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Abstract

A non-intrusive model reduction computational method using hypersurfaces represen-

tation has been developed for reservoir simulation and further applied to 3D fluvial

channel problems in this work. This is achieved by a combination of a radial ba-

sis function (RBF) interpolation and proper orthogonal decomposition (POD) method.

The advantage of the method is that it is generic and non-intrusive, that is, it does not

require modifications to the original complex source code, for example, a 3D unstruc-

tured mesh control volume finite element (CVFEM) reservoir model used here.

The capability of this non-intrusive reduced order model (NIROM) based on hy-

persurfaces representation has been numerically illustrated in a horizontally layered

porous media case, and then further applied to a 3D complex fluvial channel case. By

comparing the results of the NIROM against the solutions obtained from the high fi-

delity full model, it is shown that this NIROM results in a large reduction in the CPU

computation cost while much of the details are captured.

Keywords: RBF, POD, reservoir, hypersurface, 3D fluvial channel

1. Introduction

Reservoir simulation is very important and have a wide range of applications, from

ground-water production to radioactive waste and the extraction of oil and gas from the

subsurface. 3D reservoir modelling provides more details for the multiphase flows in

porous media. However, the computational cost of 3D reservoir simulations is high.

The non-intrusive reduced order modelling technique presented here is capable of re-

solving 3D reservoir modelling problems while avoiding the high computational cost.
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The reduced order modelling technique has been shown to possess a powerful ca-

pability of representing the large dynamical systems using only a small number of

reduced order basis functions. Among the model reduction methods, the POD ap-

proach is the most widely used. This method extracts the most energetic parts of the

system through snapshots method, and then constructs optimal basis functions. The

POD method has been successfully applied to numerous research fields. In geophys-

ical fluid dynamics it is referred to as empirical orthogonal functions (EOF) [1], in

signal analysis it is termed as Karhunen-Love method [2] and in statistics it is called

the principal component analysis (PCA) method [3]. The POD technique has also been

applied to ocean models[4, 5, 6, 7, 8], air pollution modelling [9], data assimilation

[10, 11, 12, 13, 14] and mesh optimization [15].

The most widely used method of deriving a reduced order model (ROM) is through

the combination of POD approach and Galerkin projection. The computational effi-

ciency of the ROM can be increased by several orders of magnitude by projecting the

3D dynamical physical system onto a reduced space. However, this method suffers

from numerical instability [16]. Various methods have been proposed to overcome

or improve the stability issue of the POD/Galerkin projection method, including non-

linear Petrov−Galerkin [5, 17], regularisation [18], subgrid-scale modelling, calibra-

tion [19, 20] and Fourier expansion [21]. Another issue that arises in the ROMs is

the efficient treatment of non-linear terms in the partial differential equations (PDEs).

A number of efficient non-linear treatment methods have been presented, for example,

Gappy POD [22], the empirical interpolation method (EIM)[23] and its discrete version

discrete empirical interpolation method (DEIM) [24], residual DEIM [4], Petrov−Galerkin

projection method [19], Gauss−Newton with approximated tensors (GNAT) method

[25] and the quadratic expansion method [26, 27]. However, these methods are still

dependent on the source code of the original physical system. In most cases the source

code describing the full physical system has to be modified in order to form the reduced

order model.

To circumvent these disadvantages, more recently, non-intrusive methods have

been introduced into model reduction, which do not require the knowledge of the

governing equations and the original source code [28]. Chen et al. proposed a non-

intrusive model reduction method based on black-box stencil interpolation method and

machine learning method [28]. Walton et al.proposed a non-intrusive reduced order

technique for unsteady fluid flow using RBF interpolation and POD [29]. Audouze

et al.proposed a non-intrusive reduced order modelling approach for nonlinear param-

eterized time-dependent PDEs based on a two-level POD method. This method is

verified and validated using Burgers equation and convection-diffusion-reaction prob-

lems [30, 31]. Xiao et al.presented three non-intrusive reduced order methods for

Navier-Stokes equations using hypersurfaces representation. The hypersurfaces are

established by POD and RBF interpolation, Smolyak sparse grid and Taylor series ex-

pansion method [32, 33]. In addition, the hypersurface method based on NIROM has

been successfully applied to fluid-structure interaction problems [34, 35] and free sur-

face flow problems [36].

Recently, reduced order methods (e.g, POD, POD/DEIM, trajectory piecewise lin-

earisation and bilinear approximation techniques) have been applied to reservoir mod-

elling [37, 38, 39, 40, 41, 42, 43, 44]. Heijn et al. [37] and Cardoso et al. [38, 39]
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first developed POD reduced order models for reservoir simulation. Chaturantabut et

al. [40], Yang et al. [41] and Yoon et al. [42] further introduced DEIM into model

reduction for non-linear flows [40]. Again, these reduced order methods are intru-

sive and equations/codes dependent. On the other hand, there are very few studies in

non-intrusive reduced order modelling in porous media flows and 3D fluvial channel

problems. Klie first proposed a non-intrusive model reduction approach based on a

three-layer neural network combined with POD and DEIM to predict the production of

oil and gas reservoirs [44], where the RBF neural network is used for learning about the

input and output relationships. In this work, we used RBF as an interpolation method

for constructing the time-dependent POD ROM.

In this work we extend the hypersurfaces based NIROM [32] to 3D reservoir mod-

elling, and applied to a fluvial channel problem. The novelty of this work lies in the

hypersurfaces representation of 3D reservoir modelling on a reduced space under the

framework of the Imperial College Finite Element Reservoir Simulator (IC-FERST).

In this approach, solutions to the full fidelity 3D reservoir model are recorded using

the snapshot methods, and from these snapshots POD bases are generated that opti-

mally represent the 3D reservoir simulation. The RBF interpolation method is then

used to form a set of hypersurfaces (interpolation functions) that approximate the time-

dependent ROM. After obtaining hypersurfaces, the solution of ROM at the current

time level can be calculated by inputting POD coefficients of earlier time levels into

the hypersurfaces. The capabilities of results from the new NIROM have been as-

sessed by two 3D reservoir simulation test cases.

The structure of the article is as follows: section 2 presents the governing equations

of the 3D reservoir model; section 3 presents the reduced order modelling method using

hypersurfaces representation; section 4 illustrates the methodology derived by means

of two numerical examples. The illustration consists of two test problems where a

horizontally layered porous media test case and a 3D fluvial channel case are resolved.

Finally in section 5, the conclusion is presented.

2. Governing equations of 3D reservoir modelling

The governing equations used in the underlying 3D reservoir model are given in

this section. The darcy’s law for immiscible multiphase flow in porous media has the

form:

qα = −
Krα

µα
K (∇pα − suα) , (1)

where qα is the αth phase Darcy velocity. The Krα is the relative permeability of the

αth phase, and it is a function that is denoted by Krα (S α) corresponding to the phase

saturation variable S α. pα is the pressure of the αth phase, which may include capillary

pressure. K is the absolute permeability tensor of the porous medium. µα and suα are

the phase dynamic viscosity and source term respectively, which may include gravity.

A saturation-weighted Darcy velocity is introduced into the equation (1) and de-

fined as

vα =
qα

S α
, (2)

3



then equation (1) can be rewritten as follows:

uα = σ
α
vα = −∇pα + suα, σ

α
= µαS α

(KrαK
)−1

(3)

where uα denotes the force per unit volume, which is defined as σ
α
vα and used as a

prognostic variable in this approach. The σ
α

represents the implicit linearisation of the

viscous frictional forces.

The saturation equation can be written as:

φ
∂S α

∂t
+ ∇ · (vαS α) = scty,α, (4)

where φ denotes the porosity. The t is time and scty,α is a source term of the αth phase.

Finally, equation (4) is bounded by the constraint:

Nα
∑

α=1

S α = 1, (5)

where Nα denotes the number of phases.

2.1. Discretisation of the governing equations

The Discretisation of the above equations (1)-(5) at time level n can be written in a

general form:

An
vvn = sn

v , An
ppn = sn

p, An
S Sn = sn

S (6)

where vn = (vn
1
, . . . , vn

α, . . . , v
n
Nα

)T , pn = (pn
1
, . . . , pn

α, . . . , p
n
Nα

)T and Sn = (Sn
1
, . . . , Sn

α, . . . , S
n
Nα

)T .

vn
α, pn

α and Sn
α are velocity, pressure and saturation vectors of phase α, and vn

α =

(vα,1, . . . , vα,N)T , pn
α = (Pα,1, . . . , Pα,N)T , Sn

α = (S α,1, . . . , S α,N )T , and N is the num-

ber of nodes.

3. Model reduction for 3D reservoir modelling

In this section, the process of deriving a non-intrusive ROM (NIROM) for 3D reser-

voir model is described.

3.1. Proper Orthogonal Decomposition (POD) formulation

POD is a technique used to find a set of optimal basis functions from the snapshots

of solutions obtained from the original model. The optimal POD basis functions are

then used to formulate a reduced dynamical system that contains the main features of

the flow. Due to the optimality of convergence in terms of kinetic energy of the POD

basis functions, dominant components of a large dimensional process can be captured

with only a small number of bases e.g., 10 − 100.

In this work, we find a set of basis functions for each phase (α) of the variables:

velocity vα, pressure pα and saturation Sα. At time level n, those variables can be

expressed:

vn
α = vα + Φ

T
α,vvn

r,α, pn
α = pα + Φ

T
α,ppn

r,α, Sn
α = Sα + Φ

T
α,S Sn

r,α, α ∈ {1, 2, . . .Nα} (7)
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where vα, pα and Sα are the mean of the ensemble of snapshots for the variables

vn
α, pn

α and Sn
α respectively, Φα,v = (Φα,v,1, . . . ,Φα,v,M), Φα,p = (Φα,p,1, . . . ,Φα,p,M),

Φα,S = (Φα,S ,1, . . . ,Φα,S ,M) are the POD bases for vn
α, pn

α and Sn
α respectively, which are

extracted through truncated singular value decomposition, and M is the number of POD

bases used in the POD model. vr,α, pr,α and Sr,α denote phase α ’s POD coefficients

of velocity, pressure and saturation respectively. vn
r,α = (vn

r,α,1
, . . . , vn

r,α, j
, . . . , vn

r,α,M
)T ,

pn
r,α = (pn

r,α,1
, . . . , pn

r,α, j
, . . . , pn

r,α,M
)T and Sn

r,α = (Sn
r,α,1
, . . . , Sn

r,α, j
, . . . , Sn

r,α,M
)T .

Projecting equation (6) onto the reduced space, yields:

ΦT
α,vA

n
α,vΦα,vvn

α = sn
v , Φ

T
α,pAn

α,pΦα,ppn
α = sn

p, Φ
T
α,S An

α,SΦα,S Sn
α = sn

S (8)

The ROM for solving the POD coefficients vn
r,α, j

, pn
r,α, j

and Sn
r,α, j

(where j ∈ {1, 2, . . .M},
α ∈ {1, 2, . . .Nα}) at time level n can be written in the general form:

vn
r,α, j = fα,v, j(v

n−1
r,1 , p

n−1
r,1 , S

n−1
r,1 , · · · , v

n−1
r,α , p

n−1
r,α , S

n−1
r,α , · · · , vn−1

r,Nα
, pn−1

r,Nα
, Sn−1

r,Nα
, ),

pn
r,α, j = fα,v, j(v

n−1
r,1 , p

n−1
r,1 , S

n−1
r,1 , · · · , v

n−1
r,α , p

n−1
r,α , S

n−1
r,α , · · · , vn−1

r,Nα
, pn−1

r,Nα
, Sn−1

r,Nα
, ),

Sn
r,α, j = fα,v, j(v

n−1
r,1 , p

n−1
r,1 , S

n−1
r,1 , · · · , v

n−1
r,α , p

n−1
r,α , S

n−1
r,α , · · · , vn−1

r,Nα
, pn−1

r,Nα
, Sn−1

r,Nα
, ), (9)

subject to the initial condition

v0
r,α, j = ((v0

α, j − vα),Φα, j), p0
r,α, j = ((p0

α, j − pα),Φα, j), S0
r,α, j = ((S0

α, j − Sα),Φα, j),

(10)

where (vn−1
r,1
, pn−1

r,1
, Sn−1

r,1
, · · · , vn−1

r,α , p
n−1
r,α , S

n−1
r,α , · · · , vn−1

r,Nα
, pn−1

r,Nα
, Sn−1

r,Nα
, ) denotes a complete

set of POD coefficients for solution fields velocities v, pressures p and saturations S of

all phases at time step n − 1 (n ∈ {1, 2, . . . ,Nt}), Nt is the number of time levels in the

computational simulation.

3.2. Hypersurfaces based on RBF interpolation

The RBF is an efficient method for interpolation problems. In this work, the RBF

interpolation method is used to construct a set of hypersurfaces for reduced order 3D

reservoir model. The theory of RBF interpolation is briefly reviewed in this section.

The RBF interpolation method constructs a approximation function using the form of,

f (x) =

N
∑

i=1

wi φ(‖x − xi‖), (11)

where the interpolation function (hypersurface) f (x) is represented as a linear com-

bination of N RBFs (φ). N denotes the number of RBFs. Each RBF is associated

with a different center xi, and weighted by a coefficient wi. x denotes a data point

in multidimensional space and it consists of a complete set of POD coefficients for

solution fields of all phases such as velocity and pressure, saturation. In this work

x = (vn−1
r,1
, pn−1

r,1
, Sn−1

r,1
, , · · · , vn−1

r,α , p
n−1
r,α , S

n−1
r,α , · · · , vn−1

r,Nα
, pn−1

r,Nα
, Sn−1

r,Nα
, ). ‖x − xi‖ is a scalar

distance defined by the L2 norm.
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The weight coefficients wi are determined by ensuring that the interpolation func-

tion values f (x) will match the given data y exactly. This is achieved by enforcing

f (x) = y, which produces a linear equation

Bw = y, (12)

where

B =



































φ (‖x1 − x1‖2) φ (‖x1 − x2‖2) · · ·φ (‖x1 − xn‖2)

φ (‖x2 − x1‖2) φ (‖x2 − x2‖2) · · ·φ (‖x2 − xn‖2)
...

...
...

φ (‖xn − x1‖2) φ (‖xn − x2‖2) · · ·φ (‖xn − xn‖2)



































, (13)

w = [w1,w2, ...,wn]T , y = [y1, y2, ..., yn]T (14)

The weight coefficients w j are then determined by solving the linear system (12) Aw =

y. How to define an appropriate RBF φ is also important. The most well-known choices

for φ are Gaussian (φ(r) = e−(r/σ)2

), Multi-Quadratic (φ(r) =
√

r2 + σ2), Inverse Multi-

Quadratic (φ(r) = 1√
r2+σ2

), Inverse Quadratic (φ(r) = 1
r2+σ2 ) and Thin Plate Spline

(φ(r) = r2log r). r > 0 is a radius and σ > 0 is a shape parameter.

3.3. Hypersurfaces representing the reduced system of the 3D reservoir model

In this section the procedure of forming a set of hypersurfaces for 3D reservoir

model in a reduced space is described. This is achieved by using Gaussian RBF in-

terpolation method to construct the ROM in (9). By applying the RBF method, a set

of hypersurfaces f n
α,v, j

, f n
α,p, j

and f n
α,S , j

for each POD coefficient vn
r,α, j

, pn
r,α, j

and S n
r,α, j

( j ∈ {1, 2, . . . ,M}, α ∈ {1, 2, · · · ,Nα}) may be approximately represented by the inter-

polation functions below:

vn
r,α, j = fα,v, j(v

n−1
r,1 , p

n−1
r,1 , S

n−1
r,1 , · · · , v

n−1
r,α , p

n−1
r,α , S

n−1
r,α , · · · , vn−1

r,Nα
, pn−1

r,Nα
, Sn−1

r,Nα
, ) =

N
∑

i=1

wα,v,i, j ∗ φ(ri),

pn
r,α, j = fα,p, j(v

n−1
r,1 , p

n−1
r,1 , S

n−1
r,1 , · · · , v

n−1
r,α , p

n−1
r,α , S

n−1
r,α , · · · , vn−1

r,Nα
, pn−1

r,Nα
, Sn−1

r,Nα
, ) =

N
∑

i=1

wα,p,i, j ∗ φ(ri),

Sn
r,α, j = fα,S , j(v

n−1
r,1 , p

n−1
r,1 , S

n−1
r,1 , · · · , v

n−1
r,α , p

n−1
r,α , S

n−1
r,α , · · · , vn−1

r,Nα
, pn−1

r,Nα
, Sn−1

r,Nα
, ) =

N
∑

i=1

wα,S ,i, j ∗ φ(ri), (15)

where φ(ri) is the RBF whose values depend on the distance from a collection of

centre points,(v̂n−1
r,1
, p̂n−1

r,1
, Ŝn−1

r,1
, · · · , v̂n−1

r,α , p̂
n−1
r,α , Ŝ

n−1
r,α , · · · , v̂n−1

r,Nα
, p̂n−1

r,Nα
, Ŝn−1

r,Nα
, ) (where i ∈

1, 2, . . . ,N and α ∈ {1, 2, . . .Nα}) and weighted by wα,v,i, wα,p,i and wα,S ,i. In this work,

the Gaussian RBF are chosen:

φ(ri) = e−(ri/σ)2

= e−(‖(vn−1
r ,p

n−1
r ,S

n−1
r )−(v̂r,i ,p̂r,i ,Ŝr,i)‖/σ)2

(16)

where vr denotes the POD coefficients of velocity including all phases, and vr =

(vr,1, · · · , vr,α, · · · , vr,Nα). This applies to pressure vector pn−1
r and saturation vector
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Sn−1
r . ri is a radius or the distance defined by the L2 norm, σ > 0 is a shape param-

eter. (v̂r,i, p̂r,i, Ŝr,i) denotes a center point. The weighting coefficients wα,v,i, wα,p,i and

wα,S ,i are determined so as to ensure that the interpolation function values at the collec-

tion data point (vr,k, pr,k, Sr,k) match the given data fα,v,k, fα,p,k and fα,S ,k. This can be

expressed by,

Bwα,v,i, j = fα,v,i, j, Bwα,p,i, j = fα,p,i, j, Bwα,S ,i, j = fα,S ,i, j, i ∈ {1, 2, . . . ,N}, (17)

where

• wα,v,i = (wα,v,i,k)T
k=1,...,N

, wα,p,i = (wα,p,i,k)T
k=1,...,N

and wα,S ,i = (wα,S ,i,k)T
k=1,...,N

,

• fα,v,i = (wα,v,i,k)T
k=1,...,N

, fα,p,i = (wα,p,i,k)T
k=1,...,N

and fα,S ,i = (wα,S ,i,k)T
k=1,...,N

,

• B is the interpolation matrix of elements Bk,l = φ(rk,l),

• k, l ∈ {1, 2, . . . ,N}, N is the number of data points.

The weighting coefficients wα,v,i, j, wα,p,i, j and wα,S ,i, j are then determined by solving

the linear system (17).

3.4. Summary of constructing the NIROM for the 3D reservoir model

In this section, the algorithm of constructing the hypersurfaces and obtaining re-

sults using the NIROM is summarized, which includes the offline process and online

process. The offline process consists of obtaining the basis functions and constructing

the hypersurfaces.
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Algorithm 1: NIROM for 3D reservoir models

(1) Offline calculation:

(a) Obtaining the POD bases for 3D reservoir model

i. Generate the snapshots at time level n = 1, . . . ,Nt by solving the 3D

reservoir model (6);

ii. Construct the POD bases Φv, Φp and ΦS using the SVD method;

(b) Construct a set of hypersurfaces

i. Calculate the functional values fv,i,k, fp,i,k and fS ,i,k at the data point

(vr,k, pr,k, Sr,k) through the solution from the full models, where

k ∈ {1, 2, . . .N};
ii. Find the weights wv,i, wp,i and wS ,i by solving (17) such that the

hypersurfaces fv,i, fp,i and fS ,i pass through the data points;

(2) Online calculation: The hypersurfaces in (15) denotes a 3αM-dimensional hyper

surface. Once a set of interpolation functions fα,v, j, fα,p, j and fα,S , j are

constructed, they are then used to estimate the jth POD coefficient of phase (α)

vn
r,α, j

, pn
r,α, j

and S n
r,α, j

at time level n.

Initialization v0
r, j

, p0
r, j

and S 0
r, j

;

for n = 1 to Nt do

for j = 1 to M do

for α = 1 to Nα do

(i) Inputs: a complete set of POD coefficients for solution fields v, p and S at time

step n − 1:

vn−1
r = (vn−1

r,α, j)
T
j=1,...,M.α=1,...,Nα

, pn
α = (pn−1

r,α, j)
T
j=1,...,M.α=1,...,Nα

, Sn
α = (S n−1

r,α, j)
T
j=1,...,M.α=1,...,Nα

,

(ii) Outputs: Estimate the POD coefficient vn
r,α, j

, pn
r,α, j

and S n
r,α, j

at current time step

n using the hypersurfaces (15);

vn
r,α, j = fv,α, j(v

n−1
r , p

n−1
r , S

n−1
r ),

pn
r,α, j = fp,α, j(v

n−1
r , p

n−1
r , S

n−1
r ),

S n
r,α, j = fS ,α, j(v

n−1
r , p

n−1
r , S

n−1
r ),

endfor

endfor

Obtain the solution of variables vn
α, pn

α and Sn
α in (4) by projecting vn

r,α, j
, pn

r,α, j

and S n
r,α, j

onto the full space (see (7)).

vn
α = vα + Φ

T
v,αv

n
r,α, pn

α = pα + Φ
T
p,αp

n
r,α, Sn

α = Sα + Φ
T
S ,αS

n
r,α,

endfor
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4. Numerical Examples

4.1. Introduction of an unstructured mesh 3D reservoir model

The NIROM has been implemented under the framework of an advanced 3D un-

structured mesh reservoir model (IC-FERST). A novel control volume finite element

method (CVFEM) is used to obtain the high-order fluxes on CV boundaries which are

limited to yield bounded fields (e.g., positive saturations ). This method is combined

with a novel family of FE pairs, originally introduced for geophysical fluid dynamics

applications. In particular, the P2DG − P1DG element pair (quadratic discontinuous

polynomial FE basis function for velocity (P2DG) and linear discontinuous polynomial

FE basis function for pressure, P1DG), is used to accurately represent sharp saturation

changes between heterogeneous domains, see [45, 46].

The water-flooding is a widely known technique in oil and gas reservoir engineer-

ing. It increases the production from oil reservoirs through injecting water into the

reservoir. As illustrated in figure 1, the water is injected into the reservoir to increase

the reservoir pressure, the oil is then displaced toward the production well. This phe-

nomenon is also referred to the immiscible displacement in porous media. In this

section, the capability of the NIROM developed for 3D unstructured mesh reservoir

modelling has been numerically illustrated in a horizontally layered porous media case,

and then further applied to a 3D complex fluvial channel case.

4.2. Case 1: horizontally layered porous media case (simple test case)

The first case for numerical illustration of the method proposed in this paper is a

horizontally layered porous media case. This test case is dimensionless and for sim-

plicity no gravity has been considered. This problem domain is consist of a rect-

angle of non-dimensional size 1 × 0.2. The domain is divided into two identical

areas with a permeability ratio of 4 (non-dimensional size) within the top half part

and 1 (non-dimensional size) on the bottom half part. All the units in this paper are

non-dimensional size. The outlet boundary has a dimensionless pressure of 0 (non-

dimensional size), the whole domain is initially saturated with the non-wetting phase

and the wetting phase at the irreducible saturation. The wetting phase is injected over

the inlet boundary with a dimensionless velocity of 1. The viscosity ratio of the phases

is 1. The Brooks-Corey model for the relative permeability, with an exponent of 2 and

an end-point relative permeability ratio of 1, is considered for both phases. The poros-

ity is homogeneous and equal to 0.2. The immobile fraction of the wetting phase is set

to 0.2 and 0.3 for the non-wetting phase.

The problem was resolved with a mesh of 984 nodes during the simulation time

period [0, 0.02]. Fifty snapshots were taken from the pre-computed solution at regu-

larly spaced time intervals ∆t = 0.0002 and from these POD bases are generated for

the solution variables v, p, S .

The first 18 POD bases are presented in figure 2. As shown in the figure, the first

four POD bases capture most of flow features while the 5th-18th POD bases capture the

details of small scale flow structures. Figure 3 shows the singular eigenvalues in order

of decreasing magnitude. In general, the more POD bases and snapshots are chosen,

the better the energy is represented. There is a trade-off between the accuracy and the

9



CPU time. In this work, 18 POD bases with 50 snapshots are chosen resulting in 92%

of ’energy’ being captured.

Figure 4 shows the saturation solutions of the horizontally layered porous media

problem at time instances t = 0.01 and t = 0.02, as calculated using the full and

NIROMs. It can be seen that both model solutions are in good agreement with each

other. The NIROM performs well in capturing the saturation shock-front.

Figure 5 shows the saturation solution at a particular position (0.026937, 0.16246).

It is noted the results from the NIROM using 6 and 12 POD bases become oscillatory

after t = 10. By increasing the number of POD bases from 6 to 18, the NIROM

becomes stable and exhibits an overall good agreement with the full modelling.

The ability of the NIROM is further highlighted in figure 6, which presents the

saturation solution along a line parallel to the x-axis. We can see the NIROM has a

large error near the shock-front when using 6 POD bases. This can be significantly

improved as the number of POD bases increases. Using 18 POD bases, the error of

saturation solutions is decreased by 50% − 97% in comparison to that using only 6

POD bases, and the shock-front is captured well.

To further validate the quality of the NIROM, the corresponding error estimation

of the POD ROM was carried out in this work. The accuracy of NIROM was assessed.

The correlation coefficient of solutions between the full and NIROMs is computed for

each time step, and is defined for given expected values S n
f ull

and S n and standard

deviations σS n
f ull

and σS n ,

corr(S n
f ull, S

n)n =
cov(S n

f ull
, S n)

σS n
f ull
σS n

=
E[(S n

f ull
− S n

f ull
)(S n − S n)]

σS n
f ull
σS n

. (18)

where E denotes mathematical expectation, cov denotes covariance,σ denotes standard

deviation. S n
f ull

and S n denote the mean of S n
f ull

and S n respectively. The measured

error is given by the root mean square error (RMSE) which is calculated for each time

step n by,

RMS En =

√

∑N
i=1(S n

f ull,i
− S n

i
)2

N
. (19)

In this expression S n
f ull,i

and S n
i

denote the full and NIROM solutions at the node i,

respectively, and N represents number of nodes on the full mesh.

The RMSE and correlation coefficient of saturation solutions between the full and

NIROMs are presented in figure 7. With an increase in the number of POD bases, the

RMSE in the saturation results decreases by about 50% while the correlation increases

up to 98%.

10



Figure 1: Water-flooding technique for oil production.

(a) The 1st POD bases (b) The 2nd POD bases

(c) The 3rd POD bases (d) The 4th POD bases

(e) The 5th POD bases (f) The 8th POD bases

(g) The 12th POD bases (h) The 18th POD bases

Figure 2: Case 1: the figures displayed the first 18 POD bases functions of the horizontally layered porous

media problem.
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Figure 3: Case 1: the figure shows the singular eigenvalues in order of decreasing magnitude.

(a) full model, t = 0.01 (b) full model, t = 0.02

(c) NIROM 6 POD bases, t = 0.01 (d) NIROM 6 POD bases, t = 0.02

(e) NIROM 12 POD bases, t = 0.01 (f) NIROM 12 POD bases, t = 0.02

(g) NIROM 18 POD bases, t = 0.01 (h) NIROM 18 POD bases, t = 0.02

Figure 4: Case 1: the figures displayed above show the saturation solutions of the horizontally layered porous

media problem at time instances 0.01 and 0.02 (where 6, 12 and 18 POD bases are chosen with 50 snapshots).

The permeability ratio on the top half part is 4, and the bottom half part is 1.
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Figure 5: Case 1: the graph shows the solution saturations predicted by the full model and the NIROM at a

position (0.026937, 0.16246) (where 6, 12 and 18 POD bases are chosen with 50 snapshots)
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Figure 6: Case 1: Saturation along lines parallel to the x axis.
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Figure 7: Case 1: The graph shows the RMSE and correlation coefficient of solutions between the full and

NIROMs.
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4.3. Case 2: 3D fluvial channel case (complicated test case)

The second case is a 3D fluvial channel case. There is a set of channels in the

computational domain which is composed of 31776 nodes-see figure 8. The domain

is initially filled with immovable water and movable oil and the saturations of oil and

water are S oil = 0.8 and S water = 0.2 respectively. The water is then injected into

the computational domain from the right side at constant pressure. The flow passes

through the channels from right side to the left side. All other sides are treated as

barriers to flows except for the inlet side (right boundary in the computational domain)

with a pressure of 55 × 106 and outlet side (left boundary) with a pressure of 2 × 106.

The homogeneous porosity is set to be φ=0.2 and the saturations of the residual oil and

irreducible water are set to be 0.2. The viscosities of the residual oil and irreducible

water are set to be 0.004 and 0.001 respectively. The simulation was run during the

simulation period [0, 1000days] with a time step size of 10days. 100 snapshots of

solutions were taken at regularly spaced time intervals ∆t = 10days for each solution

variable.

Figure 10 shows the first 36 leading POD bases functions of saturation. As shown in

the figure, these leading POD bases capture the dominant characteristics of solutions.

The POD bases corresponding to small eigenvalues, for example, the 30th and 36th

POD bases, contain small scale flow features. Figure 9 shows the singular eigenvalues

in order of decreasing magnitude. As shown in the figure, the first 6 POD bases almost

captured all of the total energy (96.83%).

Evaluation of accuracy of the POD model was carried out through comparison of

POD solutions with those from the full model. Figure 11 shows the saturation solutions

obtained from the high fidelity full model and NIROM with 6 and 36 POD bases at time

instances 500 days and 800 days. It shows clearly that the results of NIROM are close

to that of high fidelity full model. The solutions of saturation at a particular point

(figure 12 (a)) in the computational domain are presented in figure 12. The figure again

shows that the accuracy of solution can be improved by increasing the number of POD

bases functions to 36 and the NIROM using 36 POD bases is in good agreement with

the high fidelity full model.

The error of saturation solutions between the high fidelity full model and the NIROMs

with 6 and 36 POD bases are presented in figure 13.
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(a) water channel profile (top to bottom) (b) water channel profile (bottom to top)

Figure 8: Case 2: the figures displayed above show the water channel profile.
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Figure 9: Case 2: the figure shows the singular eigenvalues in order of decreasing magnitude.
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(a) The 1st POD bases (b) The 2nd POD bases

(c) The 12th POD bases (d) The 24th POD bases

(e) The 30th POD bases (f) The 36th POD bases

Figure 10: Case 2: the figures displayed the first 36 POD bases functions of the 3D fluvial channel problem.
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(a) full model, t = 500days (b) full model, t = 800days

(c) NIROM (6 POD bases), t = 500days (d) NIROM (6 POD bases), t = 800days

(e) NIROM (36 POD bases), t = 500days (f) NIROM (36 POD bases), t = 800days

Figure 11: Case 2: the figures displayed above show the saturation of full model and NIROM of the 3D

fluvial channel problem at time instances 500 days and 800 days seconds using 6 and 36 POD bases.
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Figure 12: Case 2: the figures displayed above show the values of saturation at a particular point in the

mesh-see figure(a).
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(a) error of NIROM with 6 POD bases, t = 500days (b) error of NIROM with 6 POD bases, t = 800days

(c) error of NIROM with 36 POD bases, t = 500days (d) error of NIROM with 36 POD bases, t = 800days

Figure 13: Case 2: the figures displayed above show the error of saturation between the full model and

NIROM of the 3D fluvial channel problem at time instances 500 days and 800 days using 6 and 36 POD

bases.
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4.4. Efficiency of the NIROM

The CPU cost of NIROM includes online cost and offline cost. The offline cost

includes the time of forming basis functions and hypersurfaces, which is precom-

puted. Table 1 shows the online CPU cost required for the high fidelity full model

and NIROM. The simulations were performed on a machine with 12 cores. The CPU

model is Intel(R) Xeon(R) X5680 and each core has a frequency of 3.3GHz. The RAM

has a memory of 48GB. The test cases were run in serial, which means only one core

was used for the simulation. The offline CPU time required for constructing the POD

bases and the interpolation function fα,v, j, fα,p, j and fα,S , j (see algorithm 1) is not listed

here. The online CPU time for running the NIROM includes:

• interpolation for calculating the POD coefficients vn
r,α, j

, pn
r,α, j

and Sn
r,α, j

(see equa-

tion (15));

• projecting the vn
r,α, j

, pn
r,α, j

and Sn
r,α, j

onto the full space (see equation (7)).

The online CPU cost required for the NIROM is considerably less than that for the

full model and is reduced by a factor of 2500. It is worth noting that as the number of

nodes increases the CPU time required for the full model increases rapidly while the

CPU time for the NIROM almost remains the same.

Table 1: Comparison of the online CPU time (dimensionless) required for running the full model and NIROM

during one time step.

Cases Model assembling and projection interpolation total

solving

Full model 0.81605 0 0 0.81605

Case 1 NIROM 0 0.0003 0.0001 0.00040

Full model 98.3998 0 0 98.3998

Case 2 NIROM 0 0.0003 0.0001 0.00040

5. Conclusion

A NIROM based on hypersurfaces representation has recently been developed for

IC-FERST which has the capabilities of using (1) anisotropic unstructured meshes to

resolve fine scale flow feature; and (2) a novel control volume finite element method to

resolve the high-order flux flows on CV boundaries. In this work the NIROM has been

further applied to a fluvial channel problem.

A RBF interpolation method is used to form a multi-dimensional interpolation

function (hyper surface) that represents the solution of the 3D reservoir model within

the reduced space. The non-intrusive approach used here to construct the NIROM is

generic and does not require any information of the original source code or the model

equations. It can be applied to any software or commercial codes. In addition, it avoids

the instability of existing Galerkin POD ROMs [29], the results might be smoothed by

RBF [47].
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The capabilities of the newly developed NIROM are illustrated in two test cases:

a simple horizontally layered porous media case and a complicated 3D fluvial channel

case. A comparison between the full and NIROM results are made. An error analysis

was also carried out for the validation and accuracy assessment of the NIROM. It is

shown that the NIROM exhibits an overall good agreement with the high fidelity full

model. An increase in the number of POD bases leads to an improvement in the ac-

curacy of the NIROM. The saturation shock-front can be captured with relatively few

POD basis functions, 18 POD basis function (figure (h) of 4) in the examples.

In comparison to the full model, without compromising the accuracy of results the

CPU time required for the NIROM can be reduced by a factor of 2500. It is worth

pointing out that for 3D large scale reservoir simulation, an increase in the number of

nodes used in the computational domain will result in a large increase of the CPU time

in the full simulation, but has very little effect on that of the NIROM. Future work will

investigate the effects of applying this new approach to more complex 3D reservoir

simulation cases and extend this method for varying parameters reservoir simulation

problems. It is also interesting to apply this method to complicated fracture problems,

for example, the work demonstrated in [48] and [49].
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