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An adjoint model for a 2D Galerkin/Petrov–Galerkin finite element (FE) shallow water (S-W) model is
developed using the Independent Set Perturbation (ISP, [40]) sensitivity analysis. Its performance in a full
4-D Var setup with a limited area shallow water equations model is assessed by comparing with the
adjoint model derived by the automatic differentiation approach (TAMC), where it is used for optimising
the initial conditions. It is shown that the ISP sensitivity analysis provides a very simple approach of form-
ing the adjoint code/gradients/differentiation of discrete forward models (even complex governing equa-
tions, discretization methods and non-linear parameterizations) and is realised using a graph colouring
approach combined with a perturbation method. Importantly, the adjoint is automatically updated as
the forward code continues to be developed. In the test cases, it is shown that the adjoint model using
the ISP sensitivity analysis can achieve the accuracy of traditional adjoint models derived by the automatic
differentiation method (TAMC) [31]. Further comparison shows that the CPU time required for running the
adjoint model using the ISP sensitivity analysis is much less than that required for the automatic differen-
tiation derived adjoint model since the ISP derived adjoint CPU time scales linearly with the problem size.

The ISP sensitivity analysis is further applied to a highly non-linear Petrov–Galerkin FE model. The per-
turbation size used in deriving the tangent linear model with the ISP sensitivity analysis method is then
optimised and the resulting approach used to assimilate both sparse (more realistic) and dense observa-
tional data for optimising the initial conditions. A simple first order formula is developed to calculate the
perturbation size for each variable, at each node and time level. By applying the ISP sensitivity method to
an intermediate complexity model (a shallow water model) this paper outlines steps towards applying the
approach to data assimilation (DA) problems involving realistic complex models.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

The Independent Set Perturbation (ISP, [40]) sensitivity analysis
is a method of differentiating finite element or control volume mod-
els. The method is derived using a graph colouring approach (form-
ing independent sets of variables) combined with a perturbation
method to obtain gradients in numerical discretization. Using the
ISP sensitivity analysis method the adjoint code becomes simple to
derive even with complex governing equations, discretization meth-
ods and non-linear parameterizations. Importantly, this greatly re-
duces the effort required to implement the tangent linear model
(differentiation of the discrete forward model) and its adjoint, and
maintains the adjoint code as the forward model code continues to
evolve, a desirable trait in operational implementations.

Cacuci et al. [1] was the first to originally develop variational/
perturbation methods using adjoint functions, based on Frechet-
derivatives, for performing systematic and efficient sensitivity
analysis of large-scale continuous and/or discrete linear and/or
non-linear systems, possibly with bifurcations, critical points and
global optimisation. Shortly thereafter, this method was further
generalised using Gateaux differential operators [9] for a non-lin-
ear operator of the system response along an arbitrary direction.
Adjoint sensitivity analysis methods are widely applied to chemi-
cal kinetics [2], optimisation [3,8,15], ocean and atmospheric sci-
ences [4–7,31,44–48] and nuclear science [10]. Furthermore,
Bischof et al. developed the pseudo-adjoint method for efficient
computation of Jacobian matrices using colouring approaches
[26,29].
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In Fang et al. [40] the ISP sensitivity analysis approach was
tested only for sensitivity purposes while in the present paper
the method is applied to a full 4-D Var (optimisation of initial con-
ditions) with a finite element discretization of a shallow water
equations model over a limited area domain and its adjoint. This
work focuses on comparing the performance of the ISP derived ad-
joint with Automatic Differentiation (AD) methods as well as opti-
mising the size of perturbations used within the ISP sensitivity
analysis.

While the usual AD tool has seen great advances, it remains a
challenging task to derive large scale adjoint models [11]. Auto-
matic differentiation tools such as ADOL-C [14], GRESS [42], Odys-
sée [18], and TAMC [19,20], ADIFOR [26,27], TAPENADE [17] and
TAF [16], implement the reverse mode of automatic differentiation
in an automated fashion. In addition, for non-linear problems, the
implementation of the reverse mode requires one to store or
recompute all forward solution variables. This can incur a prohib-
itively large CPU or memory cost especially for three dimensional
problems. A checkpointing scheme proposed by Griewank et al.
[12,13], and Charpentier [28] provides a way of overcoming these
shortcomings. This approach is being adopted in reverse mode
tools but the fact that potentially many values need to be stored
and/or recomputed implies that the reverse mode requires consid-
erable storage requirements to achieve the desired low floating
point complexity. This apart from the fact that the adjoint code
provided by AD tools still requires expert tuning by the user prior
to being ready for implementation.

More recently, reduced order approaches have been introduced
into 4-D variational data assimilation systems [21–25]. An approx-
imate linear reduced model can be obtained by projecting the for-
ward model onto a reduced subspace. Compared to the classical
variational method, the adjoint of the tangent linear model is re-
placed by the adjoint of a linear reduced forward model [22]. The
minimisation process of the related cost function is carried out in
reduced subspace and hence reduces the computational cost albeit
subject to limitations.

The ISP adjoint method [40] bears some similarity to the pseu-
do-adjoint method of Bischof et al. [26] in that it efficiently imple-
ments exploitation of the Jacobian sparsity associated with the
non-linear operator (advancing the system state using graph col-
ouring strategies) in typical stencil-based computations. It also
has some similarity to conceptual ideas of Christakopoulos et al.
[30]. However it differs in essential algorithmic parts from above
approaches as outlined below:

� It is suitable for any forward discrete schemes while pseudo-
adjoint methods only tackle explicit schemes e.g. leap frog time
differencing scheme.
� Implementation of adjoint codes using the ISP sensitivity anal-

ysis method involves only the matrix vector multiplication of
the forward model.
� Complex models can be easily differentiated as long as the

model can perform matrix vector multiplications involving the
forward model.

The accuracy of the ISP sensitivity analysis can be critically
dependent on the perturbation size of a number of variables and
controls for deriving the tangent linear model [40]. Two ap-
proaches are developed for the choice of the perturbation size.
These result in a different perturbation size for each finite element
solution variable at each time level.

The remainder of this paper is structured as follows: The finite
element shallow water model and its discretisations (including
both Galerkin and Petrov/Galerkin formulations) are described in
Sections 2 and 3. The derivation of the discrete adjoint model using
ISP sensitivity approach and the implementation of the adjoint
finite element shallow water model are discussed in Sections 4
and 5. The formulae for determining the non-uniform perturbation
size used in deriving the tangent linear model is described in Sec-
tion 6. In Section 7, the above adjoint model is applied for optimis-
ing the initial conditions (by data assimilation of observations
distributed in space and time) of the shallow water equations mod-
el. A comparison of accuracy of the adjoint models derived by the
ISP sensitivity analysis and automatic differentiation approach
(TAMC) is carried out. Discussion, future perspectives and conclu-
sions are provided in Sections 8 and 9.

2. Shallow water (S-W) equations

The shallow-water equations model is one of the simplest forms
of the equations of motion for incompressible fluid for which the
depth is relatively small compared to the horizontal dimensions.
These equations can be used to help determine the horizontal
structure of the atmosphere or oceans. They describe the evolution
of an incompressible fluid in response to gravitational and rota-
tional accelerations (see Tan [34], Vreugdenhil [35] and Galewsky
et al. [36]). The shallow-water equations in a 2D domain
X = (0,L) � (0,D) can be written as:

@/
@t
þ @ð/uÞ

@x
þ @ð/vÞ

@y
¼ 0; ð1Þ

@u
@t
þ u

@u
@x
þ v @u

@y
þ @/
@x
þ f v ¼ 0; ð2Þ

@v
@t
þ u

@v
@x
þ v @v

@y
þ @/
@y
� fu ¼ 0; ð3Þ

where u and v are the velocity components in the x and y axis
respectively, / = gh is the geopotential height, h is the depth of
the fluid and g is the acceleration of gravity. The scalar function f
is the Coriolis parameter defined by the b-plane (b = 1.5 � 10�11)
approximation:

f ¼ f̂ þ b y� D
2

� �
: ð4Þ

The Coriolis parameter

f̂ ¼ 2x sin h; ð5Þ

is defined at a mean latitude h0, here f̂ ¼ 10�4, where x is the angu-
lar velocity of the earth’s rotation and h is latitude. The shallow-
water equations require specification of appropriate initial and
boundary conditions. An initial condition is imposed as:

wðx; y;0Þ ¼ uðx; yÞ; ð6Þ

where state variables are w = w(x,y, t) = (u(x,y, t),v(x,y, t), /(x,y, t))
with periodic boundary conditions are assumed in the x-direction:

wð0; y; tÞ ¼ wðL; y; tÞ; ð7Þ

while solid wall boundary condition in the y-direction is:

vðx;0; tÞ ¼ vðx;D; tÞ ¼ 0: ð8Þ

The geopotential in u(x,y) will be specified later in the numerical
experiments.

3. Discrete system of shallow water equations

The discretisations of the finite element shallow water model
are described in this section. Both Galerkin and Petrov/Galerkin
finite-element methods (FEMs) are employed. The evolutionary
equations of continuity and momentum are coupled at each time
step using an extrapolated Crank–Nicolson method to quasi-linear-
ise the nonlinear advective terms.
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3.1. The finite-element model formulation at one time level

In the formulation of the Finite-Element model (FEM) variables
in (1)–(3), can be written as [41,32]:

u ¼
XN

k¼1

ukðtÞVkðx; yÞ; v ¼
XN
k¼1

vkðtÞVkðx; yÞ;

/ ¼
XN

k¼1

/kðtÞVkðx; yÞ; ð9Þ

where uk(t), vk(t) and /k(t) are the time-dependent nodal values of
wind fields and geopotential fields respectively, and Vk represents a
basis function (interpolation function) defined by the coordinates of
the nodes, N is the number of finite element nodes. The variable
vectors at time level n are written:

Un ¼ /n
1;/

n
2; � � � ;/

n
N

� �
; un ¼ un

1;u
n
2; � � � ; un

N
� �

;

vn ¼ vn
1; vn

2; � � � ;vn
N

� �
: ð10Þ

A Crank–Nicholson time differencing scheme was applied for tem-
poral integration of the ordinary differential equations resulting
from application of the Galerkin FEM [32,33]. The shallow-water
equations system was then coupled at every time step so that the
equations become quasi-linearised [37,38], since an average is ta-
ken at time level n � 1 and time level n of expressions, while the
non-linear advective terms are linearised by estimating them at
time level nþ 1

2 using the following second-order approximation
in time:

wH ¼ 3
2

wn � 1
2

wn�1 þ OðDt2Þ; ð11Þ

where the state variables w = w(x,y, t) = (u,v,/). Multiplying (1) by
Vi and integrating it over the computational domain, the discrete
form of the continuity equation which is first to be solved at a given
time step n + 1, is obtained

MðUnþ1 �UnÞ � Mt
2

Kn
1ðUnþ1 þUnÞ ¼ 0; ð12Þ

where M is the mass matrix at the computational domain X,

Mi;j ¼
Z Z

X
ViVjdX; Mxi;j ¼

Z Z
X
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and
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By applying Petrov–Galerkin FEM approach into the momentum
Eqs. (2) and (3), one obtains:

Mðunþ1 � unÞ þ Mt
2

Kn
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where
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In the v-momentum equation, since the most recent solution for
both /n+1 and un+1 at the current time step are known, vn+1 at the
next time step can thus be solved from (un+1,vn,/n+1).

The effective viscosities meff
u and meff

v are an application of Petrov–
Galerkin discretisation methods modified so as to result in positive
viscosities and are given by (see [50]):
meff
u ¼ c

rupuru

max �eff ; @u�n
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� �2 þ @u�n
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� �2
� � ;

meff
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� � ; ð19Þ

with
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and
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and

a�nux; a
�n
uy

� �T
¼
ðu�n; v�nÞT � rxu�n
� �

rxu�n

krxu�nk2
2

;
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�n
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� �

rxv�n

krxv�nk2
2

; ð22Þ

in which Dx, Dy are the size of the elements in the x- and y-direc-
tions and �eff is a tolerance used to avoid a ‘‘division by zero’’ error,
here �eff = 10�10, with c = 0 the Galerkin discretisation results while
with c = 1 obtains the Petrov Galerkin, whererxtu ¼ unþ1�un

Dt ; @u
@x ;

@u
@y

� �
.

Time steps are chosen so as to satisfy the Courant–Friedrichs–Levy
criterion for stability.

3.2. Global discrete model of the shallow water equations

The global discrete forward model representation of the govern-
ing equations above can be expressed in matrix form:

Aðm;WÞW ¼ s; ð23Þ

where WT ¼ ðW1T
W2T

; . . . ;WN t
TÞ is the vector of state variables;

sT ¼ ðs1T s2T
; . . . ; sN t

TÞ are the source vectors; mT ¼ ðm1m2; . . . ;mCÞ
(C is the number of controls) are the controls; and A is the global
matrix making up the discretisation in the forward model at all
the time levels, where N t is the number of time levels (for steady
state problems N t ¼ 1). At time level n, WnT = (UnT,unT,vnT) (For

Un, un and vnT, see (10)); snT ¼ sn
W

T sn
u

T sn
v

T
� �

where sn
W; sn

u and sn
v

are the source vectors associated with Un, un and vn respectively,

here sn
W ¼ sn

W1 sn
W2; . . . ; sn

WN
� �T

; sn
u ¼ sn

u1 sn
u2; . . . ; sn

uN
� �T , and

sn
v ¼ sn

v1 sn
v2; . . . ; sn

vN
� �T .

For the three-level time marching methods used here the global
matrix A has the structure:

A ¼

P2

H3 P3

I4 H4 P4

. .
. . .

. . .
.

IN t HN t PN t

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA
; ð24Þ

where at time level n
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s2 ¼ H2W1; s3 ¼ I3W1; ð28Þ

and
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0
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4. The global discrete adjoint model of the shallow water
equations

This section describes in detail how to derive the discrete ad-
joint model. In general the global matrix A (see Eq. (23)) is a func-
tion of the controls m and state variables W that is A = A(m,W).
The cost functional can be expressed as:

J ¼ Jðm;WÞ: ð30Þ

The ‘‘total sensitivity’’ dJðm;WÞ
dml

of J(m, W) with respect to a parameter
(‘‘control variable’’) ml is obtained by computing its respective Gate-
aux-differential, which is given by the following expression:

dJðm;WÞ
dml

¼ @J
@ml
þ @J

@W

� �T dW
dml

: ð31Þ
4.1. The global discrete tangent linear model of the shallow water
equations

The differentiation of Eq. (23) with respect to ml is

dA
dml

Wþ A
@W
@ml
¼ ds

dml
; ð32Þ

while

dA
dml

W ¼ @A
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@A
@wk

W; . . . ;
@A
@wN

W

� 	
¼ ðg1; ; . . . ;gk; . . . ;gN Þ: ð35Þ

The tangent linear model (TLM) (32) can be re-written:

@A
@ml

Wþ ðAþ GÞ @W
@ml
¼ ds

dml
: ð36Þ
4.2. The global discrete adjoint model of the shallow water equations

Forming the inner-product of Eq. (36) with an adjoint state var-
iable vector W⁄ in the Euclidean-space, yields

ðW�ÞTðAþ GÞ @W
@ml
¼ ðW�ÞT @s

@ml
� @A
@ml

W

� �
: ð37Þ

The adjoint model is defined,

ðAþ GÞTW� ¼ @J
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: ð38Þ

That is,
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in which the adjoint solution is W⁄n = (U⁄nT,u⁄nT,v⁄nT)T. The struc-
ture of the matrix G is expressed in (43).

The ‘‘total sensitivity’’ dJðm;WÞ
dml

in terms of the adjoint function can
be expressed:

dJ
dml
¼ @J
@ml
þ @s

@ml
� @A
@ml

W

� �T

W�: ð40Þ
5. The formation of the adjoint model using the independent set
graph-colouring methods

This section provides the details of the formation of the adjoint
model. The differentiation of discrete forward models here is rea-
lised using the ISP sensitivity analysis, i.e., a perturbation method
combined with a graph colouring approach. The graph colouring
approach (for details, see [40] and Appendix A) is used to construct
the matrices in the adjoint model (38) (for example, G) and help
accelerate the matrix equation assembly process. The perturba-
tions associated with each variable at each node and time level
are grouped in terms of colours and calculated concurrently.

5.1. The formation of the matrix G for the adjoint shallow water model

Since the matrix A is known in the adjoint model (38), the
remaining part of the calculation consists in the formation of the
matrix G in (38) and in particular the formation of the part of G
associated with a given time level n. The matrix G can be con-
structed by a perturbation method.

Suppose the perturbation vector is DWk = (0, . . . , 0, wk, 0,
. . . , 0)T for a perturbation Dwk of the kth entry in W then the kth col-
umn of G is:

G ¼ ðG0 � GÞE; ð41Þ

where E is a diagonal matrix with the diagonal entry Ei;i ¼ 1
Dwi

,
G ¼ ðAW;AW; . . . ;AWÞ and G0 ¼ g01;g

0
2; . . . ;gN c0

� �
with

g0k ¼ Aðm;Wþ DWkÞW: ð42Þ

In an implementation of the formation of the matrix G one needs to
perform matrix vector multiplications involving N c vectors. Thus,
the entire matrix G0 can be stored within N c vectors of length
3N � N t .
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For the three-level time marching methods in the shallow water
model (see the structure of the global matrix in Eq. (24)), the ma-
trix G in time has the following structure:

G ¼

L2

Q 2 L3

N2 Q 3 L4

. .
. . .

. . .
.

NN t�2 QN t�1 LN t

0
BBBBBB@

1
CCCCCCA
; ð43Þ

Nn ¼
0 Nn
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23
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1
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0 Q n
12 Q n

13
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23

0 0 Q n
33

0
B@

1
CA;
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0 0 0
0 Ln

32 0

0
@

1
A: ð44Þ

where L32 is a N �N matrix and L32i;k ¼R R
X VkVi

PN
j¼1

1
2 vnþ1

j þ vn
j

� �
@Vj

@x dX ðk ¼ 1; . . . ;NÞ.

5.2. The implementation of the adjoint shallow water model

The efficiency of implementation of the discrete adjoint model
can be realised because in time marching methods typically all of
the adjoint solution operates in an upper triangular structure
where each block is associated with a solution variable at a partic-
ular time step. This means that one can solve the adjoint equations
by marching backwards in time. Thus, matrix vector multiplica-
tion, GT W⁄, can be placed on the right hand side of the matrix solu-
tion for the adjoint in Eq. (38). In this case the matrix GT need not
be formed and the matrix vector multiplication GTW⁄ involving G0T-

W⁄ can be rendered highly efficient for the kth row using:

ðG0TW�Þk ¼ g0Tk W� ¼ W�TðAðm;Wþ DWkÞWÞ: ð45Þ

The perturbations associated with each node or variable k say are
grouped in terms of colours and in this way a number of these ma-
trix vector multiplications in (45) can be calculated concurrently
(for details, see [40] and Appendix A), i.e. form the dot product of
ĝ0c with the part of W⁄ associated with node k and form ðG0TW�Þk
for each row k and for colour c in which ĝ0c ¼

P
k2 colour cg0k. The

graph colouring scheme used for the three co-located variables w,
u and v is shown in Fig. 1. The distance-two graph associated with
the vertices and edges in Fig. 1 is coloured with nine colours and
thus there are nine colours for each of the three variables and with
coupling for the three time levels resulting a total of 9 � 3 � 3 = 81
colours. This means that a maximum of 81 + 1 matrix vector oper-
ations are required in order to form the matrix G. The matrix vector
operations of GTW⁄ is undertaken at each time level when running
the adjoint model backwards in time.

The discrete adjoint model (39) at each time level, say, t = n can
be written as:

ðPnT þLnTÞW�n ¼ @J
@Wn�ðH

nþ1T þQ n�1TÞW�nþ1�ðInþ2T þNn�2TÞW�nþ2:

ð46Þ

The matrices Ln, Qn�1 and Nn�2 (a dimensional size of 3N � 3N ) in
(44) are related to the state solutions and their perturbations at
time level n, n � 1 and n � 2 respectively. The matrix vector opera-
tions of GTW⁄ at this time level is LnW⁄n, Qn�1W⁄n+1 and Nn+2W⁄n

which can be calculated concurrently using the graph colouring
scheme. These matrices consist of a 9 point stencil (the graph col-
ouring scheme used for the three variables w, u and v is shown in
Fig. 1). The terms ds

dml
and dA

dml
in (37) can be formed using the same

perturbation approach.
6. Determining the perturbation size

Suppose f = f(v) is a scalar then the error in @f ðvÞ
@v using a pertur-

bation approach can be estimated as:

@f ðvÞ
@v

� �
E

� ejf ðvÞj
Dv ; ð47Þ

in which e is the accuracy of the computation e.g. e = 10�7 for single
precision and e = 10�15 for double precision, respectively. Combin-
ing the error in the computation with that associated with the per-
turbation size one obtains:

@f ðvÞ
@v

� �
E

� ejf ðvÞj
Dv þ 1

2
Dv @2f ðvÞ

@v2












; ð48Þ

or assuming second order terms are evaluated exactly using a third
order Taylor series:

@f ðvÞ
@v

� �
E
� ejf ðvÞj

Dv þ 1
4
ðDvÞ2 @

3f ðvÞ
@v3












; ð49Þ

in which say:

@2f ðvÞ
@v2 � f ðvþ DvÞ � 2f ðvÞ þ f ðv� DvÞ

2ðDvÞ2
; ð50Þ

and:

@3f ðvÞ
@v3 � f ðvþ 2DvÞ � 3f ðvþ DvÞ þ f ðvÞ þ f ðv� DvÞ

2ðDvÞ3
: ð51Þ

Differentiating (48) w.r.t. the perturbation size Dv and setting the
result to zero (which happens at the minimum error) then the step
size can be determined from (see [49]):

Dv �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ejf ðvÞj
@2f ðvÞ
@v2




 



vuut ; ð52Þ

and using Eq. (48) then to third order accuracy:

Dv � ejf ðvÞj
@3f ðvÞ
@v3




 



0
B@

1
CA

1
3

: ð53Þ

If one uses the second order perturbation approach to calculate the
error then the curvature is exactly represented and thus only the
computational error exists and the Taylor series expansion behind
the last term in Eq. (48) needs to be truncated at third order which
results in a term @3 f ðvÞ

@v3




 


, see Eq. (53). However, this term implies
much more demanding computational requirements.

A simple example of the error for the gradient of a scalar func-
tion of v is shown in Fig. 2. Notice that as the theory predicts for a
linear function of v the error is proportional to the magnitude of v
as described by Eqs. (47) and (48) for the quadratic functional, see
Fig. 2 (right). A similar graph of the L2 norm error in the gradient
would also be observed when one varies the perturbation size
while solving a control volume or finite element discretisation of
Burgers equation, see [40].

6.1. A simple method to estimate perturbation size

If normalised with a suitable typical value of the gradient,
@f ðvÞ
@v

� �
0

say, Eq. (47) can be used to form an estimate of the pertur-

bation size. Thus suppose:

ejf ðvÞj
Dv @f ðvÞ

@v

� �
0

¼ a; ð54Þ

for some scalar a representing the fraction of the normalised error
in the gradient required e.g. a = 10�4 for single precision and
a = 10�8 for double precision. Re-arranging this equation, yields:



Fig. 1. Distance-two graph colouring associated with 2D linear quadrilateral elements. Nine colours are used for each solution variable (the top horizontal panel: u, the
middle horizontal panel: v and bottom horizontal panel: /) at three time levels (the left vertical panel: t = n � 2, the middle vertical panel: t = n � 1 and the right vertical
panel: t = n).
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Fig. 2. The error in the first order derivative against perturbation size using a first order accurate perturbation method and single precision arithmetic and v = 1. (a) the black
line: f = 1 + v, red: f = 1000 + v, green: f = 10000 + v. (b) f = 1 + v + v2. (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)
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Dv ¼ ejf ðvÞj
a @f ðvÞ

@v

� �
0

: ð55Þ
When one is marching backwards in time in order to form the ad-
joint equations then one would use the next/future time level value
of the gradient as @f ðvÞ

@v

� �
0
.

6.2. Extension to matrices from discretised equations

The most rigorous extension to matrices A(w) with the matrix
elements A(w)ij is simply to apply (55) to each matrix element in
turn for a perturbation to a scalar wl of the vector W, that is:

Dwl ij ¼
ejAðwÞijj

a @AðwÞij
@wl

� �
0

: ð56Þ



Table 1
Grid schemes used in the test cases.

Grid schemes Node number Mesh size

Grid A 16 � 12 400 km � 400 km
Grid B 61 � 23 100 km � 200 km
Grid C 121 � 23 50 km � 200 km
Grid D 241 � 23 25 km � 200 km

F. Fang et al. / Computers & Fluids 76 (2013) 33–49 39
However, one may lump the result to the variable wl by considering
just row l of the matrix A(w) and using the definition of the matrix G
(Eq. (35)) then:

Dwl ¼ min Dwmax;
e
P

jjAðwÞljwjj

max �Dw; a
P

jjGjlj
n o

8<
:

9=
;: ð57Þ

The analogous result to the scalar equation result (52) based on the
traditional second order Taylor series approach is:

Dwl ¼ min Dwmax;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e
P

jjAðwÞljwjj

max �Dw;
P

j
@2AðwÞlj
@2wl

wj




 


n o
vuut

8><
>:

9>=
>;: ð58Þ

Here, �Dw is a tolerance used to avoid a ‘‘division by zero’’ error,
�Dw = 10�10 and Dwmax is the maximum value of the perturbation
size, Dwmax = 1 is used here. The columns associated with all the
free surface height variables (geopotential) in matrix G are zero
(see Eq. (35)) because the matrix A is a linear function of these vari-
ables (see Eq. (13)). For the incompressible Navier Stokes equations
one would also need to take into account the continuity equation
which could be lumped with a row sum of the absolute values of
the matrix for example. For robustness the values of the perturba-
tion size Dwl should be limited by suitably chosen minimum, Dwmin

say. One may also combine the above taking the minimum of Dwl

given by Eqs. (57) and (58). If one assumes that the non-linearity
in A(w) is such that each of the powers (up to 3 say) has roughly
equal coefficients then this value of a = 10�4 is a reasonable approx-
imation. In fact this is often the case for finite element and control
volume models (e.g. running near a Courant number
C ¼ Dt

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
un

Dx

� �2 þ vn

Dy

� �2
r

of order unity and the model (given by a mod-
ified Petrov–Galerkin based viscosity in this case, see Eqs. (17) and
(19)) being of similar magnitude to the momentum advection term
for the Navier Stokes or SWE’s) although there can be important
exceptions for the case of geostrophically balanced flow with rela-
tively large values of f.

For time dependent problems, the perturbation size Dwn
l on the

variable wn
l at time level n is calculated by running the adjoint

model backwards in time while the perturbation size Dwnþ1
l ob-

tained at time level n + 1 is used to calculate Gjl (see Eq. (35)):

Gjl ¼
X

k

@Ajk

@wn
l

wk �
P

k Ajkðm;wn
l þ Dwnþ1

l Þwk � Ajkðm;wlÞwk

� �
Dwnþ1

l

: ð59Þ

Here, Dwn+1 will affect the entries of the sub-matrices Hn, Hn+1,
Hn+2, Pn, Pn+1, Pn+2 in the global matrix A, respectively (see Eq. (24)).
Fig. 3. The accuracy of the adjoint model using a gradient test wðaÞ ¼ @J
@W0 ¼ ðJðW

0þadW0 Þ�J

ðadW0 T ÞrJðW

�
panel: Automatic differentiation. The cost functional J is defined as the weighted squared
tr in the Galerkin FE model where the dense observational data are available (here at ev
7. Numerical results

The ISP sensitivity method has been applied to the 2D shallow
water flow model (described previously) in a limited-area domain,
of horizontal dimensions 6000 km by 4400 km with the origin
(x,y) = (0,0) located at the bottom left corner of the domain. The
accuracy and speed of the ISP sensitivity method is compared
against AD using TAMC in this section for the shallow water model.
The applications also show the results of applying the non-uniform
perturbation size as described in Section 6.2. All simulations were
performed on a Dell Latitude E4200 in 4G of RAM and with a dual
core 1.5 GHz processor. All calculations were performed in double
precision.

7.1. Description of the test problem

The test problem used here adopts the initial conditions from
the initial height field condition of Grammeltvedt No.1 [39]:

hðx; yÞ ¼ H0 þ H1 tanh
9ðD=2� yÞ

2D

� �

þ H2 1=cosh2 9ðD=2� yÞ
D

� �� �
sin

2px
L

� �
; ð60Þ

where this initial condition has energy in wave number one in the
x-direction. The initial velocity fields were derived from the initial
height field using the geostrophic balance:

u ¼ � g
f

� �
@h
@y
; v ¼ g

f

� �
@h
@x
: ð61Þ

The dimensional constants used here are:

D ¼ 4400 km; L ¼ 6000 km; �f ¼ 10�4 s�1;

b ¼ 1:5� 10�11 s�1 m�1;

g ¼ 10 ms�1; H0 ¼ 2000 m; H1 ¼ 220 m; H2 ¼ 133 m;

ð62Þ

and the time step size is Dt = 900 s, and four grid schemes (space
increments) used here are shown in Table 1.
ðW0 ÞÞ
0 Þ

�
. The adjoint model is derived using: left panel: ISP sensitivity approach; right

difference between the model solution and observations at the different time levels
ery 5 h, see Eq. (63)) and the control variables are the initial conditions (U0,u0,v0).
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7.2. Cost function

The aim of 4D-Var is to determine optimal control variables
(e.g., initial conditions) by minimising the cost function measuring
the lack of fit between model and observations. The cost function J
Fig. 4. The gradient of the cost function J with respect to the initial conditions and gradi
initial guess is given by applying a 5% uniform random perturbation on the exact initial c
ISP sensitivity analysis while the open cycle marks represent the solutions using the AD
between the model solution and observations (available at the time level t = 24 h and
(U0,u0,v0). Grid A (see Table 1) is used.
is defined as the weighted squared difference between the initial
conditions W0 = (U0,u0,v0) and the background state Wb = (Ub,
ub,vb), and between the model solution Wn and observations yn

o

distributed over the computational window of assimilation
½t0; tNt � (following the notation proposed by Ide et al.) [48]
ent error in the Galerkin FE model during the simulation period [0,24] h, where the
onditions. In figures (a) (c) and (e), the star marks represent the solutions using the
package TAMC. The cost functional J is defined as the weighted squared difference
at every grid point, 400 km) and the control variables are the initial conditions



Fig. 5. The normalised cost function and the corresponding normalised gradient with respect to the initial conditions in the Galerkin FE shallow water model during
optimisation iteration (the simulation period [0,24] h) using the ISP sensitivity method. The initial guess controls are taken: Case1–Solid line: from the true flow field
(pseudo-observations) at t = 1 h; Case 2–dashed-dotted line: from a ‘static’ status, i.e. (U0,u0,v0) = 0.0; Case 3–dashed line: by applying a 5% uniform random perturbation on
the exact initial conditions. Left: the normalised cost function; right: the normalised gradient. The cost functional J is defined as the weighted squared difference between the
model solution and observations, at the time level t = 24 h (see Eq. (63)) and the control variables are the initial conditions (U0,u0,v0). The normalised cost function: Ji/J1,
where Ji is the cost function at iteration i, and J1 is the cost function at the first iteration (J1 = 1.789 � 103 for case 1; 1.643 � 104 for case 2 and 2.481 for case 3); The

normalised gradient: dJi

dml

��� ���
2

.
dJ1

dml

��� ���
2
, where, dJi

dml
is calculated using (40). Grid A (see Table 1) is used.
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JðW0Þ¼1
2
ðW0�WbÞT B�1ðW0�WbÞþ

1
2

XNt

n¼1

HWn�yn
o

� �T R�1 HWn�yn
o

� �
;

ð63Þ

where B is the background error covariance matrix (containing
information about the magnitude of the background errors and
their correlations), H is the observation operator, W0 is a vector con-
taining the initial conditions (the control variables ml in (30)), Wn is
a vector containing the solution of variables from the model at time
level n, and yn

o is the observation at time level n.

R�1 ¼ R�1
/ ;R�1

u ;R�1
v

� �
are weighting factors that are taken to be

the inverse of the statistical root-mean-square observational errors
on geopotential height and wind components respectively. In this
experiment, the diagonal entries of R�1 are taken to be constant val-
ues: R�1

/ ¼ 10�4 for geopotential height; and R�1
u ¼ R�1

v ¼ 10�2 for
velocity components. Also R�1 is only non-zero at the nodes where
there are observations. The data that is used in the data assimilation
procedure is collected at time level t = 24 h only. This is the default
Fig. 6. The effect of the frequency of assimilating the observational data on the convergen
line); and only one time level t = 24 h (dashed line) during the simulation period [0,24]
the initial conditions in the Galerkin FE shallow water model during optimisation iteratio
on the exact initial conditions. Grid A (see Table 1) is used.
observation scheme in time. However, some of the data assimilation
example problems observe the ocean state at time levels
t = 4,9,14,19,24 h (e.g. Figs. 3 and 6). There are two options for
observations available over the space: (i) at every 400 km, and (ii)
at every 2000 km (sparse data) in the x and y directions
respectively.

7.3. Accuracy of the adjoint model derived using the ISP sensitivity
analysis approach

The accuracy of the adjoint model derived using the ISP sensi-
tivity analysis approach can be determined using a gradient diag-
nostic [44]. That is the quantity:

wðaÞ ¼ DJ

DW0 �
JðW0 þ adW0Þ � JðW0Þ
� �
ðadW0TÞrJðW0Þ

; ð64Þ

which must be of order 1 + O(a) in which dW0is an arbitrary unit
vector (such as dW0 =r J/krJk2) (here, the control variables are
ce of the optimisation. The observational data are assimilated at (a) every 5 h (solid
h. Left: the normalised cost function; right: the normalised gradient with respect to
n. The initial guess controls are taken by applying a 5% uniform random perturbation



Table 2
The relative error in the optimised initial condition for the Galerkin FE model (the simulation period is [0,24] h). The optimisation
procedure starts from the initial guess controls which are taken from the true flow field at t = 1 h. The cost functional J is defined
as the weighted squared difference between the model solution and observation data, and the data is observed every 5 h started
from t = 4 h inclusive. Grid A (see Table 1) is used.

Automatic differentiation ISP sensitivity analysis

Maximum error in the geopotential height 0.4236 � 10�6 m 1.4353 � 10�6 m
Maximum error in the velocity component u 4.2960 � 10�6 m/s 1.6303 � 10�6 m/s
Maximum error in the velocity component v 35.814 � 10�6 m/s 24.421 � 10�6 m/s
Mean error in the geopotential height 0.0395 � 10�6 m 0.1613 � 10�6 m
Mean error in the velocity component u 0.1334 � 10�6 m/s 0.1101 � 10�6 m/s
Mean error in the velocity component v 1.5265 � 10�6 m/s 1.1868 � 10�6 m/s
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the initial conditions W0 = (U0,u0,v0))). Fig. 3 shows the variation of
the function w with respect to a. It can be seen that (as required) the
function w(a) is close to unity when a varies between 10�3 and
10�12 which is evidence of the accuracy of the ISP sensitivity meth-
od as applied to the shallow water model.

7.4. Comparison of gradients obtained from the ISP sensitivity analysis
and the AD package TAMC

7.4.1. Gradient results
The gradient results of the cost function with respect to the ini-

tial conditions ((U0,u0,v0)) are calculated using both the ISP sensi-
Fig. 7. The Galerkin FE model: the comparison of optimised solutions of speed at t = 24
‘True’ solution and Optimised solution using; (b) the sparse and grid B; (c) the dense data
at every 2000 km along the x and y directions; while dense data is available at 180 locatio
provided in Table 1. The optimisation procedure starts from the initial guess controls w
tivity analysis as well as the automatic differentiation package
TAMC. The gradient results are given in Fig. 4 and compared with
the direct gradient results. The direct gradient is determined by
making a small perturbation (10�10) in each of the controls (the
initial conditions) and determining the change in the functional
and this way calculating the gradient, that is DJ

10�10. The initial con-
dition for this gradient determination problem is the initial condi-
tion described by Eq. (60) with a 5% uniform random perturbation
to the initial free surface height at each node. The error in the gra-
dients is defined as the misfit between the adjoint gradient and di-
rect gradient. It can be seen from the numerical results that both
the adjoint gradient results are very close to the direct gradient
h using the ISP sensitivity analysis approach (the simulation period is [0,24] h). (a)
and grid A; and (d) the sparse data and grid A. Sparse data is available at 9 locations:
ns: at every 400 km along the x and y directions. The details of the grid schemes are

hich are taken from the true flow field at t = 1 h.



Table 3
Comparison of CPU required for running the adjoint model at one time level using the
ISP sensitivity analysis and automatic differentiation (TAMC).

Mesh (node
number) (control
size n)

Running
processes

CPU (Automatic
differentiation)

CPU (ISP
sensitivity
analysis)

61 � 23 Assembling
matrix

5 0.015

Solver 6 0.38
Transpose 0 0.03
Matrix
multiplication

0 0.18

Total CPU 11 0.61

121 � 23 Assembling
matrix

12 0.02

Solver 27 0.79
Transpose 0 0.06
Matrix
multiplication

0 0.35

Total CPU 39 1.22

241 � 23 Sssembling
matrix

29 0.05

Solver 112 1.58
Transpose 0 0.11
Matrix
multiplication

0 0.7

Total CPU 114 2.44
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results. The error for gradients of the geopotential height (calcu-
lated by both the ISP sensitivity analysis and the AD package
TAMC) is smaller than 0.06 m2 s�2. The error for gradients of the
velocity components is smaller than 0.05 m/s when obtained by
the ISP sensitivity analysis method, while 0.13 m/s by the auto-
matic differentiation. The data is assimilated using observational
data available only at t = 24 h in this problem.

7.4.2. 4D-Var data assimilation for optimising the initial conditions
The ISP sensitivity analysis derived model is now used to opti-

mise the initial conditions ((U0,u0,v0)). The data assimilation
experiments are designed using an identical twin technique. Pseu-
do-observations are obtained by running the forward model with a
5% random perturbation on the exact initial conditions, see Eq.
(60). To assess the effect of the incomplete observational data on
Fig. 8. The comparison of CPU for running the adjoint Galerkin FE model at one tim
the optimised results, both the dense (available at every 400 km)
and sparse (at every 2000 km in the x and y directions respectively)
observational data are used. The error between the assimilated
(optimised) initial conditions and the exact model variables (ob-
tained from running the model forward in time from conditions
(60) is calculated. Optimised results obtained using the ISP sensi-
tivity analysis and those obtained by the automatic differentiation
derived adjoint are compared here. The observation for the follow-
ing three cases are taken at t = 24 h only. An initial guess of the ini-
tial conditions in the optimisation is taken: case 1 – from the ‘true’
flow field (pseudo-observations) at t = 1 h; case 2 – from a ‘static’
status, i.e. (U0,u0,v0) = 0.0; case 3 – by applying a 5% uniform ran-
dom perturbation on the exact initial conditions (which are used to
produce the pseudo-observations). In this paper, the L-BFGS meth-
od [43] is used to minimise the cost functional measuring the mis-
fit between the model solutions and pseudo-observations.

It can be seen from Fig. 5 that the evaluation of the normalised
cost function converges to the prescribed tolerance 10�10 for cases
1 and 2 and 10�7 for case 3 after 30 iterations. The increase in the
frequency of assimilating the observational data speeds up the
convergence of the normalised cost/gradient function (Fig. 6,
where the observational data are assimilated at every 5 h). The
normalisation coefficient is the cost function at the start of the first
L-BFGS iteration. The speed of convergence for both the ISP sensi-
tivity analysis and automatic differentiation package TAMC is sim-
ilar. The error in the optimised initial conditions is shown in
Table 2. The maximum error in geopotential height is
1.44 � 10�6 (ISP) and 0.42 � 10�6 (TAMC). For velocity compo-
nents u the maximum error is 1.6 � 10�6 for ISP and 4.3 � 10�6

for TAMC. For velocity components v the maximum error is
2.4 � 10�5 for ISP and 3.6 � 10�5 for TAMC. Thus the ISP sensitivity
analysis derived adjoint model achieves a similar level of accuracy
as the automatic differentiation model. The optimised results ob-
tained from both the dense and sparse data are close to the ‘true’
flow solutions (pseudo-observations) (see (c) and (d) in Fig. 7).
The accuracy of solutions is further improved (see (b) in Fig. 7)
when a high resolution mesh (Grid B, see Table 1) is used.
7.4.3. Comparison of CPU time
For further comparison the CPU time for running the adjoint

model at one time level using the ISP sensitivity analysis and
e level using the ISP sensitivity analysis and automatic differentiation (TAMC).
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automatic differentiation models is listed in Table 3 and plotted in
Fig. 8. The CPU time required for running the ISP derived adjoint
model is much less than that for running the automatic differenti-
ation derived adjoint model especially for the large number of
nodes required in the computational simulation. It is shown that
the ISP derived adjoint model requires CPU time proportional to
O(n) while CPU time proportional to O(n2) is required for the auto-
matic differentiation derived adjoint model (where n is the number
Fig. 9. The comparison of the optimised initial conditions (using the ISP sensitivity anal
Galerkin FE model (right panel). The simulation period is [0,24] h; and the sparse ob
directions). The optimisation procedure starts from the initial guess controls which are
of nodes used in the simulation). This is similar to results obtained
by the pseudo-adjoint method of Bischof et al. [26].

7.5. The non-linear Petrov–Galerkin FE model and variable
perturbation size

Up to this point we have used a Galerkin FE discretisation (c = 0
in Eqs. (17) and (19)) and thus since the discrete system of
ysis approach) using between the Petrov–Galerkin FE model (left panel); and the
servational data is available at nine locations (every 2000 km along the x and y

taken from the true flow field at t = 1 h. Grid A (see Table 1) is used.
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equations is quadratic the ISP sensitivity method produces exact
(to computational round off error) adjoints and sensitivities inde-
pendent of the perturbation size. In this subsection the conse-
quences of performing simulations using the Petrov–Galerkin
approach (c = 1) with increased non-linearity are investigated. This
model is thought to be representative of sub-grid-scale models
which often represent sub-grid-scale and unresolved physics (e.g.
turbulence) with highly non-linear functions. This contributes to
our efforts to demonstrating that the ISP sensitivity approach can
Fig. 10. The Petrov–Galerkin FE model: the optimised solution at t = 24 h using the IS
optimised solution; right panel: the ‘true’ solution. The sparse data is assimilated at nine
optimisation procedure starts from the initial guess controls which are taken from the t
be used in highly complex models by first applying it to an inter-
mediate complexity model (the shallow water equations) with
sophisticated sub-grid-scale modelling based on Petrov–Galerkin
methods.

7.5.1. Data assimilation using the Petrov–Galerkin FE model
The ISP sensitivity analysis is applied with the Petrov–Galerkin

FE model to optimise the initial conditions (U0,u0,v0). The opti-
mised results obtained by assimilating the sparse data into the
P sensitivity analysis approach (the simulation period is [0,24] h). Left panel: the
locations: at every 2000 km along the x and y directions at time level t = 24 h. The

rue flow field at t = 1 h. Grid B (see Table 1) is used.
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model are smoother (due to the dissipative properties of the
Petrov–Galerkin method) and closer to the ‘true’ solution when
compared with those obtained by the Galerkin FE model (Fig. 9).
The optimised results at time level t = 24 h are very close to the
true solution (Fig. 10). The CPU time required for running the
Petrov–Galerkin adjoint model is proportional to O(n), which is
similar to that required for running Galerkin adjoint model.
7.5.2. Determining the perturbation size
With the extra non-linearity provided by the Petrov–Galerkin

method the size of the perturbations now becomes important
and so we compare the two approaches developed here to obtain
these so that every solution variable now has its own perturbation
size at every time level. The first approach is based on traditional
Taylor series error analysis (52) and the second approach is rela-
tively simple (55) and is based on the (Figs. 12 and 11) observa-
tions that modelling and resolved physics terms in the equations
have approximately equal orders of magnitude. Thus the two ap-
proaches should yield comparable perturbation size distributions
at time levels t = 0.05 h (Fig. 12) and t = 24 h (Fig. 11). The simpler
approach seems to have its largest perturbation sizes in the faster
areas of the flow where as for the second order approach such a
correlation is not so clear. This is due to the use of the second order
term on the denominator of Eq. (58) and may be due to increases in
errors in the formation of higher order derivatives – second order
derivatives in this case.
Fig. 11. The Optimised perturbation size at t = 24 h (Sparse data at nine locations: ob
approach; Right panel: the second order approach. Grid A (see Table 1) is used.
The simpler approach is at its most accurate when the linear
term in A is comparable in magnitude to the non-linear terms in
A – the discretised system of equations at every time step. For
small time step sizes this is clearly not the case as the mass matri-
ces from the time discretisation have the dominant contribution.
However, often one chooses time step sizes based on what one
can get away with and in this case the linear and non-linear terms
may have a similar size and their relative magnitudes may be
determined approximately by the grid Courant number C.
8. Further discussion and future perspectives

The application of adjoints is often limited to flow problems
where the linearised approximation is valid. One of the critical is-
sues for adjoint based approaches is how to deal with highly non-
linear discrete systems, see [51,52]. We show how this can be done
by applying the ISP sensitivity analysis to a Petrov–Galerkin meth-
od that introduces highly non-linear terms. We show that the ISP
sensitivity approach can be used to help assimilate data using a
highly non-linear model (see Fig. 10). This should be seen as a step
towards applying the method to much more complex problems
which typically parametrize (model) unresolved processes using
highly non-linear terms e.g. Large Eddy Simulation methods for
turbulence modelling.

For the ISP sensitivity approach, the gradient/sensitivity of the
cost function J is exact when the discrete forward model is
served at every 2000 km along the x and y directions). Left panel: the first order
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quadratic. To test its accuracy in a highly non-linear model, the ISP
sensitivity approach is applied here to a Petrov–Galerkin version of
the same shallow water model. The optimal results obtained are
promising (see Fig. 10).

For highly non-linear systems (such as produced by the Petrov–
Galerkin approach used here), the perturbation size is one of the
critical issues affecting the accuracy of sensitivity analysis. A sim-
ple formula is developed and shown to work well in practice for
the Petrov–Galerkin FE model.

In view of the encouraging results obtained (note: these results
are model dependent), we plan to test the ISP sensitivity analysis
method on more complex models. Another direction of research
for exploration is to test performance of the ISP sensitivity analysis
approach vs the performance of other AD packages such as the
readily available TAF and TAPENADE. The ISP sensitivity approach
is suitable for use in parallel computing as it is based on colouring
methods which can easily extract fine grain parallelism.

In addition, the next generation of atmospheric and oceanic
models will be even more complex than current generation in for
example oceans, atmospheric and multi-phase flows. Thus there
is a pressing need to develop methods that can differentiate these
models within reasonable CPU times. Often these models are so
complex that current AD tools will simply fail or require extensive
intervention to produce sensible run times. One of the key reasons
for this complexity is the use of unstructured meshes and the asso-
ciated indirect addressing and additional logic associated with
Fig. 12. The Optimised perturbation size at t = 0.05 h (Sparse data at nine locations: o
approach; right panel: the second order approach. Grid A (see Table 1) is used.
these. Due to the magnitude of effort that goes into compilers AD
methods may always lag behind and often unable to be used with
the latest enhancements to modern computer languages like C++
and FORTRAN. The ISP sensitivity method as an alternative to AD
tools provides a different approach to tackle this pressing problem.
In fact it is relatively easy to substitute the formation of the key
matrix G in Eq. (41) with AD tools and have them operate at this
assembly level. This allows the mechanisms developed here to be
used but also in conjunction with AD methods and for the method
to scale linearly with the problem size, see [26] for examples of this
approach. The user intervention sometimes necessary with AD
tools is redundant with the ISP sensitivity analysis as it is indepen-
dent of the forward model. That is any new parameterization or
assembly routines will be automatically differentiated. AD tools
may also produce code that is much more complex (out of neces-
sity) since the differential of the various terms in the discrete equa-
tions can be highly complex after differentiation. The ISP approach
circumvents this additional overhead at the cost of introducing
perturbations into the approach. However, these perturbations
sizes can easily be optimised as demonstrated here.

In addition, there is a possibility of developing a modelling
framework that can allow all models to be differentiated within
that framework with the proviso that all models be written in such
a way that matrix vector multiplication involving the forward
model be easily performed. We hope also that in such modelling
frameworks that may couple different physics (multi-physics) such
bserved at every 2000 km along the x and y directions.). Left panel: the first order
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as oceans coupled to an atmosphere and solids coupled to fluids
can also be differentiated using the presently discussed approach.

The intent of this work is to make adjoint based methods more
accessible with the development of the ISP sensitivity approach in
view of its following advantages:

� reduces the CPU time required to differentiate complex models;
� results in differentiated models that scale optimally with prob-

lems size (linearly);
� enables the model to automatically keep up with developments

of the forward model;
� enables a modelling framework to be written that can allow all

models to be differentiated within that framework;
� enables one to extract fine grain parallelism due to the use of

colouring methods.

9. Conclusions

The development of the 4D-Var adjoint model for a finite ele-
ment Galerkin shallow water model is presented here. Using the
ISP sensitivity analysis approach, the adjoint model is easily imple-
mented and maintained as the forward model is updated. Differen-
tiation of the discrete forward model is realised by a graph
colouring approach combined with a perturbation method to ob-
tain consistent gradients involving discrete equations.

The accuracy of the ISP sensitivity analysis derived adjoint mod-
el is validated and the resulting gradients found to have compara-
ble accuracy to automatic differentiation applied through the
automatic differentiation package TAMC. The ISP sensitivity analy-
sis derived adjoint model is also applied to optimise the initial con-
ditions of the 2D shallow water model. The rate of convergence, to
a local minima, of both the ISP sensitivity analysis and automatic
differentiation package TAMC are similar. The CPU time using the
ISP sensitivity analysis approach scales linearly with problem size
– although this may be achieved with automatic differentiation
methods it may require considerable effort. For the test case in this
paper, using the ISP sensitivity analysis approach, the CPU time for
running the adjoint model is 20 times smaller, for the largest prob-
lem considered, than that required by the automatic differentiation
approach. Moreover, it is shown that the CPU time required for the
ISP derived adjoint model is a linear function of the number of
nodes N used in the simulation, OðN Þ, while OðN 2Þ for the auto-
matic differentiation derived adjoint model.

Testing of the ISP sensitivity approach has further been carried
out with a highly non-linear Petrov–Galerkin version of the same
shallow water model. The optimised initial conditions are very
close to the exact ones. The perturbation size is determined by
the first/second order formulations and varies over space and time.
As far as the ISP sensitivity analysis is concerned the intermediate
complexity shallow water model contains all of the complexities
associated with a complex flow model (e.g. atmospheric and ocean
models): has a highly-non-linear sub-grid-scale model; multiple
unknowns at each node requiring multi-dimensional colouring
methods; non-uniform and time dependent optimised perturba-
tion sizes. However, using the intermediate complexity model it
is much easier to understand and examine the performance of
the ISP sensitivity method.
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Appendix A. Graph colouring methods

The graph colouring approach, as shown here, can be used to
simplify the structure of the matrices (described above) and help
accelerate the matrix equation assembly process. The matrices
associated with the non-linear terms can be expressed by a set of
submatrices. These sub-matrices are time-independent and can
be easily differentiated to form adjoint systems of equations. The
differentiation of discrete forward models here is realised using
the ISP sensitivity analysis i.e., a perturbation method combined
with a graph colouring approach. The perturbations associated
with each variable at each node and time level are grouped in
terms of colours and calculated concurrently (see the section
below).

In graph theory, graph colouring is a special case of graph label-
ing; it is an assignment of labels traditionally called ‘‘colours’’ to
elements of a graph subject to certain constraints. In its simplest
form, it is a way of colouring the vertices of a graph such that no
two adjacent vertices share the same colour; this is called a vertex
colouring.

Graph colouring methods are commonly used to model the
dependency between different subtasks or data. Here we define
the graph Gr = (Vg,Eg), where the vertex set, Vg, are the nodes or
cells of the finite element or control volume mesh (i.e. the rows
of a discretisation matrix), and the edge set, Eg, is defined by the
connectivity under a given stencil, see below. The chromatic num-
ber (the smallest number of colours needed to colour the vertices
of Gr so that no two adjacent vertices share the same colour),
v(Gr), is bounded by:

xðGrÞ 6 vðGrÞ 6 DðGrÞ þ 1;

where x(Gr) is the clique (a subset of its vertices such that every
two vertices in the subset are connected by an edge) number and
D(Gr) is the maximum vertex degree [53]. v(Gr) is the minimum
number of colours necessary to colour a graph. However, the num-
ber of colours obtained by a colouring algorithm N c might exceed
this minimum.

An example of a quadratic non-linearity in advection terms can
be written in a matrix Qq whose element assumes the form:

Qqij ¼
Z

X
Niq

@Nj

@x
dX; ð65Þ

where q ¼
PN

k¼1Nkqk and q = u⁄n,v⁄n,un+1 in K1 i;jn , K2 i;jn and K3 i;jn in
Eqs. (14), (17) and (19). When forming non-linear quadratic discret-
isations, it is important to look at the independent sets of basis
functions Nk used in

R R
X NiNk

@Nj

@x dX for any nodes i and j. That is
for the ith row and jth column of the matrix associated withR R

X NiNk
@Nj

@x dX no two basis functions Nk of the same colour con-
tribute a non-zero value to this row and column.

For a node-wise Nk (in Fig. 1) the graph associated with the
non-zero’s of the matrix Q T

qQ q can be coloured so as to achieve
the required independent sets of

R R
X NiQk

@Nj

@x dX, which is also
referred to as a distance-two colouring of the sparsity pattern of
matrix Q [54]. The matrix Q c

qij in (65) can be expressed in the
colouring scheme:

Q qijc ¼
Z Z

X
Nib

cNjdX; ð66Þ

where
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bc ¼
XQ
k¼1

Q kbc
k; bc

k ¼
1 if node k is of colour c;

0 at other nodes:


ð67Þ

The graph colouring approach outlined here for matrix Q can be ap-
plied to efficiently differentiate the matrices Kn

1, Kn
2 and Kn

3 in Eqs.
(12), (15) and (16).

Fig. 1 shows the distance-two graph colouring scheme used
here for u, v and / at three time levels t = n � 2, t = n � 1 and
t = n. The distance-two graph associated with the vertices and
edges is coloured with 9 colours. This graph colouring scheme is
applied to all the variables at each time level and thus there are
nine colours for each of the three variables (in Fig. 1: the top panel
for u, the middle panel for v and the bottom panel for /). Taking
into account the three-level time marching methods used here, a
total of 9 � 3 � 3 = 81 colours is required in this study.
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