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Abstract

This article presents a non-intrusive reduced order model (NIROM) for general, dy-
namic partial differential equations. Based upon proper orthogonal decomposition
(POD) and Smolyak sparse grid collocation, the method first projects the unknowns
with full space and time coordinates onto a reduced POD basis. Then we introduce
a new least squares fitting procedure to approximate the dynamical transition of the
POD coeflicients between subsequent time steps, taking only a set of full model solu-
tion snapshots as the input. Thus, the physics and numerics of the original PDE model
is fully transparent to this methodology and its level of non-intrusiveness is improved
compared to existing ROMs. Furthermore, we take adaptive measures to address the
instability issue arising from reduced order iterations of the POD coefficients.

This model can be applied to a wide range of physical and engineering scenarios
and we test it on a couple problems in fluid dynamics. It is demonstrated that this
reduced order approach captures the dominant features of the high fidelity models with
reasonable accuracy while the computation complexity is reduced by several orders of
magnitude.
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1. Introduction

In many areas of science and engineering, iterative computations and data assim-
ilations for large-scale dynamical systems are often required to understand, to predict
and/or to control various phenomena. Straightforward simulations of such problems
may be very inefficient: Extensive resources are exhausted to produce intermediate re-
sults that have little significance due to different sources of parameter variations, errors
and noise. Therefore, reduced order models (ROMs) have become prevalent thanks to
their potential to achieve major speedup for standard numerical procedures. Their ap-
plicability relies on the presumption that the predominant physical mechanisms operate
on a much lower dimensional space. A particular class of implementations are based
on the proper orthogonal decomposition (POD) method whose variants have been suc-
cessfully applied in a wide spectrum of research fields: air pollution dispersion[1],
shallow water equations[2, 3], convective flows [4], ocean modelling [5, 3, 6, 7, 8, 9],
4-D variational data assimilation [10, 11, 12], neutron transport [13], fluid and structure
interaction[ 14, 15], inversion [16] and molecular simulation [17].

Traditionally, a reduced order model implies re-derive a simpler physical model
with additional restrictions such as homogenisation and parametrisation, or the substan-
tial rewriting of the numerical schemes for the physical model which is often termed
as “intrusiveness”. The intrusive reduced order model (ROM) has been suffering from
instability and non-linear inefficiency problems [18, 19, 7, 20, 21, 8, 22]. In addition,
the dependency of the source code results in that the ROM is difficult to modify and
implement[23].

To circumvent or avoid these issues, researchers found another way of solving the
reduced order system: non-intrusive method. The non-intrusive method is popular in
recent years since it is independent of the complex original dynamic system and it is
therefore easy to implement even when the source code is not available. A number of
non-intrusive reduced order modelling (NIROM) methods have been proposed. Wal-
ton et al. and Xiao et al. proposed a NIROM using radial basis function (RBF) method
and proper othogonal decomposition (POD)[24, 25]. Noack [26] and Noori [27] used
neural network to construct a NIROM. Xiao et. al. used a Smolyak sparse grid colloca-
tion method in which multidimensional, vector-valued Smolyak functions are used to
replace the differential equations and to evolve the state variables [28]. This approach
not only avoids the necessity of code modification but also circumvents the so-called
curse of dimensionality where computational complexity grows exponentially as the
dimension of the problem increases.

In this paper, we presented a new non-intrusive reduced order model method based
on least square fitting and Smolyak sparse grid. The advantage of this method lies in
it uses smolyak sparse grid method to lower the order of polynomial fit. As we know,
high order polynomials may cause a poorer fitting since they are oscillatory between
sample data points. This combination of Smolyak sparse grid and least square fitting
induces a great potential in problems with high number of sample data points( many
thousands of data points). Instead of traversing each nodal point in a Smolyak sparse
grid with its coordinates as the input to a full model simulation and then interpolating
with the collective output, we compute the coefficients of the Smolyak polynomials by
solving a least squares fitting problem whose data are recycled from the generation of



the POD basis. We first properly decompose the temporally equidistant snapshots of
the solution variables generated by the CFD software Fluidity [29]. Then we assemble
the input data for the least square fitting by projecting the snapshots onto the reduced
basis. Finally, a linear system of normal equations is solved producing the desired fit
defined by its function values on a sparse grid, with which one can approximate the
infinite dimensional evolution of physical variables with finite dimensional map for
POD coeflicients. Essentially, the physics and numerics of the original, full model are
transparent to the reduced order model and it can be readily made into a universal black
box that is compatible with arbitrary POD framework.

The structure of the paper is as follows. Section 2 reviews the general methodology
of POD followed by previous results on non-intrusive ROMs with the introduction
of a Smolyak sparse grid. Section 3 derives the least squares fitting problem and its
solution for the non-intrusive modelling. Section 4 presents the stabilisation techniques
we develops to address the instability issue we encounter with the direct application
of the least squares approximation. Section 5 demonstrates the methods capabilities
by solving two test problems in fluid dynamics. Finally in Section 6, a summary of
conclusions and discussions of future work are presented.

2. POD-Based Reduced Order Modelling and Smolyak Sparse Grids

We consider a physical, dynamical system such as the Navier-Stokes equations
which takes the form
4
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with appropriate initial and boundary conditions, where the vector-valued function ¢,
defined on a region in space, say {2 C R3, and on the time interval [0, T'], is connected
to a prescribed forcing, F, that is in general a complex, integro-differential operator
derived from some physical laws.

2.1. Reduction via Proper Othogonal Decomposition

The solution ¥ to the master equation (1) lives in an infinite-dimensional function
space and the first step of our reduced order modeling is to project it onto a finite-
dimensional subspace via proper orthogonal decomposition (POD). This procedure
generates a set of basis functions that is constructed from a collection of snapshots
that are taken at a number of time instances of the full model simulation. This ba-
sis serves as the axes of a coordinate system that one can represent and reconstruct
functions in physical space with coefficient vectors.

In the formulation presented here snapshots of each component of the solution
vector is individually recorded. Without loss of generality, we use the Navier-Stokes
equations to illustrate where ¢ is consisted of 3 velocity components, (i, uy, u;), and a
pressure component, p. Given a computational mesh of A nodes, the s™ snapshot of
then contains four N'—vectors, denoted as P}, w, W2, and P2 respectively, with which
we assemble four separate VX S matrices as

Y= (YL, ), W= (‘P"',‘I’é, .. ,‘I’?) 2)



and so on for the other two components, where S is the number of snapshots available.
For the purpose of simplicity we will omit the superscripts denoting unknown compo-
nents from here on since the following procedure is applied to each of the four matrices
in an independent and identical manner. _

Next we construct a normalised snapshot matrix ¥ with columns

S

_ 1

‘Pk=‘Pk—§Z‘Pk, k=1,2,....8 A3)
k=1

to which we then apply a singular value decomposition (SVD) as
¥ =yzv’. 4)

Here the matrices U € RMN and V € RS*S consist of the orthogonal vectors for
WYT and YT, respectively and X is a diagonal matrix of size N' X S whose nonzero
(positive) entries, arranged in a decreasing order, are the singular values of ¥ and we
denote them as Ay, k=1,2,---,S. _

Eventually, the proper orthogonal decomposition of ¥, namely, a reduced-order,
orthonormal set of basis functions {¢k}i=1 are retrieved by renormalising the projections

of ¥ onto the column vectors of V as
PV
VA&

Moreover, this basis can be optimised by keeping only the first P members which corre-
spond to the largest P singular values, respectively. Note that these vectors are optimal
in the sense that no other rank-P set of basis vectors can be closer to the snapshot ma-
trix ¥ measured in the Frobenius norm by the Eckart—Young Theorem. This further
reduction is especially accurate when there is a “scale separation” among the singular
values at Ap, namely,

" k=1,2,....8 5)
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With an optimal POD basis {q}k}f:l any variable ¢ on a N-node mesh can be repre-
sented by

<1 (6)
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where a; = «;(?) denote the time-varying coefficients of the POD expansion and 7
is the time-independent mean of the ensemble of snapshots for the variable ¥ which
is analogous to the average in (3). This series expansion transforms the full physical
space to the reduced order space and vice versa.

A standard Galerkin procedure can then be applied for the series expansion (7).
Substituting the series into the master equation (1) and following by a first-order fi-
nite difference discretisation in time, we finally arrive at a ROM, namely, an iteration
scheme for the reduced order POD coefficient at arbitrary time step in the form of

aZJrl = filld" = (&],ds,- - ,a}), n=1,2--. ®)



plus the starting values ag fork =1,2,---, P and the superscripts denote time discreti-
sation. The central subject in reduced order modelling is therefore to find an efficient
way to estimate the R” — R functions f; so one can compute the POD coefficients at
arbitrary times and reconstruct the physical variables from them using the expansion

).

2.2. Non-Intrusive Reduced Order Modelling (NIROM) on a Smolyak Sparse Grid

Xiao et. al. developed a non-intrusive algorithm to interpolate the transitional func-
tions, i.e., f/s in (8), for the POD coefficients from their values on a Smolyak sparse
grid [28]. In particular, instead of the standard, intrusive approach that formulates a
linear system as a projected version of the master equation (1) that requires a major
re-derivation of the full model, they approximated each f; with a multidimensional
polynomial interpolant. Additionally, to avoid the curse of dimensionality, which is the
exponential growth of interpolation points entailing the increase of the POD basis size
P, a Smolyak sparse grid was introduced whose number of nodes is only a polynomial
function of its dimension size.

The Smolyak interpolant fkp’” (x) for any P-dimensional point x = (xj, xp,- -+ , Xp)
with approximation level i can expanded as a weighted sum of tensor product operators

. = _ P- .
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|fl=max(u—P+1,0)

where the summation index € = (£;,--- ,€p) € NP, |£] = Zfz 1 [€,] traverses through the
u different levels of the sparse grid in each dimension and the operator

M) M(lp) P .
U @@ U)(fx) = Z Z(f,f“(x f’:)xﬂw,;'(xj)) (10)
lpl j=l

is also a multidimensional sum weighted by the nodal values of the interpolant. Here
the é’;.h level 1D grid in the j dimension, j = 1,2, , P, has the size

2041, =12
M(fj)z{l {, 0 H (11)

and its ij node is denoted by x . Finally, the last term on the right hand side of (10) is
the product of one- d1mens10nal basis interpolating polynomials. For example, in the
standard Lagrange form,

M(6) _ x[
t _ n
vico =] | =% (12)
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It is worth noting that the sparse grid, as the collection of all nodes, can be written as a
union of u nested product grids

P
HW = O Ge = O (@{xk},’lﬂf’). (13)
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The interpolation conditions simply implies
Sl =l ) = flxd), k=1,2,3,--- P, (14)

with which Xiao et. al. applled the following algorithm to obtain a non-intrusive
reduced order model:

1. Perform a POD given snapshots of the solution to equation (1);

2. Generate a Smolyak sparse grid that covers the POD projections of solution snap-
shots onto the reduced order space;

3. For every node on the sparse grid, reconstruct an initial condition in physical
space using the transform (7);

4. Evolve the full model for a short time, At, with the reconstructed initial condi-
tions and transform the results back to the reduced coefficient space with (7);

5. Find the Smolyak interpolants for the reduced order model (8) using the formulas
(9), (10) and (14) with the nodal data computed in the previous step.

3. Least Squares Fitting on a Smolyak Sparse Grid

The POD-based non-intrusive procedure circumvents the need to manipulate the
full model (1) or its numerical implementation and introduces impressive computation
economy with the use of Smolyak sparse grids. In this section, we will propose an alter-
native way to approximate fy(x), k = 1,2,---, P using a least squares fitting approach
that is independent from the full model except for an input set of solution snapshots.
Effectively, Step 3 through 5 of the algorithm outlined at the end of Section 2.2 will be
replaced and the reduced order model will take form of a least squares fit instead of a
Smolyak interpolant.

Now we seek the optimal fit, denoted by F, PH k=1,---, P, from the family of ad-
missible functions, Q, namely, all R” —» R polynomlals defined on the same Smolyak
sparse grid as in Section 2.2. The least squares condition for data fitting demands that
F :’“ minimises the standard L? distance in P—dimensional space, that is,

N S-1
; ”F:’”(gn) - an+1||§ _ f;&?; “g(an) - Q/Vlﬂui _ (15)
Here the data set
{(a'" =(a],--.ap)oft = fi@M), n=1,2,--,5 - 1} (16)

contains duple pairs of POD projections of the solution at two subsequent time steps
calculated by the full model and they are assumed to be connected by the transition
relation (8).

The formulas (9) through (12) demonstrates how any polynomial function g(x) on
the sparse grid H" is uniquely specified by its values on grid nodes. Therefore, we
define a quadratic cost function of these nodal values as

S-1

Jk({g(x), x*e 7‘[})” Z g(aﬂ) a,n+1 2. (17

n=1



Substituting the nodal expansion for g(a") into the right hand side and set all the partial
derivatives to be zero lead to a linear system, namely, the normal equations, whose
solution consists of the nodal values of F ,f’” (x). Essentially, the series (9) and (10) can
be re-organised into a single sum

g = D g we(x) (18)
xseHPH
where wys is the weighting function associated with the node x*. Consequently,

1 8l
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for any node x* on the grid H"*. Equivalently, in matrix notation,

e we)g (wgnwe), (wauwe), ] (FUGEDY (e, B,
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in which {x', x?, x*, ...} is an arbitrary ordering of the nodes of ", the inner product

S-1
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and the projector P} returns the k"™ component of !,

Clearly, the coefficient matrix of the linear system (20), given that it is rank-full as
long as the number of grid nodes is less than that of the snapshots, is symmetric and
positive-definite so it can be solved numerically with standard techniques such as QR
factorisation, successive over-relaxation and etc.

Repeating the above procedure for k = 1,2,---, P we obtain the least square fit-
ting approximations to the reduced order model (8). The fundamental advantage of
this approach over the interpolation model is that the only thing we only need the de-
composed solution snapshots, {¢",n = 1,2,---,S} from the full model without the
necessity to run it. This separates the ROM from detailed derivation and simulation
of the physics and the level of non-intrusiveness is improved, as well as the enormous
gain in computation economy.

4. Iteration Stabilisation with Coefficient Damping

As we found out in preliminary results, straightforward iterations of formulas (8)
using its least squares approximation reconstructed with the solution to the system (20)
suffers from instability issues that often arise in reduced order modelling. In particular,
depending on specific problems and parameters, some POD coefficients diverges to



infinity after a random number of iterations when we use the reduced order modelling
to evolve the dynamical system.

While the numerical and physical origins of this instability seem to depend on
the specifics of the full model and are therefore beyond the scope of this paper, we
next offer a simple and effective remedy by supplementing the fitting algorithm with a
prediction-correction step: Once we detect that an output component of the model (8)
diverges from the Smolyak grid that covers the dataset, we enforce a damping to this
component. That is, with the tilde denoting the fitting approximations and the starting

value @' = a', one iteration of this ROM consists of two parts:

Prediction: att=F ]f’” @, (22a)
&Z-H, a,;(nin < &ZH < a,max;
Correction: &l =1 damn, aptt < aim (22b)
6a;€nax’ &ZH > a,;{nax
forn =1,2,---, k = 1,2,--- , P and the admissible range of &Z“ is pre-determined

from the data as s

ot =mina, o™ = r?falx ol (23)
Here we have introduced a variable damping parameter, 6 € (0, 1] and we will see in
the numerical example that an empirical choice of ¢ € (0.8, 1.0] usually yields results
with reasonable accuracy.

Notice that this filter only affects how the reduced order model substitutes the full
model, while the derivation of the model itself, and its non-intrusive features, remained
unaltered. There are various alternative options that may achieve regularity such as
limiting the scope of fitting data (e.g., Finite Impulse Response filter), putting more
weights on the data with small perturbations / gradients (e.g., weighted least squares)
and etc. However, for the sake of simplicity we elect to postpone the exploration toward
these directions to future work.

5. Numerical Examples

In this section we demonstrate the performance of the POD-based, non-intrusive re-
duced order scheme with least squares fitting by modelling a gyre flow and the flow past
a cylinder that produces a von Kadrmén vortex street with two different Reynolds num-
bers. For both test cases, the solutions from the fidelity full model, which is simulated
at the platform of Fluidity, serve as the reference, exact values for model comparisons
as well as the snapshots for the POD basis generation. The error analysis was carried
out with the same metrics used by Xiao ez. al. [28], namely, the root mean square error
(RMSE) and correlation coefficient on the N-node finite element, physical mesh. For
example, the RMSE at the n™ time step is defined by

H{VI(IIROM - lﬁ}'llz

RMSE" =
N

(24)
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(a) full model, r = 18 days (b) LSROM, ¢ = 18 days (c) Error in LSROM, ¢ = 18 days
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Figure 1: The gyre flow computed at time instances 18 (left) and 36 days (right). The panels (a) and (d) are
full model simulations. The panels (b) and (e) are LSROM approximations with 3 POD basis function for
each variable. The panels (c) and (f) are the differences between the full and LSROM models.

where o\ and z,b;’c are the nodal snapshots of the NIROM solution and of the full
solution on the full mesh, respectively and || - ||, is the standard vector 2-norm. In all
simulations, the ROM operates on a one level Smolyak sparse grid, that is, 4 = 1 in
Eq. (15), as increasing the number of grid level is found to provide negligible accuracy
gain while the growing grid size demands doubling or quadrupling the snapshot data
to guarantee the wellposedness of the linear system (20).

5.1. Problem 1: Gyre flow

We first test the least squares NIROM (LSROM) on the simulation of a shallow-
water gyre flow. The geophysical scenario depicts a fluid circulating within a rectan-
gular domain of the size L, X L, = 1000km x 1000km. The flow is driven by the
uni-directional surface wind stress prescribed by

Ty = Tocos(my/Ly) and 7,=0 (25)
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Figure 2: Gyre flow: The evolutions of POD coefficients for 3 x 3 POD basis functions. In each of the figures
above, the horizontal axis is the timestep and the vertical axis is the value of the POD coefficients; the black,
solid line is the projected POD coefficient of the full model solution and the blue, dotted line is its LSROM
approximation. In these figures two curves are indistinguishable from each other.

I In the full model, we address the

where the maximum zonal stress 79 = 0.1 Nm™
Coriolis effect with the beta-plane approximation by setting 8 = 1.8 x 107" m~! 57!
and we adopt the baseline fluid density py = 10> kg m™>.

In this case, the high-fidelity full model was generated on a 2823-node finite el-
ement mesh for a duration of 7 = 36.5 days using a time step of Ar = 0.365 days.
Accordingly we record 100 snapshots of the solution from which only 3 POD basis
functions for each variable (velocities u, v and pressure p) are extracted using the pro-
cedure described in Section 2.1. Then with the least square fitting method outlined in
Section 3, we compute the nodal values of the transition functions (8) on the Smolyak
grid determined by Step 2 at the end of Section 2.2. And finally, we iterate the reduced
order model for each time step and reconstruct the LSROM-approximated solution on
the physical mesh with expansion formula (7).

The comparison between the full model and the LSROM approximation is illus-
trated in Figure 1, in which we plotted the velocity magnitudes at two time instances,
t = 18 days (the 50" time step) and ¢ = 36 days (the 98" time step), as well as the
difference between full model and LSROM at these times. It is clear that the dominant
features of the flow field is accurately resolved by the reduced order model.

On the other hand, we plot the evolution of the POD coefficients in the reduced
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Figure 3: Gyre flow: The error diagnostics of the LSROM approximation with the reference of the
interpolation-based NIROM.

space in Figure 2. Here the 3 POD coeflicients for each of the three variables (a total
of 9) are plotted for all times in which the full model projections are virtually indistin-
guishable from the NIROM approximations. POD #1 is the coefficient associated with
the leading POD basis function for each variable, or equivalently, ; in the series ex-
pansion (7) and so on. This figure also confirms that new ROM is a good approximation
to the full model.

Quantitatively, Figure 3 displays evolutions of the RMSE and of the correlation
coefficient between the full model and the non-intrusive model, respectively. Here we
plotted the results for two gyre simulations of LSROM, one with 3 POD basis functions
and the other with 6, and the result by the interpolation-based NIROM with 3 POD
basis functions. Together they further verify that the ROM approximation achieves
an overall good agreement with full model, especially for the LSROM with only 3
POD bases for which the results are essentially equivalent to the interpolation based
NIROM [28] under the same setting. It should be noted that in these results the damping
parameter for stabilisation 6 = 1.0 applied according to Section 4 and this choice is
optimal in the sense that the temporal maximum of the associated RMSE is minimised.

However, we notice an intrigue phenomenon: We are able to increase the accuracy,
indicated by smaller RMSE and larger correlation coefficient, with a doubled number
of POD bases (from 3 to 6). However, the improvement only lasts until the 57" time
step after which the RMSE soars and the correlation coefficient diverges from unity
significantly after the 80" time step. This demonstrates another aspect of the stability
issue we encountered as more POD modes potentially promote instability. An intuition
suggests that the fitting nature of the model necessitates more snapshot data (eg., more
frequently sampling or equivalently, smaller Af) to maintain a certain accuracy level as
we also see in exploratory simulations. Due to the scope of this paper we elect to study
the detailed statistical relationship between the sizes of the POD decomposition and
of the snapshot matrix in this LSROM framework to future work. For example, one
would want to determine a priori the optimal number of POD bases used given a fixed
number of snapshots and vice versa.

Furthermore, we compare the computation costs by different models in Table 1

11



where we list the CPU times consumed by different stages of different models at each
time step. We observed that although the previous interpolation-based NIROM and the
new fitting-based LSROM share the POD projection costs and both methods achieve
great speed-ups from the full model, the cost of the fitting step in LSROM is negli-
gible compared to that of the interpolations in Xiao et. al.. Since the fitting solves a
model-independent linear system (20) and the interpolations always run the full model
for a short period of time, it is to be expected that the LSROM with improved non-
intrusiveness will possess even bigger advantage for more complicated scenarios.

Model Assembling | Projecting | Interpolation | Fitting | Total
and Solving

Full Model 1.0070 0.0000 0.0000 0.0000 | 1.0070

Interp. NIROM 0.0000 0.0040 0.0020 0.0000 | 0.0060

LSROM 0.0000 0.0040 0.0000 0.0001 | 0.0041

Table 1: Gyre flow: Comparison of the normalised CPU consumption by different models at each time step.

5.2. Problem 2: Flow past a cylinder

The second case on which we test the newly proposed LSROM method is also
a classical example in computational fluid dynamics: An viscous inlet flow passes
through a rectangular channel section that contains a cylinder and the oscillating down-
stream flow shed a street of von Kdman vortices. The simulation domain here is 2 x 0.4
in non-dimensional units and a cylinder of radius 0.12 is located at the point (0.2, 0.2).
The uniform upstream flow enters the domain from the left edge with unit speed right-
ward and it is slightly compressible. Typical outflow condition is applied at the right
edge while the fluid is required to have no slip and no outward flow at the upper and
lower edges of the channel. Finally, Dirichlet boundary conditions are enforced at the
cylinder wall. We run the model under two settings of Reynolds number, Re = 400 and
Re = 3600, to verify the general applicability of the method.

First, we run the high-fidelity full model with a prescribed Reynolds number Re =
400 on a 3213-node finite element mesh. Then we record the u, v and p solution
variables between ¢ € [2, 3] at regularly spaced time instances with Az = 0.01 and a
total of 100 snapshots are obtained from which we generated 6 POD basis functions
for each of the variables followed by the LSROM approximation procedure.

Figure 4 through 6 illustrates how the least squares NIROM resolves the full model
in this case. Visual inspection of Figure 4 confirms the satisfactory performance of the
LSROM for this problem by reproducing the location, the size and the magnitude of
almost all the vortices. Figure 5 displays the error distribution of the ROM and it is
general an order of magnitude smaller than the exact values. Figure 6 documents the
evolution of the POD coefficients of the full model and of the LSROM. Additionally,
the error diagnostics for this problem are shown in Figure 7 with a comparison to the
results obtained by the interpolation-based NIROM using the same number of POD
bases. Here the optimal damping parameter § for the LSROM is chosen to be 0.94.
We see that for this test problem, the interpolation-based NIROM deviates from the

12
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(a) full model, r = 2.1 (b) LSROM with 6 POD bases, t = 2.1
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(c) full model, r = 2.5 (d) LSROM with 6 POD bases, t = 2.5
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(e) full model, r = 2.8 (f) LSROM with 6 POD bases, t = 3
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Figure 4: Flow past a cylinder at Re = 400. The figures above compare the full model (figures (a), (c), (e)
and (g)) and the LSROM with 6 POD basis functions (figures (b), (d), (f) and (h)) at # = 2.1,2.5,2.8 and 3.0.
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Figure 5: Flow past a cylinder at Re = 400: The difference between full model and LSROM with 6 POD
basis functions. Re = 400.
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Figure 6: Flow past a cylinder at Re = 400: The evolutions of POD coefficients for 9 POD basis functions.
In each of the figures above, the horizontal axis is the timestep and the vertical axis is the value of the POD
coeflicients; the black, solid line is the projected POD coefficient of the full model solution and the blue,
dotted line is its LSROM approximation.

LSROM and it performs slightly better after the midpoint in the temporal axis but both
methods are accurate approximations.

Next we increase the level of turbulence of the flow by setting Re = 3600 and we
keep track of the simulation for a longer duration for ¢ € [2, 6] with Ar = 0.02. All the
other physical and numerical parameters remain the same. The corresponding results
are demonstrated in Figure 8 through 10. Here the optimal damping parameter ¢ for
the LSROM is chosen to be 0.84. Although the LSROM still qualitatively resolves the
main flow structures but the accuracy is apparently reduced compared to the previous
two test cases, the gyre flow and the flow past a cylinder at a lower Reynolds number.
This should not be surprising as the spatial and temporal gradients of the variable are
significantly magnified in this case and are thus harder to capture. These results can
no doubt be improved by tuning the numerical parameters, such as the number of POD
bases and of the snapshots used in the fitting, but the overall agreement achieved by this
very restricted set of POD basis is still worth reporting. And as we mentioned before,
we will postpone the investigation in this aspect to future study.
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Figure 7: Flow past a cylinder at Re = 400: The error diagnostics of LSROM with 6 POD bases in compari-
son with the interpolation-based NIROM with the same number of POD bases.

Velocity Magnitude Velocity Magnitude

0.2 0.4 06 08 02 04 06 08

(a) full model, ¢ = 2.1 (b) LSROM with 6 POD bases, ¢ = 2.

Velocity Magnitude Velocity Magnitude
02 04 06 ‘0‘8‘ “““““ 02 0.4 , 0.6 ‘OTB ,
(c) full model, t = 3 (d) LSROM with 6 POD bases, t = 3
* m
02 04 06 08 . 0.2 04 06 08 .
(e) full model, r = 4 (f) LSROM with 6 POD bases, t = 4

Velocity Magnitude Velocity Magnitude
02 04 06 08 02 04 06 08 .
(g) full model, r =5 (h) LSROM with 6 POD bases, t = 5

Figure 8: Flow past a cylinder at Re = 3600. The figures above compare the full model (figures (a), (c), ()
and (g)) and the LSROM with 6 POD basis functions (figures (b), (d), (f) and (h)) at # = 2.1,2.5,2.8 and 3.0.
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Figure 10: Flow past a cylinder at Re = 3600: The error diagnostics of LSROM with 6 POD bases.
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6. Conclusions and Discussions

In this article a new non-intrusive reduced order model is introduced. The key
ingredient here is a least squares fitting procedure to approximate the reduced order
model formulated by standard POD routines that project the full model solution onto
a finite-dimensional space. The new method also represent the reduced order model
by polynomials defined on a Smolyak sparse grid whose coefficients are now obtained
by data fitting. Compared to other intrusive ROMs and a previous interpolation-based
non-intrusive ROM, this method only requires a number of solution snapshots from
the full model and does not need to modify nor further run the original model in the
process of ROM generation. In other words, the detailed physics and numerics of
the original model are completely transparent to this least squares NIROM (LSROM).
Another necessary module of the method involves the stabilisation of the reduced order
iteration in the place of the governing differential equations. A numerical damping
parameter is chosen to avoid the divergence of the POD coefficients.

The least square NIROM was tested on two CFD test cases against a high-performance
fluid solver (Fluidity). In the simulations of a shallow water gyre and of a Karméan vor-
tex street downstream of a cylinder at Re = 400 the non-intrusive model resolve the
flow structures with great precision, measured by root mean squared errors and corre-
lation coeflicents, with only 3 or 6 POD basis functions. For the flow past a cylinder at
Re = 3600, the accuracy of LSROM with 6 POD bases is decreased but it still captures
the main features of the flow field. Preliminary results show that using more POD bases
could increase the accuracy for a limited time beyond which the instability emerges.
Future work will investigate the error and stability dependence on the number of POD
bases and on the number of solution snapshots adopted into the fitting. Overall, the
least squares fitting model with improved non-intrusiveness is a good approximation to
the full model with enormous gain in computation and modelling economy.

The future work will address the stability issues of the ROM with greater details,
such as optimising the data set for the least squares fitting by windowing or weighting,
and error analysis to determine the relationship between the optimal number of POD
bases used and the number of full model solution snapshots available. Morover, the
LSROM will be applied to more complicated problems in sciences and engineering to
fulfill its potential.
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