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A B S T R A C T

A parameterised non-intrusive reduced order model (P-NIROM) based on proper orthogonal decomposition (POD) and
machine learning methods has been firstly developed for model reduction of pollutant transport equations. Our moti-
vation is to provide rapid response urban air pollution predictions and controls. The varying parameters in the P-NIROM
are pollutant sources. The training data sets are obtained from the high fidelity modelling solutions (called snapshots) for
selected parameters (pollutant sources, here) over the parameter space PR . From these training data sets, the machine
learning method is used to generate the relationship between the reduced solutions and inputs (pollutant sources) over

PR . Furthermore a set of hyper-surface functions associated with each POD basis function is constructed for representing
the fluid dynamics over the reduced space. The accuracy of the P-NIROM is highly dependent on the quality of the
training set, here obtained from the high fidelity model. Over existing machine learning methods, the P-NIROM algorithm
proposed here has the advantages that (1) it is combined with NIROM, thus providing rapid and reasonably accurate
solutions; and (2) it is a robust and efficient approach for representation of any parametrised partial differential equations
as the model parameters/inputs vary. In this study, we demonstrate the way how to implement the P-NIROM for the
pollutant transport equation (but not limited to due to its robustness). Its predictive capability is illustrated in a three-
dimensional (3-D) simulation of power plant plumes over a large region in China, where the varying parameters are the
emission intensity at three locations. Results indicate that in comparison to the high fidelity model, the CPU cost is
reduced by factor up to five orders of magnitude while reasonable accuracy remains.

1. Introduction

Pollution in cities has a strong impact on the health of communities and
affects global warming with dire consequences to humanity. The dynamic
and pollutant transport processes involve a wide range of scales. The highly
disparate scale poses a formidable challenge for atmospheric and air pollution
modelling. In recent years, the spatial resolution in operation air pollution
models has been increased significantly, thus improving predictive capability.
However, this unavoidably leads to an increase in computational cost (Foley
et al., 2014). Our motivation is to develop numerical tools for rapid re-
sponses/predictions of pollutants without sacrificing solution accuracy,
especially in emergency situations.

Reduced-order models (ROMs) have become important to many fields as
they offer the potential to simulate dynamical systems with considerably

reduced computational cost in comparison to high fidelity models (Cordier
et al., 2013; Haasdonk, 2017; Benner et al., 2015; Hinze and Volkwein,
2005). Recently, reduced order methods have been applied to studies of air
pollution (Djouad and Sportisse, 2003; Hammond et al., 2018; Alkuwari
et al., 2013; Fang et al., 2014). Existing ROMs can be classified into two
categories: intrusive and non-intrusive approaches in the sense that whether
the implementation of ROMs requires knowledge of the details of original
numerical source codes (Chen, 2012). The intrusive reduced order methods
have been widely used in many fields (Schlegel and. Noack, 2015; Osth et al.,
2014; Amsallem and Farhat, 2012; Franca and Frey, 1992; Chaturantabut
and Sorensen, 2010; Feriedoun and Alireza, 2012; Xiao et al., 2014; Xiao
et al., 2013). More recently, the non-intrusive methods have became popular
since they are less dependent on complex dynamic systems and are therefore
easy to implement even when the numerical source code is not available.
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Existing non-intrusive methods used for generating ROMs are POD in com-
bination with radial basis function (RBF), Smolyak sparse grid and artificial
neural networks etc. (Audouze et al., 2013; Hesthaven and Ubbiali, 2018;
Xiao et al., 2015a, 2015b; Wang et al., 2017; Bistrian and Navon, 2017). The
applications of NIROMs can be found in the work of (Xiao et al., 2016a,
2016b, 2017; Foroud and Seifi, 2016).

More recently, Wang et al. introduced a deep learning technique to
NIROMs and applied it to fluid problems (Wang et al., 2018). Deep learning
technologies represent the most recent progress in artificial neural networks
(LeCun et al., 2015), and have been applied to a number of areas such as
speech recognition (Hinton et al., 2012), image recognition (Tompson et al.,
2014), medical science (Leung et al., 2014), self-driving cars (Hadsell et al.,
2009), language understanding (Collobert et al., 2011) etc.

In this work, we have developed a Parameterised NIROM (P-NIROM)
based on machine learning techniques for parameterised pollutant transport
problems. The input parameters are the emission intensity of pollutants re-
leased at different source locations. The P-NIROM enables rapid simulations
and controls of the impact of pollutant sources without excessive computa-
tional costs. Given a set of selected pollutant sources Qtr over the para-
meterised space RP, the training data sets (also called solution snapshots) can
be obtained by running the high fidelity model. From the snapshot solutions,
the corresponding reduced basis functions are calculated using singular value
decomposition (SVD)/POD. The reduced basis functions are used for con-
structing the reduced space. The original high fidelity model can be projected
onto the reduced space, which is several orders of magnitude smaller than the
dimensional size of the high fidelity full model, thus significantly reducing
the computational cost. For any unseen emission intensity of pollutant
sources Q PR , the P-NIROM is constructed using the machine learning
methods. From the training solution snapshots, a Gaussian process is used for
generating the snapshots and POD basis functions for the unseen pollutant
sources Q. Furthermore, the relationship (P-NIROM) between the reduced
solutions and the inputs (the pollutant emission intensities) can be obtained
using the machine learning techniques. Finally, the solutions from the P-
NIROM are projected back the full space.

The P-NIROM is a robust and efficient numerical tool for rapid
prediction of pollutants released from different sources and assessment
of their impact on specified cities/locations. In this work, we have been
successfully applied the P-NIROM to air pollution simulations over a
large region in China which covers 55 cities including Beijing. The ef-
ficiency and accuracy of the P-NIROM have been evaluated by com-
paring the results with those from the high fidelity full model.

The remainder of this article is arranged as follows. The pollutant
transport equation and its discretisation are described in section 2. In section
3, the details of forming the P-NIROM using POD and machine learning
methods are provided. Section 4 presents a numerical experiment of simu-
lating the spatial and temporary distribution of pollutants released from 100
power plants in China. Conclusions are drawn in section 5.

2. Pollutant transport equation and its discretisation

The dispersion of the tracer concentration (c) is modelled by:

+ + =c
t

c c Qu ( ) 0, (1)

where u is the velocity vector, Q is a source term and κ the diffusivity.
In general, the discretised form of (1) at each time level n (where a time
interval of t is set during the simulation period) can be written:

=µ µc s c( ) ( , ),n n n 1M (2)

whereM is the full numerical operator with varying input parameter μ,
= … …c c cc ( , , , )n n

j
n n T

1 N ( j1 N , N is the number of nodes in the
computational domain), ss includes the source term, boundary condi-
tions and the variable solutions from the previous time level. In this
study, the varying input parameters in air pollutant problems are set to
be the pollutant sources, = = … …µ Q Q QQ ( , , , , )s S1 (here, S is the
number of pollutant sources).

2.1. Parameterised reduced order transport equation

In this work, the POD approach in combination with machine
learning techniques is used for model reduction. POD has proven to be a
powerful tool for circumventing the intensive computational burden in
large complex numerical simulations. POD is capable of representing
large complex dynamical systems using a few number of optimal basis
functions. In POD reduced order modelling, the tracer concentration in
(2) can be expressed as an expansion of the POD basis functions

= … …( , , , , )m M1 :

=c c ,n r n, (3)

where = … …c c cc ( , , , )r n r n
m
r n

M
r n T,

1
, , , m M(1 ) MR is the reduced state

variable vector (the superscript r indicates the variable associated with
the reduced order model) to be determined over the reduced space. The
POD basis functions are constructed from a collection of snapshots that
are taken from the high fidelity model solution (2) for the selected
training pollutant sources. Using SVD, a set of orthogonal basis func-
tions { }m can be obtained in an optimal way. The POD basis functions
can represent the dynamics of snapshot solutions. The loss of in-
formation due to the truncation of the POD expansion set to M vectors
can be quantified by the following ratio,

= =

=

E ,j
M

j

j
I

j

1

1 (4)

where λ denotes eigenvalues, and I is the total number of eigenvectors
(here equivalent to the number of solution snapshots used for gen-
erating the POD basis functions). The value of E will tend to 1 as M is
increased to the value I, this would imply no loss of information. A few
number of leading eigenvectors can represent most of dynamical energy
within the solution snapshots.

Projecting (2) from the N dimensional space onto the M dimen-
sional reduced space (M N ), yields:

=µ µc s c( ) ( , ).T n T n n 1M (5)

The parameterised reduced order model can thus be written as:

=µ µc s c( ) ( , ),r r n r n r n, , , 1M (6)

where = µ( )t t
r T

, j0M M is the model operator over the reduced space,
=c cr n T n, and = µs s c( , )r n T n r n, , 1 .
Equations (3) and (6) can be used for efficient air pollution opera-

tional prediction where the CPU time can be reduced by several orders
of magnitude. In this work, the parameter set μ in (6) consists of the
pollutant source inputs. A recently developed NIROM (Wang et al.,
2018) is extended to construct the parameterised reduced order model
in (6). The P-NIROM based on the machine learning techniques de-
scribed below is capable of predicting problems with unseen or dif-
ferent parameters (for example, unseen pollutant sources). It is also
non-intrusive and independent of the original source code.

3. Construction of P-NIROM based on POD and machine learning
methods

The parameterised reduced order model (6) is re-written for the
variable cm

r associated with each POD basis function m over the re-
duced space in a general form:

= …c µ m Mc( , ), (1, , ).m
r n

m
r n, , 1 (7)

In non-intrusive reduced order modelling, one searches a set of
functions m to represent the dynamics in (7). In this work, we in-
troduce the Gaussian process regression (GPR) (Rasmussen, 2004) and
deep learning learning methods (Wang et al., 2018) to construct the
relationship functions m to represent the fluid dynamics of system (6)
for any unseen input parameter =µ Q PR .
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3.1. Gaussian process regression for calculation of POD coefficient and
snapshot solutions for any input over the parameter space

In GPR, the relationship between the input =µ Q (here, the pollu-
tant source) and the corresponding output cn at each time level

…n T(1,2, , )tr can be expressed as follows (Rasmussen, 2004):

= +gc Q Q Q( ) ( ) ( ),n n (8)

where, = (0, )nG is the Gaussian distribution with zero mean and
variance n.

In GPR, it is assumed that the function g Q( )n has a Gaussian dis-
tribution (with zero mean, here):

g kQ Q Q( ) (0, ( , )),n nG (9)

where the covariance function k Q Q( , )n represents the dependency
between the function values at two different input points Q and Q , that
is,

= =cov g g k exp
l

Q Q Q Q Q Q( ( ), ( )) ( , ) 1
2

| | ,n n n
wn

(10)

where, l is the length scale and wn is the variance. The correlation
between the functions g Q( )n and g Q( )n is dependent on the distance
between the two input points. Given a set of training input-output pairs

…i NQ c{ , }, (1, , )tr i tr i
n

tr, , (where, Ntr is the number of training points),
one aims to predict the pollutant concentration cn in (8) for any new
input Q. The joint Gaussian distribution of the training and predicted
outputs (ctr

n and cn) for the training and new inputs (Qtr and Q) re-
spectively can be written:

=
g
g
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n
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n
tr

nN
(11)

where, K Q Q( , )n
tr tr is the covariance matrix between all training points

and is written below:

=

…
…

…
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and the matrices

= …[ ]K k k kQ Q Q Q Q Q Q Q( , ) ( , ) ( , ) ( , ) ,n
tr

n
tr

n
tr

n
tr N,1 ,2 , tr (13)

=K kQ Q Q Q( , ) ( , ).n n (14)

Given a set of the training inputs (here, the pollutant sources)

Fig. 1. The figure displayed above shows the online and offline procedures of constructing and resolving the P-NIROM for any given parameter µ Rp .
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= = …µ Q QQ ( , , )tr tr tr tr S,1 , over the parameter space RP, the snapshot
solutions = … …c c c c( , , , , )tr tr tr

n
tr
N1 t can be obtained by running the high

fidelity model (2) during the training simulation period T[0, ]tr .
For efficient calculations, one can project ctr

n from the high dimen-
sional full space onto the reduced space:

=c c ,tr
r n T

tr
n, (15)

For any given input parameter (pollution source Q), the probability
of the prediction of the reduced variable cr is:

K K K K K Kc c c| ( , ),r n
tr
r n n

tr
n

tr
r n n n

tr
n n T, ,

*
1 ,

** *
1

*N (16)

where, =K K Q Q( , )n n
tr* , =K K Q Q( , )n n

** and =K K Q Q( , )tr
n n

tr tr . The
best estimate of cr n, is the mean of the Gaussian distribution:

= K Kc c¯ .r n n
tr
n

tr
n r,

*
1 , (17)

3.2. Deep learning method for construction of P-NIROM and calculation of
reduced solutions for any input over the parameter space

In this section, an alternative method for calculation of reduced
solutions for any given input is introduced. A Recurrent Neural Network
(RNN) using the Long Short Term Memory (LSTM) architecture is used
to construct the P-NIROM (7). Compared to traditional RNNs, the LSTM
has a special memory block in the hidden layer of the recurrent neural
network, allowing information to persist. This type of network has
cyclic connections, which makes the network a powerful method to
model temporal data since it has an internal memory system to deal
with temporal sequence inputs. A memory cell is composed of four
main elements: an input gate, a neuron with a self-recurrent connection
(a connection to itself), a forget gate and an output gate.

The input gate of each memory block controls the information

transmitting from the input activations into the memory cell and the
output gate controls the information transmitting from the memory cell
activations into other nodes. The forget gate decides what information
is to be deleted from the memory cell state (Wang et al., 2018).

The LSTM technique is utilised to construct the set of functions
(hyper-surfaces) Fm in (7). In the LSTM network, the input is the re-
duced solution = …c cc ( , , )r n r n

M
r n, 1

1
, 1 , 1 at the previous time level n 1

while the output is the reduced solution cm
r n, associated with the mth

POD basis function m …m M( (1, , )). The relationship function
(hyper-surface Fm) between the input cr n, 1 and output cm

r n, can be ob-
tained using the following equations:
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, (18)

where I, f and o denote the input, forget and output gate vectors respectively,
Ce is the cell activation vector, b is the bias vector, ϱ is the activation function,
W denotes the weight matrices (e.g. Wic is the weight matrix from the input
gate to the input), is the element wise product of the vectors, Ceo and Cei
are the cell output and cell input activation functions respectively and ζ is the
network output activation function.

After obtaining the function Fm, it can then be used to predict the
POD coefficients at current time level n. The offline calculation of
snapshots at the training stage and the online procedure for con-
structing and resolving the P-NIROM can be algorithmically sum-
marised in Fig. 1. The details of the offline and on-line calculations are
further given in Algorithm 1 and 2 respectively.

Table 1
The emission intensity (g s 1) of SO2 at locations 1 (x= 540,y=752) km, 2 (x= 603, y= 670) km and 3 (x= 753, y= 679) km. A A1 28 are the training cases
while T T1 2 are the unseen cases used for evaluating the predictive capability of the new P-NIROM.

Cases 1 2 3 cases 1 2 3 cases 1 2 3

A1 1047 1678 1160 A11 4267 2500 2500 A21 1440 1140 3570
A2 0 0 0 A12 2500 732 2500 A22 1250 1250 1250
A3 5000 5000 5000 A13 2500 4267 2500 A23 3750 3750 3750
A4 2500 2500 2500 A14 2500 2500 732 A24 0 5000 5000
A5 0 2500 2500 A15 2500 2500 4267 A25 1250 5000 5000
A6 5000 2500 2500 A16 534 589 910 A26 5000 5000 0
A7 2500 5000 2500 A17 600 639 1580 A27 5000 0 0
A8 2500 2500 0 A18 181 1061 1356 A28 2500 0 2500
A9 2500 2500 5000 A19 428 1881 329
A10 732 2500 2500 A20 1300 1380 3000

T1 2400 2400 5000 T2 5500 6000 6000

Fig. 2. The singular values and logarithmic scale of singular values.
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Algorithm 1. Offline Calculations.

Algorithm 2. Online Calculation.

4. Regional pollutant dispersion in China

To demonstrate the capability of the new P-NIROM based on ma-
chine learning techniques, it has been applied to a realistic case in
China where the SO2 emissions from power plants disperse through the
atmosphere in time. The SO2 emission intensity at the power plant lo-
cations was obtained from the Regional Emission inventory in ASia
(REAS 2.1) data developed by National Institute of Environmental
Sciences of Japan. The simulated domain covers the whole Shanxi-
Hebei-Shandong-Henan region of China with an area encompassing

×km km1090 1060 , and there are about 100 power plants in this area
(Zheng et al., 2015).

Using adaptive mesh techniques, the 2D top adaptive mesh ( km20
above the sea level) is first constructed to ensure a high resolution of

km2.5 around the power plan points within a radius of 6 km. The 3D
unstructured mesh with 61479 nodes is then obtained by extending the
2D top mesh onto the terrain surface, with 11 terrain-following layers,
where 7 vertical layers are within km1 above the terrain. The pollutant
SO2 sources around the power plants are released into the atmosphere
at the hight of m200 above the terrain.

In the study, the simulation started at 00:00 UTC on the 10 January
2013 and ran through to the 15 January 2013. A time interval of

=t hr0.5 was used. Assuming that the mixing layer height is m600
and the turbulent horizontal diffusivity is m s100 /2 while the vertical
eddy diffusivity is parameterised based on a scheme by Byun and
Dennis (1995). The meteorological fields are provided by the mesoscale
meteorological model WRF (v3.5) (Skamarock et al., 2008).

In this case, the varying input parameter, =µ Q, is the emission
intensity of pollutant sources at locations 1, 2 and 3 (see Table 1). The
emission intensity of pollutant sources is ranged from 0 to 5000 g s 1. A
set of training pollutant sources =µ Qtr tr at three locations is listed in
Table 1. The solution snapshots ctr with the training parameters were
obtained by running the high fidelity model (Fluidity (AMCG and
Imperial, 2015)) and stored at equally spaced time intervals ( hrs3 )
during the simulation period (5 days).

To illustrate the capability of the P-NIROM based on machine
learning techniques, an unseen test case, the emission intensity of
pollutant sources = =µ g sQ (2400,2400,5000) 1, was given at locations

1, 2 and 3 respectively (T1 in Table 1). Following the online procedure
shown in Fig. 1, using the GPR, the solution snapshots (the distribution
of pollutants at every hrs3 ) for the given unseen pollutant sources were
calculated from the training solutions for the selected training para-
meters (28 training parameter sets in Table 1).

Fig. 2 shows the singular values and a logarithmic scale of singular
values. From the calculation in (4), the sharp decrease of singular va-
lues suggests that the first 36 leading POD basis functions can capture
99% of dynamical energy within the solution snapshots. In this study,
two cases of 6 and 36 POD basis functions were chosen to construct the

Fig. 3. The first and second POD coefficients obtained from the standard ROM and machine learning ROM (the black solid line: standard ROM, the red dash line: LSTM-ROM,
and the blue dot line: GPR-ROM. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)
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P-NIROM. The larger the number of POD basis functions chosen, the
higher the accuracy of P-NIROM. Fig. 4 provides some of the first 36
leading basis functions. It can be seen that the first leading basis
function captures a large part of the spatial distribution of pollutant
concentration solutions, while the remaining basis functions represent
the details of pollutant distributions of different regions.

A comparison of coefficients for the POD basis functions between
using the standard ROM and machine learning ROM (based on LSTM
and GPR) is provided in Fig. 3. It is clearly seen that the POD coeffi-
cients are in very close agreement with each other. Compared to the
standard ROM, the machine learning ROM has a wider range of ap-
plication areas, especially where observational data is concerned, for

Fig. 4. Some of the first 36 leading POD basis functions.
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example, data assimilation, data reduction by condensing the in-
formation into the required dynamical features.

Fig. 5 presents the spatial distribution of pollutant solutions at time
levels =t hrs30 and =t hrs105 , as calculated by the fidelity model and
P-NIROM with 6 and 36 POD basis functions. It is illustrated that P-
NIROM with 6 POD basis captures most of the details of pollutant
distribution at time level =t hrs105 , but fails at time level =t hrs30 .

With an increased number of 36 POD basis functions, the P-NIROM has
performed well at resolving the flow dynamics and evolution of power
plant plumes (see Fig. 5(e) and (d)). This is further highlighted in Fig. 6
which shows the solutions from different angles. Further comparison is
provided in Fig. 7 which illustrates the evolution of pollutant con-
centrations predicted by the fidelity model and P-NIROM at the location

= =x y km( 379, 786) . We can see that the P-NIROM with 6 and 36 POD

Fig. 5. Case T1 = = = g s( 2400, 2400, 5000)1 2 3
1: the comparison of pollutant concentration solutions at time levels =t hrs30 (left panel) and =t hrs105 (right

panel) between the high fidelity model and P-NIROM with 6 and 36 POD basis functions.
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basis function is in close agreement with the high fidelity model at this
location.

An error analysis of P-NIROM has been carried out. Visual inspec-
tion of Fig. 8 shows the spatial distribution of absolution errors of
pollutant solutions between the high fidelity model and P-NIROM. It is

visually evident that the accuracy of P-NIROM solutions is improved by
increasing the number of retained POD basis functions from 6 to 36.
Fig. 9 illustrates the RMSE and correlation coefficients of pollutant
solutions between the high fidelity model and P-NIROM with 36 POD
basis functions. The correlation coefficients achieve results above

Fig. 6. Case T1 = = = g s( 2400, 2400, 5000)1 2 3
1: the comparison of pollutant results at time levels =t hrs30 between the high fidelity full model and P-NIROM

with 36 basis functions from different angles.
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80 % 90%. This again demonstrates that the P-NIROM is in good
agreement with the high fidelity full model.

To further investigate the predictive ability of the P-NIROM, an-
other unseen cases (T2) was set up, where the emission intensities of
pollutants at three source locations ( = =µ g sQ (5500,6000,6000) 1, see
Table 1) were given beyond the range of the training data g s(0,5000) 1.
The pollutant solutions (at time level =t hrs24 ) from the high fidelity
full model and P-NIROM are shown in Fig. 10 (a) and (b) respectively
while the corresponding absolute error is illustrated in Fig. 10 (d). A

comparison of results between the high fidelity full model and P-
NIROMs at a particular location = =x y km( 599, 569) is provided in
Fig. 10 (c). As shown in the figures, the predictive ability of the P-
NIROM in cases T2 is acceptable although the given test data goes
beyond the range of the training data.

4.1. Computational efficiency

This section provides a comparison of the online computational CPU
cost required by the high fidelity full model and P-NIROM. The speci-
fications of the machine for simulations were: 12 cores with a frequency
of 3.33 GHz ( ®Intel Xeon(R) CPU X5680 @3.33 GHz × 12) and a 62.9 GB
memory. One core was used for the simulations since the cases were
simulated in serial. Table 2 lists the online CPU cost required for run-
ning the high fidelity model and P-NIROM. The offline cost (see Fig. 1)
at the training stage is not listed in this table. It can be seen that using
the P-NIROM, the CPU time is reduced by five order of magnitude in
comparison to the high fidelity model.

5. Conclusions

This article has presented a new P-NIROM for predictive modelling
of pollutant transport phenomena. The machine learning techniques in
combination with POD are used for constructing the P-NIROM. First, at
the training stage, for the selected input parameters µ Rtr

P, the so-
lution snapshots (serving as training datasets) and POD basis functions
are obtained by running the high fidelity model. From the training data
sets, for any given input parameters µ RP, using the machine learning
technique a set of hyper-surface functions (P-NIROMs) is constructed to

Fig. 7. Case T1 = = = g s( 2400, 2400, 5000)1 2 3
1: the evolution of pollutant

concentration solutions predicted by the high fidelity model and P-NIROM at a
specified location = =x km y km378 , 786 .

Fig. 8. Case T1 = = = g s( 2400, 2400, 5000)1 2 3
1: the spatial distribution of absolute errors between the high fidelity model and P-NIROM which is constructed

with 6 and 36 POD basis functions.
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represent the dynamics of pollutant transport over the reduced space.
The P-NIROM is then used for calculating the reduced solutions (POD
coefficients) for the given μ (the emission intensity). The unique com-
bination of the P-NIROM and machine learning techniques enables
rapid and reasonably accurate simulations. The P-NIROM techniques
developed here are robust and can be used for a large number of dis-
ciplines not least of pollutant flow based disciplines.

The P-NIROM has been applied to a realistic case in China involving
plumes released from over 100 power plants. The varying input para-
meter is the emission intensity of pollutant sources. A comparison of
pollutant solutions between the high fidelity model and P-NIROM has
been undertaken. The P-NIROM with 36 POD basis functions exhibits
an overall good agreement with the high fidelity model. The online
computation cost required by the P-NIROM is reduced by several orders
of magnitude in comparison to the high fidelity model.

Compared to existing P-NIROM techniques (for example, based on
radial basis functions), the P-NIROM based on machine learning
methods provides a wider range of application areas, for example, un-
certainty analysis in both data and modelling results, real-time inter-
active use, data management (real-time data monitoring/analysis), data
assimilation and better-informed decision making. In particular, the
machine learning techniques with ROM can be used for data selection
and data reduction by condensing the information into the desired

Fig. 10. Case T2 = = = g s( 5500, 6000, 6000)1 2 3
1: comparison of pollutant concentration solutions between the high fidelity full model and P-NIROM with 36

basis functions: (a) and (b) the spatial solution at time level =t hrs102 from the high fidelity model and P-NIROM respectively; (c) the evolution of pollutant
concentration solutions at a location: =x km599 , =y km569 ; and (d) the spatial error at time level =t hrs102 .

Fig. 9. Case T1 = = = g s( 2400, 2400, 5000)1 2 3
1: the RMSE and correlation coefficients of pollutant concentration solutions between the high fidelity model and

P-NIROM with 36 POD basis functions.

Table 2
Online CPU cost required for running the high fidelity model and P-NIROM
during one time step.

Cases Model assembling and solving projection interpolation total

Test Full model 616.9 0 0 696.59
case NIROM 0 0.003 0.001 0.004
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number of features and recovering the original data from the reduced
feature set.
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