous in reservoirs, and this
represents a thin high-permeability layers or a discontinuous fracture. However, it is not easy to
model it because of its small size and high-aspect ratio compared with a low-permeability domain.

phase 1::PhaseVolumeFraction
02 03 04 05 06 07

i

IF’

(a) full model solution

phasel::PhaseVolumeFraction
0.2 0:3 014 0.5 0.6 0.7

(b) Smolyak sparse grid ROM 12 POD bases

IP

phase1::PhaseVolumeFraction
0:2 0:3 0&4 D_.5 0.6 0.7

(c¢) Smolyak sparse grid ROM 18 POD bases

IP

Figure 9. Water saturation distribution predicted in the fracture problem at times 0.4. The solutions compare
the predictions from NIROM based on POD and Smolyak sparse grid using 12 and 18 POD bases functions
with full model.

|

phase1::PhaseVolumeFraction
D_.2 0;3 ) U_ﬁ-ll . 0:5 0.6 0.7

(a) full model solution

o o
—r —

phase 1::PhaseVolumeFraction
0.2 073 1 U:l 0|.5 0.6 0.7

(b) Smolyak sparse grid ROM 12 POD bases

phase 1::PhaseVolumeFraction
0.2 073 04 05 0.6 0.7

(c) Smolyak sparse grid ROM 18 POD bases

e
—

Figure 10. Water saturation distribution of the fracture problem at times 3.2. The solutions compare the
predictions from NIROM based on POD and Smolyak sparse grid using 12 and 18 POD bases functions
with full model.
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Figure 11. The saturation profile predicted by the full model and NIROM at the point (x = 2.4671,y =
0.075)

From the high-fidelity model simulation, with a mesh of 21 426 nodes, 25 snapshots were obtained
by running full order model at regularly spaced time intervals Az = 0.14 for each solution variables.
The simulation period is [0 — 3.5], and a time step of Az = 0.14 is used for all models.

Figures 8, 9 and 10 show the solutions of saturation at time instances 0.1, 0.4 and 3.2, respectively.
The solutions compare the predictions from the NIROM based on POD and Smolyak sparse grid
using 12 and 18 POD bases functions with high-fidelity model. As we can see, solutions using 18
POD bases functions are much more closer to the full model.

Figurel1 shows the saturation profile predicted by the full model, and NIROM-based on POD and
Smolyak sparse grid at the point (x = 2.467, y = 0.075) along the computational domain. Again,
we can see the NIROM performs very well with use of 12 and 18 POD basis functions.

6. CONCLUSIONS

A new non-intrusive reduced-order model for porous media multiphase flows has been presented.
This method is based on a POD methodology, where optimal basis functions are generated through
the method of snapshots. However, rather than using a standard Galerkin projection ROM approach
(code intrusive), this approach is based on the Smolyak sparse grid interpolation non-intrusive
method. This NIROM constructs a super-cube that replaces the governing equations within the
reduced space. The benefits of the non-intrusive model reduction approach presented here is that it
does not require any modifications to the multiphase porous media source code, due to the fact that
they are independent of the equation of the system, it simply works from a number of snapshots
obtained from the full multiphase porous media model.

The computational accuracy (error bound) between the Smolyak sparse grid and the full tensor
product grid is given in the work of [47]. It relates to the dimensional size of the problem, approx-
imation level and quadrature rules. The Smolyak sparse grid is less accurate than the full tensor
grid. For the full tensor grid, the number of nodes required to be calculated is (O')?. The dimen-
sional size d = mNpNgim Nyar, Where m is the number of basis functions, N, number of phases,
Ngim dimensional size of the test cases and Ny, is the number of variables to be solved. If we use
18 basis functions and choose velocity, pressure and saturation variables for our problems, then the
dimensional size will be 18 x 2 x 2 x 3 = 216. If there are three nodes in each dimension, the total
number of nodes will be 3216, This is too computationally intensive to finish the simulation. In this
work, the high-fidelity full model is used to numerically compare against the Smolyak sparse grid
based NIROM. The results have been compared against a finite element unstructured mesh fluid
model (Multiphase-Fluidity) by three cases: a 1D water flood in a homogeneous reservoir, a 2D
water flood in a heterogeneous reservoir and in a simple model of a fracture. The results show that
the level of accuracy of NIROM based on Smolyak sparse grid is promising. The selection of snap-
shots at appropriate time intervals can also affect the accuracy of the NIROM [48]. A number of
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optimal selection methods of snapshots have been proposed [49-51]. In this work, all the snapshots
produced at a relatively smaller time step were taken in order to ensure the accuracy. Although the
accuracy of the NIROM based on Smolyak sparse grid is promising, the NIROM may not be rec-
ommended when the hypersurface is not smooth enough (i.e. hypersurface with singularities) [52].

As for the computational cost, the NIROM obtained a speed-up of around 1000 times whilst
giving accurate solutions for porous media multiphase problems. The online computational cost
only includes the interpolation cost and projecting cost from the reduced space onto the full space;
therefore, it is computationally efficient. The offline cost includes the time forming the POD basis
functions, obtaining a corresponding set of the function values and constructing the interpolation
functions. The time required for forming the POD basis functions relates to the number of nodes on
the mesh and the number of POD basis functions. It is not intensive and can be ignored.

In the future, we plan to evaluate the ability of the NIROM to predict flows in models with
different material properties from those used to create the ROM. We will also investigate how to
determine the optimum of snapshots needed to generate a ROM with the desired fidelity to the
original model.
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