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SUMMARY

This paper presents a non-intrusive reduced order model for general, dynamic partial differential equations.
Based upon proper orthogonal decomposition (POD) and Smolyak sparse grid collocation, the method first
projects the unknowns with full space and time coordinates onto a reduced POD basis. Then we introduce a
new least squares fitting procedure to approximate the dynamical transition of the POD coefficients between
subsequent time steps, taking only a set of full model solution snapshots as the training data during the
construction. Thus, neither the physical details nor further numerical simulations of the original PDE model
are required by this methodology, and the level of non-intrusiveness is improved compared with existing
reduced order models. Furthermore, we take adaptive measures to address the instability issue arising from
reduced order iterations of the POD coefficients. This model can be applied to a wide range of physical and
engineering scenarios, and we test it on a couple of problems in fluid dynamics. It is demonstrated that this
reduced order approach captures the dominant features of the high-fidelity models with reasonable accuracy
while the computation complexity is reduced by several orders of magnitude. Copyright © 2016 John Wiley
& Sons, Ltd.
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1. INTRODUCTION

In many areas of science and engineering, iterative computations and data assimilations for large-
scale dynamical systems are often required to understand, to predict and/or to control various
phenomena. Straightforward simulations of such problems may be very inefficient. Extensive
resources are exhausted to produce intermediate results that have little significance owing to differ-
ent sources of parameter variations, errors and noise. Therefore, reduced order models (ROMs) have
become prevalent, thanks to their potential to achieve major speedup for standard numerical proce-
dures [1, 2]. Their applicability relies on the presumption that the predominant physical mechanisms
operate on a much lower-dimensional space. A particular class of implementations is based on the
proper orthogonal decomposition (POD) method whose variants have been successfully applied in
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a wide spectrum of research fields: air pollution dispersion[3], shallow water equations [4, 5], con-
vective flows [6], ocean modelling [5, 7–11], 4-D variational data assimilation [12–14], neutron
transport [15], fluid and structure interaction [16, 17], inversion [18], multiphase flows in porous
media [19] and molecular simulation [20].

Traditionally, an ROM implies re-deriving a simpler physical model with additional restrictions
such as homogenisation and parametrisation. Furthermore, substantial rewriting of the numerical
schemes for the physical model is often required. Such a ROM is therefore termed ‘intrusive’
and has been suffering from instability and nonlinear inefficiency problems [9, 10, 21–26]. In
addition, the dependency of the source code results in that the ROM is difficult to construct and
implement [27].

To circumvent or avoid these issues, researchers found another way of solving the reduced order
system: non-intrusive method. The non-intrusive method became popular in recent years because it
is less dependent of the complex original dynamic system and is therefore easy to implement even
when the source code is not available. A number of non-intrusive reduced order modelling (NIROM)
methods have been proposed. Walton et al. and Xiao et al. proposed an NIROM using radial basis
function (RBF) method and POD [28, 29]. Noack [30] and Noori [31] used a neural network to
construct an NIROM. Xiao et al. [32] used a Smolyak sparse grid collocation method in which multi-
dimensional, vector-valued Smolyak functions are used to replace the original differential equations
and to evolve the state variables. This approach not only avoids the access to the high-fidelity
code but also circumvents the so-called curse of dimensionality, namely, the exponential growth in
computational complexity as the dimension of the problem increases.

In this paper, we present a new non-intrusive reduced order model method based on least square
fitting and Smolyak sparse grid. The advantage of this method is achieved by its use of the sparse
grid method to lower the order of polynomial fit. As we know, high-order polynomials may cause
poorer fittings because they oscillate between sample data points. This combination of Smolyak
sparse grid and least square fitting induces a great potential in problems with high number of sample
data points (many thousands of data points). Instead of traversing each nodal point in a Smolyak
sparse grid with its coordinates as the input to a full model simulation and then interpolating with
the collective output, we compute the coefficients of the Smolyak polynomials by solving a least
squares fitting problem whose data are recycled from the generation of the POD basis. We first
properly decompose the temporally equidistant snapshots of the solution variables generated by
the CFD software Fluidity [33]. Then we assemble the input data for the least square fitting by
projecting the snapshots onto the reduced basis. Finally, a linear system of normal equations is
solved producing the desired fit defined by its function values on a sparse grid. The fit, a finite
dimensional map for POD coefficients, then serves as an approximation to the infinite dimensional
evolution of physical variables. Essentially, the physics and numerics of the original full model are
transparent in constructing the ROM, and it can be readily made into a universal black box that is
compatible with arbitrary POD framework.

The structure of the paper is as follows. Section 2 reviews the general methodology of POD
followed by previous results on non-intrusive ROMs with the introduction of a Smolyak sparse
grid. Section 3 derives the least squares fitting problem and its solution for the non-intrusive mod-
elling. Section 4 presents the stabilisation techniques we develop to address the instability issue we
encounter with the direct application of the least squares approximation. Section 5 demonstrates
the method’s capabilities by solving two test problems in fluid dynamics. Finally, in Section 6, a
summary consisting of the conclusions and discussions of future work is presented.

2. PROPER ORTHOGONAL DECOMPOSITION-BASED REDUCED ORDER MODELLING
AND SMOLYAK SPARSE GRIDS

We consider a physical, dynamical system such as the Navier–Stokes equations that takes the general
form

@�

@t
D F.� ; x; t / (1)
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along with appropriate initial and boundary conditions. Here, the unknown, vector-valued func-
tional � .x; t / is defined on a spatial region x 2 � � R3 and on the time interval t 2 Œ0; T �. The
prescribed, external forcing, F , is in general a complex, integro-differential operator derived from
some physical laws.

2.1. Reduction via proper orthogonal decomposition

The solution � to the master equation (1) lives in an infinite-dimensional functional space, and the
first step of our reduced order modelling is to project it onto a finite-dimensional subspace via POD.
This procedure generates a set of basis functions that is constructed from a collection of snapshots
that are taken at a number of time instances of the full model simulation. This basis serves as the
axis of a coordinate system that allows one to represent and reconstruct functions in physical space
with coefficient vectors.

Without loss of generality, we use the Navier–Stokes equations to illustrate the methodology from
now on. In this case, the unknown � consists of three velocity components, .ux; uy ; u´/, and a
pressure component, p. Given a discrete mesh of N nodes, the sth snapshot of � then contains four
N�vectors, denoted as ‰xs , ‰ys , ‰´s and ‰ps , respectively. Then we assemble four separate N � S
matrices as

‰x D
�
‰x1 ; ‰

x
2 ; : : : ; ‰

x
S

�
; ‰y D

�
‰
y
1 ; ‰

y
2 ; : : : ; ‰

y
S

�
(2)

and so on for the other two components, where S is the number of snapshots available. For the sake
of simplicity, we will omit the superscripts denoting unknown components from here on because the
following procedure is applied to each of the four matrices in an independent and identical manner.

Next, we construct a mean-zero snapshot matrix Q‰ with columns

Q‰k D ‰k �
1

S

SX
kD1

‰k; k D 1; 2; : : : ; S (3)

to which we then apply a singular value decomposition (SVD) as

Q‰ D U†V T : (4)

Here, the matrices U 2 RN�N and V 2 RS�S consist of the orthonormal eigenvectors for
Q‰ Q‰T and Q‰T Q‰, respectively, and † is a diagonal matrix of size N � S whose nonzero (pos-
itive) entries, arranged in a decreasing order, are the singular values of Q‰, and we denote them
as �k; k D 1; 2; � � � ; S . Then the POD of Q‰, namely, a reduced order, orthonormal set of basis
functions ¹�kºSkD1 is readily retrieved from the column vectors of U as

�k D Uk; k D 1; 2; : : : ; S: (5)

Moreover, this basis can be optimised by keeping only the first P members that correspond to the
largest P singular values, respectively. Note that these vectors are optimal in the sense that no other
rank-P set of basis vectors can be closer to the snapshot matrix Q‰ measured in the Frobenius norm
by the Eckart–Young theorem. This further reduction is especially accurate when there is a ‘scale
separation’ among the singular values at �P , namely,PS

iDPC1 �
2
iPS

iD1 �
2
i

� 1 (6)

With an optimal POD basis ¹�kºPkD1, any variable  on an N -node mesh can be represented by

 D  C

PX
jD1

˛j�j ; (7)

where ˛j � ˛j .t/ denote the time-varying coefficients of the POD expansion and  is the time-
independent mean of the ensemble of snapshots for the variable , which is analogous to the average
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in (3). This series expansion transforms the full physical space to the reduced order space and vice
versa.

A standard Galerkin procedure can then be applied for the series expansion (7). Substituting the
series into the master equation (1) and following by a first-order finite difference discretisation in
time, we finally arrive at an ROM, namely, an iteration scheme for the reduced order POD coefficient
at arbitrary time step. Denote the coefficient vector at the nth time step as

˛n D
�
˛1.n/; ˛

n
2 ; � � � ; ˛

n
P

�
(8)

and the iteration formula is then given by

˛nC1
k
D fk.˛

n/; n D 1; 2; � � � : (9)

plus the starting values ˛0
k

for k D 1; 2; � � � ; P . The central subject in reduced order modelling is
therefore to find an efficient way to estimate the RP ! R functions fk so one can compute the POD
coefficients at arbitrary times and reconstruct the physical variables from them using the expansion
(7).

2.2. Non-intrusive reduced order modelling on a Smolyak sparse grid

Xiao et al. [32] developed a non-intrusive algorithm to interpolate the transitional functions f 0
k
s in

(9) on a Smolyak sparse grid. In particular, instead of the standard, intrusive approach that requires
a major re-derivation of the full model, they approximated each fk with a multidimensional polyno-
mial interpolant. Additionally, to avoid the curse of dimensionality, which is the exponential growth
of interpolation points entailing the increase of the POD basis size P , a Smolyak sparse grid was
introduced whose number of nodes is only a polynomial function of its dimension size.

The Smolyak interpolant Of P;�
k

.x/ for any P -dimensional point x D .x1; x2; � � � ; xP / with
approximation level � can be expanded as a weighted sum of tensor product operators

Of
P;�

k
.x/ D

PC�X
ji jDmax.P;�C1/

.�1/PC��ji j �

 
P � 1

P C � � ji j

!
�
�
U i1 ˝ � � �˝U iP

� �
Of
P;�

k

�
.x/ (10)

where the summation index i D .i1; � � � ; iP / 2 NP ; ji j D
PP
nD1 jinj traverses through the �

different levels of the sparse grid in each dimension and the operator

�
U i1 ˝ � � � ˝ U iP

� �
Of
P;�

k

�
.x/ D

M.i1/X
j1D1

� � �

M.iP /X
jPD1

 
Of
P;�

k
.x
i1
j1
; :::; x

iP
jP
/ �

PY
`D1

 
i`
j`
.x`/

!
(11)

is also a multidimensional sum weighted by the nodal values of the interpolant. Here, the i th
`

level
1D grid in the `th dimension, ` D 1; 2; � � � ; P , has the size

M.i`/ D

²
2i` C 1; i` D 1; 2; � � � ; �I
1; ı` D 0;

(12)

and its j th
`

node is denoted by xi`j` . Finally, the last term on the right-hand side of (11) is the product
of one-dimensional, basis interpolating polynomials. For example, in the standard Lagrange form,

 ij .x/ D

M.i/Y
nD1
n¤j

x � xin

xij � x
i
n

: (13)

It is worth noting that the sparse grid, as the collection of all nodes, can be written as a union of
� nested product grids

HP;� D

PC�[
ji jDmax.P;�C1/

Gi D
PC�[

ji jDmax.P;�C1/

 
PO
`D1

°
x
i`
j

±M.i`/
jD1

!
: (14)
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The interpolation conditions simply imply

Of
P;�

k

�
xij D

�
x
i1
j1
; :::; x

iP
jP

��
D fk

�
xij

�
; k D 1; 2; 3; � � � ; P: (15)

with which Xiao et al. applied the following algorithm to obtain a non-intrusive reduced order
model:

(1) Perform a POD given snapshots of the solution to equation (1);
(2) Generate a Smolyak sparse grid that covers the POD projections of solution snapshots onto

the reduced order space;
(3) For every node on the sparse grid, reconstruct an initial condition in physical space using the

transform (7);
(4) Evolve the full model for a short time, �t , with the reconstructed initial conditions and

transform the results back to the reduced coefficient space with (7);
(5) Find the Smolyak interpolants for the ROM (9) using the formulas (10), (11) and (15) with the

nodal data computed in the previous step.

3. LEAST SQUARES FITTING ON A SMOLYAK SPARSE GRID

The POD-based non-intrusive procedure circumvents the need to manipulate the full model (1)
or its numerical implementation and results in impressive computational economy with the use of
Smolyak sparse grids. In this section, we will propose an alternative way to approximate fk.x/; k D
1; 2; � � � ; P using a least squares fitting approach that is independent from the full model except for
an input set of solution snapshots. Effectively, Steps 3 through 5 of the algorithm outlined at the
end of Section 2.2 will be replaced, and the ROM will take form of a least squares fit instead of a
Smolyak interpolant.

Now, we seek the optimal fit, denoted by F P;�
k

; k D 1; � � � ; P , from the family of admissible
functions, �, namely, all RP ! R polynomials defined on the same Smolyak sparse grid as in
Section 2.2. The least squares condition for data fitting demands that F P;�

k
minimises the standard

L2 distance in P�dimensional space, that is,

S�1X
nD1

��F P;�
k

.˛n/ � ˛nC1
k

��2
2
D min
g2�

S�1X
nD1

��g.˛n/ � ˛nC1
k

��2
2
: (16)

Here, the data set´�
˛n D

�
˛n1 ; � � � ; ˛

n
P

�
; ˛nC1
k
D fk.˛

n/
�
; n D 1; 2; � � � ; S � 1

μ
(17)

contains duple pairs of POD projections of the solution at two subsequent time steps calculated by
the full model, and they are assumed to be connected by the transition relation (9).

The formulas (10) through (13) demonstrate how any polynomial function g.x/ on the sparse
grid HP;� is uniquely specified by its values on grid nodes. Further, we reorganise the series (10)
and (11) into a single sum as

g.x/ D
X

xs2HP;�
g.xs/ wxs .x/ (18)

where wxs is the weighting function associated with the node xs . Then we can conveniently define
a quadratic cost function by

JkŒg� D

S�1X
nD1

�
g.˛n/ � ˛nC1

k

�2
D

S�1X
nD1

2
4 X
xs2HP;�

g.xs/ wxs .˛
n/ � ˛nC1

k

3
5
2

: (19)
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Now setting all the partial derivatives with respect to the nodal values, ¹g.xs/; xs 2 HP;�º, to
be zero leads to a linear system, namely, the normal equations, whose solution consists of the nodal
values of the optimal fit F P;�

k
.x/. That is,

1

2

@Jk

@g.x�/

ˇ̌̌
ˇ̌
g�F

P;�

k

D
X

xs2HP;�
F
P;�

k
.xs/ �

 
S�1X
nD1

wx�.˛
n/ wxs .˛

n/

!
�

S�1X
nD1

wx�.˛
n/ ˛nC1

k
D 0

(20)
for any node x� on the grid HP;�. Equivalently, in matrix notation,2

6666664

˝
wx1 ; wx1

˛
s

˝
wx1 ; wx2

˛
s

˝
wx1 ; wx3

˛
s
� � �˝

wx2 ; wx1
˛
s

˝
wx2 ; wx2

˛
s

˝
wx2 ; wx3

˛
s
� � �˝

wx3 ; wx1
˛
s

˝
wx3 ; wx2

˛
s

˝
wx3 ; wx3

˛
s
� � �

:::
:::

:::
:::

3
7777775
�

0
BBBBBBB@

F
P;�

k
.x1/

F
P;�

k
.x2/

F
P;�

k
.x3/

:::

1
CCCCCCCA
D

0
BBBBBB@

˝
wx1 ;P

C
k

˛
s˝

wx2 ;P
C
k

˛
s˝

wx3 ;P
C
k

˛
s

:::

1
CCCCCCA

(21)

in which ¹x1;x2;x3; : : : º is an arbitrary ordering of the nodes of HP;�, the inner product

˝
f; g

˛
s
D

S�1X
nD1

f .˛n/ g.˛n/ (22)

and the projector PC
k

returns the kth component of ˛nC1. By solving the aforementioned linear
system for k D 1; 2; � � � ; P , we obtain the least square fitting approximations to the ROM (9). It is
worth noting that the coefficient matrix in (21) is clearly a Gram matrix that can be decomposed as
W T �W where

W D ¹Wij º D ¹wxj .˛
i /º: (23)

When the number of sparse grid nodes is less than that of the snapshots, the matrixW is rank-full
because the weighting functions associated with different nodes are linearly independent to each
other. Additionally, because

rank.W T �W / D rank.W / (24)

the linear system (21) is in fact symmetric positive-definite and can then be solved efficiently with
standard numerical techniques such as QR factorisation and successive over-relaxation.

Now, we see the significant advantage of the fitting approach in that the ROM is generated by
linear solvers instead of full model simulations as described in Section 2.2, because no exact solu-
tion to the master equation (1) is required by the least squares formulation. This separation of
the ROM from detailed derivation and simulation of the physics results in an improved level of
non-intrusiveness as well as in an enormous gain in computational economy.

4. ITERATION STABILISATION WITH COEFFICIENT DAMPING

As we found out in preliminary results, straightforward iterations of formula (9) using its least
squares approximation reconstructed with the solution to the system (21) suffer from instability
issues that often arise in reduced order modelling. In particular, depending on specific problems and
parameters, some POD coefficients diverge to infinity after a random number of iterations when we
use the reduced order modelling to evolve the dynamical system. Aubry et al. first considered the
issue and proposed a stabilisation procedure with a base flow variation by Reynolds stress [34]. Fur-
ther, Noack et al. devised and analysed a least-order approach in a series of efforts that significantly
improves the accuracy of simulation with a mean-field correction term in the Karhunen–Loéve
decomposition of the dynamical system [21, 22, 35, 36].

Alternatively, we adopt a simple and effective remedy by supplementing the least squares fitting
algorithm with a prediction–correction step. This is analogous to the eddy viscosity models in order
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to dampen unrealistic high-frequency oscillations, while here, we introduce the damping in the
decomposed space directly and intentionally to avoid the manipulation and the knowledge of the
full model. Essentially, this ‘viscosity’ is numerical, and its physical implication depends on the
specifics of the dynamics and is therefore beyond the scope of this paper.

The prediction–correction procedure operates as follows:
Once we detect that an output component of the model (9) exceeds the constraints imposed by

the Smolyak grid that covers the data set, we enforce a damping to this component. That is, with the
tilde denoting the fitting approximations and the starting value Q̨ 1 D ˛1, one iteration of this ROM
consists of two parts:

Prediction: ǪnC1
k
D F

P;�

k
. Q̨n/I (25a)

Correction: Q̨nC1
k
D

8̂̂<
ˆ̂:
ǪnC1
k

; ˛min
k

< ǪnC1
k

< ˛max
k
I

ı ˛min
k
; ǪnC1

k
6 ˛min

k
I

ı ˛max
k
; ǪnC1

k
> ˛max

k

(25b)

for n D 1; 2; � � � , k D 1; 2; � � � ; P , and the admissible range of Q̨nC1
k

is pre-determined from the
data as

˛min
k D

S

min
iD1

˛ik; ˛max
k D

S
max
iD1

˛sk : (26)

Here, we have introduced a variable damping parameter, ı 2 .0; 1�, and we will see in the
numerical examples that an empirical choice of ı 2 .0:8; 1:0� yields results with reasonable accu-
racy for different problems under a wide range of parameter settings and that the approach exhibits
considerable robustness and general applicability.

Notice that this filter only affects how the ROM substitutes the full model, while the derivation
of the model itself, and its non-intrusive features, remained unaltered. There are various alter-
native options that may achieve regularity such as limiting the scope of fitting data (e.g. finite
impulse response filter [37]) and putting more weights on the data with small perturbations/gradients
(e.g. weighted least squares [38]). However, for the sake of simplicity, we elect to postpone the
exploration towards these directions to future work.

5. NUMERICAL EXAMPLES

In this section, we demonstrate the performance of the POD-based, non-intrusive reduced order
scheme with least squares fitting by modelling a gyre flow and the flow past a cylinder that produces
a von Kármán vortex street with two different Reynolds numbers. For both test cases, the solutions
from the fidelity full model, which is simulated at the platform of Fluidity, serve as the reference
and exact values for model comparisons as well as the snapshots for the POD basis generation. The
error analysis was carried out with the same metrics used by Xiao et al. [32], namely, the root mean
square error (RMSE) and correlation coefficient on the N -node finite element, physical mesh. For
example, the RMSE at the nth time step is defined by

RMSEn D
k nNIROM �  

n
f
k2

p
N

: (27)

where  nROM and  n
f

are the nodal snapshots of the NIROM solution and of the full solution on
the full mesh, respectively, and k � k2 is the standard vector two-norm. In all simulations, the ROM
operates on a one-level Smolyak sparse grid, that is, � D 1 in equation (16), as increasing the num-
ber of grid level is found to provide negligible accuracy gain, while the growing grid size demands
doubling or quadrupling the snapshot data to guarantee the well-posedness of the linear system (21).
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5.1. Problem 1: gyre flow

We first test the least squares NIROM (LSROM) on the simulation of a shallow-water gyre flow. The
geophysical scenario depicts a fluid circulating within a rectangular domain of the size Lx � Ly D
1000 � 1000km. The flow is driven by the unidirectional surface wind stress prescribed by

�y D �0 cos.	y=Ly/ and �x D 0 (28)

where the maximum zonal stress is �0 D 0:1 N m�1. In the full model, we address the Coriolis
effect with the beta-plane approximation by setting ˇ D 1:8 � 10�11 m�1 s�1, and we adopt the
baseline fluid density 
0 D 103 kg m�3.

In this case, the high-fidelity full model was generated on a 2823-node finite element mesh for
a duration of T D 36:5 days using a time step of �t D 0:365 days. Accordingly, we record 100
snapshots of the solution from which only three POD basis functions for each variable (velocities
u, v and pressure p) are extracted using the procedure described in Section 2.1. Then with the least
square fitting method outlined in Section 3, we compute the nodal values of the transition functions
(9) on the Smolyak grid determined by Step 2 at the end of Section 2.2. And finally, we iterate the
ROM for each time step and reconstruct the LSROM-approximated solution on the physical mesh
with expansion formula (7).

The comparison between the full model and the LSROM approximation is illustrated in Figure 1,
in which we plotted the velocity magnitudes at two time instances, t D 18 days (the 50th time step)
and t D 36 days (the 98th time step), as well as the difference between the full model and LSROM
at these times. It is clear that the dominant features of the flow field are accurately resolved by the
ROM.

Figure 1. The gyre flow computed at time instances 18 (left) and 36 days (right). The panels (a) and (d) are
full model simulations. The panels (b) and (e) are LSROM approximations with three POD basis function
for each variable. The panels (c) and (f) are the differences between the full model and LSROM. (a) full
model, t D18 days; (b) LSROM, t D 18 days; (c) error in LSROM, t D18 days; (d) full model, t D36 days;
(e) LSROM, t D 36 days; (f) error in LSROM, t D36 days. LSROM, least squares non-intrusive reduced

order model.
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Figure 2. Gyre flow: the evolutions of POD coefficients for 3 � 3 POD basis functions. In each of the
figures on top, the horizontal axis is the time step, and the vertical axis is the value of the POD coefficients;
the black solid line is the projected POD coefficient of the full model solution, and the red dashed line
is its least squares non-intrusive reduced order model approximation. In these figures, the two curves are

indistinguishable from each other.

Figure 3. Gyre flow: the error diagnostics of the LSROM approximation with the reference of the
interpolation-based NIROM. (a) Evolution of RMSE and (b) evolution of the correlation coefficient.

NIROM, non-intrusive reduced order model; LSROM, least squares non-intrusive reduced order model.

On the other hand, we plot the evolution of the POD coefficients in the reduced space in Figure 2.
Here, the three POD coefficients for each of the three variables (a total of nine) are plotted for all
times in which the full model projections are virtually indistinguishable from the NIROM approxi-
mations. POD 1 is the coefficient associated with the leading POD basis function for each variable,
or equivalently, ˛1 in the series expansion (7) and so on. This figure also confirms that new ROM is
a good approximation to the full model.

Quantitatively, Figure 3 displays evolutions of the RMSE and of the correlation coefficient
between the full model and the non-intrusive model, respectively. Here, we plotted the results for
two gyre simulations of LSROM, one with three POD basis functions and the other with six, and
the result by the interpolation-based NIROM with three POD basis functions. Together, they fur-
ther verify that the ROM approximation achieves an overall good agreement with the full model,
especially for the LSROM with only three POD bases for which the results are essentially equiv-

Copyright © 2016 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2017; 83:291–306
DOI: 10.1002/fld



300 Z. LIN ET AL.

Table I. Gyre flow: comparison of the normalised CPU consumption by different
models at each time step.

Model Assembling Projecting Interpolation Fitting Total
and solving

Full model 1.0070 0.0000 0.0000 0.0000 1.0070
Interp. NIROM 0.0000 0.0040 0.0020 0.0000 0.0060
LSROM 0.0000 0.0040 0.0000 0.0001 0.0041

NIROM, non-intrusive reduced order model; LSROM, least squares non-intrusive
reduced order mode.

alent to the interpolation-based NIROM [32] under the same setting. It should be noted that in
these results, the damping parameter for stabilisation ı D 1:0 was applied according to Section 4,
and this choice is optimal in the sense that the temporal maximum of the associated RMSE
is minimised.

However, we notice an intriguing phenomenon: we are able to increase the accuracy, indicated
by smaller RMSE and larger correlation coefficient, with a doubled number of POD bases (from
three to six). However, the improvement only lasts until the 57th time step, after which the RMSE
soars and the correlation coefficient diverges from unity significantly after the 80th time step. This
demonstrates another aspect of the stability issue we encountered as more POD modes poten-
tially promote instability. An intuition suggests that the fitting nature of the model necessitates
more snapshot data (e.g. more frequent sampling or equivalently, smaller �t ) to maintain a cer-
tain accuracy level as we also see in exploratory simulations. Because of the scope of this paper,
we elect to study the detailed statistical relationship between the sizes of the POD decomposition
and of the snapshot matrix in this LSROM framework to future work. For example, one may deter-
mine a priori the optimal number of POD bases used given a fixed number of snapshots and vice
versa [39].

Furthermore, we compare the computation costs by different models in Table I where we list
the CPU times required by different stages of different models at each time step. We observed
that although the previous interpolation-based NIROM and the new fitting-based LSROM share
the POD projection costs and both methods achieve great speed-ups in comparison with the full
model, the cost of the fitting step in LSROM is negligible compared with that of the interpola-
tions in Xiao et al. Because the fitting solves a model-independent linear system (21) and the
interpolations always run the full model for a short period of time, it is to be expected that
the LSROM with improved non-intrusiveness will possess an even bigger advantage for more
complicated scenarios.

5.2. Problem 2: Flow past a cylinder

The second case in which we test the newly proposed LSROM method is also a classical example
in computational fluid dynamics: a viscous inlet flow passes through a rectangular channel section
that contains a cylinder and the oscillating downstream flow shed a street of von Kármán vortices.
The simulation domain here is 2 � 0:4 in non-dimensional units, and a cylinder of radius 0.12 is
located at the point .0:2; 0:2/. The uniform upstream flow enters the domain from the left edge with
unit speed rightward and is slightly compressible. Typical outflow condition is applied at the right
edge, while the fluid is required to have no slip and no outward flow at the upper and lower edges
of the channel. Finally, Dirichlet boundary conditions are enforced at the cylinder wall. We run the
model under two settings of Reynolds number, Re D 400 and Re D 3600, to verify the general
applicability of the method.

First, we run the high-fidelity full model with a prescribed Reynolds number Re D 400 on a
3213-node finite element mesh. Then we record the u, v and p solution variables between t 2 Œ2; 3�
at regularly spaced time instances with �t D 0:01, and a total of 100 snapshots are obtained. Sub-
sequently, we generated six POD basis functions for each of the three variables before conducting
the LSROM approximation procedure.
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Figure 4. Flow past a cylinder at Re D 400. The figures on top compare the full model (figures (a), (c), (e)
and (g)) and the LSROM with six POD basis functions (figures (b), (d), (f) and (h)) at t D 2:1; 2:5; 2:8 and
3.0. (a) full model, t D2.1; (b) LSROM with six POD bases, t D 2:1; (c) full model, t D2.5; (d) LSROM
with six POD bases, t D2.5; (e) full model, t D2.8; (f) LSROM with six POD bases, t D3; (g) full model,
t D3; (h) LSROM with six POD bases, t D3. LSROM, least squares non-intrusive reduced order model.

Figure 5. Flow past a cylinder at Re D 400: The difference between full model and LSROM with six POD
basis functions.Re D 400. (a) error in LSROM, t D 2:1; (b) error in LSROM, t D 2:5; (c) error in LSROM,

t D 2:8; (d) error in LSROM, t D 3. LSROM, least squares non-intrusive reduced order model.

Figures 4 through 6 illustrates how the LSROM resolves the full model in this case. Visual
inspection of Figure 4 confirms the satisfactory performance of the LSROM for this problem by
reproducing the location, the size and the magnitude of almost all the vortices. Figure 5 displays the
spatial distribution of the error in LSROM. Comparing Figure 4 and 5, we see that the point-wise
difference is in general an order of magnitude smaller than the exact values. Figure 6 documents
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Figure 6. Flow past a cylinder at Re D 400: The evolutions of POD coefficients for nine POD basis func-
tions. In each of the figures on top, the horizontal axis is the time step, and the vertical axis is the value of
the POD coefficients; the black, solid line is the projected POD coefficient of the full model solution, and

the blue dotted line is its least squares non-intrusive reduced order model approximation.

Figure 7. Flow past a cylinder atRe D 400: the error diagnostics of LSROM with six POD bases in compar-
ison with the interpolation-based NIROM with the same number of POD bases. (a) Evolution of RMSE. (b)
Evolution of the correlation coefficient. LSROM, least squares non-intrusive reduced order model; NIROM,

non-intrusive reduced order model.

the evolution of the POD coefficients of the full model and of the LSROM. Additionally, the error
diagnostics for this problem are shown in Figure 7 with a comparison with the results obtained by
the interpolation-based NIROM using the same number of POD bases. Here, the optimal damping
parameter ı for the LSROM is chosen to be 0.94. We see that for this test problem, the interpolation-
based NIROM deviates from the LSROM and performs slightly better after the midpoint in the
temporal axis, but both methods are accurate approximations.

Next, we increase the level of turbulence of the flow by setting Re D 3600, and we keep track
of the simulation for a longer duration for t 2 Œ2; 6� with �t D 0:02. All the other physical and
numerical parameters remain the same. The corresponding results are demonstrated in Figures 8
through 10. Here, the optimal damping parameter ı for the LSROM is chosen to be 0.84. We can
see that the LSROM still resolves the main flow structures. However the accuracy is apparently
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Figure 8. Flow past a cylinder at Re D 3600. The figures on top compare the full model (figures (a), (c), (e)
and (g)) and the LSROM with six POD basis functions (figures (b), (d), (f) and (h)) at t D 2:1; 2:5; 2:8 and
3.0. (a) full model, t D2.1; (b) LSROM with six POD bases, t D 2:1; (c) full model, t D3; (d) LSROM with
six POD bases, t D3; (e) full model, t D4; (f) LSROM with six POD bases, t D4; (g) full model, t D5; (h)

LSROM with six POD bases, t D5. LSROM, least squares non-intrusive reduced order model

Figure 9. Flow past a cylinder at Re D 3600: the error diagnostics of LSROM with six POD bases. (a) error
in LSROM, t D 2:1; (b) error in LSROM, t D 2:5; (c) error in LSROM, t D 2:8; (d) error in LSROM,

t D 3. LSROM, least squares non-intrusive reduced order model.

reduced compared with the previous two cases, namely, the gyre flow and the flow past a cylinder
at a lower Reynolds number. This should not be surprising as the spatial and temporal gradients of
the variable are significantly magnified in this case and are thus harder to capture. These results can
no doubt be improved by tuning the numerical parameters, such as the number of POD bases and
of the snapshots used in the fitting, but the overall agreement achieved by this very restricted set of
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Figure 10. Flow past a cylinder at Re D 3600: the error diagnostics of LSROM with six POD bases. (a)
Evolution of RMSE; (b) Evolution of the correlation coefficient.

POD basis is still worth reporting. And as we mentioned before, we will postpone the investigation
in this aspect to future study.

6. CONCLUSIONS AND DISCUSSIONS

In this paper, a new non-intrusive reduced order model is introduced. The key ingredient here is
a least squares fitting procedure to approximate the ROM formulated by standard POD routines
that project the full model solution onto a lower finite-dimensional space. The new method also
represents the ROM by polynomials defined on a Smolyak sparse grid whose coefficients are now
obtained by data fitting. Compared with other intrusive ROMs and previous interpolation-based
NIROM, this method only requires a number of solution snapshots from the full model and does not
need to modify nor further run the original model in the process of ROM generation. In other words,
the detailed physics and numerics of the original model are completely transparent to this LSROM.
Another necessary module of the method involves the stabilisation of the reduced order iteration. A
numerical damping parameter is chosen to avoid the divergence of the POD coefficients.

The least square NIROM was tested on two CFD test cases against a high-performance fluid
solver (Fluidity). In the simulations of a shallow water gyre and of a Kármán vortex street down-
stream of a cylinder at Re D 400, the non-intrusive model resolves the flow structures with great
precision, measured by RMSE and correlation coefficients, with only three or six POD basis func-
tions. For the flow past a cylinder at Re D 3600, the accuracy of LSROM with six POD bases
is decreased, but it still captures the main features of the flow field. Preliminary results show that
using more POD bases could increase the accuracy for a limited time, beyond which the insta-
bility emerges. Overall, the least squares fitting model with improved non-intrusiveness is a good
approximation to the full model with enormous gain in both computational efficiency and modelling
economy.

Future work will address the stability issues of the ROM with greater details, such as optimising
the data set for the least squares fitting by windowing (constructing the ROM using only a moving
and continuous subset of the snapshots such as finite impulse response filtering) or by weighting
(weighted least squares) and error analysis to determine the relationship between the optimal num-
ber of POD bases used and the number of full model solution snapshots available. Moreover, the
LSROM will be applied to more complicated problems in sciences and engineering to fulfil its
potential.
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