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Abstract
This paper investigates sparse grids on a hexagonal cell structure using a Local-Galerkin method (LGM) or generalized 
spectral element method (SEM). Such methods allow sparse grids to be used, known as serendipity grids in square cells. This 
means that not all points of the full grid are used. Using a high-order polynomial, some points of each cell are eliminated in 
the discretization, and thus saving Central Processing Unit (CPU) time. Here a sparse SEM scheme is proposed for hexago-
nal cells. It uses a representation of fields by second-order polynomials and achieves third-order accuracy. As SEM, LGM 
is strictly local for explicit time integration. This makes LGM more suitable for multiprocessing computers compared with 
classical Galerkin methods. The computer time depends on the possible timestep and program implementation. Assuming 
that these do not change when going to a sparse grid, the potential saving of computer time due to sparseness is 1:2. The 
projected CPU saving in 3-D from sparseness is by a factor of 3:8. A new spectral procedure is used in this paper, called the 
implied spectral equation (ISE). This procedure allows for some collocation points to use any finite difference scheme of 
high order and the time derivatives of other spectral coefficients are implied.

1 Introduction

A new generation of global atmospheric models is con-
structed by dividing the sphere into patches of nearly regular 
grids (Taylor et al. 1997; Giraldo 2001; Williamson 2007; 
Satoh et al. 2008; Skamarock and Klemp 2008; Skamarock 
et al. 2012; Staniforth and Thuburn 2012; Zängl et al. 2015). 
The basic principle of such icosahedral or cubed-sphere 

models has been known for a long time (Williamson 1968; 
Sadourny 1972). It was about the year 2000 until polygonal 
methods in the form of icosahedral and cubed-sphere models 
were considered fit for use in realistic atmospheric models 
(Rancic et al. 1996; Steppeler and Prohl 1996; Ringler et al. 
2000). In the mean-time, spectral models or models with 
latitude–longitude grids became the method of choice for 
global atmospheric models. At present, most new develop-
ments of realistic models use polygonal methods (Taylor 
et al. 1997; Giraldo 2001; Skamarock and Klemp 2008; 
Zängl et al. 2015).

With hindsight, there are two problems which prevented 
the immediate application of the polygonal grids (William-
son 1968; Sadourny 1972). One problem is the mapping 
of a plane to the sphere, which some models employ for 
the discretization. If a global coordinate is used, this map-
ping of the plane to the sphere will lead to singularities. 
This implies similar problems as encountered with global 
latitude–longitude grids, even though polygonal grids are 
nearly regular. This problem was solved in Steppeler and 
Prohl (1996) by abandoning a global coordinate system 
and rather using a local coordinate at each grid point. In 
Steppeler et al. (2008), a coordinate-free method was used, 
which can also be considered as using the earth centered 
orthogonal coordinate system together with a local basis for 
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vectors at each grid point. Another problem is the occur-
rence of low-order approximations at poles and edges of 
the icosahedron. This will lead to the icosahedral grid to be 
seen distorting the solutions, which is called grid imprinting 
(Peixoto and Barros 2013; Weller et al. 2012). An example 
of problems caused by non-uniform approximation order 
at the poles was given by Tomita et al. (2001). Solutions 
without grid imprinting were developed in Baumgardner and 
Frederickson (1985) for second-order approximation and for 
a non-meteorological problem. In Steppeler et al. (2008), a 
third-order icosahedral global model without grid imprinting 
was proposed. Baumgardner and Frederickson (1985) and 
Steppeler et al. (2008) avoided grid imprinting using approx-
imations of uniform order two or three. Uniform order p 
means that there is no grid point where the order of approxi-
mation is below p. The grid imprinting reported in Tomita 
et al. (2001) was caused by approximations going below sec-
ond-order at poles and icosahedral edges. Baumgardner and 
Frederickson (1985) obtained successful approximations on 
the sphere for a non-meteorological problem. Steppeler and 
Prohl (1996) obtained second-order solutions of the shallow 
water equations on the sphere and proposed to transfer the 
approximation principles in Baumgardner and Frederickson 
(1985). However, the schemes proposed by Baumgardner 
and Frederickson (1985) and Steppeler et al. (2008) were 
not mass conserving.

To combine high-order approximations on the sphere 
with mass conservation, finite element method (FEM) or 
other Local-Galerkin methods (LGMs) can be used (Marras 
et al. 2016). These methods are naturally conserving and 
provide a uniform order of approximation. FEMs divide the 
computational area into cells and use a polynomial represen-
tation in each cell to describe the fields. These polynomials 
can be defined using several gridpoint values or collocation 
points for each cell (see Steppeler (1987) for a review). The 
collocation points are used for the field representation by 
interpolations in Galerkin methods. The number of colloca-
tion points must be sufficient (e.g., order 2 or order 3) to 
define a polynomial of the requested order. In this study, we 
use continuous Galerkin (CG) methods where polynomi-
als fit together continuously at cell boundaries (Taylor et al. 
1997; Li et al. 2018). Differentiation of this field representa-
tion, to compute the right-hand side of dynamic equations 
will generally lead out of this continuous function system 
and create discontinuities at cell boundaries. A Galerkin 
method is used to map this again to the original function sys-
tem. Standard time stepping procedures (e.g., Runge–Kutta 
time integration) can then be applied. The original Galerkin 
procedure involves the solution of a linear equation system, 
the mass matrix equation. Even though the mass matrix is 
often of band diagonal form (Cote et al. 1983), this solution 
may cause some problems on modern computers. Widely 
used methods to solve the matrix equation are recursive and 

the solution may have global impact in one time-step, even 
though the equation to be solved is local. On massively par-
allel computers this causes considerable problems, as typi-
cally a lot of communication is involved. Approximations 
to the original Galerkin procedure have been introduced, 
which make the method local and thus suitable for mas-
sively parallel computing. Such approximated or alterna-
tive Galerkin procedures are called Local-Galerkin methods. 
For a general outline of the LGM see Steppeler and Klemp 
(2017). Discontinuous field representations (DG methods) 
are used with a variety of LGMs (Cockburn and Shu 2001), 
but only CG methods are currently near practical use in 
realistic models. Spectral element methods (SEMs), using 
Gauss–Lobatto points to define the fields (Giraldo 2001) and 
the third-degree method (Steppeler 1976) are examples for 
LGMs. Considerable progress has been achieved in this way 
to make high-resolution atmospheric modeling possible. CG 
methods for weather models nearly exclusively use the SEM 
as LGM (Taylor et al. 1997), being based on the quadrature 
approximation, since alternative LGMs so far are used with 
toy models only. In this paper we use a special LGM called 
Implied Spectral Equations (ISE). With ISE, the definition 
of some spectral coefficients is implied by the principle of 
conservation (see details in Sect. 3).

Advantages of SEMs are that they combine an approxi-
mation order higher than two with conservation and are of 
uniform approximation order. The latter means that there 
exist no grid points such as poles in a global model, where 
the approximation order drops below a target value. The 
uniform-order models mentioned above run on the original 
unsmoothed icosahedral grid on the sphere. SEM models on 
the sphere, such as Giraldo (2001), combine an approxima-
tion order above three with mass conservation. The SEM 
allows an approximation order higher than two in combina-
tion with conservation. Older high-order models, such as 
that of Kalnay et al. (1977) and Navon and Alperson (1978) 
were non-conserving. There are alternative possibilities with 
CG methods to obtain LGMs. Such a method was proposed 
by Steppeler (1976) which also employed the grid sparsity 
coming from serendipity elements (Ahlberg et al. 1967). The 
FEMs with higher than first-degree polynomials use sparse 
grids to represent the fields in each cell. This means that 
some points of the full grid are omitted in each cell. Such 
elements with sparse grids are called serendipity elements. 
They are quite easy to implement with rectangular cells. 
Their implementation in hexagonal cells is less trivial, but 
the sparseness factors are larger. The sparse grids can be 
used in the same way with LGMs as with the original Galer-
kin procedure (Steppeler 1976).

In an ordinary grid system, we call the regular grid the 
full grid where all the values of fields on the grid points are 
forecasted. With the sparse grid system, not all grid point 
values are forecasted, but rather a subset. The non-forecasted 
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points can be computed diagnostically for plotting and other 
purposes, such as the interface to non-atmospheric models or 
physical parameterizations. The sparse grids offer a potential 
saving of computer time. The forecasted grid points in the 
sparse grid systems form the dynamic grid. These are the 
points where the dynamic equations are solved. In the fol-
lowing sections, the fields in the hexagonal grid are stored 
on the full grid, where some points with indices are unused. 
On computers with many processors this is not optimal, as 
this may imply message passing for unused points. There-
fore, it is desirable to number the points in such a way that 
no storage is provided for unused points which is called the 
compact grid representation. Appendix 1 defines a compact 
grid for hexagonal grids.

In this study, we investigate the LGM o2o3 method with 
hexagonal cells. This method uses second-degree polyno-
mials to represent the field in the cells and the numerical 
procedure is designed to become third-order by defining 
the fluxes as piecewise third-order splines. The LGM o3o3 
investigated in Steppeler et al. (2019) could also have been 
used and the definition of o3o3 on hexagons is discussed 
in the appendix. The o3o3 method would have more grid 
points on each hexagonal cell than o2o3. Therefore, o2o3 is 
easier to program which is the reason why o2o3 was used 
for the first attempt in this paper. The application of o3o3 
in the hexagon is discussed but not tested and implemented 
in the appendix. We first illustrate the basic hexagonal grid 
and field representations in Sect. 2. Section 3 outlines the 
governing equations and corresponding discrete FDM equa-
tions. Section 4 presents a series of idealized advection test 
cases with sparse grids. Finally, Sect. 5 presents a discussion 
and concludes this study.

2  Definition of grids and field 
representation

Figure 1a illustrates the grid distribution to cover the com-
putational domain which is divided by the hexagonal cells. 
The m, n grid is useful to define a Cartesian grid for the 
definition of the initial state and plotting. The assignment 
of the m, n to the hexagonal points can be seen from Fig. 1a. 
This is referred to as the Cartesian representation. Let s be 
the edge length of the hexagons so that the grid lengths are 
dx =

1

2
s and dy =

√
3

4
s . The Cartesian coordinates xm,n and 

ym,n of the hexagonal points are associated with each point 
m, n: m = 0, …, M; n = 0, …, N.

(1)xm,n =

{
mdx, for n even

mdx +
1

2
dx, for n odd

,

In the following it is assumed dx = 1 and dy =
√
3

2
 . As 

seen from Fig. 1a for the full grids there is a one-to-one cor-
respondence between hexagonal points and the m, n grid. 
However, though the computational domain can be sepa-
rated by the hexagons, the gird points on the edges of the 
hexagons are shared by two, even three hexagons such that 
it is hardly to determine which hexagon the grid belongs to.

To assign every grid point to only one computational ele-
ment, we introduce a new index system and the correspond-
ing non-intersecting element (k, i, j) (the blue rectangles in 
Fig. 1) where the structured indices are i = 0, …, i.e., j = 0, 
…, je and k (= 0, …, ke) is the index pointing to a particular 
point. If ke = 23, then the grid is regarded as the full grid 
system, including all the points numbering from 0 to 23 in 
one blue rectangular in Fig. 1b. If ke = 11, then the grid is 
regarded as the sparse grid system, including all black points 
numbering from 0 to 11 in one blue rectangular in Fig. 1b. 
For the sparse grid, the points numbering from 12 to 23 are 
unused diagnostic. Therefore, the grid points within non-
intersecting element (k, i, j) are designed for achieving the 
one-to-one correspondence and coding. The transformation 
between the indices (k, i, j) and m, n is seen from Fig. 1a, 
b. Comparing the new index system (k, i, j) (the light blue 
index) and the m, n grid system (the black index) in Fig. 1a, 
every non-intersecting element contains six m-points in the 
horizontal while four n-points in the vertical.

To define a numerical scheme, it is necessary to have 
unique indices for each point which is shown in Fig. 1b for 
the computer implementation. This can be naturally done 
using an unstructured gridding. Alternatively, any 3-D 
model using unstructured indexing can be adapted to the 
hexagonal scheme. In this study, we use a sparse structured 
programming indexed by (k, i, j) in 2-D. Therefore, the com-
pact grid defines the sparse grid (ke = 11) without assigning 
memory storage to unused points which implies that a 3-D 
realization could be done using any structured 3-D model 
as a basis. When using the Cartesian grid for the represen-
tation of the sparse grid, though half of the points m, n are 
unused, these grids still occupy a considerable proportion 
of the storage and message capacity with multiprocessing. 
It is a waste of computational resources and only acceptable 
for research models.

To achieve a numerical scheme, it is important to design 
the field representation. In every element (k, i, j) , there are 
two centers (k = 0 and 11) of the hexagons such that we dis-
cuss the field representations in two different, but similar 
hexagons with center points numbering k = 0 and 11 shown 
in Fig. 1c. In each hexagon, there are 19 points for potential 
use to define amplitudes for the field representation by sec-
ond-degree polynomials. Solid points with indices k = 1, 4, 

(2)ym,n = ndy.
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6, 8 in element (k, i, j) , k = 6, 8 in element (k, i, j + 1) , k = 1, 
8 in element (k, i + 1, j) , k = 1 in element (k, i + 1, j − 1) and 
k = 4 in element (k, i + 1, j − 1) are the corner points and 
points with indices k = 2, 3, 5, 7, 9, 10 in element (k, i, j) , 
k = 7 in element (k, i, j + 1) , k = 9 in element (k, i + 1, j) , 
k = 2 in element (k, i + 1, j − 1) and k = 3, 10 in element 
(k, i, j − 1) are the edge points on the boundaries. Points 
with indices k = 12, 13, 14, 15, 16, 17, 20, 21 in element 
(k, i, j) , k = 18 in element (k, i + 1, j − 1) , k = 22, 23 in ele-
ment (k, i + 1, j) and k = 19 in element (k, i, j − 1) is the 
interior points which can be used for the second-order full 
grid systems, not for sparse grid. Except for the center point 
k = 0, 11 in element (k, i, j) , all dynamic points are located 
on cell boundaries. To obtain the field representation by 

polynomials, interior points will be defined diagnostically 
using dynamic amplitudes.

Since the corner and edge points on boundaries of 
hexagons belong to more than one hexagon, the weights 
of center, edge, corner and interior points shared in each 
hexagon are 1, 1

2
,

1

3
, 1 in 2-D hexagonal grid such that 

the number of independent amplitudes in each hexagon is 
1 × 1 +

1

2
× 6 +

1

3
× 6 + 1 × 6 = 12 (Fig. 2a). In this study, 

as a sparse grid is used, we will not use the dashed interior 
points as dynamic points. These points are shown in Fig. 2a 
and not shown in Fig. 2b. Dynamic points for this sparse 
grid system are solid points. When going to a sparse grid 
system, the potential saving of computer time due to sparse-
ness is 1:2 in 2-D (Fig. 2a) under the assumption of the same 

Fig. 1  The hexagon grid distribution in the computational domain 
and the index system for the grid point. a The covering of the com-
putational area by hexagonal cells and the non-intersecting elements 
(k, i, j) indicating that every grid point is assigned uniquely to one ele-
ment only: the solid black and white points are dynamic points and 
the dashed points are the unused diagnostic points. b The index sys-

tem for every non-intersecting element (k, i, j) with all dynamic (solid) 
and diagnostic (dashed) points. c The definitions of the grid points 
in every hexagon with collocation points and cell-related indices: the 
indices − 6, − 5, …, − 1, 1, 2, …, 6 in the circles with bigger size are 
used for numbering the six triangles in each hexagon
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timestep and the CPU time per dynamic point for both cases. 
In 3-D hexagonal box (Fig. 2b), there are two layers (the 
bottom and middle layers) containing different numbers of 
dynamic point. The bottom layer contains six corner, one 
center and six horizontal edge points with the weights of 
1

3
, 1,

1

2
 , while the middle layer contains six vertical edges, 

each shared by three boxes and the center point. Therefore, 
the middle layer contains 1

3
× 6 + 1 = 3 dynamic points and 

the full grid points are for the middle layer the same as for 
the bottom layer which means the 3-D sparseness factor is 
9:24 (3:8).

In this study, basis functions used for the field representa-
tion can be first- and second-order in each triangle, respec-
tively. In the following, we set one triangle in the element 
(k, i, j) as an example with numbered corners �0,i,j, �4,i,j, �6,i,j . 
The distribution of triangles and corner and edge points 
between the hexagonal cells can be seen in Fig. 3. Note that 
the amplitude of the field for each point belongs to more 

than one triangle and one hexagon: each corner amplitude 
belongs to one hexagonal cell if it locates at a center point 
�0,i,j and to three hexagonal cells if it locates at hexagonal 
corner point �4,i,j, �6,i,j . An edge amplitude belongs to two 
hexagons and two triangles when it locates at edge points 
�5,i,j . As seen from Fig. 3, there exist edge points �15,i,j, �16,i,j 
for two triangles, which are interior points of a hexagon, 
meaning that they are triangular edge points, but not hexago-
nal edge points. From Fig. 3, these relations become clear.

The triangular amplitudes are defined at corners: 
�0,i,j, �4,i,j, �6,i,j and edges �5,i,j, �15,i,j, �16,i,j , where �5,i,j =

1

2(
�4,i,j + �6,i,j

)
, �15,i,j =

1

2

(
�0,i,j + �4,i,j

)
, �16,i,j =

1

2

(
�0,i,j + �6,i,j

)
 . 

The corner points determine the linear basis functions e(�) 
(Fig. 3b, d). We provide the basis functions for the case of 
irregular triangles, even though we use only the regular case 
in this paper. Without loss of generality, we give the basis 
function belonging to corner point �0,i,j and edge point �⊥

0,i,j
 

defined at �⊥
0,i,j

=
1

2

(
�4,i,j + �6,i,j

)
 . The unit vector of the mid-

line combining corner point �0,i,j and edge point �⊥
0,i,j

 is 

defined as �m
0,i,j

=
�⊥
0,i,j

−�0,i,j
|||�⊥0,i,j−�0,i,j

|||
 and the unit perpendicular vector 

is defined as �s
0,i,j

=
�6,i,j−�4,i,j

|�6,i,j−�4,i,j| . We introduce the local coor-
dinates (�,�) for each triangular corner as a non-orthogonal 
coordinate:

and define the linear corner basis function e0 at corner point 
�0.i.j as

Therefore, each corner point defines a linear basis func-
tion e(�) inside the triangle while outside the triangle, these 
linear basis functions are defined to be zero. This linear basis 
function, belonging to corner point �0,i,j is the linear function 
being 1 at �0,i,j and 0 at �4,i,j, �6,i,j.

Three second-order basis functions are associated with 
the edge points �5,i,j, �15,i,j, �16,i,j in the triangle. Without loss 
of generality, we assume that the center of coordinates is at 
�0,i,j , meaning �0,i,j = 0 , for the definition of this basis func-
tion. We define one of the second-order basis functions as 
b2
p,g
(�) , which is associated with the edge point 

�4,6,i,j =
1

2

(
�4,i,j + �6,i,j

)
= �5,i,j (Fig. 3c, e). Then we define 

�⊥
4,i,j

 and �⊥
6,i,j

 to be a set of vectors orthogonal to �4,i,j and �6,i,j . 
Therefore, the second-order basis function in this triangle is 
set as:

(3)� = ��m
0,i,j

+ ��s
0,i,j

(4)e0(�) = e0(�,�) = 1 −
2√
3
�

. . (5)

Fig. 2  2-D (a) and 3-D (b) hexagonal grid box where the red, black 
and blue points are center, corner and edge points. The white dashed 
points in (a) are the interior (unused) points which do not show in (b)

Fig. 3  The first-order and second-order basis functions defined in one 
triangle within a hexagon centered at point �0,i,j for field representa-
tion
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where 

the dot between two vectors indicates the dot product and 
b2
p,g

(
�4,6,i,j

)
= b2

p,g

(
�5,i,j

)
= 1 . Note that all basis functions 

defined above are discontinuous. If, however, all basis 
functions belonging to the same corner or edge point are 
summed, the result will be a continuous basis function. From 
this follows, that using all corner and edge amplitudes and 
summing over all basis functions will result in a continuous 
field.

Now let the field h(�) be given at all corner and edge 
points of the hexagonal grids. We give the representation 
formula for triangular amplitudes. For a hexagonal grid, 
let the corner point amplitudes be �p,i,j and the edge ampli-
tudes be �p,q,i,j . Note that edge points and edge amplitudes 
are defined only if �p,i,j and �q,i,j are immediate neighbours. 
Then we have the general form of the field representation for 
h(�) in the hexagonal grid with center point 0:

where hp is the corner amplitude and hp,q is the edge ampli-
tude. Equation (6) means that the field is determined by 
corner amplitudes hp and edge amplitudes hp,q , where the 
corner and edge amplitudes are all dynamic points and the 
six interior amplitudes are determined by the surrounding 
amplitudes on the boundaries and the center of the hexagon. 
Alternatively, there is another intuitive representation of the 
field h(�) which is defined as:

. .

(6)

h(�) =
∑

six Δs in one hexagon

[∑
p

hpep(�)+
∑

p,q are neighbours

hp,qb
2
p,g
(�)

]
,

where ec
(p,i,j),Δ

(�) =

{
1, � ∈ Δ&

[
(p, i, j),Δ

]
see in Tab.1

0, else
 are 

the characteristic basis functions for each point and each 
triangle in the hexagonal grid with center point 0 (see (p, Δ) 
in Table 1). This is hardly used for program implement while 
is convenient and intuitive to understand how to represent 
the field. Once the triangles and grid points in one hexagon 
meet the conditions of the combination in Table 1, the value 
of the basis function ec

(p,i,j),Δ
(�) can be determined.

Note that the amplitudes of interior points are diagnostic 
which means that the interior points in the hexagon are 
unused in the sparse grid scheme. However, unused points 
can be interpolated to achieve a full grid, which can be 
used for plotting, if one does not want to go for this pur-
pose to the Cartesian representation. The interpolation of 
unused points from dynamic points results in smooth plots 
of fields. If the unused points are filled with the value of 
zero, the grid structure can be seen in Fig. 4 which shows a 
plot of a part of the field on the used points, when the field 
is defined zero on the unused points. The hexagonal struc-
ture becomes visible, with the corners, edges and centers 
showing local maxima, providing a good indication of the 
hexagonal cell boundaries. According to Fig. 4, the small 
hexagons inside the large ones are those where the points 
are unused for dynamics and put to values of zero.

(7)

h(�) =
∑

six Δs in one hexagon

[
9∑

p=0

hpe
c
(p,i,j),Δ

(�) +

17∑
p=12

hpe
c
(p,i,j),Δ

(�)

+

8∑
p=6

hpe
c
(p,i,j+1),Δ

(�)

]
,

Table 1  List of triangle numbers Δ belonging to a grid point p meaning that basis function ec
(p,i,j),Δ

(�) is equal to one being different from zero

Point p Triangle number Δ Point p Triangle number Δ Point p Triangle number Δ

0, i,j (0, i, j), 1 and (0, i, j),2 and (0,i,j),3 and 
(0, i ,j),4 and (0, i ,j), 5 and (0, i, j), 6

1, i, j (1, i, j), 1 and (1, i, j), 6 2, i, j (2, i, j), 1

3, i, j (3, i, j), 3 4, i,j (4, i,j), 3 and (4, i, j), 4 5, i, j (5, i, j), 4
6, i, j (6, i,  j), 4 and (6, i,  j), 5 7, i, j (7, i,  j), 5 8, i,  j (8, i,  j), 5 and (8, i, 

j), 6
9, i, j (9, i, j), 6 12, i, j (12, i, j), 1 and (12, i, j), 6 13, i, j (13, i, j), 1 and (13, 

i, j),2
14, i, j (14, i, j), 2 and (14, i, j),3 15, i, j (15, i, j), 3 and (15, i, j), 4 16, i, j (16, i,  j), 4 and (16, 

i, j),5
17, i, j (17, i,  j), 5 and (17, i, j),6 6, i, j + 1 (6, i, j + 1), 2 and (6, i,  j + 1), 3 7, i, j + 1 (7, i,  j + 1), 2
8, i, j + 1 (8, i,  j + 1), 1 and (8, i,   j + 1),2
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3  The construction of finite difference 
formula

The principle of Galerkin method is to represent fields 
piecewise as polynomials. Using a number of collocation 
grid points within each element, the o2o3 discretization 
on hexagonal cells can be written as a FDM scheme based 
on the structured index (i, j) as indicated in Fig. 1. For the 
sparse grid scheme, only half of points (the solid black grid 
points shown in Fig. 1c) are used, which demonstrates that a 
compact data structure is possible which may turn out to be 
handy for realistic applications. Different from the ordinary 
FDM schemes where the same form of schemes is used in 
different elements, these schemes use different FDM equa-
tions for the collocation points indexed by k in each ele-
ment (k, i, j) and the formula for the different k have to be 
programmed each differently. However, for the same k and 
different (i, j) in Fig. 1c, the FDM schemes are analogous.

In the present paper, a new LGM, implied spectral equa-
tion (ISE), is used in which mass conservation in a center 
point is used to define the corresponding spectral ampli-
tudes, while other amplitudes on the edge and corner points 
are provided by any high-order FDM scheme with the target 
order. If all amplitudes of all points in a hexagon except 
the center point are computed, the balance equation for the 
amplitude at the center point can be written as an equation 
for the time derivative of the center amplitude. This is analo-
gous to the procedure used with the o3o3 scheme (Step-
peler et al. 2019). This mass balancing ISE method, known 

from SEM described by Steppeler (1987) for a large range of 
LGMs will be used to achieve mass conservation when using 
the quadrature approximation. This means for our method of 
hexagons that mass conservation needs to be a consideration 
only for the center point whilst other points can be treated 
by differentiating along straight lines. It will be shown in the 
following that how the principle of mass conservation allows 
to compute the time derivative of the spectral amplitudes at 
center point which is then transformed to gridpoint space to 
obtain a conserving scheme. The FDM schemes used may 
not refer to the spectral representation and will normally use 
points on a straight line for efficiency. A minimum of one 
implied spectral amplitude is sufficient to obtain an overall 
mass-conserving scheme.

In details, we use the advection equation

as a test where u, v are assumed to be constant and 
�th, �xh, �yh indicates the differentiation of variable h with 
respective to t (time), x and y (location).

Most derivatives used to compute the divergence are 
obtained by differencing along lines and taking directional 
derivatives. Let �l =

(
nx
l
, n

y

l

)
 be any unit vector along a line 

l. The l-directional derivative of a function h
(
� + l ⋅ �l

)
 is 

defined as:

(8)�th = −u ⋅ �xh − v ⋅ �yh,

(9)

�lh
(
� + l ⋅ �l

)
= nx

l
�xh

(
rx + l ⋅ nx

l
, ry + l ⋅ n

y

l

)

+ n
y

l
�yh

(
rx + l ⋅ nx

l
, ry + l ⋅ n

y

l

)
,

Fig. 4  A schematics of the field using unconventional plotting. a 
The field and the field shifted to the right (only the used points are 
shifted to the right). The amplitudes at the unused points remain at 
their original position. This way of plotting shows fields which add 
up to a smooth function, if the right part of (a) is shifted to the left 

again. The right and left parts of (a) are like the positive and negative 
of a picture. b The details of a part of the field in (a) marked with a 
black rectangle. As the amplitude of unused points is set to zero, the 
hexagonal grid structure becomes visible
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where � = (rx, ry) is the position vector of the corresponding 
point and l is the differential length along the unit vector nl 
direction. In the following, it is assumed that l = 1, without 
loss of generality and take �l = (1, 0) and u = 1 as an exam-
ple. Therefore, Eq. (8) becomes

where the advection is homogeneous with a constant veloc-
ity field. Note that if we have calculated the FDM formula 
for �xh , we can obtain the FDM formula for �th and vice 
versa. For our simple example the time derivative is the 
space derivative.

According to Fig.  1c, the first-order directional 
derivatives at edge points 2, 3, 5, 7, 9, 10 will be called 
�th = −�lh

(
�k,i,j

)
= −�xh

(
�k,i,j

)
 and for example k = 7 in 

Fig. 1c is computed by:

which is given to compute flux divergences or derivatives in 
x- and y-directions in edge points.

The second-order derivative �2
x
h7,i′,j′ at point k = 7 in 

Fig. 1c is computed by:

For the third-order derivative at the same point we define:

For the other edge points, the formula is analogous.
A third-order accurate formula for the directional deriva-

tive along the line l between the points 8 and 6 in Fig. 1c is:

where w2
i,j

 and w3
i,j

 are the weight coefficients and 
�2
x
h
(
�7,i,j

)
w2
i,j

(
�7,i,j

)
= 0.

The derivations Eqs. (11)–(14) use the relations between 
third-, second- or first-order derivatives along straight lines 
combining points 8 and 6. Coordinate lines can be arbitrar-
ily tilted to each other, but for the success of this method, 
it is necessary that some pieces of the lines are not curved, 
so that numerical differentiation along the lines is possible. 
The equations may appear rather difficult (see a considerable 
simplification and details in Appendix 1). The third-order 
derivative is obtained from point 7 in Fig. 1c and four more 
points being on a straight line. For practical modelers, it may 
be easier to differentiate in third-order approximation along 
this line, for which five points are sufficient. Unfortunately, 
the points are irregular, as the two points out of the hexagon 
have three times the distance from the center point k = 7 as 

(10)�th = −u ⋅ �xh = −�xh,

(11)�xh
(
�7,i,j

)
= h

(
�6,i,j

)
− h

(
�8,i,j

)
,

(12)�2
x
h
(
�7,i,j

)
= −8

{
h
(
�7,i,j

)
−

1

2

[
h
(
�6,i,j

)
+ h

(
�8,i,j

)]}
.

(13)
�3
x
h
(
�7,i,j

)
= −

7

16

[
h
(
�6,i,j

)
− h

(
�8,i,j

)]
−

1

48

[
h
(
�11,i,j

)
− h

(
�11,i−1,j

)]
.

(14)
�lh = �xh

(
�7,i,j

)
+ �2

x
h
(
�7,i,j

)
w2
i,j

(
�7,i,j

)
+ �3

x
h
(
�7,i,j

)
w3
i,j

(
�7,i,j

)
.

the two interior points k = 6 and 8. Therefore, if weights for 
irregular differentiation are obtained numerically, the rather 
complicated derivations above could be replaced by simple 
finite differences on irregular grids on lines which are not 
necessarily in x- or y-directions. For example, the high-order 
derivative computed in Eq. (11) is obtained by

whose indices are taken from Fig.  1c. The weights 
w1,w2,w3,w4,w5 are obtained numerically for l = 1 as 
w1 = −

1

48
 , w2 =

9

16
 , w3 = −0.0 , w4 = −

9

16
 , w5 =

1

48
 . The 

numerical procedure can also handle the more irregular case, 
which would appear for discretizations on the sphere. It is 
in principle possible to compute fluxes in x- or y-directions 
using just two directional derivatives (see below). This 
was done by Steppeler et al. (2008) where the stability was 
achieved because the directional derivatives were taken as 
centered differences.

Here we have three directional derivatives available at 
corner points 1, 4, 6, 8. At corner points, as the derivatives 
are one-sided, an average of all three directional derivatives 
will be needed generally to have the chance of a stable 
scheme. To have a guide for the averaging of derivatives at 
corner points, infinitesimal control volumes are used. Fig-
ure 5 shows a FDM stencil at a corner point. It could be 
identical to the stencil with target point 4 in Fig. 1c. A heu-
ristic consideration is done to obtain reasonable weights for 
averaging the derivative at the target point 4. We define the 
directional vectors as �k,tg = �k − �tg (here, k denotes one of 
three points linked to the target point tg = 4, i, j, see Fig. 5) 
and the corresponding directional derivative ��k,tghtg at the 
target point tg. We can obtain three directional vectors 
�1,i+1,j;4,i,j = �1,i+1,j − �4,i,j , �6,i,j;4,i,j = �6,i,j − �4,i,j , �6,i,j+1;4,i,j =
�6,i,j+1 − �4,i,j observing in Fig.  5. Here we describe the 
x-direction advection equation. The y-direction is treated in 

(15)

�xh
(
�7,i,j

)
= w1h

(
�11,i,j

)
+ w2h

(
�6,i,j

)

+ w3h
(
�7,i,j

)
+ w4h

(
�8,i,j

)
+ w5h

(
�11,i−1,j

)
,

Fig. 5  Infinitesimal control volume: the computation of x- and 
y-derivatives from directional derivatives along cell edges
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an analogous way. Then, we obtain the integral of the flux 
fl
(
�4,i,j

)
 through the surface in Fig. 5:

where the surface integral is taken over the triangle �4 with 
the size of SΔ=

√
3

4
s2
4
 and n is the unit vector orthogonal to 

the boundary of the triangle �4 (Fig. 5).
For the x-derivative dxh4 we obtain:

where the area of the triangle SΔ , �1,i+1,j;4,i,j ⋅ � = 1 , 
�6,i,j;4,i,j ⋅ � =

|||�6,i,j;4,i,j
||||�| ⋅ cos 120◦ = −

1

2
 a n d 

�6,i,j+1;4,i,j ⋅ � =
|||�6,i,j+1;4,i,j

||||�| ⋅ cos 210◦ = −
1

2
 . The other cor-

ner points and y-derivatives are obtained by analogous 
formula.

We aim for a third-order approximation and therefore any 
third-order FDM scheme may be used. So far, we have defined 
FDM schemes for all collocation points being on the bound-
ary of a hexagon. Using the points on the grid boundary, the 
flux around the surface of the hexagon into the grid is equal 
to the time derivative of the mass inside the grid. The corner 
and edge amplitudes were obtained by above high-order FDM 
schemes for the hexagon. The approximation for the center 
amplitude will be then obtained by requiring mass balance. 
The center amplitude will be chosen in such a way that the time 
derivative of mass is consistent with the flux though the bound-
ary. Mass conservation defines the implied amplitude uniquely.

We set the center point indexed k = 0 in the element (k, i, j) 
as an example. For any point x, y inside the hexagon with 
center (0, i, j) , we have the piecewise quadratic representa-
tion using the basis functions defined in Sect. 2. The sum 
given in the following formula represents the field limited 
to the chosen hexagon. Using the collocation basis defined 
in Eq. (6), the field representation for the chosen hexagon 
with center (0, i, j) is:

(16)

∮
�4

fl
(
r4,i,j

)
� ⋅ d� =

∑
(k,i�,j�)=(6,i,j+1),(6,i,j),(1,i+1,j)

[
��k,i� ,j� ;4,i,j h

(
�4,i,j

)
⋅

(
1

3
SΔ

)]
�k,i�,j�;4,i,j ⋅ �,

(17)

�xh
(
�4,i,j

)
=

∮
�4

fl
(
r4,i,j

)
n ⋅ ds

SΔ

=
1

3

[
��1,i+1,j;4,i,j h

(
�4,i,j

)
−

1

2
��6,i,j;4,i,j h

(
�4,i,j

)

−
1

2
��6,i,j+1;4,i,j h

(
�4,i,j

)]
,

(18)

𝜕th(�) =

6∑
Δ=1

𝜕th0 ⋅ e
c
(0,i,j),Δ

+

9∑
k=1

6∑
Δ=1

𝜕thk ⋅ e
c
(k,i,j),Δ

+

8∑
k=6

6∑
Δ=1

𝜕thk ⋅ e
c
(k,i,j+1),Δ

+

17∑
k=12

6∑
Δ=1

𝜕th̄k ⋅ e
c
(k,i,j),Δ

,

where 𝜕th̄k for k = 12, 13, …, 17 are diagnostically deter-
mined by the dynamic points k = 0, 1, …, 9 in the element 
(k, i, j) and k = 6, 7, 8 in the element (k, i, j+1) . Note that 
except �th0 in Eq. (18), all other amplitudes �thi have already 
been computed. Therefore, it can easily be solved for �th0 . 
Let m0

k
=
∑6

Δ=1
∬ ec

(k,i,j),Δ
(�)dxdy be the mass of the colloca-

tion basis functions, as for the time derivative of mass 
�tM = ∫ �th ⋅ dt of �th inside the chosen hexagon we obtain:

where the m0
k
 is the mass contained in the characteristic basis 

functions: m0
(k,i,j)

=
∑6

Δ=1
∬ ec

(k,i,j),Δ
(�)dxdy for k = − 6, …, 

12. �t M in Eq. (19) is known from the flux balance equation. 
Let fl(�) be the flux of field h at the center point k = 0. Then, 
the surface integral of the flux is equal to �tM:

where the surface integral is taken over the boundary 
�0 which are the edges of the hexagon and n0 is the unit 
vector orthogonal to the hexagonal surface. Combining 
Eqs.  (18)–(20), the only unknown �th0 can therefore be 
solved.

The hexagonal example described above may be bet-
ter understood by a 1-D example, which is given in the 
following:

Consider the 1-D homogeneous advection equation 
�th = −�xh . The grid is 0, 1

2
, 1,

3

2
, 2,… . The basis functions 

are defined in Eqs. (3)–(5). The grid is the interval 
(
xi, xi+1

)
 

where i = 0, 1, 2, 3, …. The time derivative of the mass 
inside 

(
xi, xi+1

)
 is the flux difference.

Let the field h(x) be defined by

with ei(x) being the piecewise linear function being 1 at point 
x = xi and being 0 at all other points ( x ∈

(
xi−1, xi+1

)
 ), 

b2

i+
1

2

(x) =
1

2

(
x2 −

ds2

4

)
 where ds is the distance of a cell 

interval, Ai is the spectral amplitude belonging to the basis 
b2
i
(x), i =

1

2
,
3

2
,
5

2
,… . The integral of b2(x) is − 1

12
ds3 . The 

integral of the linear basis functions is 1
2
ds . The surface flux 

difference is −
(
hi+1 − hi

)
 (i = 0, 1, 2, …). Then, Eq. (21) 

becomes:

(19)

𝜕tM =

9∑
k=0

𝜕thkm
0
(k,i,j)

+

8∑
k=6

𝜕thkm
0
(k,i,j+1)

+

17∑
k=12

𝜕th̄km
0
(k,i,j)

,

(20)∮
�0

fl(r)�0 ⋅ d� = �tM,

(21)h(x) =
∑
i

hiei(x) + Aib
2

i+
1

2

(x)

(22)−
(
hi+1 − hi

)
=

1

2

(
�thi+1 + �thi

)
ds −

�tAi

12
ds3
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As  b2(0) = −
1

8
ds2  and  �th

i+
1

2

=
1

2

(
�thi+1 + �thi

)
+

�tAib
2(0) , we have

In Eq. (23) �thi can be chosen arbitrarily and we use:

where coefficients a and b are defined in Steppeler et al. 
(2008).

Equations (23) and (24) are a 1-D version of the o2o3 
scheme used with the hexagon. This is the scheme defined as 
the o2o3 scheme in Ahlberg et al. (1967) without any tests.

4  Advection experiments

The aim of these advection experiments is to demonstrate 
that the sparse SEM describes the process properly. This 
means that the accuracy expected from the third-order dis-
cretization scheme is achieved and that the results do not 
indicate a serious shortcoming due to the sparseness. This 
should also be the case for marginal resolution. Second- and 
third-order LGMs were proposed and used on squares in 
Steppeler (1976). In this study, the LGM operation has fur-
ther implemented on hexagons. We want to confirm that the 
methods presented here give results of about similar quality.

Before the initialization of the advection test, we list the 
steps of the time loop for further explanation of LGM.

• Compute directional derivatives at corner and edge points 
[k = 1, 2, …, 9 in the element (k, i, j) and k = 6, 7, 8 in the 
element (k, i, j+1) in Fig. 1c].

• Compute time derivatives at dynamic corner and edge 
points [k = 1, 2, …, 9 in the element (k, i, j) and k = 6, 7, 8 
in the element (k, i, j+1) in Fig. 1c]. At the corner points 
[k = 1, 4, 6, 8 in the element (k, i, j) and k = 6, 8 in the ele-
ment (k, i, j+1) in Fig. 1c], average the three directional 
derivatives of the lines meeting here.

• Perform ISE LGM at center points [k = 0 in the element 
(k, i, j) of Fig. 1c].

• Perform fourth-order Runge–Kutta (RK4) time stepping 
in gridpoint space.

No transformation of spectral coefficients to grid point 
space is necessary, as the grid point at the center (k = 0) 
is both spectral coefficient and spectral amplitude. Spectral 
coefficients which are different from gridpoint values occur 
only at edge amplitudes [k = 2, 3, 5, 7, 9 in the element (k, i, j) 
and k = 7 in the element (k, i, j+1) in Fig. 1c].

(23)�th
i+

1

2

= −
3

2ds

(
hi+1 − hi

)
−

1

4

(
�thi+1 + �thi

)

(24)�thi =
a

ds

(
h
i+

1

2

− h
i−

1

2

)
+

b

2ds

(
hi+1 − hi−1

)

Now we perform the advection test. For the experiments 
done here, we assume the side length s of the hexagon to 
be s = 2. Figure 6 gives the result of advection for a com-
putational domain of 400 * 600 grid point where dx = 1 
and dy =

√
3

2
 between every two points, and the timestep 

dt is 1.0 s with 90 timesteps. The components of advection 
velocity u and v are (1, 1) for the first thirty timesteps, (0, 
− 1) for the second thirty timesteps and (− 1, 0) for the last 
thirty timesteps. To obtain a solution where the initial field 
is reproduced after ninety timesteps, this velocity field is 
changed in time. In Fig. 6, thirty timesteps are done between 
plots and the plots are produced to show the sparse grid 
structure. The unused points are assigned a time derivative 
of zero. The initial values are shown in Fig. 6a and are given 
by:

where �h
i,j

 is the density of the tracer, 
(
xh
i
, yh

j

)
 is the location 

of the density, 
(
xh
0
, yh

0

)
= (110, 65) is the initial location of 

the density and dxmid is the radii of the density. In Steppeler 
and Klemp (2017), it was determined by 1-D experiments 
that for dxmid = 8 the second-order FDM scheme based on 
centered differences used there produced reasonable disper-
sion-free results, whereas heavy dispersion occurred for 
smaller values of dxmid . Since the third-order approximation 
is used in this study, we may expect to obtain a reasonably 
dispersion-free results for dxmid = 4.

Figure 6a shows the initial values for dxmid = 4 . This is 
the same resolution as used in Steppeler and Klemp (2017). 
Of course, we may have better dispersion properties because 
using the third-order method. In Fig. 6a, Eq. (25) was used to 
compute all twenty-four points (twelve dynamic points and 
twelve unused points) for each (i, j) . Note that according to 
Fig. 1, the discretization group of points has twelve dynamic 
points and twelve diagnostic points which all are independ-
ent. These are more than the points belonging to a hexagon, 
as the discretization group is larger than one hexagon, as 
seen from Fig. 1. These plots are done using the NCAR 
Command Language (NCL) package. NCL is able to plot 
irregular distributions of amplitudes, as may occur with hex-
agonal grids. This way of plotting is called unconventional 
plotting. When by advection the structure is moving away 
from its initial position, unconventional plotting will make 
the hexagonal grid visible. Initial values at the unused points 
always remain visible. When the structure has moved away 
from its initial position this means that the unused points 
have amplitude 0, at the position of the structure and at the 
position of the initial field we see a negative picture of the 
solution, showing the values according to Eq. (25) at the 
unused points.

(25)�h
i,j
= �h

i,j

(
xh
i
, yh

j

)
= exp

[
−

(
xh
i
−xh

0

dxmid

)2

−

(
yh
j
−yh

0

dxmid

)2
]
,
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We use the RK4 scheme for time stepping with dt = 1. 
Note that the RK4 time scheme with spatial centered dif-
ferences has a Courant–Friedrichs–Levy (CFL) stability 
condition of 2.8. Together with geometric considerations 
given by Steppeler and Klemp (2017), the CFL condition 
for o2o3 will be 0.75 × 2.8. The fourth-order spatial differ-
encing in comparison with lower order centered differences 
leads to a smaller CFL condition (see Durran 2010). This 

leads to an estimate of the CFL number 1.4. Therefore, we 
may expect a stable solution using a timestep dt = 1. We 
use thirty timesteps with u = 1, v = 1, thirty timesteps with 
u = 0, v = − 1 and thirty timesteps with u = − 1, v = 0. After 
this the analytic solution is identical to the initial values. 
Experiments with varying timesteps confirmed this estimate.

The result is shown in Fig. 6b–e. The result shown in 
Fig. 6d have a slight difference from Fig. 6a by a small 

Fig. 6  The advection results 
with time varying velocity field 
for dxmid = 4 . The initial value 
of the density field is shown 
in (a). The advection results 
at thirty steps, sixty steps and 
ninety steps are shown in (b–d). 
In b, c the values of the density 
field are the initial one at the 
left-hand side and the numerical 
result at the right-hand side. The 
values of the field are set as 0 at 
the unused points where sparse 
grids are revealed. e is the 
results at thirty steps except that 
the field for dynamically unused 
points is interpolated from the 
dynamic points. In this way, the 
decrease of the maximum due 
to numerical dispersion can be 
seen. As expected for a third-
order method, this decrease is 
not to be noticed for a transport 
of 30 s
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numerical error. However, the plots given in Fig. 6b do 
not easily allow to see this, as the field is plotted on the 
sparse grid. Figure 6e is the same as Fig. 6b, but plotted 
on the full grid, where the points unused for dynamics are 
interpolated. The unused points for Fig. 6d are not inter-
polated. They have the values they had in the beginning, 
as the structure has reached the initial position again. The 
two parts of the field combine to give a smooth structure 
which allows to see an eventual change of maximum due 
to a dispersion.

Figures 7 and 8 show the same advection tests with a dif-
ferent dxmid for the initial density in Eq. (25) where dxmid = 8 
and dxmid = 1 . Figures 7a, b show only the last two steps for 
a smooth solution. The error in reproducing the initial field 
is reduced. Figure 8 is the same for a small-scale field, which 
also reasonably reproduces the initial field. The prediction 
of a very small-scale field is shown in Fig. 8. To indicate 
the small resolution, the hexagonal grid points are shown 
in Fig. 8. It is clear that in each linear cross section there 
are very few points supporting the structure, but the 2-D 
grid provides more points. In Appendix 1, we investigate 
the resolution of plane waves in the hexagonal grid in com-
parison with a square grid. It is shown in Appendix 1 that 
plane waves in the hexagonal grid are better resolved than 
in square grids.

Then, we conducted another advection experiment where 
the components of advection velocity u and v are (1, 0) and 
the initial density field is defined as follows:

which is used to test the sensitivity of the new LGM scheme. 
The density field is constructed to have sharper contours 
and is nearly the characteristic function of a rectangle with 
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Fig. 7  The advection results with time varying velocity field for a 
larger scale field ( dxmid = 8 ). a The advection results at sixty steps 
where the values of the density field are the initial one at the left-
hand side and the numerical result at the right-hand side. The values 
of the field are set as 0 at the unused points where sparse grids are 

revealed. b The results at ninety steps except that the field for dynam-
ically unused points is interpolated from the dynamic points. In d no 
interpolation is used, as the structure has been back to its initial place 
where the two parts of the field combine to give a smooth structure. e 
Corresponds to b and contains the interpolation of the unused points
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slightly rounded contours. The timestep dt is 1.0 s with 210 
timesteps while all other parameters share with the previ-
ous advection experiments. The advection in x-direction is 
shown in Fig. 9 which shows that the hexagonal grid is able 
to handle strong gradients. A standard way of plotting is 
used, interpolating the unused amplitudes from the dynamic 
points.

The scale of the structures used in the hexagonal grid 
was determined from 1-D experiments. The initial values 
were such that a small reduction of amplitude due to dis-
persion was presented. The same choice as in Steppeler 
and Klemp (2017) was used. We investigate this using a 
1-D version of a o2o3 scheme. For comparison, we plot the 
result of the second-order spectral element method (SEM2, 
Taylor et al. 1997) which is known to converge in second 
order. A convergence test was done by computing the 1-D 
advection while systematically changing the resolution. 

Fig. 8  As Fig. 7, for a small-scale field ( dxmid = 1 ), which represents 
a rather poor resolution. a initial field and forcasted field at sixty step, 
b the forcasted step at ninety step where the initial field is recreated 
again, c is a part of (a) marked with a black rectangle, but enlarged 

and with the hexagonal grid, d as (c), but using interpolated valued 
at the unused points. The red points in c and d carry amplitudes and 
possess small isolines which are covered by the red dots and a little 
black shadow is seen

Fig. 9  Advection of a field with strong gradients of a transport over 
210 dx (dx = 1) by an integration of 210 timesteps. The center of the 
initial tracer is located at (70, 220) and the other two results show the 
tracers at t = 105 s and t = 210 s. The deformation of the field by dis-
persion is small. A standard way of plotting is used, interpolating the 
unused amplitudes from the dynamic points
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The parameters are the same as the experiments in Fig. 6 
except the resolution dx. The results are shown in Fig. 10. 
The resolution was changed systematically starting to 0.25 
of the resolution used in Fig. 6 to four times this resolution. 
The errors, using the maximum norm, are given as Fig. 11. 
The convergence as seen in Fig. 11 is certainly third and 
appears to reach fourth order by super-convergence, which 
is observed also with SEM3 methods. From Fig. 11, it can be 

seen that the high-order scheme at poor resolutions retains a 
rather high level of accuracy. The level of accuracy seen with 
the diagrams for the highest resolution is certainly more than 
needed in practice. For practical purposes, it is less impor-
tant how accurate a scheme is at very high resolutions, but 
rather, how soon a reasonable accuracy is obtained.

5  Conclusions

Some simple experiments show that advection using sparse 
hexagonal grids is possible in third order with a piecewise 
quadratic polynomial representation. Using the o2o3 LGM, 
the 2-D sparse grid used only half the number of grid points 
as the full grid, meaning six points per cell against twelve 
points. The particular mapping of the cells and grid points 
to a structured i, j grid turned out to lead to a rather compli-
cated computer program, which may be difficult to develop 
to further applications. Future developments will depend 
on defining a more convenient numbering of cells and grid 
points (see details in Appendix 1).

Acknowledgements No authors reported any potential conflicts of 
interest. The paper was made possible by a number of research visits 
of the first author at NCAR, financed by NCAR. The city of Bad Orb 
supported this cooperation by providing office space. Dr. J. Li acknowl-
edges the support of the National Natural Science Foundation of China 
(Grant No. 41905093), the China Postdoctoral Science Foundation 

Fig. 10  The advection over 
30dx for different resolutions. 
The x-axis is x/dx. a dx = 1.0, 
b dx = 0.5, c dx = 0.25 and d 
dx = 0.125

Fig. 11  Maximum error norms (dotted scatters) of third-order sparse 
SEM for different resolutions, starting from minimum resolution of 
dx = 0.03125 and doubling it by factors 2, 4, 8, 16, 32. The other three 
lines are the second-order (dotted), third-order (solid) and fourth-
order (dashed) convergences for comparison

Author's personal copy



Third-order sparse grid generalized spectral elements on hexagonal cells for uniform-speed…

1 3

Funded Project (Grant No. 2016M601101) and China Scholarship 
Council (No. 201904910136). Dr. F. Fang acknowledges the support 
of the Innovation of the Chinese Academy of Sciences International 
Partnership Project (Grant No. Y56601M601) and the EPSRC grant: 
Managing Air for Green Inner Cities (MAGIC) (EP/N010221/1).

Appendix 1

A system of indices for second‑order hexagonal cells 
creating a compact grid representation and the 1‑D 
grids for plane waves

This appendix introduces an alternative system of indices 
to that used in Sects. 2 and 3. The grid is shown in Fig. 12 
and it differs from Fig. 1 by assigning different numbers 
to the points. Each point has two indices i and k, where i 
indicates the hexagon and k indicated the position of a point 
within the hexagon. k = 0 indicates the center point of the 
hexagonal cell. The index i can be a structured index i = (i′, 
j′) (i′, j′ = 0, 1, 2, 3, …) or unstructured. The structured case 
is shown in Fig. 12, where the grids and their center points 
are indicated by the double index (i’, j’). The advantage of a 
structured grid notation is that neighboring grids are always 
known. For example, in Fig. 12 the cell (i′, j′+ 1) is always 
above the cell (i′, j′). Our definition can also be applied to 
the unstructured grid case. In the unstructured case a list 
is needed indicating the six neighbouring hexagons to the 
hexagon i. The grid based compact grid pointed out in the 
following can be used with structures and unstructured index 
i, where Fig. 12 refers to the structured case i = (i′, j′).

Let the side length of the hexagon be s. For the corner 
nodes �i,k (k = 1, 3, 5, 7, 9, 11) we have

The edge nodes k = 2, 4, 6, 8, 12 are obtained by

For the diagnostic inner points k = 13 to 18, we have

The full grid consists for each i of all points k = 0 to 18. 
The points numbering 13, 14, 15, 16, 17, 18 are unused 
in the sparse grid. The sparse grid collocation therefore 
consists of the points i, k (k = 0 to 12) which are the mid-
point k = 0 and points on the boundary. The sparse grid is 
redundant, as all points with k > 0 belong to more than one 
hexagon. For example in Fig. 12, the point  9i′,j′, is also point 
 1i′+1,j′+1 and  5i′,j′+1. The point 10i′,j′ belongs only to one other 
hexagon: i′, j′+ 1. These redundant points of the collocation 
grid can be used to represent discontinuous functions.

The index is defined with respect to the orthogonal basis 
�s and �s shown in Fig. 12. This method of indexing is suit-
able for model areas being approximately square. A rhom-
boidal area can be achieved by changing the definition of the 
basis �s and �s shown in Fig. 12.

It was shown by Steppeler (1979) that the anisotropy of 
the square grid can lead to the deformation of structures, 
such as the destruction of the symmetry of a circular wave. 
It may be useful to show the connection to 1-D discretiza-
tions. In Fig. 13, two vectors �1 and �2 are given and for each 
of these directions grid lines are shown in Fig. 13b, c which 
meet hexagonal grid points and thus determine a 1-D grid. 
Figure 13 shows the lines and the 1-D grids created by them. 
�1 and �2 form a 30° angle. The situation is similar as with 
square grids, where two 1-D grids are generated by lines 
forming a 45° angle. For square grids, the implied grids have 
grid lengths of dx in x direction and for the 45° line the grid 
length dx� = dx√

2
 . For the square the grids seen by a plane 

wave in the direction of either x or the diagonal are all the 
same, as each line determines the same grid.

For 1-D grids in the direction of �1 generated by hex-
agonal grids, three types of irregular grid appear, shown in 
Fig. 13b. A plane wave in the directions �1 or �2 sees one of 
the two grids (Fig. 13d, e). They have the average resolution 
dx′ ( 3

8
s for Fig. 13d and 

√
3

4
s for Fig. 13e). This is of higher 
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Fig. 12  As Fig.  1 except that with new indices creating a compact 
grid. Black points and points with thick circles are dynamic points, 
those with thin circles are diagnostic points. The points shown in 
black are the points for compact representation. They do not belong 
to any other hexagon and each dynamic point appears as a compact 
point of some hexagons
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resolution than each of the original grids shown in Fig. 13b, 
c. It has also a higher resolution than the underlying regular 
square grid of resolution 1

2
s . For the gradients of the fluxes 

at corner points in �1 or �2 direction, the o2o3 scheme pro-
posed in this paper uses one-sided derivatives and averages 
them over the three directions shown in Fig. 5. For a struc-
ture being smooth in the direction vertical to �1 or �2 , the 
derivative at one point uses points forming a different grid 
for each of the lines indicated in Fig. 13. Thus, the resolution 
of a plane wave is that of the 1-D grids shown in Fig. 13d, e. 
The irregularity of the plane wave grids is of a small scale 
which means that while some points are near to each other, 
they have large differences in grid length. The pattern of 
small and larger grid lengths repeats itself. These grids have 
a higher resolution than the plane wave grids for the square.

It was shown by Steppeler and Klemp (2017) for the 
example of centered differences that such small-scale 

irregularity gives a quality of simulation corresponding to 
the average grid length. It can be seen that the average grid 
for plane waves is smaller than the grid used on the hexago-
nal sides. The values of the average grids given above should 
be compared to those corresponding to the square grid. For 
the square grid, we obtain s

2
 and s

2
√
2
 for the averaged resolu-

tions in two directions. The relation of the two grids is 1.17 
for the hexagon and 1.47 for the square. These numbers are 
a measure of the isotropy of the grid, which is higher for 
hexagons. The maximum plane wave grid length is also 
smaller for the hexagon (0.433 s) than for the square (0.5 s). 
The maximum of the two grids for different directions of 
plane waves is the resolution of the scheme. A small resolu-
tion in just one direction is not useful except for the case that 
the nature of the solution requires a deformed grid.

Fig. 13  Two examples of lines resulting in 1-D grids for two directions. The combined grid which is seen by a plane wave in the directions of the 

arrows �1 = (cos 60◦, sin 60◦) =

�
1

2
,

√
3

2

�
 and �2 = (cos 30◦, sin 30◦) =

�√
3

2
,
1

2

�
 is shown in (d) and (e)
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The indices of the inherent 1-D grids and their computa-
tion from the hexagonal indices can be seen from Fig. 13b, 
d or c, e. The hexagonal version of the grid for the method 
o3o3 (Steppeler et al. 2019) is obtained from the o2o3 hex-
agonal grid by having four instead three points on each edge 
and the center point no longer carries an amplitude.
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