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Abstract

During the last 20 years data assimilation has gradually reached a mature center
stage position at both Numerical Weather Prediction centers as well as being at the
center of activities at many federal research institutes as well as at many universities.

The research encompasses now activities which involve, beside meteorologists and
oceanographers at operational centers or federal research facilities, many in the
applied and computational mathematical research communities. Data assimilation
or 4-D VAR extends now also to other geosciences fields such as hydrology and
geology and results in the publication of an ever increasing number of books and
monographs related to the topic.

In this short survey article we provide a brief introduction providing some his-
torical perspective and background, a survey of data assimilation prior to 4-D VAR
and basic concepts of data assimilation.

I first proceed to outline the early 4-D VAR stages (1980-1990) and address in
a succinct manner the period of the 1990’s that saw the major developments and
the flourishing of all aspects of 4-D VAR both at operational centers and at re-
search Universities and Federal Laboratories. Computational aspects of 4-D Var
data assimilation addressing optimization methods, parameter estimation and com-
putational burdens as well as ways to alleviate them are briefly outlined

Brief interludes are provided for each period surveyed allowing the reader to have
a better perspective A brief survey of different topics related to state of the art 4-D
Var today is then presented and we conclude with what we perceive to be main
directions of research and the future of data assimilation and some open problems.
We will strive to use the unified notation of Ide et al.[167]
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1 Introduction

Data assimilation in atmospheric sciences started from the fact that NWP
is an initial value problem. This since we start at whatever constitutes the
present state and use the NWP model to forecast its evolution. Early works by
Richardson [310] and Charney [55] were based on hand interpolations [176].
This in order to combine present and past observations of the state of the
atmosphere with results from the model (also referred to as ”mathematical”
model). Since this was a rather tedious procedure efforts to obtain ”automatic”
objective analysis-the first methods have been developed by Panofsky [286],
Gilchrist and Cressman [142] , Cressman [76] , Barnes [16,17]. Use of prior
information to supplement rather insufficient data was pioneered by Bergth-
orsson and Döös[26] , Cressman [76] followed by the comprehensive work of
Lev Gandin [122].

Early reviews of data assimilation whose purpose is that of” using all available
information (data) to determine as accurately as possible the state of the
atmospheric ( or oceanic) flow” ( Talagrand)[350] were provided by Le Dimet
and Navon[203], an in-depth survey of Ghil and Malanotte-Rizzoli[137] as well
as by the outstanding book of Daley ” Atmospheric Data Analysis”[81].

A collection of papers in ”Data Assimilation in Meteorology and Oceanogra-
phy: Theory and Practice[138] summarizes state of the art of data assimilation
for that period. See also a short survey by Zupanski and Kalnay[407] along
with the excellent book of Kalnay[176] ”Atmospheric Modeling, Data Assimi-
lation and Predictability”. An early effort linking Optimal Interpolation (O.I.)
with the variational method was done by Sasaki [315] [316] and in more final
form by Sasaki [317–321] which can be viewed as a 3-D VAR approach. It was
Lorenc[222] that showed that OI and 3-D VAR were equivalent provided the
cost functional assumes the form:

J =
1

2
{[yo − H(x)]T R−1[yo − H(x)] + (x − xb)T B−1(x − xb)} (1)

The first term measures the distance of forecast field x to observations yo and
the second term measures the distance to background xb.

The analysis x is obtained by adding the innovation to the model forecast
with weights W based on estimated statistical error covariances of forecast
and observations.

x = xb + W [yo − H(xb)] (2)

Related theoretical material related to the set-up that led to modern data as-
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similation may be found in the ” Inverse Problem Theory” of Tarantola[351],
the optimal control book of Lions[219], the ” Perspectives in Flow Control and
Optimization” by Max Gunzburger[153] along with ”Inverse Modeling of the
Ocean and Atmosphere” by Andrew Bennett [23] and ”Dynamic Data Assimi-
lation: A Least Squares Approach” by John Lewis et al.[213] ,Cacuci(2003)[46]
and Cacuci et al.(2005) [48].

In this brief review we first provide some historical background to the data as-
similation effort along with some basic concepts of data assimilation. We then
proceed to survey in a section the early stages ( 1980-1990) of 4-D VAR data
assimilation with brief interludes summarizing and providing perspectives as
we go along . In the following section we address some computational aspects
of data assimilation such as issues of automatic differentiation, suitable and
robust large-scale unconstrained minimization algorithm and parameter esti-
mation applications along with the incremental method which alleviated the
computational burden of 4-D VAR and made it operationally viable at large
operational NWP centers. A short section is dedicated to state-of the art of
data assimilation at present time and we close with a short section outlining
open problems and directions of development of 4-D VAR in the future.

Relationship between OI and 3-D VAR

The terminology of 4-D VAR (4-dimensional data assimilation) was originally
used in research centers in the context of using continuous data assimila-
tion satellite data leading to the First Global Atmosphere Research Program
(GARP) Global Experiment [262,263], Charney, Halem and Jastrow [56].

Insertion of observations directly into primitive equations models excited spu-
rious inertia-gravity oscillations in the model and required the use of damping
schemes [240] for damping the high-frequency components. A full-account of
these techniques and the history of continuous data assimilation is provided
in the seminal book of Daley [81] . This review will survey some aspects of
variational data assimilation while only providing a brief outline of method-
ologies that prevailed prior to the 1980’s. We will rely on work of Kalnay[176],
Daley[81], Talagrand[350] , Zupanski and Kalnay[407] , Ghil et al. (Eds)[138],
works of the present author and his collaborators, the review of Ghil and
Malanotte-Rizzoli[137] and an early review that remained an unpublished
technical report [203].

Panofsky[286] is credited for pioneering the first objective analysis based on
2-D polynomial interpolation. It was followed by Gilchrist and Cressman[142]
who put forward an interpolation scheme for geopotential field as a quadratic
polynomial in x and y

E(x, y) = a00 + a10x + a01y + a20x
2 + a11xy + a02y

2, (3)
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then minimizing mean square difference between polynomial and observations
within a radius of influence of the closest grid point,

min
aij

E =min
aij

{
Kv
∑

k=1

pv · (E
v
0 − E(xv, yv))

2 (4)

+
Kv
∑

k=1

qv · {[u
0
v − ug(xv, yv)]

2 + [v0
v − vg(xv, yv)]

2}}

where pv and qv were empirical weights and ug and vg the components of the
geostrophic wind obtained from the gradient of geopotential height E(x, y) at
observation point k. K was total number of observations within the radius
of influence. The introduction of first guess estimate is credited to have been
introduced by Bergthorsson and Döös[26]. Usually either climatology or a
combination of it with first guess was used in the analysis cycle. See also
the influential work of Gandin[122], translated from Russian by the Israeli
program of Translations in 1965.

2 Successive correction method

The first analysis method in 4DDA was the successive correction method de-
veloped by Bergthorsson and Döös[26] and by Cressman[76]. The field of back-
ground was chosen as a blend of forecast and climatology with a first estimate
given by the first guess field

f 0
i = f b

i . (5)

f b
i background field estimated at the i-th grid point, f 0

i being the zeroth
iteration estimate of gridded field. This is hence followed by new iteration
obtained by ”successive corrections”

fn+1
i = fn

i +
Kn

i
∑

k=1

wn
ij(f

0
k − fn

k ) +
Kn

i
∑

k=1

wn
ik + ε2 (6)

fn
i - n-th iteration estimate at ith grid point,

f 0
k - k-th observation surrounding grid point,

fn
i - value of n-th field estimate calculated at observation point k derived by

interpolation from nearest grid points,
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ε2- estimate of ratio of observation error variance to background error variance.

The important ingredient is constituted by the weights wn
ik which are related

to a radius of influence. Cressman[76]proposed the following weights in the
SCM ( Successive corrections method).

wn
ik =

R2
n − r2

ik

R2
n + r2

ik

if r2
ik ≤ R2

n (7)

wn
ik = 0 if r2

ik > R2
n (8)

r2
ik square of distance between observation point rk and a grid point at ri.

The controlling parameter is the radius of influence Rn, allowed to vary be-
tween iterations while Kn

i is the number of observations within a radius of
Rn of the grid point i. If one reduces the radius of influence, this results in
a field reflecting large scales after first iteration -and tends towards smaller
scales after additional iterations. For additional technical details see Daley[81],
Kalnay[176].

Cressman[76]took the coefficient ε2 to be zero. For noisy data with errors it
may lead to erroneous analysis. Taking ε2 > 0 i.e. assuming observations with
errors, allows some impact to the background field. Barnes[16] defined the
weights to follow a Gaussian or normal distribution

wij =















exp−(
r2
ik

d2
) if rik ≤ d

0 otherwise,
(9)

where d is the radius of influence.

It uses an adaptive version where the radius of influence changes by a factor
γ

0 < γ < 1. (10)

It was shown by Bratseth[37] that with an appropriate choice of weights these
SCM iterative method analysis increments can be made to be the same as
those obtained using optimal interpolation (OI). Lewis et al.[213] quote also
similar independent work done by Franke and Gordon[120], Franke[121] and
Seaman[328].
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3 The nudging method

The nudging method also referred to as Newtonian relaxation belongs to the
class of methods called continuous or dynamic 4DDA. Data are introduced
into the assimilation system (4-dimensional data assimilation) at each time
step of model integration during the assimilation time period. This empirical
method is called Newtonian relaxation [177,163]. An illustrative example of
nudging is [176] one where a forcing term is added to the x-momentum equa-
tion whereby in the preforecast period the model variables are driven towards
the observation by the addition of extra forcing terms in the equations.

This goes on as long as the actual initial time has not yet been reached.

∂u

∂t
= −v∇u + fv −

1

ρ

∂p

∂x
+

u − uobs

τ
, (11)

where in the forcing term, τ (depends) is the time scale of the relaxation
and depends on the variable and is chosen empirically. If τ is too small, the
solution will converge fast towards the observations. In general τ should be
chosen such that the forcing term is similar in size to the less dominant terms to
avoid rebounding effect that slows down assimilation process but large enough
to impact the assimilation. For additional work on nudging methods see also
Ramamurthy and Carr[306]. Zou et al.[398] used adjoint optimal parameter
estimation to estimate best nudging time scale.

The nudging method is also used in meso-scale models to assimilate small-scale
observations in the absence of statistical data. The method has also been used
on global scale by Lyne et al.[231].

The variational calculus approach

It was introduced in meteorology by Yoshi Sasaki in his Ph.D Thesis[315] and
later extended by him to include dynamic model laws [317–320]. He proposed
three basic types of variational formalism in the numerical variational analysis
method . The basic formalisms are categorized into three areas: (1)”timewise
localized” formalism, (2) formalism with strong constraint, and (3)a formalism
with weak constraint. Exact satisfaction of selected prognostic equations were
formulated as constraints in the functionals for the first two formalisms. This
approach is now generically referred to as 3-D VAR.

In 3-D VAR one defines a cost function proportional to the square of the
distance between analysis and both background and observations, and it was
showed by Lorenc [221], [222] that the OI and the 3-D VAR approaches are
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equivalent provided the cost function is defined as

J =
1

2
[yo − H(x)]T R−1[yo − H(x)] + (x − xb)B−1(x − xb). (12)

where

B is the background error covariance,

R is the observation error covariance,

H is an interpolation operator (or observation operator),

xb is the first guess or background,

yo is the observation,

yo − H(xb) are the observational increments

xa = xb + W [yo − H(xb)] (13)

W is a weight matrix based on statistical error covariances of forecast and
observations.

4 Variational methods

The start of variational methods is originally attributed to the work of Euler
[113,114] and Lagrange [188,189] in the seventeenth and eighteenth century.
The Euler-Lagrange equation, developed by Leonhard Euler and Joseph-Louis
Lagrange in the 1750s, is the major formula of the calculus of variations. It
provides a way to solve for functions which extremize a given cost functional.
It is widely used to solve optimization problems, and in conjunction with
the action principle to calculate trajectories. Variational calculus has had a
broad appeal due to its ability to derive behavior of an entire system without
details related to system components. Broadly speaking variational calculus
involves finding stationary points of functionals written as integral expressions.
The general theory is rigorously explained in the work by Lanczos[190] and
Courant and Hilbert[309].

Basic to the constrained minimization theory is the method of undetermined
Lagrange multipliers where

λ = (λ1, . . . , λn)T (14)
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is a vector of n unknowns for the solution of

min f(x) ∈ Rn (15)

subject to g(x) = 0 x ∈ Rm (16)

and using the first-order conditions for a minimum we obtain using the first
derivatives of the Lagrangian function

L(λ, x) = f(x) + λT g(x) (17)

∇xL(x, λ) =
∂f

∂x
+ λ

∂g

∂x
(18)

∇λL(x, λ) = g(x) (19)

The Lagrange multiplier λ can be viewed as measuring sensitivity of value of
function f at a stationary point to changes in the constraint (see also Nocedal
and Wright[280].

One can show formally (see any text book on variational methods) that finding
in a given domain of admissible functions u(x) the continuous first derivatives
of a functional I for which I(u(x)) is a stationary value ( i.e. any function
which extremizes the cost functional) must also satisfy the ordinary differential
equation called the Euler-Lagrange equation

∂F

∂u
−

∂

∂x

∂F

∂u′
= 0 (20)

where

I(u(x)) =

xb
∫

xa

F (u(x))dx xa ≤ x ≤ xb (21)

u′ =
∂u

∂x
(22)

As an example of a typical application of variational methods, consider work
of Sasaki[323–325]. Navon[264] used it to enforce conservation of total en-
strophy, total energy and total mass in one and two-dimensional shallow wa-
ter equations models on a rotating place. This is an aspect less discussed of
Sasaki’s[323–325] contribution related to the use of the variational approach
to conserve integral invariants.
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Let us consider here at enforcing potential enstrophy conservation

Z =
1

2

L
∫

0

D
∫

0

Q2

h
dxdy =

1

2

L
∫

0

D
∫

0

(
∂v

∂x
−

∂u

∂y
+ f)2h−1dxdy (23)

for the 2-D shallow water equations over a limited-area domain discretized by
finite-differences resulting in the functional

J =
Nx
∑

j=1

Ny
∑

k=1

[α̃(u − ũ)2 + α̃(v − ṽ)2 + β̃(h − h̃)2]jk (24)

+λz{
Nx
∑

j=1

Ny
∑

k=1

[(
∂v

∂x
−

∂u

∂y
+ f)2

jkh
−1
jk ] · ∆x∆y − Z0}

where

(ũ, ṽ, h̃) are model predicted variables,

(u, v, h) are values adjusted by the variational method,

λZ is a Lagrange multiplier constant w.r.t. space but varying with time.

Using algebraic commutation rules between finite-difference and variational
operators, we obtain a set of nonlinear coupled partial differential equations.

2α̃(u − ũ) + (λZ/h)(∆s)2(∇x∇yv −∇2
yu) = 0 (25)

2α̃(v − ṽ) + (λZ/h)(∆s)2(∇y∇xv −∇2
xu) = 0 (26)

2β̃(h − h̃) + (λZ/2h2)(∆s)2(∇xv −∇yu + f)2 = 0 (27)

1

2

Nx
∑

j=1

Ny
∑

k=1

[(∇xv −∇yu + f)2h−1(∆s)2]jk − Z0 = 0 (28)

where ∆x = ∆y, (∆s)2 = ∆x∆y, Z0 is the value of discretized enstrophy at
time t = 0, i.e initial potential enstrophy.

∇x,∇y-finite difference operators.

The coupled nonlinear equations require that numerical solutions of u, v, h and
Lagrange multiplier λz be obtained using an iterative technique. Substitution
of iterates u

(ν+1)
jk , v

(ν+1)
jk and h

(ν+1)
jk into equation for potential enstrophy yields

a highly nonlinear equation for λZ solved iteratively by a Newton iteration.
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One can also consider a generalized functional including simultaneous con-
straints of total mass, total energy and potential enstrophy. For a discussion
on these issues see also work of Takacs[346] on the issue of using a staggered
mesh à la Arakawa methods and shortcomings of enforcing ’a-posteriori’ inte-
gral invariants conservation.

5 First interlude

5.1 Situation in data-assimilation at beginning of 1980’s

Charney, Halem and Jastrow[56] proposed that numerical models be used
to assimilate newly available asynoptic data. The idea was to insert asyn-
optic temperature information obtained from satellite-born radiometers into
the model at its true (asynoptic) time. Continuous data assimilation referred
to frequent insertion of asynoptic data. Charney et al.[56] experiment sug-
gested continuous data assimilation [345]. Problems of real data insertion soon
emerged in the form of an inertia-gravity wave shock [80](Daley and Puri) lead-
ing to essential rejection by the model of the information of real observational
data. A remedy for continuous data assimilation of real data was to reduce
the insertion interval to the time step of the model[247] (Miyakoda et al.).

Other approaches were via geostrophic wind correction outside the tropics
or nudging also referred to as Newtonian relaxation (Hoke and Anthes)[163],
Davis and Turner[90]. See also work of Talagrand[347,253,348]. Ghil, Halem
and Atlas[133], Mcpherson[242]. Mcpherson[242] viewed data assimilation as
”a process by which something is absorbed into something else”. During 1974
Marchuk[235] proposed application of adjoint method in meteorology (Russian
article of 1967 [234]) and during 1976 Penenko and Obratsov [289]-used these
methods to study linear adjoint sensitivity.

In 1969, Thompson[360] had already put forward the idea that incorrect anal-
yses at two successive times may be optimally adjusted to maintain dynamical
consistency with a given prediction model. This may be viewed as a precursor
to variational data assimilation. Since 1958 Marchuk[233] and collaborators
used adjoint methods for linear sensitivity analysis problems . Atmospheric
issues were also addressed in the same fashion ( see Marchuk[235]) Adjoint
operators have been introduced by Lagrange[188,189] and have been used in
modern times since Wigner[385] and many others in different application do-
mains.

The advent of optimal control theory of partial differential equations is at-
tributed to Bellman starting in the late 50’s (see Bellman[18]) i.e. the Hamilton-
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Jacobi-Bellman equation and to Pontryagin (Pontryagin’s minimum princi-
ple )[292]. The major impetus in this area came from the monograph of Li-
ons[218]on optimal control of partial differential equations. It was to be that
a former doctoral student of Lions, Francois Le Dimet, introduced the con-
cepts of optimal control to the meteorological community starting in the early
1980’s.

One major work which impacted in a serious way the adjoint sensitivity anal-
ysis was the work of Cacuci et al.[41], D.G. Cacuci[42,43]. Historically one can
trace back linear adjoint sensitivity to work of Wiener (1940-1942). See Cacuci
2004 lecture and related work of his [47],[44],[45]. Wiener was the first to in-
terpret physically the adjoint functions (see also Lewins, 1962) as importance
functions. As mentioned above Cacuci (1979-1981) [382] presented a rigorous
theory for adjoint sensitivity of general nonlinear systems of equations.

LeDimet[196] was then preparing his technical report at Clermont-Ferrand
introducing for the first time optimal control methodology with variational
adjustment to the meteorological community , that led to the seminal paper
by LeDimet and Talagrand (1986), [199]

6 Emergence of early data assimilation works

LeDimet[197], Lewis and Derber[98], Courtier [66], Le Dimet and Talagrand(1986)[199]
were the first to work on adjoint data assimilation. Cacuci(1981a,1981b) [42,43]
extended adjoint sensitivity analysis to the fully nonlinear case. Lagrange mul-
tiplier methods were presented in detail by Bertsekas[28], while Navon and De
Villiers[265] exhibited the method in detail applied to enforcing conservation
of integral invariants.

7 Optimal interpolation (OI) methods

Lev Gandin[122] coined the term (OI) but the technique of statistical inter-
polation can be traced back to Kolmogorov[209] and Wiener[384] and the
terminology of optimal interpolation was apparently due to Wiener[384].

A review of the work of these two mathematicians is provided in the Ya-
glom[389] book on stochastic processes (see Lewis et al.[213]). In atmospheric
sciences use of statistical interpolation goes back to Eliassen[109], while Krige[182],
used it in the mining industry.

Use of least-squares method, a mathematical optimization technique which,
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when given a series of measured data, attempts to find a function which closely
approximates the data (a ”best fit”), i.e. to obtain best estimate of state of the
atmosphere by combining prior information which can consist of either a first
guess or a background with observations which have errors. The concept of
background field goes back to Gauss[125,126]. We wish to carry out a minimum
variance estimation.

In a general form the optimal least-squares estimation is defined by the fol-
lowing interpolation equations

Xa = Xb + K(y − H[Xb]), (29)

where K is a linear operator referred to as gain or weight matrix of the analysis
and is given by

K = BHT (HBHT + R)−1, (30)

where Xa is the analysis model state,

H- an observation operator,

B- covariance matrix of the background errors (Xb − X),

X- being the time model state,

Xb- background model state,

R- covariance matrix of observation errors.

The analysis error covariance matrix is

A = (I − KH)B(I − KH)T + KRK−1 (31)

If K is optimal least-squares gain, A becomes

A = (I − KH)B (32)

(see proof in Bouttier and Courtier[35]).

One can show that the best linear unbiased estimator [350,35](Talagrand(1997),
Bouttier and Courtier(1999)) may be obtained as the solution of the following
variational optimization problem.

min J = (X − Xb)
T B−1(X − Xb) + (y − H(X))T R−1(y − H(X)) (33)
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= Jb(X) + Jo(X)

One notes that if the background and observation error probability functions
are Gaussian then Xa is also the maximum likelihood estimation of Xt (time).
Probability density function represents a probability distribution in terms of
integrals, being non-negative everywhere with an integral from −∞ to +∞
being equal to 1. More exactly a probability distribution has density f(x), if
f(x) is a non-negative Lebesgue integrable function from R → R such that

the probability of the interval [a, b] is given by

b
∫

a

f(x)dx for any two numbers

a and b.

For a comprehensive examination of OI in meteorology we refer to Lorenc[221]
and Lorenc[222]. The most important advantage of using statistical interpo-
lation schemes such as OI and 3-D VAR instead of empirical schemes such as
SCM [176] is the fact that they are taking into account the correlation between
observational increments.

How to estimate the prior error covariances B and R and the observation
operator H? A difficult issue with observation operator is the case of satellite
products such as radiances ,a piece of information which cannot be directly
used. The observation operator performs both interpolation from model grid
to satellite observation location and then uses physical theory (such as in
the case of radiances) to convert model column of temperature to synthetic
radiances. Observation error covariance matrix R is obtained from instrument
error estimates which, if independent, mean that the covariance matrix R will
be diagonal. This can facilitate computations.

Assume that background and observation error (covariances) are uncorrelated,
the analysis error covariance matrix is given as

A = (I − KH)B(I − KH)T + KRKT . (34)

Solution of minimum covariance requires

∂

∂K
(trace(A)) = 0 (35)

∂

∂A
(traceBAC) = BT CT (36)

∂

∂t
(traceABAT ) = A(B + BT ) (37)
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∂

∂K
(trace(A))≡ (I − KH)(B + BT )HT + K(R + RT ) (38)

=−2(I − KH)BHT + 2KR

=−2BHT + 2K(HBHT + R)

= 0

from which we obtain the optimal weight K

K = BHT (HBHT + R)−1. (39)

8 Estimating background error covariances

The background error covariance is both the most difficult error covariance to
estimate and it has a most important impact on results (Kalnay)[176], Navon
et al.[275]. This, since it is primarily the background error covariance that
determines the spread of information as well as allowing observations of wind
field to enrich information about the mass field and vice-versa.

In order to render modelling of B practically feasible some compromises had
to be made with respect to statistical aspects of the covariance matrix such
as anisotropy, flow dependence and baroclinicity [117]. The first approach
by Hollingsworth and Lönnenberg[164] concerned statistics of innovations,
namely observation - minus -background (in short forecasts) and rawinsonde
observations. The assumption made was that observation errors are spatially
uncorrelated and they assigned spatial correlations of innovations to the back-
ground error. Hidden in this method of use of innovation statistics is the
implicit assumption of a dense homogeneous observing network.

For 3-D VAR the most popular and universally adopted method does not
depend on measurements but rather uses differences between forecasts of dif-
ferent time-lengths which verify at the same time. It is known as the ” NMC”
(now NCEP) method having been introduced by Parrish and Derber[288]. In
an operational numerical weather prediction they use

B ≈ αE{[Xf(48h) − Xf (24h)][Xf(48h) − Xf (24h)]T} (40)

This provides a multivariate global forecast difference covariance. If this time
interval is longer than the forecast used to generate background fields then
the covariances of the forecast difference will be broader than those of the
background error.

A new method based on ensemble of analyses to estimate the background
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errors is described in detail in Fisher[117]. The ensemble is generated by per-
turbing all inputs to the analysis system resulting in a perturbed analysis
and a forecast is run from this perturbed analysis. By running the analysis
forecast twice for same period and perturbing both runs using statistically
independent perturbations-the difference between these pairs of background
fields acquire statistical characteristics of differences between background er-
ror fields. For a description of novel developments including a spectral method
for covariance modelling which includes inhomogeneity see Fisher[117]. For a
detailed description on construction of covariance matrices see Gaspari and
Cohn(1999,2006) [123,124].

A square-root factorization of the background error covariance is based on
formulations provided by Weaver and Courtier[381] and Derber and Bout-
tier[104] and avoiding requiring the availability of the inverse of B via the
transformation

Jb =
1

2
δT
XB−1δX =

1

2
δT
X(B

1

2 B
T
2 )−1δX =

1

2
V T V (41)

where δX = X(t0) − Xb, V = B−
1

2 δX , i.e δX = B
1

2 V.

For a shallow-water equations model, the model variables are thus partitioned
into balanced and unbalanced components. The balancing operator Kb acts
on the unbalanced components of model variables and we have

Kb = K ′

b + I (42)

where K ′

b is formulated based on geostrophic balance written in spherical
coordinates.

Kb = K ′

b + I =













I 0 0

−
g

f

1

a

∂

∂θ
I 0

g

f

1

a cos θ

∂

∂X
0 I













(43)

which is a lower triangular matrix for control vector (h, u, v)T .

B = KbBuK
T
b (44)

Bu is block diagonal error covariance for the unbalanced component of the
variables

Bu =
∑

b
C

∑

b
(45)
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∑

b block diagonal matrix of background error variances at every grid point.
C is a symmetric matrix assumed block diagonal and we have square root
factorization

C = C
1

2 C
T
2 (46)

The square root factorization of B ensuring it is symmetric and positive defi-
nite is provided by

B =KbBuK
T
b = Kb(

∑

b
C

∑

b

)KT
b (47)

=Kb(
∑

b

C
1

2 C
T
2

∑

b

)KT
b

=(Kb

∑

b

C
1

2 )(C
T
2

∑

b

KT
b )

=B
1

2 B
T
2

9 Framework of Variational data Assimilation

The objective of variational 4-D Var is to find the solution to a numerical
forecast model that best fits a series of observational fields distributed in space
over a finite time interval. We are assuming that the model of the atmosphere
can be written as

B
dX

dt
+ A(X) = 0 (48)

with B being identity for a dynamical model or the null operator for a steady
state model. A can be a linear or nonlinear operator. We have U defined as a
control variable which may consist of initial conditions, boundary conditions
and/or model parameters.

U should belong to a class admissible controls Uad. We are looking for a unique
solution X(U) of (48). The major step consists in formulating the cost function
J which measures distance between model trajectory and observations as well
as the background field at initial time during a finite time-interval, referred to
as the time window.

Typically in meteorology (see LeDimet and Talagrand[199], Rabier[304]).

J(X0)=
1

2
(X0 − Xb)

T B−1(X0 − Xb) (49)
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+
1

2

N
∑

i=0

(Hi(Xi) − yi)
T R−1

i (Hi(Xi) − yi)

where

X0 is the NWP model state as time t0,

Xb-background state at time t0, typically a 6h forecast from a previous anal-
ysis,

B-the background error covariance matrix,

yi-the observation vector at time ti,

Hi-observation operator,

Xi = Mi,0(X0) model state at time ti,

Ri-observation error covariance matrix at time ti.

where an alternative to writing the NWP model is

Xi+1 = Mi+1,i(Xi) (50)

Mi+1,i is the nonlinear NWP model from time ti to time ti+1.

The minimization of the cost functional can be viewed both in the perspective
of finding its gradient in (a) Lagrangian approach, (b) adjoint operator ap-
proach and (c) a general synthesis of optimality conditions in the framework of
optimal control theory approach. Requiring the gradient of the cost to vanish
with respect to initial conditions control variable X0 yields

∇X0
J(X0) = B−1(X0 − Xb) +

N
∑

i=0

MT
i,0H

T
i R−1

i [Hi(Xi) − yi] (51)

where we substitute the dynamical constraint

Xi+1 = Mi+1,i(Xi) (52)

while perturbations of the atmospheric state are obtained by linearizing the
nonlinear model (52) as

δXi+1 = Mi+1,i(Xi)δXi (53)
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yielding

∇X0
J(X0) = B−1(X0 − Xb) +

N
∑

i=0

MT
i,0H

T
i R−1

i [Hi(Xi) − yi] (54)

where Hi is the tangent linear operator of the observation operator Hi and
HT

i is the adjoint operator and

MT
i,0 = MT

1,0M
T
2,1 · · ·M

T
i,i−1 (55)

is the adjoint model consisting of a backward integration from time ti to time
t0.

The minimization of the cost functional is obtained using a gradient-based
minimization algorithm. Starting from a first guess

X0(t0) = Xb(t0) (56)

while at each iteration step k = 1, 2, · · · , N

we compute and store both first guess trajectory and the observation depar-
tures Hi(Xi) − yi

by integrating forward in time the nonlinear model

Xk(ti) = M(ti, t0)(X
k(t0)) (57)

Start with initializing the adjoint variable at time tN

δ′Xk(tN) = 0 (58)

integrating the adjoint model backwards in time from final time tN to initial
time t0. and whenever observations are encountered a forcing term

HT
i R−1

i (Hi(Xi) − yi) (59)

is added to δ′Xk(ti).

Finally one can show that

δ′Xk(t0) + B−1[Xk(t0) − Xb] (60)

is the gradient ∇Jk with respect to the control variable Xk(t0).
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If

||∇X0
Jk+1|| ≤ ε max{1, ||Xk||} (61)

(where ε is a predetermined adequately chosen tolerance.) If above criterion
is satisfied then stop.

If the above criterion is not satisfied then use a stepsize search algorithm using,
say, a cubic interpolation usually provided by the gradient based minimization
algorithm.

One then updates the first guess, namely

Xk+1(t0) = Xk(t0) − ρk∇Jk (62)

where ρ is a step-size in the direction of descent and find the next minimization
iterate using a gradient based minimization algorithm.

All the time we assume that the nonlinear cost function has a unique minimum
and avoid temporarily addressing the complex issue of the presence of multiple
minima.

10 Variational formalism

10.1 The Lagrangian approach

One can consider a model given as in LeDimet and Talagrand[199] by

F (U) = 0 (63)

where U denotes meteorological fields being considered. Suppose we have ob-
servations Û occurring at an irregular set of points distributed in both space
and time.

We wish to solve the problem of finding a solution that minimizes a cost
function

J(U) =
∫

||U − Û ||2dxdydt (64)
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where || || is a suitable norm and Û consists of discrete observations hence the
integral is replaced by suitable finite sums. Here we view the model equation

F (U) = 0 (65)

as a strong constraint on cost function J . Using classical Lagrange multiplier
technique a Lagrangian of (64) subject to model strong constraint allows us
to convert this constrained minimization into an unconstrained minimization
problem by defining a Lagrangian (see Bertsekas[28]) as

L(U, λ) = J(U) + (λ, F (U)) (66)

for an adequately defined inner product for a functional space in which F (U)
also belongs.

Then finding minima of J(U) subject to

F (U) = 0 (67)

is equivalent to finding the minima of

∇λL = 0 and (68)

∇UL = 0 (69)

which taking into account boundary conditions turns out to be the Euler-
Lagrange equations of the problem. Since the Euler-Lagrange equations can
seldom be solved directly, we are interested in practical algorithms for solving
the minimization of cost functional subject to strong model constraint by
transforming it into a sequence of unconstrained minimization problems.

There are many constrained minimization algorithms-but the simplest and
most robust of them are the penalty and the multiplier (or duality) algorithms.
These are presented in many numerical minimization text books, (Nocedal and
Wright[280], Nash and Sofer[261]) For shortcomings of penalty and duality
algorithms see Bertsekas[28] and Navon and De Villiers[265].

In the augmented Lagrangian algorithm( where the constrained problem is
converted into a sequence of unconstrained minimization problems) we have

L(ρ, U, λ) = J(U) + λT F (U) + ρ||F (U)||2 (70)

This algorithm was initially proposed by Hestenes[161] and independently by
Powell[293]. Here ρ > 0 is a penalty coefficient.
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The solution is obtained by performing a sequence of unconstrained minimiza-
tion where (UK, λK, ρK) are known. We minimize LρK

(UK, λK) and obtain
UK+1.

The updating of the multipliers and the penalty in the iterative procedure of
the Augmented Lagrangian algorithm is done via first order multiplier update

λK+1 = λK + ρKF (UK+1) (71)

where

ρK+1 = βγK (72)

where β positive and large than 1. Here k is the iteration index.

The full description of the methodology and application of the augmented La-
grangian is available in Bertsekas[28], Fortin and Glowinski[119] and described
in detail in Navon and De Villiers[265]. A gradient based descent algorithm is
used for the unconstrained minimization.

11 Optimal control view point

In optimal control of partial differential equations developed by Lions[218,219]
the Lagrange multiplier is viewed as an adjoint variable. The adjoint method
of optimal control allows computing the gradient of a cost J with respect to
the control variables.

Consider as in Gunzburger[153] a second order nonlinear elliptic PDE

−∇(a∇φ) + b · ∇φ + φ3 =
K

∑

k=1

αKfK (73)

in domain Ω with boundary conditions

φ = 0 on Γ (74)

a, b and fK are given functions defined on Ω.

We define a cost as

J(φ, α1, · · · , αK) =
1

2

∫

Ω

(φ − Φ)2dΩ +
σ

2

K
∑

k=1

(αK)2 (75)
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Φ is a given function and σ a penalty parameter. We introduce a Lagrange
multiplier (here adjoint variable) ζ and define a Lagrangian

L(φ, g, ζ) = J(φ, g) − ζTF (φ, g) (76)

We aim to find controls g, states φ and adjoint states ζ such that the La-
grangian is stationary and we obtain as in the Augmented Lagrangian ap-
proach

∂L

∂ζ
= 0, constraint (77)

∂L

∂φ
= 0, adjoint equation (78)

∂L

∂g
= 0, optimality condition (79)

Taking a first order variation of L with respect to the Lagrange multiplier we
obtain a variation in the state yielding an optimality condition

(
∂F

∂φ
|(φ,g))

T ζ = (
∂J

∂φ
|(φ,g))

T (80)

which yields the optimality condition.

12 Situation of data assimilation-The early period (1980-1987) of
4-D Var

Efforts in early adjoint applications following Francois LeDimet[197] early
technical report consisted of work of Lewis and Derber[212] and LeDimet and
Talagrand[199] as well as Courtier[66]. These pioneering efforts started the me-
teorological optimal control application called the adjoint operator approach.
Work of Navon and De Villiers[265] on Augmented Lagrangian methods used
to enforce conservation of integral invariants related to the same topic and are
referred to in early work of LeDimet and Talagrand[199].

John Lewis and John Derber[212] were the first to present adjoint method
having read the report of Francois le Dimet (1982) and inspired by earlier
work of Thompson[360] ). Lorenc[222] presented a detailed account of state
of theory in data assimilation for that period. It become soon apparent that
size and complexity of atmospheric equations is such that enormous resources
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were required-limiting applications of 4-D VAR and requiring it to undergo
drastic approximations for actual operation forecast circumstances. Penenko
and Obratsov[289] used adjoint data assimilation to perform simple experi-
ments on a linear model ( see Talagrand and Courtier[349]) , while Derber[98]
used it in his Ph.D thesis to adjust analysis to a multi-level quasi-geostrophic
model. Hoffmann[162] was the next one to use 4-D VAR (even though he used
a simplified primitive equation model and in order to estimated the gradient
he perturbed in turn all the components of the initial state.)

Talagrand and Courtier[349] presented a more in-depth general exposition of
the theory of adjoint equations in the framework of variational assimilation
and applied it to the inviscid vorticity equation and to the Haurwitz wave.
Their results are presented in Courtier and Talagrand[68].

13 Illustrative example

Our purpose is to illustrate how to derive the adjoint of the shallow water
equations model explicitly.

The shallow water equations model may be written as

∂u

∂t
= −u

∂u

∂x
− v

∂u

∂y
+ fv −

∂φ

∂x
, (81)

∂v

∂t
= −u

∂v

∂x
− v

∂v

∂y
− fu −

∂φ

∂y
, (82)

∂φ

∂t
= −

∂(uφ)

∂x
−

∂(vφ)

∂y
, (83)

where u, v, φ and f are the two components of the horizontal velocity , geopo-
tential fields and the Coriolis factor, respectively.

We shall use initial conditions due to Grammeltvedt [145]

h = H0 + H1tanh
9(y − y0)

2D
+ H2sech

9(y − y0)

D
sin

2πx

L
, (84)

where H0 = 2000m, H1 = −220m, H2 = 133m, g = 10msec−2, L = 6000km,
D = 4400km, f = 10−4sec−1, β = 1.5 × 10−11sec−1m−1. Here L is the length
of the channel on the β plane, D is the width of the channel and y0 = D/2
is the middle of the channel. The initial velocity fields were derived from the
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initial height field via the geostrophic relationship, and are given by

u = −
g

f

∂h

∂y
, (85)

v =
g

f

∂h

∂x
. (86)

The time and space increments used in the model are ∆x = 300km, ∆y =
220km, ∆t = 600s, which mean that there are 21×21 grid point locations
in the channel and the number of the components of initial condition vector
(u, v, φ)t is 1083. Therefore the Hessian of the cost function in our test problem
has a dimension of 1083×1083. The southern and north boundaries are rigid
walls where the normal velocity components vanish, and it is assumed that
the flow is periodic in the west-east direction with a wave length equal to the
length of the channel.

Let us define

~X = (u, v, φ)T , (87)

F = −









u∂u
∂x

+ v ∂u
∂y

− fv + ∂φ
∂x

u∂v
∂x

+ v ∂v
∂y

+ fu + ∂φ

∂y
∂(uφ)

∂x
+ ∂(vφ)

∂y









. (88)

It is easy to verify that

∂F

∂ ~X
= −









∂(u(·))
∂x

+ v ∂(·)
∂y

(·)∂u
∂y

− f(·) ∂(·)
∂x

(·)∂v
∂x

+ f(·) u∂(·)
∂x

+ ∂(v(·))
∂y

∂(·)
∂y

∂(φ(·))
∂x

∂(φ(·))
∂y

∂(u(·))
∂x

+ ∂(v(·))
∂y









. (89)

The adjoint of an operator L, L∗ is defined by the relationship

< L ~X, ~Y >=< ~X, L∗~Y >, (90)

where

< ·, · > (91)

where D is the spatial domain. Using the definition (91), the adjoint of (90)
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can be derived as

[
∂F

∂ ~X
]∗ = −









−u∂(·)
∂x

− ∂(v(·))
∂y

(·)∂v
∂x

+ f(·) −φ∂(·)
∂x

(·)∂u
∂y

− f(·) −v ∂(·)
∂y

− ∂(u(·))
∂x

−φ∂(·)
∂y

−∂(·)
∂x

−∂(·)
∂y

−u∂(·)
∂x

− v ∂(·)
∂y









. (92)

Therefore the first order adjoint model with the forcing terms may be written
as

−
∂u∗

∂t
= −(−u

∂u∗

∂x
−

∂(vu∗)

∂y
+ v∗

∂v

∂x
+ fv∗ − φ

∂φ∗

∂x
) + Wu(u − uo), (93)

−
∂v∗

∂t
= −(u∗

∂u

∂y
− fu∗ − v

∂v∗

∂y
−

∂(uv∗)

∂x
− φ

∂φ∗

∂y
) + Wv(v − vo), (94)

−
∂φ∗

∂t
= −(−

∂u∗

∂x
−

∂v∗

∂y
− u

∂φ∗

∂x
− v

∂φ∗

∂y
) + Wφ(φ − φo), (95)

with final conditions

u(T ) = 0, v(T ) = 0, φ(T ) = 0, (96)

where P = (u∗, v∗, φ∗)t is the first order adjoint variable vector , Wu, Wv, Wφ

are weighting factors which are taken to be the inverse of estimates of the
statistical root-mean-square observational errors on geopotential and wind
components respectively. In our test problem, values of Wφ = 10−4m−4s4 and
Wu = Wv = 10−2m−2s2 are used.

14 OI, 3-D VAR, PSAS

Lorenc[222] showed that the optimal weight matrix W that minimizes the
matrix of analysis error covariance solution may be posed in terms of a varia-
tional assimilation problem, namely that of finding the optimal analysis field
Xa that minimizes a cost function. The cost function measures the distance
between the field variables X and the background Xb (the background term
of the cost)-plus another term, namely the distance to the observations yo

weighted by the inverse of the observation error covariance matrix R

J(X) =
1

2
(X − Xb)

T B−1(X − Xb) + [yo − H(X)]T R−1[yo − H(X)] (97)

where H is the forward observational operator. The cost function (97) can
also be derived based on a Bayesian approach.
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A formalism allowing viewing the assimilation algorithms of O-I, 3-D VAR,
PSAS and 4-D VAR as a sequence of corrections to a model state can be
derived from the work of Lorenc[222], Kalnay[176] and Courtier[75]. See also
research work of Da Silva et al.[86] who first proposed the physical space
statistical analysis system (PSAS) (see also report of Aarnes[1]).

We are considering incrementing background model state Xb with additional
information from the observation z where

Xa = Xb + K(z − HXb). (98)

Here H is an observation operator mapping the model state on space and
time locations of the observation, Xa is the analysis and K is the gain matrix
weighting the contributions from the new information according to the reli-
ability of the observation relative to respective reliability of the model state.
Following Kalnay[176], Lorenc[222] OI, 3-D VAR, 4-D VAR and PSAS are
mathematically equivalent but 3-D VAR and related PSAS have the advan-
tage w.r.t. OI by virtue of the fact that one can minimize the cost function J
with global unconstrained minimization algorithms for 3-D VAR hence all the
approximation made in OI are not necessary. Other advantages of 3-D VAR
are enumerated in Kalnay[176].

To show equivalence of 3-D VAR and OI we start from the matrix system

(

R H
HT −B−1

) (

W
Xa − Xb

)

=
(

z − HXb

0

)

(99)

where R and B are the error observation error and background error covari-
ance matrices, respectively, assumed to be symmetric and positive-definite.
The equivalence between OI and 3-D VAR statistical problems was proven
by Lorenc[222], Kalnay [176] and using suggestion of Jim Purser(see Kalnay
[176])

W = KOI = BHT (R + HBHT ) (100)

To see the equivalence between OI and the PSAS scheme where minimization
is performed in the space of observations rather than in the model space (since
the number of observation is usually much smaller than the dimension of model
space-PSAS may turn out to be more efficient than 3-D VAR for obtaining
similar results)we note that

(

R H
HT −B−1

) (

W
Xa − Xb

)

=
(

z − HXb

0

)

(101)

26



is equivalent to

(

W 0
HT −B−1

) (

W
Xa − Xb

)

=
(

z − HXb

0

)

(102)

yielding

w = W−1(z − HXb) (103)

and

Xa − Xb = BHT W−1 (104)

One first solves the linear system

Ww = z − HXb (105)

and then interpolates solution onto model space as

Xa = Xb + BHT w (106)

In PSAS one solves the first step by minimizing the cost functional

J(w) =
1

2
wT Ww − wT (Z − HXb) (107)

thus allowing a better conditioning of the minimization due to smaller dimen-
sion of W i.e

dim(W ) ≤ dim(B) (108)

Courtier[75] has shown that there is a duality between 3-D VAR and the
physical space statistical analysis system (PSAS). He also showed that the
temporal extension of 3-D VAR leads to 4-D VAR while the temporal exten-
sion of PSAS,4-D VAR PSAS is achieved using an algorithm related to the
representer technique ( Bennett[23]), which is a practical algorithm for decou-
pling the Euler-Lagrange equations associated with the variational problem
with weak constraint. (see Amodei[3])
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15 4-D VAR developments in early 1990’s

A comprehensive list of adjoint applications to meteorological problem is pro-
vided by Courtier[72]. The early 1990’s were characterized by publication
of many research efforts related to extending 4-D VAR data assimilation
to multilevel primitive-equation models using analyses as observations along
with other work using synthetic observations. See for instance Thepaut and
Courtier[356], Navon et al.[271], Zupanski[404]. Thepaut et al.[357] used real
observations while Rabier and Courtier[298] studied the performance of 4-D
VAR in the presence of baroclinic instability. Courtier et al.[74] introduced
an incremental formulation of the 4-D VAR, a major achievement allowing
the 4-D VAR method to become computationally feasible on that period’s
computers.

It was perceived rather early by Derber[100] that the perfect model hypothesis
is a weakness of 4-D VAR. In the above seminal paper he assumed the model
error to be fully correlated in time and solved the problem by including the
bias in the control variable. Wergen[383] and Miller et al.[245] illustrated how
serious the problem is.

At universities research in 4-D VAR data assimilation proceeded to address
issues such as the impact of incomplete observations on 4-DVAR (see Zou et
al.[397]), while at the suggestion of Francois Le Dimet, Zhi Wang completed
a doctoral thesis on second order adjoint methods (Wang[376]), as well as
a first paper on second order adjoint data assimilation.( Wang et al.)[375]
Initial work on 4-D VAR data assimilation with the semi-implicit semi La-
grangian (SLSI)models in 2-D and 3-D was using both shallow-water and a
NASA multilevel model.( see Li et al.[215–217]) Basic work on optimization
methods suitable for 4-D VAR was carried out by Zou et al.[399] based on
Navon et al.[272,273]. Application of 4-D VAR to a finite-element model of
the shallow-water equations was carried out by Zhu et al.[392] while a novel
Hessian preconditioning method based on an idea of Courtier et al.[74] was
written by W. Yang et al.[390] Aspects of 4-D VAR dealing with boundary
conditions as control variables were dealt amongst others in the work of Zou
et al. (1995).

16 Large scale unconstrained minimization algorithms suitable for
4-D VAR variational data assimilation

The operational implementation of the 4-D VAR method hinges crucially
upon fast convergence of the large-scale unconstrained minimization algorithm
for the minimization of the cost functional. Since problems in oceanography
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and meteorology contain many degrees of freedom (≈ 106 − 107), conjugate-
gradient methods (Navon and Legler[268]) and limited-memory quasi-Newton
(LMQN) methods along with Truncated-Newton methods are the only ones
being considered due to the fact that only information from the first few iter-
ations has to be saved. Thus is due to huge memory requirements of 4-D VAR
taxing the capability of present day computers. All these methods have in
common the fact that they require storing only a few vectors in memory. The
studies of Gilbert and Lemarechal[141] and of Liu and Nocedal[220]indicate
that L-BFGS (LMQN) and its French equivalent M1QN3 are among the best
LMQN methods available to date . Indeed these methods are now exclusively
used in 4-D VAR implementations at operational centers. The aim of this
section is just to present some of the most useful algorithms mostly, but not
only, for large-scale unconstrained minimization, which are considered and
implemented in 4-D VAR applications.

In view of further 4-D VAR applications we present here a very short pre-
view of constrained optimization methods is also presented. Since there are
problems where fundamental questions exist concerning the uniqueness of the
retrieved solution (Li[214]; Gauthier[127]), global minimization tools may also
be required in future research. This topic is however outside the scope of
this review. Access to user-friendly subroutine libraries is required, along with
availability of minimization software such as present in IMSL, NAG and Har-
well software libraries along with the newly developed LANCELOT library for
large-scale nonlinear constrained optimization (Conn, Gould and Toint[65])
Following Nocedal[279], Nocedal and Wright[280]I will enumerate below a se-
lection of most useful algorithms for unconstrained minimization, stressing
those that are useful for solving large-scale unconstrained minimization prob-
lems.

1. Conjugate-gradient (C-G) methods are very useful for solving very large
problems and can be efficiently implemented on multiprocessor machines. A
survey of their properties and application to problems in meteorology was
provided by Navon and Legler[268]. Amongst the C-G methods we mention:

• The Powell C-G algorithm with restarts[294]. This version of the C-G method
with restarts is subroutine VA14 of the Harwell subroutine library (1977).

• CONMIN of Shanno and Phua[330], which is a robust extension of the C-G
method requiring a few-more vectors of storage.

Quasi-Newton Methods

BFGS - variable metric or quasi-Newton methods are very efficient but are
not good candidates for large-scale optimization required in 4-D VAR data
assimilation due to the fact that storage of the approximation to the Hessian
matrix is required. This despite the fact that the BFGS QN method is both
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fast and robust.[280]

Limited Memory Quasi-Newton Methods

2. LMQN (Limited Memory Quasi-Newton) methods for large-scale optimiza-
tion. We will mainly focus on the limited memory L-BFGS , an LMQN, which
resembles the BFGS method but avoids storage of matrices. The Liu and No-
cedal version[220] is implemented in the Harwell routine VA15 while a very
similar version, M1QN3 was developed by Gilbert and Lemarechal[141] at IN-
RIA in the library MODULOPT. These methods proved to be the main stay
of 4-D VAR optimization in the last few years (Navon et al. [271]; Zou et
al.[397,398]; Zou et al.[399]) Thepaut and Courtier[356]; etc.)

The most efficient method employed operationally is the L-BFGS method of
Liu and Nocedal[220] referred by the French as M1QN3 ( Gilbert and Le
Lemarechal [141]. It uses an economic number of vectors(between 5 and 7)
and does not require any matrix storage thus being suitable for operational
implementation of 4-D VAR at operational centers.

3. Newton’s method.

The NAG library has a good line search implementation of the Newton method
while the IMSL library has a trust region implementation based on Dennis and
Schnabel[97], Gay[130]. This method, while quadratically convergent, however
due to its requirement of Hessian matrix storage is not recommended for large-
scale minimization in the 4-D VAR context.

Truncated Newton (T-N) methods.

These methods are very suitable for large-scale minimization and require only
function and gradients storage. Both the Nash T-N method Nash(1984b)[257]
as well as the more recent TNPACK algorithm of Schlick and Fogelson)[326,327]provide
robust codes for T-N . Work with Wang [378,379] as well as work by Le Dimet,
Navon and Daescu [204] using second order adjoint Hessian /vector products
showed that they are very useful if second order adjoint information is avail-
able. Their applicability to 4-D VAR assimilation with operational models in
3-D space and time remains still to be verified.

Hybrid methods combining the L-BFGS with the Truncated Newton method
have been recently proposed by Morales and Nocedal[250],Morales and No-
cedal[251] and have been in data assimilation tested in 2-D models by Daescu
and Navon[77] and Das, Meirovitch and Navon[88] with certain amount of
success.
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17 Spectrum of the Hessian and rate of convergence of uncon-
strained minimization

Hessian information is crucial in many aspects of both constrained and un-
constrained minimization. All minimization methods start by assuming a
quadratic model in the vicinity of the minimum of a multivariate minimization
problem. For the problem

min
X∈Rn

F (X) (109)

the necessary condition for X∗ to be a stationary point is

∇F (X∗) = 0. (110)

The eigenvalues of the Hessian matrix predict the behavior and convergence
rate for unconstrained minimization. To show this, let us consider again the
multivariate nonlinear function F (X) of (109)and let X∗ denote a local mini-
mizer point that satisfies the condition

F (X∗) ≤ F (X) (111)

for all X such that

|X − X∗| < ε (112)

where ε is typically a small positive number whose value may depend on the
value of X∗. We define F (X∗) as an acceptable solution of (109).

If F is twice continuously differentiable, and X∗ is an absolute minimum then

∇F (X∗) = 0 (113)

and the Hessian G(X∗) of F at X∗ is positive-definite, i.e.

PT G(X∗)P > 0, ∀P ∈ Rn (114)

Let us expand F in a Taylor series about X∗

F (X)= F (X∗ + hP) (115)

= F (X∗) +
1

2
h2PTG(X∗)P + O(h2), (since∇F (X∗) = 0)
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where

||P||2 = 1 and h = |X − X∗| (116)

For any acceptable solution we obtain

h2 = |X − X∗|2 ≈
2ε

PT G(X∗)P
(117)

substantially affects size of |X − X∗| i.e., rate of convergence of the uncon-
strained minimization (Gill[143]).

If G(X∗) is ill-conditioned, the error in X will vary with the direction of the
perturbation P.

If P is a linear combination of eigenvectors of G(X∗) corresponding to the
largest eigenvalues, the size of |X − X∗| will be relatively small, while if, on
the other hand is a linear combination of eigenvectors of G(X∗) corresponding
to the smallest eigenvalues, the size of |X − X∗| will be relatively large, i.e.,
slow convergence. For details see LeDimet et al.[202].

18 Non differentiable minimization

If the function F to be minimized is non smooth then methods of non differ-
entiable optimization are required. They can be divided into two main classes:
subgradient methods and bundle methods.

Since the gradient of a non smooth function F exists only almost anywhere
we have to replace the gradient by the generalized gradient of the form

∂ F (X) = conv{g|there exists sequence (Xi)i∈N such that (118)

lim
i→∞

Xi = X, F differentiable atXi, i ∈ N, and lim
i→∞

∇F (Xi) = g}

where ”conv” stands for convex hull and it is defined as the closure of the set
which contains all convex linear combinations of subgradients (an element of
the generalized gradient is called subgradient).

The non smooth optimization methods are based on the assumptions that the
function F is locally Lipschitz continuous and we can evaluate the function
and its arbitrary subgradient at each point.
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18.1 The subgradient methods

The history of subgradient methods starts in the 60s with Shor[331], Polyak[291]
and Ermolev[110] to mention but a few.

The main idea is to employ only one subgradient ξk ∈ ∂F (Xk) instead of the
gradient ∇F (Xk). Hence the natural generalization of gradient method is to
replace the gradient by the normalized gradient in the formula for dk defined
above:

dk = −ξk/||ξk|| (119)

The above strategy of generating dk does not ensure descent and hence mini-
mizing line searches becomes unrealistic. Also the standard stopping criterion
can no longer be applied, since an arbitrary subgradient contains no informa-
tion on the optimality condition 0 ∈ ∂F (X).

Due to these facts we are forced to use an a- priori choice of step sizes tk

to avoid line searches and the stopping criterion. Thus we define the next
iteration point by

Xk+1 = Xk − tk
ξk

||ξk||
(120)

where ξk ∈ ∂F (Xk) and a suitable tk > 0 was chosen.

In order to accelerate the rate of convergence we may try to generalize smoother
methods than the gradient method. The most efficient methods presently avail-
able are based on generalized Quasi-Newton methods: ellipsoid and space dila-
tion algorithms by Shor [331] and the variable metric method by Uryasev[369]

18.2 The bundle methods

The guiding principle behind them is to exploit the previous iterations by
gathering the subgradient information into a bundle of subgradients. The pi-
oneering bundle method, the ε -steepest descent method, was developed by
Lemarechal [205]. The main difficulty in Lemarechal’s method is the a priori
choice of an approximation tolerance which controls the radius of the ball in
which the bundle model is thought to be a good approximation of the objective
function. For the application of non-differentiable minimization methods in 4-
D VAR with discontinuous cost functions see Zhang et al.[391] and Homescu
and Navon[166]).
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18.3 Constrained Minimization

In as far as constrained minimization is concerned its use in data assimilation
pertains mainly to use of penalty and barrier functions for adjoint parameter
estimation problems where the parameters are known to be subject to upper
and lower bounds ( Zhu and Navon[394]).

Penalty algorithms have been also used by Zou et al.[397] for issues related to
data assimilation with incomplete observations.

18.4 Open problems in minimization

Use of stochastic minimization of the type of simulated annealing, genetical
algorithms and neural networks is in its infancy ( See work of Krasnopolsky et
al.[180,181] on neural networks. When one has a problem characterized by mul-
tiple minima , use of simulated annealing, genetic algorithms or other methods
in determining the global minimum will have to be tested in the framework
of 4-D Var data assimilation. Issues of computational cost will be paramount
when considering such methods in future operational implementation.

19 Adjoint parameter estimation in meteorology

The research efforts on adjoint parameter estimation in meteorology can be
dated back to the work of Courtier(1986, 1987) on estimating topography
using a shallow-water equations model.

Zou et al.[398] estimated the magnitude of the nudging coefficient in the NMC
adiabatic version of the spectral MRF (Medium Range Forecast) model, while
Wang[376] estimated the same coefficient using the FSU adiabatic spectral
model. Stauffer and Bao (1993) also performed a parameter estimation of
nudging coefficients in a 1-D linearized shallow water equations model. Wer-
gen[383] used also a 1-D linearized shallow-water equations model to recover
both initial state and a set of forcing parameters from the observations. Wer-
gen found out that even with noisy observations the parameters were recovered
to an acceptable degree of accuracy. Louis and Zivković[208] carried out physi-
cal parameters estimation in a simplified single column model, and their effort
presents a more comprehensive approach to parameter estimation, making it
amenable to generalization to problems of parameter estimation involving 3-D
numerical weather prediction models.

The research methodology used in adjoint parameter estimation in meteorol-
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ogy can be viewed to be an extension of the 4-D VAR approach for controlling
initial or initial and boundary conditions. For a detailed survey of the state-
of-the-art of parameter estimation in meteorology and oceanography, cover-
ing all aspects of various techniques employed for parameter estimation see
Navon[274]. Some authors determine which are the crucial physical package
parameters to be optimally identified based either on experience or using a rel-
ative adjoint sensitivity analysis. Such an analysis enables one to rank a subset
of chosen parameters according to their relative sensitivities with respect to
adequately chosen model responses.

The usual procedure for assessing the impact of an optimized parameter re-
quires testing impact on the model for a sufficiently long period, thus ensuring
that no degradation of the forecast is caused by the optimally estimated pa-
rameter. Since some parameters are known to vary between given upper and
lower bounds, the minimization of the cost functional (to be described below)
will by necessity be of the constrained minimization type. Several efficient
constrained minimization procedures are available (for instance see Nash and
Sofer[261] and Nocedal and Wright[280]) for details). If an optimally estimated
parameter attains unphysical values, one can deduce that either an overfitting
of the data took place, or that this parameter is not identifiable with the data
available. We only address this issue briefly at the end of this section. For
details related to identifiability see Navon[274].

Stratification of groups of parameters to be optimally identified may proceed
in geosciences by either seasonal stratification or by following a given physical
process at a time. Due to the nonlinear feedbacks that exist between classes of
physical parameters, one should proceed with caution when increasing the di-
mensionality of the problem, i.e., by adding a new class of physical parameters
to be optimally identified.

19.1 Adjoint parameter estimation : Implementation details

While a sizable amount of research on adjoint parameter estimation was car-
ried out in the last twenty years in fields such as groundwater hydrology and
petroleum reservoirs for instance by Carrera and Neuman[50–52] Yeh[388],
Seinfeld and Kravaris[329] matched by a major effort of the mathematical
community such as Chavent and Lemonnier[57] and Chavent et al. [58] ad-
joint parameter estimation work in meteorology and oceanography is more
recent and consists of fewer contributions lacking the in-depth approach for
validation of the uniqueness of results obtained in above mentioned research
fields. See Sun et al [342,343] for state of the art surveys on inverse methods
for parameter estimation.
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Some detailed text books have been written in the last few years addressing
inverse parameter estimation issues. We will mention the recent book by Aster,
Borchers and Thurber[7], Tarantola[352] and Sun[341] to quote but a few. We
will focus here on adjoint parameter estimation in the framework of 4-D VAR
data assimilation.

A typical cost functional in adjoint parameter estimation takes the form (see
for instance, Zou, Navon, and Le Dimet[398]

J(X,P)=

tR
∫

t0

< W (X − Xobs), (X− Xobs) > dt (121)

+

tR
∫

t0

K < P− P̂,P− P̂ > dt

where vector P, represents model parameters, P̂ is the vector of estimated
parameters, K are specified weighting matrices, Xobs is the observation vector,
X are the model output variables, W is a weighting matrix and, for the more
realistic case, there is an interpolation operator H from the model space to
the observation space.

The model equation is schematically

∂X

∂t
= F(X) + K(P − P̂) (122)

The adjoint model equation is obtained from the formulation of an augmented
Lagrangian, where

∇P J = 2K(P − P̂) −

tr
∫

t0

< P, (X− Xobs) > dt (123)

and the adjoint model equation is

∂Q

∂t
+ [

∂F

∂x
]TQ − PTQ = W (X− Xobs) (124)

where Q is a vector of Lagrangian multipliers identified with the adjoint vari-
ables, X is the discretized state variable, Xobs is the observation vector, and
we see that an additional term, namely:

−PTQ (125)

36



was added to the left hand side of the last equation. We can assess sensitivity
of forecast to model parameters in a simplistic way (i.e., without taking into
account presence of data) by considering

δJ =< ∇P J, δP > (126)

where δP is a small change in parameters vector resulting in a change δJ in
forecast errors.

In a more general set up the cost function is

J(X,P)=
1

2
(X− Xb)

T B−1(X − Xb) (127)

+
1

2
(HX− Xo)T O−1(HX− Xo)

+K(P̂ − P) (128)

where B is the background error covariance matrix, Xo is the set of observa-
tions whose error covariance is O, and H is the observation operator which
computes the model equivalent HX of the observation Xo.

19.2 Typical cost functional for parameter estimation

The cost functional assumes the form

J(P ) = Jh(P ) + JD(P ) + Jf (P ) + Jr(P ) (129)

where Jh(P ) - weighted least-squares term between ”measured” and model
estimated parameters, with weights which are related to confidence in the
data. They may be more reliable.

Jf(P ) - weighted least squares error between ”measured” and model estimated
parameters at final time of assimilation - optimizing improvements in data
measurements made at later times.

Jd(P ) - A weighted prior data error term, which represents prior knowledge
about the parameters with weights representing the confidence in the measured
prior data and

Jr(P ) - A Tichonov[361,362] regularization term - which deals with instabil-
ities in values of the parameter estimates that appear to be closely related
to noise in measured data. This term smooths the parameter estimates, by
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imposing a penalty on oscillations in the parameter estimate.For a modern
approach to regularization of discrete ill-posed problems see Hansen (1998)
[158].

20 Adjoint parameter estimation with constrained parameters

Here we aim to perform optimal parameter estimation in a variational ap-
proach setting, i.e. to obtain an optimal value of the parameter α such that

J(α0) < J(α) ∀α (130)

where J is a cost function which measures the discrepancy between the ob-
servations and the corresponding model forecast variables. Hence, the optimal
parameter can be retrieved by fitting the model forecast fields to the ob-
servations. Given constrained parameters, i.e., parameters whose values vary
between certain bounds, for instance, when the parameter α satisfies α ∈ [a, b],
here a and b denote the lower and upper boundary respectively, the cost func-
tion for parameter estimation may assume the following form:

J(X, α) =

tR
∫

t0

< W (X− Xobs), (X − Xobs) > dt + λg(α) (131)

where the vector α denotes the vector of model parameters, λ is the penalty
coefficient, X represents the state variable vector, Xobs the observation vector.
The second term consists of a penalty function, which is defined as:

g(α) =



























1
2
(x − b)2 if x > b

0 if a < x < b

1
2
(x − a)2 if x 6 a

(132)

where g(α) is a function only of the violated constraints. The first derivative
of this function is:

∂g(α)

∂α
=



























(x − b) if x > b

0 if a < x < b

(x − a) if x 6 a

(133)
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Another type of penalty effective in transforming a constrained optimization
problem into an unconstrained one is the barrier method which imposes a
penalty for reaching the boundary of an inequality constraint. Typically, we
will use a logarithmic barrier function of the form:

J(X, α) =

tR
∫

t0

< W (X− Xobs), (X − Xobs) > dt − µ
m

∑

i=1

log hi(α) (134)

where µ is the barrier coefficient and h is the constraint function. The barrier
methods are strictly feasible methods, i.e., the iterates lie in the interior of the
feasible region, and create a ”barrier” keeping iterates away from boundaries of
the feasible region (Nash and Sofer)[261]. The choice of the penalty parameters
is requiring some care and numerical experience in constrained optimization.
The readers are referred to the excellent book of Bertsekas[29]. There are
two different purposes for the inclusion of the second term in equations (131)
or (134), one being to ensure that the retrieved parameter lies within the
boundaries, and a penalty term of the form in Equation (131) or a logarithm
of the box constraints as in Equation (134) is efficient. The other purpose is
to increase the convexity of the cost function by adding a positive value to the
Hessian matrix, thereby increasing its positive-definiteness. Suppose that the
forward model is given in the form

∂X

∂t
= F(X, α, t) (135)

Its corresponding tangent linear model is defined as

δX

∂t
= (

F(X, α, t)

∂X
)δX + (

F(X, α, t)

∂α
)δα (136)

The adjoint model derived is expressed in the form

∂P

∂t
− (

∂F

∂X
)∗P = W (X− Xobs) (137)

where P represents the adjoint variables. The gradients of the cost function
with respect to the initial condition and that of the parameter α are assuming
the following form,

∇X0
J = P (0), (138)

∇αJ =

tR
∫

t0

(
∂F

∂X
)∗Pdt + λ

∂g

∂α
(139)
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respectively. The adjoint model is of the same form as that where only the
initial conditions are considered as the control variables. Hence, the problem of
parameter estimation via the adjoint method when the number of parameters
to be estimated is small does not result in an additional computational effort.
We may expect that the parameter estimation process will provide us with
both optimally determined parameters and initial conditions simultaneously.
The gradient of the cost function with respect to both the initial conditions
and the parameter is written as:

∇J = (∇X0
J,∇αJ)T . (140)

21 Illustrative algorithmic flowchart of constrained adjoint param-
eter estimation ( Zhu and Navon (1999)[394]

1. The 6-hr forecasts starting from the initialized analysis at 1800UTC Sept.
2, 1996 was taken as the initial guess of the initial condition.

Given a positive definite initial approximation to the inverse Hessian matrix
H0 (generally taken as the identity matrix I ), we integrated the full-physics
FSU GSM 6 hours, then calculated the cost function using Equation (131).
Since further study needs to be carried out to determine the observational
error covariance, we simply take the inverse of the maximum square of the
difference between the two time level observations as the weight matrix W in
Equation (131) (See Navon, et al.)[271]. The initial guess of α , the penalty
coefficient value λ and the upper and lower boundaries where the parameters
may vary were specified here.

We then integrate the full-physics adjoint model of the FSU GSM backward
in time to obtain the gradient of J with respect to the control variable Y =
(X0, α)T ,

g0 = gY = (∇X0
J,∇αJ)T (141)

and the search direction

d0 = −H0g0 (142)

3. For k = 0, 1, 2, · · · , minimize J(Yk, βkdk) with respect to β > 0 to obtain
as Yk+1

Yk+1 = Yk + βkdk (143)
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where βk is a positive scalar, the step-size being obtained by a line search so
as to satisfy a sufficient decrease (See Gill, et al.)[143].

4. Compute

gk+1 = ∇J(Yk+1) (144)

5. Compute a new search direction

dk+1 = −Hk+1gk+1 (145)

6. Check whether the solution converges. If the convergence criterion

gk+1 6 ε′Max(1,Yk+1) (146)

is satisfied, where ε′ is a user supplied small number, then the algorithm
terminates with Yk+1 as the optimal solution; otherwise go back to Step 3.

22 Open problems in adjoint parameter estimation

Some parameters are not easily identifiable ( see Navon[274]. Other render the
estimation problem ill-posed and require a Tichonov [362] regularization.

The issue is even more difficult in climate models since classical 4-D VAR does
not extend to climate models.

Climate models are designed to simulate the full multi-dimensional multiscale
complexity of the climate system. Although climate models are based upon the
sound principles of conservation of mass, momentum, energy, and water, com-
putational limitations necessitate a finite grid and hence the parameterization
of processes that cannot be explicitly resolved. These subgrid parameteriza-
tions have limited physical bases, and hence employ a number of parameters
whose values are uncertain. The climate simulated by global climate models
is therefore sensitive to the values of these model parameters characterized
by multiple scales and varying uncertainties. The parameter values can be
adjusted to improve a variety of aspects of the climate simulation. Current
practice is to adjust values of one parameter at a time to correct problems
with one particular aspect of the climate simulation, often with unintended
adverse impacts on other aspects of the climate simulation.

Parameter estimation in climate models poses a huge challenge due to im-
portance of decisions related to correct parameter estimation that are af-
fecting global warming results and related issues, see Stainforth et al.[335],

41



Stocker[340] to cite but a few. Usual methodologies of variational adjoint pa-
rameter estimation in NWP do not carry over to climate simulation Lea et
al.[192,193] and a combination of approaches is necessary to account for non-
linear feedbacks and uncertainties when tuning multiple multiscale parameters
against observations.

23 Model Error in 4-D VAR

Numerical weather prediction (NWP) models are imperfect, since they are
discretized, dissipative and dispersion errors arise, and, moreover subgrid pro-
cesses are not included. In addition, most of the physical processes and their in-
teractions in the atmosphere are parameterized and a complete mathematical
modeling of the boundary conditions and forcing terms can never be achieved.
Usually all of these modeling drawbacks are collectively addressed by the term
model error (ME). The model equations do not represent the system behavior
exactly and model errors arise due to lack of resolution as well as inaccuracies
occurring in physical parameters, boundary conditions and forcing terms. Er-
rors also occur due to numerical discrete approximations. A way to take these
errors into account is to use the weak constraint 4D-Var.

Variational data assimilation is based on the minimization of:

J(x) = [H(x) − y]TR−1[H(x) − y] + (147)

(x0 − xb)
T B−1(x0 − xb) + Φ(x)T C−1Φ(x)

Here x is the 4D state of the atmosphere over the assimilation window, H
is a 4D observation operator, accounting for the time dimension. Φ repre-
sents remaining theoretical knowledge after background information has been
accounted for (such as balance relations or digital filtering initialization intro-
duced by Lynch and Huang[230]). One can see that model M verified exactly
although it is not perfect.

23.1 Weak constraint 4D-Var

The model can be imposed as a constraint in the cost function, in the same
way as other sources of information:

Φi(x) = xi − Mi−1 (148)

Model error η is defined as: ηi(x) = xi − Mi−1.
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The cost function becomes:

J(x) =
1

2

n
∑

i=1

(H(xi) − yi)
T R−1

i (H(xi) − yi) + (149)

1

2
(x0 − xb)

T B−1(x0 − xb) +
1

2

n
∑

i=1

ηT
i Q−1

i η

Another issue requiring attention is that model error covariance matrix Q has
to be defined. Strong constraint 4D-Var is obtained when Φi(x) = 0 i.e. η = 0
(perfect model).

Studies indicate that model error (ME )can severely impact forecast errors,
see for instance Boer[34];Dalcher and Kalnay[79]; Bloom and Shubert[33] and
Zupanski[408].

For early methods on estimating modeling errors in operational NWP models
see Thiébaux and Morone[359] and Saha[314]. Thus giving up the assumption
that the model is perfect, in the context of strong constraint VDA leads us
to weak constraint formulation of VDA, and if we include time evolution of
the variables, we could say we have a weak constraint 4D-Var (time plus three
space dimensions).

Comparing the strong and weak constraint VDA, in the formulation of for-
mer, it is assumed that η has mean and model error covariance matrix Q =
E(η(t)ηT (t′)) = 0, ∀ t and t′ and model error covariance matrix, E[·] is the
mathematical expectation operator. It should be noted that if the mean and
(co)variance of a random vector are prescribed to be equal to zero, then all
realizations of that random vector are identically equal to zero, thus, η ≡ 0.
Whereas in the weak constraint version of VDA, the mean and covariance of
ME have to be specified. However exact statistical details of ME are difficult
to obtain (Daley[82,83]; Dee and Da Silva[92] and Zhu and Kamachi[393]) a
fact which led researchers to suggest a variety of assumptions to approximate
the ME.

Early efforts to model the systematic component of ME were pioneered by
Derber[100]. He suggested a simplified approach to model η to be equal to
λ(t)φ. The temporal part, λ(t) is a specified function of time alone, while
φ is a spatially dependent, control variable. Three different forms of λ were
considered, namely, parabolic, delta function and constant in time. It was
observed that the parabolic variation of λ provided results comparable to a
constant in time λ. Using a similar approach (Wergen[383]; Zupanski[404])
it was shown that inclusion of ME allowed significant reduction in forecast
RMSE.
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For dynamically evolving systems such as discrete NWP models, ME is ex-
pected to depend on the model state and should be evolving in time (Griffith
and Nichols[148,150]). Various simple forms of evolution of ME in time were
considered by Griffith and Nichols[150,277], At any time step, tk, the evolution
of ME is

ηk = Tk(ek) + qk (150)

where Tk describes the distribution of systematic errors in the NWP model
equations, and qk, (stochastic component) is an unbiased, serially correlated,
normally distributed random vector, with known covariance. The evolution of
ek, is in-turn modeled by assuming that it depends on the state vector,xk,

ek+1 = gk(xk, ek). (151)

23.2 Systematic Model error and State Augmentation

In order to take into account systematic components in the model errors, we
assume that the evolution of the errors is described by the equations

ηk = Tk(ek) + qk (152)

ek+1 = gk(xk, ek) (153)

where qk ∈ Rn is unbiased, serially uncorrelated, normally distributed random
vectors with known covariance matrices and the vectors ek ∈ Rr represent
time-varying systematic components of the model errors. The distribution
of the systematic errors in the model equations is defined by the function
Tk : Rr → Rn. The functions gk : Rn × Rr → Rr describing the systematic
error dynamics, are to be specified. In practice little is known about the form
of the model errors and a simple form for the error evolution that reflects any
available knowledge needs to be prescribed. Examples of simple forms of the
error evolution includes:

constant bias error: ek+1 = ek, Tk = I.

This choice allows for a constant vector e = e0 of unknown parameters to
be found, which can be interpreted as statistical biases in the model errors.
This form is expected to be appropriate for representing the average errors in
source terms or in boundary conditions.

Evolving error: ek+1 = Fkek, Tk = I.
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Here Fk ∈ Rn×n represents a simplified linear model of the state evolution.
This choice is appropriate, for example, for representing discretization error
in models that approximate continuous dynamical processes by discrete time
systems.

Spectral form: ek+1 = ek, Tk = (I, sin(k/Nτ)I, cos(k/Nτ)I).

In this case the constant vector e ≡ e0 is partitioned into three components
vectors, eT = (eT

1 , eT
2 , eT

3 ) and τ is a constant determined by the timescale on
which the model errors are expected to vary, for example, a diurnal timescale.
The choice approximates the first order terms in a spectral expansion of the
model error.

The weak constraint VDA doubles the size of the optimization problem (com-
pared to strong constraint VDA), in addition if the stochastic component is
included in the ME formulation, then one would have to save every random
realization at each model time step, which amounts to tripling the size of the
optimization problem. The computational results in [150] were provided by
neglecting qk, the stochastic component of ME and using the constant and
evolving forms of the systematic component, see [150] for additional details.
Similar approaches for modeling the systematic component of ME was con-
sidered by Martin et al. (2002) and reduction of ME control vector size by
projecting it on to the subspace of eigenvectors corresponding to the leading
eigenvalues of the adjoint-tangent linear operators was illustrated by Vidard
et al. (2000).

Other choices can be prescribed, including piecewise constant error and lin-
early growing error (see Griffith[151], Martin et al.[237], Griffith et al.[150]
and Griffith and Nichols[150] ). These techniques have been applied success-
fully in practice to estimate systematic errors in an equatorial ocean model
(Martin et al.[238] ) Zupanski et al. (2005)[409] provided results obtained us-
ing the NCEP’ s regional weather prediction system in weak constraint VDA
framework. Akella and Navon (2005)[2] studied in depth the nature of model-
ing errors and suggested a decreasing, constant and increasing in time forms
of ME. Implementation of these forms in a weak constraint VDA framework
yielded a further reduction in forecast errors. For highly accurate advection
schemes such as the Piecewise Parabolic Method (PPM) scheme, they found
that the increasing form of ME is the best (when tested in the framework of
a twin experiment). They considered three different forms of ME using high
resolution advection schemes in the presence of non-linear advection terms
were studied in both strong and weak constraint VDA framework.

When the number of observations is considerably smaller, the method of rep-
resenters (Bennett 1992)[23] provides a computationally efficient (in storage/
space requirements) formulation of VDA. The incorporation of ME in such a
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framework has been shown by Bennett et al. (1993, 1996, and 1997)[22,20,21]
and Uboldi and Kamachi (2000)[368].

Very little is known with certainty about ME spatio-temporal structure since
MEs are not observable, contrary to forecast errors. The common practice is
to assume that MEs are white. Daley (1992) [82]suggested use of a first order
(in time) linear model for MEs. That approach was implemented by Zupanski
(1997) [406] in its simplest form; the inevitable simplicity is due to the absence
of empirical estimates of parameters and even structural features of the ME
model. DelSole and Hou (1999)[96] considered the state-dependent part of ME
and proposed a respective estimator.

Mitchell and Daley (1997)[246] considered the discretization part of ME and
its effect on data assimilation. Menemenlis and Chechelnitsky (2000)[244] es-
timated the spatial structure of an ME white-noise model for an ocean cir-
culation model. ME models rely on hypotheses that have never been checked
namely the applicability of a stochastic model driven by an additive (and not,
say, multiplicative) noise, Gaussianity of ME, the white-noise or red-noise hy-
potheses. Tools needed to use the information on ME ( Tsyrulnikov 2005)
[367] structure in meteorology and oceanography are available such as en-
semble forecasting, weak-constraint four-dimensional variational assimilation
(4D-Var, e.g. Zupanski 1997 [406]; Xu et al. 2005) [387], and Kalman filtering
(e.g. Cohn 1997) [63]. Empirical approaches have been used only in ensemble
techniques but cannot be used in the weak-constraint 4D-Var, where one must
specify an ME spatio-temporal stochastic model.

24 Bias correction in 4-D VAR data assimilation

The bias problem in data assimilation is caused by problems with the data
being assimilated, approximations in the observation operators used to simu-
late the data as well as by different limitations of the assimilation model itself
(See Dee (2005)[95]). The term bias includes any type of error that is system-
atic rather than random. Large persistent mean values of analysis increments
or regularly recurring spatial structures are a symptom of bias along with
detection of monitoring statistics of observed-minus-background residuals for
different instruments collected over time.

Dee(2005)[95] proposed to work with an augmented control vector

ZT = [XT , βT ] (154)

including model state X as well as a parameter β.
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Then the usual 4-D VAR standard variational analysis minimizes the func-
tional

J(X) = (Xb − X)T B−1(Xb − X) + [y − h(X)]T R−1[y − h(X)] (155)

where the function h(·) denotes a set of observation operators used to express
relation between model state and observations, is transformed by modifying
the observation operator to account for bias

h̃(z) = ĥ(X, β) (156)

We minimize instead

J(z) = (zb − z)T B−1
z (zb − z) + [y − h̃(z)]T R−1[y − h̃(z)] (157)

As mentioned by Trémolet (2005)[365] variational bias correction of satellite
radiances was first implemented at NCEP in the spectral statistical interpo-
lation (SSI) analysis system (Derber and Wu 1998), [103]) and more recently
by Dee(2004)[94].

He used

Bz =
(

BX 0
0 Bβ

)

. (158)

the background error covariances for the bias parameters since one needs to
minimize the bias functional. To implement this method one needs the modi-
fied operator h̃(X, β) as well as an effective preconditioner for the point min-
imization problem.

Different aspects of the state of the art of bias and data assimilation are dis-
cussed in Dee(2005) [95]. However, developing useful models for bias remains
still a challenge. Tsyrulnikov(2005) has started addressing some aspects of
the problem by developing advanced stochastic representations of model er-
rors consistent with both spatial and temporal structures of the forecast errors.
See also Dee and Todling[93] for modeling bias in background fields by assum-
ing persistence and see also Chepurin et al. (2005)[59]) for forecast model bias
correction in ocean data assimilation. See also work of Janjic and Cohn (2006)
[170] on treatment of observation error due to unresolved scales in atmospheric
data assimilation as an example of the issue of dealing with representativeness
errors.
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25 Automatic differentiation

Automatic differentiation (AD) is a set to techniques based on the mechanical
application of the chain rule to obtain derivatives of a function given as a com-
puter program adjoint equations resulting from differentiation the discretized
model equation. Automatic differentiation exploits fact that a computer code
executes a sequence of elementary arithmetic operations consisting of addi-
tions or elementary functions.

By applying the chain rule derivative repeatedly to these operations deriva-
tives of any order can be computed automatically .Other classical methods
that achieve the same goal but with inherent shortcomings are symbolic dif-
ferentiation or use of finite-differences. Symbolic differentiation is slow, while
finite differences suffer from round-off errors in the discretization process and
cancellations. Automatic differentiation has the advantage of solving these
problems.

There are essentially two modes of AD, namely forward accumulation and
reverse accumulation. Forward accumulation is less useful for data assimilation
while reverse accumulation allows efficient calculation of gradients.

The first powerful general purpose AD systems was developed at Oak Ridge
National Laboratory (Oblow 1983)[281], later endowed with the adjoint vari-
ant ADGEN for reverse AD (1987) by Pin et al (1987)[290]. Later ADIFOR
(Bischof et al.[31]) was developed at Argonne National Laboratory , Odyssee
at INRIA (Rostaing-Schmidt 1993)[312] and TAMC by Giering and Kaminski
(1997)[139]. In France the TAPENADE code is used (see Hascoet and Pascual
(2004)[159]. There are many many more languages. Earlier books on AD are
those by Rall[305] and Kagiwada et al. 1986.[172]

Checkpointing is a general trade-off technique, used in the reverse mode of
AD, that trades duplicate execution of a part of the program in order to save
memory space employed to save intermediate results. Checkpointing a code
fragment amounts to running this fragment without storage of intermediate
values, thus saving memory space. At a later stage, when the intermediate
value is required, the fragment is run a second time to obtain the required
values. Results and application studies of automatic differentiation have been
published in proceedings of the international workshop on automatic differ-
entiation held in Breckenridge ( See Griewank and Corliss (1991). The most
comprehensive book and work is that of Andreas Griewank (Berz et al.[30]),
Griewank and Corliss[147] and the comprehensive book of Griewank[149]).
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26 Second Order Adjoint methods

Behind most of the methods used in meteorology such as: optimal interpo-
lation, variational methods, statistical estimation etc., there is a variational
principle, i.e. the retrieved fields are obtained through minimization of a func-
tional depending on the various sources of information. The retrieved fields are
obtained through some optimality condition which can be an Euler or Euler-
Lagrange condition if regularity conditions are satisfied. Since these conditions
are first order conditions, it follows that they involve the first order deriva-
tives of the functional which is minimized. In this sense, data assimilation
techniques are first order methods. But first order methods provide only nec-
essary conditions for optimality but not sufficient ones. Sufficient conditions
require second order information. By the same token, from the mathematical
point of view sensitivity studies with respect to some parameter can be ob-
tained through Gateaux derivatives with respect to this parameter. Therefore
if we seek the sensitivity of fields which have already been defined through
some first order conditions we will have to go to an order of derivation higher
and in this sense sensitivity studies require second order information.

Early work on second order information in meteorology includes Thacker[344]
followed by work of Wang et al.[375,376] stimulated by advice and expertise of
F.X. Le Dimet, Wang[376]. Wang et al.[378]and Wang et al.[380] considered
use of second order information for optimization purposes namely to obtain
truncated -Newton and Adjoint Newton algorithms using exact Hessian/vector
products obtained via second order adjoint. Application of these ideas was pre-
sented in Wang et al.[379]. Kalnay et al.[175] introduced an elegant and novel
pseudo-inverse approach and showed its connection to the adjoint Newton
algorithm of Wang et al.[379]. (See Kalnay et al.[175], Pu and Kalnay[296],
Park and Kalnay[287], Pu et al.[295]). Ngodock[276] applied second order in-
formation in his doctoral thesis in conjunction with sensitivity analysis in the
presence of observations and applied it to the ocean circulation. Le Dimet et
al.[201] presented the basic theory for second order adjoint analysis related to
sensitivity analysis.

A comprehensive review paper on second order adjoint methods was written
by Le Dimet et al.(2002) [202] considering all aspects of second order adjoint
methods.

27 Computing the second order information

In what follows we follow closely the presentation in Le Dimet et al. (2002)[202].
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In general we will assume that the model has the general form:

F (X,U) = 0 (159)

where X, the state variable, describes the state of the environment, U is the
input of the model, i.e. an initial condition which has to be provided to the
model to obtain from Eq. (159) a unique solution X(U). We will assume that
X and U belong to a space equipped with an inner product.

The closure of the model is obtained through a variational principle which can
be considered as the minimization of some functional:

J(X,U) (160)

For instance, in the case of variational data assimilation, J may be viewed as
representing the cost function measuring the discrepancy between the obser-
vation and the solution associated with the value U of the input parameter.
Therefore the optimal input for the model will minimize J .

27.1 First order necessary conditions

If the optimal U minimizes J , then it satisfies the Euler equations given by

∇J(U) = 0 (161)

where ∇J is the gradient of J with respect to control variables.

The gradient of J is obtained in the following way:

(i) we compute the Gateaux (directional) derivative of the model and of F in
some direction u. We may write

∂F

∂X
× X̂ +

∂F

∂U
× u = 0 (162)

where (̂) stands for the Gâteaux derivative. Let Z be an application from
Rn into Rn with variable U. We define the Gâteaux derivative of Z in the
direction u when this limit exists. For a generic function Z it is given by:

Ẑ(U,u) = lim
α→0

Z(U + αu) − Z(U)

α
(163)
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If Ẑ(U,u) is linear in u we can write

Ẑ(U,u) =< ∇Z(U),u > (164)

where ∇Z is the gradient of Z with respect to U. The Gateaux derivative is

also called a directional derivative. Here
∂F

∂X
(or

∂F

∂U
) is the Jacobian of F

with respect to X (or U)) and

Ĵ(X,U,u) =<
∂J

∂X
, X̂ > + <

∂J

∂U
,u > (165)

where < > stands for the inner product.

The gradient of J is obtained by exhibiting the linear dependence of Ĵ with
respect to u. This is done by introducing the adjoint variable P (to be defined
later according to convenience).

Taking the inner product between (162) and P yields

<
∂F

∂X
× X̂, P > + <

∂F

∂U
× u, P >= 0 (166)

< (
∂F

∂X
)
T

× P, X̂ > + < (
∂F

∂U
)
T

× P,u >= 0 (167)

Therefore using (165), if P is defined as the solution of the adjoint model

(
∂F

∂X
)
T

× P =
∂J

∂X
(168)

then we obtain

∇J(U) = (
∂F

∂U
)
T

× P +
∂J

∂U
(169)

Therefore the gradient is computed by solving Eq. (168) to obtain , then by
applying Eq. (169).

27.2 Second order adjoint

To obtain second order information we look for the product of the Hessian
G(U) of J with some vector u . As before we apply a perturbation to Eqs.
(159), (168), and from Eq. (168) and (169) we obtain
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(
∂2F

∂X2
× X̂ +

∂2F

∂X∂U
× u)

T

× P +(
∂F

∂X
)
T

× P̂ = (170)

∂2J

∂X2
× X̂ +

∂2J

∂X∂U
× u

and

∇̂J(U) =G(U) × u = −(
∂2F

∂U2
× u +

∂2F

∂U∂X
× X̂)T × P − (171)

(
∂F

∂U
)
T

× P̂ +
∂2J

∂U2
× u +

∂2J

∂X∂U
× X̂

We introduce here Q and R, two additional variables. To eliminate X̂ and P ,
we will take the inner product of Eq. (162) and (170) with Q and R respec-
tively, then add the results. We then obtain

< X̂, (
∂F

∂X
)T × Q > + < u, (

∂F

∂U
)T × Q > + < P, (

∂2F

∂X2
) × X̂ × R >(172)

+ < P, (
∂2F

∂X∂U
) × u × R > + < P̂ , (

∂F

∂X
) × R >

=< X̂, (
∂2J

∂X2
)T × R > + < u, (

∂2J

∂X∂U
)T × R >

Let us take the inner product of Eq. (171) with u, then we may write

< G(U)×u,u >=< −(
∂2F

∂U2
× u +

∂2F

∂X∂U
× X̂)T × P,u > + (173)

< P̂ , (−
∂F

∂U
) × u ><

∂2J

∂U2
× u,u > + < X̂,

∂2J

∂X∂U
)T × u >

From (173) we get

< X̂, (
∂F

∂X
)T × Q + (

∂2F

∂X2
× P ) × R −

∂2J

∂X2
× R > + < P̂ ,

∂F

∂X
× R >=

< u,−(
∂F

∂U
)T × Q − (

∂2F

∂X∂U
× P )T × R +

∂2J

∂X∂U
× R > (174)

Therefore if Q and R are defined as being the solution of
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(
∂F

∂X
)T < u,−(

∂F

∂U
)T × Q + (

∂2F

∂X2
< u,−(

∂F

∂U
)T × P ) × R − (175)

(
∂2J

∂X2
)T × R = (

∂2J

∂X∂U
)T × u − (

∂2F

∂U∂X
u) × P

(
∂F

∂X
) × R = −

∂F

∂U
× u (176)

then we obtain:

G(U) × u=−(
∂2F

∂U2
× u) × P +

∂2J

∂U2
× u − (

∂F

∂U
)T × Q − (177)

(
∂2F

∂X∂U
× P ) × R +

∂2J

∂X∂U
× R

For equations(168-174) we took into account the symmetry of the matrix of
second derivative, e.g.

∂2F

∂X2
= (

∂2F

∂X2
)T (178)

leading to some simplifications. The system (174-174) will be called the second
order adjoint. Therefore we can obtain the product of the Hessian by a vector
u by (i) solving the system (174-174). (ii) applying formula (177).

27.3 Remarks

a) The system (174-174) which has to be solved to obtain the Hessian/vector
product can be derived from the Gateaux derivative (174) which is the same
as (176). In the literature, the system (174-174) is often called the tangent
linear model, this denomination being rather inappropriate because it implies
the issue of linearization and the subsequent notion of range of validity which
is not relevant in the case of a derivative.

b) In the case of an N -finite dimensional space the Hessian can be fully com-
puted after N integrations of vector of the canonical base. Equation 174 differs
from the adjoint model by the forcing terms which will depend on u and R.

c) The system (174-177) will yield the exact value of the Hessian/vector prod-
uct. An approximation could be obtained by using the standard finite differ-
ences, i.e.,

G(U) × u ≈
1

α
[∇J(U + αu) −∇J(U)] (179)
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where α is the finite-difference interval which has to be carefully chosen. In
the incremental 3/4D-Var approach the Hessian/vector product can readily
be obtained by differencing two gradients.

However several integrations of the model and of its adjoint model will be
necessary in this case to determine the range of validity of the finite-difference
approximation (Wang[378] and references therein).

27.4 Time dependent model

In the case of variational data assimilation the model F is a differential system
on the time interval [0, T ]. The evolution of X ∈ H @ [C(0, T )]n between 0
and T is governed by the differential system,

∂X

∂t
= F (X) + B × V (180)

The input variable is often the initial condition,

X(0) = U ∈ Rn (181)

In this system F is a nonlinear operator which describes the dynamics of the
model, V ∈ V @ [C(0, T )]m is a term used to represent the uncertainties
of the model which we assume to be linearly coupled through the (m, n) -
dimensional matrix B,U is the initial condition, and the criteria J is the
discrepancy between the solution of (180)-(181) and observations

J(U,V) =
1

2

T
∫

0

||HX− Xobs||
2dt (182)

where H is the observation matrix, i.e., a linear operator mapping X into
Xobs. The problem consists in determining U and V that minimize J .

A perturbation v on V and u on U gives X̂ and Ĵ the Gateaux derivatives of
X and J as solution of

dX̂

dt
=

∂F

∂X
× X̂ + B× V (183)

X̂(0) = u (184)

Ĵ(U,V,u,v) =
1

2

T
∫

0

< HX − Xobs,HX̂ > dt (185)
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Let us introduce P the adjoint variable, we take the product of (183) with P
after a summation on the interval [0, T ] and an integration by parts followed
by identification of linearities with respect to U and V in (185), we conclude
that of P is defined as the solution of

dP

dt
=

∂F

∂X

T

× P + HTH(X− Xobs) (186)

P (T ) = 0 (187)

and the components of the gradient ∇J with respect to U and V are

∇JU = −P (0) (188)

∇JV = −BT P (189)

V is time dependent, its associated adjoint variable Q will be also time depen-
dent. Let us remark that the gradient of J with respect to V will depend on
time . From a computational point of view the discretization of V will have to
be carried out in such a way that the discretized variable remains in a space
of ”reasonable” dimension.

The second derivative will be derived after a perturbation h on the control
variables U and V

h =
(

hU

hV

)

(190)

The Gateaux derivatives X̂, P of X and P in the direction of h, are obtained
as the solution of the coupled system

dX̂

dt
=

∂F

∂X
X̂ + BhV (191)

X̂(0) = hU (192)

dP̂

dt
+ (

∂2F

X2
× X̂)T × P + (

∂F

∂X
)T × P = HTHX̂ (193)

∇JU = −P̂ (0) (194)

∇JV = −BT P̂ (195)

We introduce Q and R, second order adjoint variables. They will be defined
later for ease use of presentations.
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Taking the inner product of (191) with Q and of (193) with R, integrating
from 0 to T , then adding the resulting equations, we may write:

T
∫

0

[ <
dX̂

dt
, Q > − <

∂F

∂X
× X̂, Q > − < BhV , Q > + <

dP̂

dt
, R > + (196)

< [
∂2F

∂X2
× X̂]T × P, R > + < [

∂F

∂X
]T P̂ , R > − < HTHX̂, R >]dt = 0

The terms in P̂ and X̂ are collected and after integration by parts and some
additional transformations we obtain

T
∫

0

< X̂,−
dQ

dt
− [

∂F

∂X
]T × Q + [

∂2F

∂X2
× P ]T × R − HTHR > dt + (197)

T
∫

0

< P̂ ,−
dR

dt
+ (

∂F

∂X
) × R > dt −

T
∫

0

< hV ,BT × Q > dt +

< X̂(T ), Q(T ) > − < X̂(0), Q(0) > + < P̂ (T ), R(T ) > −

< P̂ (0), R(0) >= 0

Let G be the Hessian matrix of the cost J . We have

G =
(

GUU GUV

GV U GV V

)

(198)

Therefore if we define the second order adjoint as being the solution of

dQ

dt
+ [

∂F

∂X
]T × Q = [

∂2F

∂X2
P ]T × R − HTHR (199)

dR

dt
= [

∂F

∂X
] × R (200)

and

Q(T ) = 0 (201)

R(0) = hU (202)

then we finally obtain

< −hU , Q(0) >=< P̂ (0), R(0) > (203)

56



P̂ (0) = −Q(0) (204)

We would like to point out that Eq. (204) follows directly from Eq. (203) by
using Eq. (202). The product of the Hessian by a vector r is obtained exactly
by a direct integration of (200) and (202) followed by a backward integration
in time of (199) and (201).

One can obtain G by n integrations of the differential system:

dQ

dt
+ [

∂F

∂X
]T × Q = [

∂2F

∂X2
× P ]T × R − HTHR (205)

dR

dt
= [

∂F

∂X
]R (206)

with the conditions

Q(T ) = 0 (207)

R(0) = ei (208)

where ei are the n-vectors of Rn the canonical base of thus obtaining

GUUei = Q(0) (209)

GUV ei = BT × Q (210)

One then integrates m times the differential system

dQ

dt
+ [

∂F

∂X
]T × Q = [

∂2F

∂X2
× P ]T × R − HTHR (211)

dR

dt
− [

∂F

∂X
] × R = fj (212)

with initial and terminal conditions

Q(T ) = 0 (213)

R(0) = 0 (214)

where fj are the m canonical base vectors of Rm obtaining

GV V × fj = BT × Q (215)
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The system defined by these equations is the second order adjoint model.
The Hessian matrix is obtained via n + m integrations of the second order
adjoint. The second order adjoint is easily obtained from the first order adjoint
- differing from it only by some forcing terms, in particular the second order
term. The second equation is that of the linearized model (the tangent linear
model).

One can also obtain the product of a vector of the control space, times the
Hessian at cost of a single integration of the second order adjoint.

27.5 Example: The shallow-water equations

The shallow-water equations (SWE) represent the flow of an incompressible
fluid whose depth is small with respect to the horizontal dimension. The SWE
can be written in a Cartesian system

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
− fv +

∂φ

∂x
= 0, (216)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ fu +

∂φ

∂y
= 0, (217)

∂φ

∂t
+

∂(uφ)

∂x
+

∂(vφ)

∂y
, (218)

In this system of equations X = (u, v, φ)T is the state variable, u and v are the
components of the horizontal velocity, φ is the geopotential and f the Coriolis
parameter. We aim to present this example in order to provide a didactic
setup, thus we will make the strongest simplifications.

a) We neglect the model error which following the previous notations implies
B ≡ 0 . We only control the initial conditions.

b) We impose periodic boundary conditions.

c) The observations are assumed continuous in both space and time, which
is tantamount to assume H ≡ I, where I is the identity operator. Let U0 =
(u0, v0, φ0)

T , i.e., the initial condition, then the cost function assume the form

J(U0) =
1

2

T
∫

0

[(u − uobs)
2 + (v − vobs)

2 + γ(φ − φobs)
2]dt (219)

where γ is a non-unit weighting term.
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We derive directly the tangent linear model (TLM). The barred variables X̄ =
(ū, v̄, φ̄)T are the directional derivatives in the direction of the perturbation
h = (hu,hv,hφ)

T applied to the initial condition and we obtain

∂ū

∂t
+ u

∂ū

∂x
+ ū

∂u

∂x
+ v

∂ū

∂y
+ v̄

∂u

∂y
− f v̄ +

∂φ̄

∂x
= 0, (220)

∂v̄

∂t
+ u

∂v̄

∂x
+ ū

∂v

∂x
+ v

∂v̄

∂y
+ v̄

∂v

∂y
+ fū +

∂φ̄

∂y
= 0, (221)

∂φ̄

∂t
+

∂(ūφ)

∂x
+

∂(uφ̄)

∂x
+

∂(v̄φ)

∂y
+

∂(vφ̄)

∂y
= 0, (222)

By transposing the TLM we obtain the adjoint model. Let P = (ũ, ṽ, φ̃)T be
the adjoint variable, then the adjoint model satisfies

∂ũ

∂t
+ u

∂ũ

∂x
+ v

∂ṽ

∂y
+ ũ

∂v

∂y
− ṽ

∂v

∂y
− f ṽ + φ

∂φ̃

∂x
= uobs − u, (223)

∂ṽ

∂t
+ ũ

∂u

∂y
− u

∂ṽ

∂x
+ ṽ

∂u

∂x
+ v

∂ṽ

∂y
+ fũ + φ

∂φ̃

∂y
= vobs − v, (224)

∂φ̃

∂t
+

∂ũ

∂x
+

∂ṽ

∂y
+ u

∂φ̃

∂y
+ v

∂φ̃

∂y
= γ(φobs − φ), (225)

To obtain the second order model we linearize the couple direct model and
adjoint model, we then transpose and obtain the second order adjoint variable
Q = (û, v̂, φ̂)T and the variable R = (ū, v̄, φ̄)T defined by the TLM.

∂û

∂t
+ u

∂û

∂x
+ v

∂v̂

∂y
+ û

∂v

∂y
− v̂

∂v

∂y
− f v̂ + φ

∂φ̂

∂x
= ṽ

∂v̄

∂x
− (226)

ū
∂ũ

∂x
− v̄

∂ū

∂y
+ ũ

∂v̄

∂y
− φ̄

∂φ̃

∂x
− ū,

∂v̂

∂t
+ û

∂u

∂y
− u

∂v̂

∂x
+ v̂

∂u

∂x
+ v

∂v̂

∂y
+ fû + φ

∂φ̂

∂y
= ũ

∂ū

∂x
− (227)

ū
∂ṽ

∂x
− ṽ

∂ū

∂y
+ ū

∂ṽ

∂y
− φ̄

∂φ̃

∂y
− v̄,

∂φ̂

∂t
+

∂û

∂x
+

∂v̂

∂y
+ u

∂φ̂

∂y
+ v

∂φ

∂y
= −ū

∂φ̃

∂x
− v̄

∂φ̃

∂y
− γφ̄, (228)
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We see that formally the first and second order adjoint models differ only
by second order terms, which contain the adjoint variables. The calculation
of second order derivatives requires the storage of the model trajectory, the
tangent linear model, and the adjoint model.

27.6 Use of Hessian of cost functional to estimate error covariance matrices

A relationship exists between the inverse Hessian matrix and the analysis error
covariance matrix of either 3-D VAR or 4-D VAR (See Thacker[344], Rabier
and Courtier[298], Yang et al.[390], Le Dimet et al.[201]).

Following Courtier et al.[74] we consider methods for estimating the Hessian
in the weakly nonlinear problem when the tangent linear dynamics is a good
approximation to nonlinear dynamics. As a consequence the cost function is
near to being quadratic. If as Gauthier[127] we consider the observations as
random variables and we look at variational analysis as attempting to solve
the minimization problem

min J(v) =
1

2
(x − xb)

TB−1(x − xb) +
1

2
(Hx − y)TO−1(Hx − y) (229)

where xb is the unbiased background field and y the set of unbiased obser-
vations, both being realizations of random variables of covariances B and O
respectively and where the operator H computes the model equivalent Hx of
the observation y . Then the Hessian J ′′ of the cost function J at the minimum
is given by

J ′′ = B−1 + HTO−1H (230)

obtained by differentiating (229) twice.

Moreover the analysis error covariance matrix is the inverse of the Hessian as
shown in Appendix B of Rabier and Courtier[298]. Calling xa the result of the
minimization (i.e. the analysis) and xt the truth, one has

E[(xa − xt)(xa − xt)
T ] = (J ′′)−1 = (B−1 + HTO−1H)−1 (231)

A requirement is that the background error and the observation error are
uncorrelated (Rabier and Courtier[298], Fisher and Courtier[115]). See also
work of Thepaut and Moll[355] pointing out that the diagonal of the Hessian
is optimal among all diagonal preconditioners.
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28 Hessian Singular Vectors (HSV)

Computing HSV’s uses the full Hessian of the cost function in the variational
data assimilation which can be viewed as an approximation of the inverse of
the analysis error covariance matrix and it is used at initial time to define a
norm. The total energy norm is still used at optimization time. See work by
Barkmeijer et al.[13,14]. The HSV’s are consistent with the 3-D VAR estimates
of the analysis error statistics. In practice one never knows the full 3-D VAR
Hessian in its matrix form and a generalized eigenvalue problem has to be
solved as described below.

The HSV’s are also used in a method first proposed by Courtier [72] and tested
by Rabier et al.[302] for the development of a simplified Kalman filter fully
described by Fisher[116] and compared with a low resolution explicit extended
Kalman filter by Ehrendorfer and Bouttier[108].

Let M be the propagator of the tangent linear model,P a projection operator
setting a vector to zero outside a given domain. Consider positive-definite
and symmetric operators including a norm at initial and optimization time
respectively. Then the SV’s defined by

< Pε(t),EPε(t) >

< ε(t0),Cε(t0) >
(232)

under an Euclidean norm are solution of generalized eigenvalue problem.

M∗P∗EPMx = λCx (233)

In HSV, the operator C is equal to the Hessian of the 3-D Var cost function. As
suggested by Barkmeijer et al.[13], one can solve (130) by using the generalized
eigenvalue algorithm (Davidson [89]). See also Sleijpen and Van der Vorst[333].
Using

C ≡ ∇2J = B−1 + HTO−1H (234)

and carrying out a coordinate transformation

x = L−1x, L−1L = B (235)

Then we obtain a transformed operator

(L−1)TCL (236)
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and the Hessian becomes equal to the sum of identity and a matrix with
rank less or equal to the dimensions of the vector of observations (Fisher
and Courtier(1995)[115]). Veerse[371] proposes to take advantage of this form
of the appropriate Hessian in order to obtain approximations of the inverse
analysis error covariance matrix, using the limited memory inverse BFGS min-
imization algorithm.

Let H be (∇2J)−1 the inverse Hessian and H+ the updated version of the
inverse Hessian.

s = xn+1 − xn (237)

where s is the difference between the new iterate and the previous one in a
limited-memory quasi-Newton minimization procedure.

y = gn+1 − gn (238)

is the corresponding gradient increment. One has the formula

H+ = U(H,y, s) = (I −
s

⊗

y

< y, s >
)

s
⊗

s

< y, s >
(239)

where <, > is a scalar product with respect to which the gradient is defined
and

⊗

stands for the outer product.

The method is implemented by using the inverse Hessian matrix-vector prod-
uct built in the minimization code and based on Nocedal’s[278] algorithm.
These methods are useful when the second order adjoint method is not avail-
able due to either memory or CPU limitations.

29 4-D VAR status today

4-D VAR data assimilation is available and implemented today at several op-
erational numerical weather prediction centers starting with European Centre
for Medium-Range Weather Forecasts (ECMWF), (Rabier et al.[303]), Klinker
et al. [178], while a similar system was operational at Meteo-France in 2000
(Janiskova et al.[168], Gauthier and Thépaut[129], Desroziers et al.[106]). More
recently 4-D VAR was implemented at UK Met office, Japan and Canada.

The impact of adopting 4-D VAR was qualified as a substantial, resulting in
an improvement in NWP quality and accuracy(see Rabier[304] and see the
special Issue of QJRMS 2005). 4-D VAR combined with improvement in error
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specifications and with a large increase in a variety of observations has led to
improvements in NWP accuracy (Simmons and Hollingsworth[332]).

Hollingsworth et al. [165] show how observing system improvements led to
improvements of forecast scores while Bouttier and Kelly[36] show that the
improvement of forecast scores for the southern hemisphere are due to satellite
data. Also, error statistics for different sources of observation constitutes an
active field of research aimed mainly at obtaining better representation of the
specific observation operators.

30 The algorithmic developments of note for 4-D VAR

Following an idea of Derber, Courtier et al. [74] proposed and developed the
incremental 4-D VAR algorithm, where minimization is carried out at reduced
resolution in the inner iteration and on a linear model. The 4-D VAR incre-
mental algorithm minimizes the following cost function (Rabier[304])

J(δw0
) =

1

2
δT
w0

B−1δw0
+

1

2

N
∑

I=1

(HiδXi
− di)

T R−1
i (HiδXi

− di) (240)

with δw0
= s(X0 − Xb).

Simplified increment at initial time t0

di = yo
i − Hi(Xi) (241)

is the observation increment at time ti. The solution resulting from minimiza-
tion of the cost function is added to the background Xb to obtain analysis at
t0 i.e

Xa
0 = Xb − S−Iδa

w0
(242)

where S−I is the generalized inverse of operator S which projects from high
to low resolution (i.e S−I projects from low to high resolution). In an outer
loop one updates the high resolution reference trajectory and observation de-
partures. A refinement of the incremental 4-D VAR was proposed as a multi-
incremental algorithm by Veerse and Thépaut[370]. Physical parameteriza-
tions that have been modified to allow use in the linear models used in the
incremental procedure were implemented by Janiskova et al. [169], Lopez and
Moreau[207].
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31 Impact of observations

In view of high density of some observations horizontal thinning is performed
on data sets, and optimal observation density is found by trial and error.

Another approach called ”super-obbing”,i.e. it averages neighboring observa-
tions. A new advance concerns the information content of the data. While
usual method of estimating data impact in a forecasting system consists in
performing observing system experiments (OSE) which turn out computation-
ally expensive. However, another diagnostic called the ”degrees of freedom for
signal (DFS)” has been used by Rodgers[311], Fisher[118] and Cardinali et
al.[49].

Given an analysis xa, background xb and observation yo we have

xa = xb + (B−1 + HTR−1H)−1HTR−1(yo −H(xb)) (243)

which can be written compactly as

xa = xb + Kd (244)

B-being the background error covariance matrix, R the observation error co-
variance, H-linearized observation operator of H. K is called the Kalman gain
matrix and d innovation vector d = yo −H(xb).

The DFS is defined as

DFS = Tr(HK) (245)

where the trace of the matrix HK measures the gain in information due to the
observations or how an assimilation system extracts information signal from
the background.(See Rabier (2005) [304]. One way to calculate DFS is the
use of estimation the Hessian of the cost function provided. Fisher[118] and
Cardinali et al.[49] used estimation of Hessian of the cost function provided
by the minimization algorithm. Chapnik et al.[54] use evaluation of trace of
the KH matrix, using a method put forward by Desroziers and Ivanov[105]
to evaluate trace of KH.

Computing sensitivity of forecast to the observations can be carried out by con-
sidering the adjoint of data assimilation together with the adjoint of the fore-
cast model. This allows use of adaptive observations to be addressed in next
section (Berliner et al.(1999), Baker and Daley[27]) Daescu and Navon[78],
Langland and Baker [185]
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32 Singular Vectors

Lorenz[228] was the first to have introduced the concept of tangent linear
model. If one denotes by c(t) the state vector of a generic autonomous system,
the evolution equations of which can be written as

∂c

∂t
= A(c) (246)

(adopting the notation of Buizza[40])

The integration of (246) from time t0 to time t generates a trajectory from
initial point c0 to a point c(t). The evolution of a small perturbation x, around
the time dependent trajectory c(t) neglecting quadratic and higher order terms
in the perturbation x can be written as

∂x

∂t
= ALx (247)

where AL is the tangent linear operator computed at the trajectory point x(t)
(see Lorenz(1965)[228]). If we denote by L(t0, t) the resolvent or propagator of
the tangent linear model taking an initial perturbation at time t0 to the final
perturbation at time t1. Defining an inner or Euclidean scalar product and let
E denote a weight matrix (Li et al.[206]),

||x||2 = (x, x) =< x, Ex > (248)

where

< x, y >=
N

∑

i=1

xiyi (249)

is the canonical Euclidean scalar product.

Let LT be the adjoint of L with respect to the inner product < , >E

< LT x, y >E=< x, Ly >E . (250)

The adjoint of L with respect to the inner product defined by E in terms of
adjoint L∗ defined with respect to canonical Euclidean scalar product is

LT
E = E−1LT E (251)
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In order to compute the leading singular vectors (see Golub and Van Loan[144])
that yield the fastest growing perturbations during the optimization period
[t0, t] for which

||x(t0)||
2

||x(t)||2
(252)

is maximum.

We consider

||x(t)||2E =< x(t0), L
T
EL(x(t0)) >E . (253)

We have to search for the eigenvectors vi(t0) such that

LT
ELvi(t0) = λ2

i vi(t0) (254)

with the largest eigenvalues λ2
i . If we were to use as Molteni et al.[248], Buizza

and Palmer[38] the energy norm (see Li et al.[206]), we can relate the energy
of the perturbation x at time t to its initial value at time t0

||xt||
2

||x0||2
=

< xt, Etxt >

< x0, E0x0 >
(255)

=
< Ax0, EtAx0 >

< x0, E0x0 >

=
< x0, A

TEtAx0 >

< x0, E0x0 >
= λ2

and we solve eigenvalue problem

AT EtAvi = λ2
i E0vi. (256)

If Et = E0, then λ is called the energy amplification factor.

Due to the large dimension of the system and since in practice one needs only
a small number of singular values (SVs) compared with huge dimension of sys-
tem one uses the Lanczos methods (ARPACK library, documented in Lehoucq
et al. 1998). In 1992 and 1995, Barkmeijer[12] and Buizza and Palmer[38] in-
troduced projection operators to make the SV’s more relevant to limited-area
models. The local projection operator P , sets the model variables to zero out-
side a focused area, i.e. for all grid points or spectral components outside the
geographic area of interest.

66



The definition of the amplification factor is generalized as

λ2 =
< Pxt, EtPxt >

< x0, E0x0 >
(257)

where adjoint operators AT and P T are available the eigenvalue problem can
be solved using Lanczos-type algorithms. These algorithms require only eval-
uation of matrix-vector products and avoid computationally expensive ma-
nipulation of large matrices. Usually one uses the popular ARPACK package
developed specifically for problems of large dimensions (Lehoucq et al.[194]).

An enormous effort and a large number of research works has centered on
the issue of singular vectors led by researchers at ECMWF and the list of
contributions is too long to enumerate. Important work on this topic includes
that of Errico and Vukicevic[111] showing sensitivity of singular vectors to
both choice of norm and length of the time optimization interval, Errico[112],
Rabier et al.[301]. We will dwell in this survey only on one aspect of singular
vectors and 4-D VAR namely its application for targeted observations.

33 Targeting observation with a 4-D VAR data assimilation system

Adaptive observation are denoting a set of strategies aiming at improving
forecast skill of numerical weather prediction by identifying optimal locations
where targeted observations must be collected.

Mathematically this is related to sensor-actuator or location problem but here
we illuminate briefly only approaches where either the adjoint sensitivity ap-
proach or the use of singular vectors is concerned See (Rabier et al.[301],
Palmer et al.[284], Berliner et al.[27], Baker and Daley[8], Bergot and Doern-
becher[25],Leutbecher(2003)[195], Langland and Baker[185].

Optimal deployment of targeted observations was also addressed by Lorenz
and Emanuel[229], Bergot[24], Morss et al.[252].

Daescu and Carmichael[77] and Daescu and Navon[78] account for the dy-
namical interaction between forecast sensitivity field and the sensitivity field
associated to all additional data available to the assimilation procedure.
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34 The singular vectors approach to targeting

Use of singular vectors for targeting observations is related to work of Palmer
et al.[284], Buizza and Montani[39] and Daescu and Navon[78] to cite but a
few.

One searches for directions where errors in the state vector at targeting time
will propagate most at verification time on the verification domain .Consider
perturbation δxi of model state at ti then to first order the induced perturba-
tion at time tv is

δxv = M(xi + δxi) − M(xi) ≈ L(ti, tv)δxi (258)

L(ti, tv) is the resolvent of TLM in time interval tv − ti.

On the tangent phase space consider the inner product

< δx, δy >C=< δx, Cδy > (259)

where C is a symmetric positive definite matrix, < ·, · >C is the inner product.
The adjoint of L in < ·, · >C defined as

< L∗Cδx, δy >C=< δx, Lδy >C (260)

L∗C = C−1L∗C where L∗ is the adjoint operator of L in < ·, · >.

From last equation it follows

||δx(tv)||C =< δx(ti), L
∗CLδx(ti) >C (261)

i.e. the directions characterized by maximum growth ||δx(tv)||C/||δx(ti)||C are
the singular vector νj(ti)

L∗CLνj(ti) = σ2
j νj(ti) (262)

associated with the largest singular values σj. Singular vectors depend on the
C-norm selection. Studies of Barkmeijer[13,14] performed in the 3-D VAR data
assimilation framework show that if operator C at t0 is taken to be Hessian
of the cost functional then the computed Hessian singular vectors (HSV) are
consistent with 3-D VAR estimates of analysis error statistics.
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If P is the projection operator on the verification domain Dv the singular
value problem

(C
1

2 PLC
−1

2 )∗C
1

2 PLC
−1

2 µj = σ2µj (263)

where νj = C
1

2 µj has to be solved in the optimization interval tv − ti.

34.1 Target area definition using first N leading singular vectors

Consider the approach of Buizza and Montani[39]. If we consider the first N
leading singular vectors with unit C-norm , i.e.

||νj||C = 1, j = 1, 2, · · · , N (264)

and let us consider the value of the C norm taken to be the total energy norm
at a mesh point (λ, θ) on the sphere (see Daescu and Navon[78]). We define a
sensitivity function as

F C
N (λ, θ) =

N
∑

j=1

(
σj

σ1
)fC

j (λ, θ) (265)

Taking additional observations at time ti at locations where sensitivity field
(265) is maximal are assumed to enhance forecast improvement.

A target area may be defined as

Di = {(λ, θ)|F C
N (λ, θ) ≥ 0.5FMAX} (266)

where

FMAX = max
(λ,θ)

|F C
N (λ, θ)| (267)

and adaptive observations at time ti are selected at the first ni locations (λ, θ)
where sensitivity field F C

N (λ, θ) attains the largest values.

Important targeted observing field programmes started with the Fronts and
Atlantic Storm-Track Experiment in 1997 (FASTEX). Joly et al.[171] using
ensemble transform Kalman filter (ETKF), Hessian Singular vectors and to-
tal energy singular vectors. These methods are surveyed in Langland[186].The
North Pacific Experiment (NORPEX) Langland et al.[187] was based on to-
tal energy singular vectors (TESV). Winter Storm Reconnaissance Program
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(WSRP) (see Toth et al.[363]) uses ETKF as targeting guidance to identify
target areas.

34.2 Open issues in targeting

An important issue us the availability of objective methods to produce target-
ing guidance that are consistent with the data assimilation procedure and esti-
mate relevant aspects of the analysis error covariance matrix (Langland[186]).
Targeting has reduced short-range forecast errors. A promising new approach
to objective targeting is observation-space targeting, which uses sensitivity in-
formation that can be provided by the adjoint of a data assimilation procedure
or other method.

Another relevant issue is that of observation sample size in targeting , because
the amount of targeted data collected in field programmes is generally small
in comparison to that provided by regular observing systems.

35 Status of 3-D VAR data assimilation efforts

During development of variational data assimilation at operational centers,
3-D VAR which produces an ”optimal” estimate of the true atmospheric state
at analysis time through iterative solution of a prescribed 3-D (without the
time dimension) cost function using the (Ide et al.[167]) notation

J(x) = J b + Jo =
1

2
(x − xb)T B−1(x − xb) +

1

2
(y − yo)T (E + F )−1(y − yo)(268)

where yo are the observations.

The fit of the data points is weighted by estimates of their errors where (see
description in Barker et al.[10,11]) B is the background error covariance matrix
E and F are the observation and representativeness error covariance matrices
respectively.

The representativity error is an estimate of inaccuracies introduced in obser-
vation operator H transforming grid analysis x to observation space y = Hx
for comparison with the observations.

The justification for the development of 3DVAR has been its use as a neces-
sary step prior to attaining the goal of implementation of 4-D VAR or Kalman
filter type of assimilation algorithms. This was due to lack of computing re-
sources and its implications for cut-off time restrictions for operational centers
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for applying the full 4-D VAR approach. Every operational center invested
large team efforts to develop 3-DVAR methodology. Parrish and Derber[288]
at NMC/NCEP, Rabier et al.[303] at ECMWF, Lorenc et al.[226] at UMO,
Barker et al.[10,11] for the MM5 at UCAR/MMM. Daley and Barker[85] and
Cohn et al.[64] used PSAS i.e. observation space 3DVAR.

3DVAR does not require the forecast adjoint model or for incremental 4-DVAR
the corresponding linear model used to describe evolution of finite perturba-
tions. It is obvious from the work of Lorenc and Rawlins[227] that even incre-
mental 4-DVAR beats 3-DVAR due to its using time-evolved covariances and
Lorenc and Rawlins[227] also think that 4-DVAR is improving the analysis of
growing modes (see also Thepaut et al. [358]) which are more important for
accurate forecasts. Nevertheless the usefulness of 3-DVAR is there to stay for
a certain period despite the introduction of 4-D VAR due to its training and
reference capabilities.

36 Conclusions

A condensed review of several aspects of 4-D VAR as it evolved in the last 20
or so years is presented. It aims to present both the history of 4-D VAR as
well as its evolution by highlighting several topics of its application.

No attempt was made to cover the ensemble Kalman filter data assimilation
due to space and time limitations. In the same vein this review is not exhaus-
tive as it is not covering all the issues dealing with 4-D VAR applications.

It has become amply evident that in the last 15 years major improvements in
NWP are due to large extent to development of sources of observations and
that 4-D VAR can take advantage of them due to major research efforts at
both research and operational centers.

For new opportunities for research see the article by McLaughlin et al. (2005)[241]
that illuminates and outlines possibilities for enhanced collaboration within
the data assimilation community .

It is certain that data assimilation concepts will become widely applied as
more geoscience scientific disciplines gain access to larger amounts of data,
from satellite remote sensing and from sensor networks, and as Earth system
models increase in both accuracy and sophistication.

It is hoped that this review highlights several aspects of 4-D VAR data assim-
ilation and serves to attract interest of both atmospheric science practitioners
as well as variational optimization scientists.

71



References

[1] J.E. Aarnes, Iterative methods for data assimilation and an application to ocean
state modeling. Technical Report, SINTEF Applied Mathematics Oslo, Norway,
(2004).

[2] S. Akella, I.M. Navon, On forecast errors in variational data assimilation using
high resolution advection schemes of the Lin-Rood finite volume shallow water
model. Submitted for publication to Q.J.R.M.S., (2005).

[3] L. Amodei, Solution approachee pour un probleme d’assimilation de donnees
meteorologiques avec prise en compte de l’erreur de modele. Comptes Rendus
de l’Academie des Sciences 321, serie II a (1995) 1087-1094.

[4] E. Andersson, A. Hollingsworth, G. Kelly, P. L.Lonnberg, J. Pailleux, and Z.
Zhang, Global observing system experiments on operational statistical retrievals
of satellite sounding data. Mon. Wea. Rev. 199 (1991) 1851-1864.

[5] E. Andersson, J. Pailleux, J. N. Thepaut, J. R. Eyre, A. P. McNally, G. A.
Kelly and P. Courtier, Use of radiance in 3D/4D variational data assimilation.
In Proc. of ECMWF Workshop on variational assimilation with emphasis on
three-dimensional aspects, Shinfield Park, Reading RG2 9AX, UK (1992), 123-
156.

[6] R.A. Anthes, Data assimilation and initialization of hurricane prediction
models. J. Atmos. Sci. 31 (1974) 702-719.

[7] R. Aster, B. Borchers and C. Thurber, Parameter Estimation and Inverse
Problems. Elsevier, (2005), pp 320.

[8] N.L. Baker, R. Daley, Observation and background adjoint sensitivity in the
adaptive observation-targeting problem. Q.J.R. Meteorol. Soc., 126, (2000)
1431-1454.

[9] H.T. Banks, K. Kunisch, Estimation techniques for distributed parameter
systems. Birkhauser, Boston (Systems and Control: Formulations and
Applications) 11 (1989) pp 315.

[10] D. M. Barker, W. Huang, Y.-R. Guo, and A. Bourgeois, A three-dimensional
variational (3DVAR) data assimilation system for use with MM5. NCAR
Tech. Note.(2003) NCAR/TN-453 1 STR, 68 pp. [Available from UCAR
Communications, P.O. Box 3000, Boulder, CO 80307.]

[11] D. M. Barker, W. Huang, Y.-R. Guo, A. J. Bourgeois, and Q. N. Xiao,A Three-
Dimensional Variational Data Assimilation System for MM5: Implementation
and Initial Results. Monthly Weather Review, 132,(2004) 897-914.

[12] J. Barkmeijer, Local error growth in a barotropic model. Tellus 44A (1992) ,
314-323.

72



[13] J. Barkmeijer, M. Van Gijzen, F. Bouttier , Singular vectors and estimates of
the analysis-error covariance metric. Quart. J. Roy. Meteor. Soc. Part A (1998)
1695-1713 .

[14] J. Barkmeijer, R. Buizza, T.N. Palmer, 3D-Var Hessian singular vectors and
their potential use in the ECMWF Ensemble Prediction System. Quart. J. Roy.
Meteor. Soc. Part B (1999) 2333-2351.

[15] J.W. Bao, T.T. Warner, Treatment of On/Off switches in the adjoint method:
FDDA experiments with a simple model. Tellus, 45A (5) (1993) 525-538 .

[16] S.L. Barnes, A Technique for Maximizing Details in Numerical Weather Map
Analysis. Journal Appl. Meteor. 3 (1964) 395-409.

[17] S.L. Barnes, Oklahoma Thunderstorms on 29C30 April 1970. Part I:
Morphology of a Tornadic Storm. Mon Wea Rev. 106 (5) (1978) 673-684.

[18] R.E. Bellman, Dynamic Programming. Princeton University Press, Princeton,
1957.

[19] L. Bengtsson, M. Ghil and E. Källen (Eds.), Dynamic Meteorology: Data
Assimilation Methods, Springer-Verlag (1981), pp 330.

[20] A. Bennett, B. Chua, L. Leslie, Generalized inversion of a global numerical
weather prediction model. Meteorol. Atmos. Phys. 60 (1996) 165-178.

[21] A. Bennett, B. Chua, L. Leslie, Generalized inversion of a global numerical
weather prediction model (II). Meteorol. Atmos. Phys. 62 (1997) 129-140.

[22] A. Bennett, L. Leslie, C. Hagelberg, P. Powers, Tropical cyclone prediction using
a barotropic model initialized by a generalized inverse method. Mon. Weather
Rev. 121 (1993) 1714-1729.

[23] A.F. Bennett ,Inverse Modeling of the Ocean and Atmosphere. Cambridge
University Press. (2002), pp 256.

[24] T. Bergot, Influence of the assimilation scheme on the efficiency of adaptive
observations. Q.J.R. Meteorol. Soc., 127, (2001) 635-660.

[25] T. Bergot, A. Doerenbecher, A study on the optimization of the deployment of
targeted observations using adjoint-based methods. Q.J.R. Meteorol. Soc., 128,
(2002) 1689-1712.
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