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SUMMARY

A novel proper orthogonal decomposition (POD) model has been developed for use with an advanced
unstructured mesh finite-element ocean model, the Imperial College Ocean Model (ICOM, described in
detail below), which includes many recent developments in ocean modelling and numerical analysis. The
advantages of the POD model developed here over existing POD approaches are the ability:

1. To increase accuracy when representing geostrophic balance (the balance between the Coriolis terms
and the pressure gradient). This is achieved through the use of two sets of geostrophic basis functions
where each one is calculated by basis functions for velocities u and v.

2. To speed up the POD simulation. To achieve this a new numerical technique is introduced, whereby
a time-dependent matrix in the discretized equation is rapidly constructed from a series of time-
independent matrices. This development imparts considerable efficiency gains over the often-used
alternative of calculating each finite element over the computational domain at each time level.

3. To use dynamically adaptive meshes in the above POD model.
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1. INTRODUCTION

Proper orthogonal decomposition (POD) is a numerical procedure that can be used to extract
a basis for a modal decomposition from an ensemble of signals. The technique was originally
proposed independently by Kosambi [1], Loève [2] and Karhunen [3] and is alternatively known as
the Karhunen–Loève decomposition (KLD) method. Related methodologies have, however, been
developed in a variety of disparate disciplines [4]. The procedure is also known as principal compo-
nents analysis (PCA) [5] in statistics, and empirical orthogonal functions (EOF) in oceanography
[6, 7] and meteorology [8].

POD has been widely and successfully applied to numerous fields, including signal analysis
and pattern recognition [5], fluid dynamics and coherent structures [9–12] and image reconstruc-
tion [13].

An important innovation in the use of POD for large problems in fluid dynamics involves using a
series of snapshots, which consist of a set of state solutions evaluated at different time instants
and determined from the evolution in time of the full model [14–17]. The snapshots are used to
compute the POD basis vectors to yield an optimal representation of the data so that for any given
basis vector size, the two-norm of the error between the original and reconstructed snapshots is
minimized.

POD methodologies, in combination with the Galerkin projection procedure, have also been
shown to provide an efficient means of generating reduced-order models [11, 18, 19]. This technique
essentially identifies the most energetic modes in a time-dependent system, thus providing a means
of obtaining a low-dimensional description of the system’s dynamics. To improve the accuracy of
reduced models, the goal-oriented approach has been used to optimize the POD bases [20, 21].
The dual-weighted POD approach seeks to provide an ‘enriched’ set of basis functions combining
information from both model dynamics and the data assimilation system. The practical utility of the
POD approach is extended to large-scale complex flow dynamics such as atmospheric and ocean
modelling and the four-dimensional variational (4D-Var) data assimilation [18, 22–24], where it
is often hard to solve their discrete models due to their large dimension (typically in the range of
106–108). The POD has been successfully applied for a broad range of fluid dynamic applications;
however, the POD approach (1) is sensitive to details of snapshots used and the choice of inner
products, (2) depends on how well the data ensemble captures the relevant system behaviour.
Therefore, the POD method cannot always guarantee accuracy or stability of the reduced model
[25]. The loss of accuracy in the POD-reduced model is compensated by the gain on computational
efficiency.

The motivation of the present study is to develop a POD-based reduced model for an unstructured
ocean model, i.e. the Imperial College Ocean Model (ICOM), that can simultaneously resolve
both small- and large-scale ocean flows while smoothly varying resolution and conforming to
complex coastlines and bathymetry [26, 27]. What distinguishes the reduced model developed
here from other existing reduced models is the inclusion of an adaptive mesh capability. This
represents the main challenge in the implementation of the POD approach. When adaptive meshes
are employed, the mesh resolution requirements may be spatially and temporally different, as the
meshes are adapted according to the flow features. This unavoidably introduces difficulties in the
implementation of a POD-based reduced model for an adaptive model. One of these challenges is
that snapshots can be of different lengths at different time levels. To overcome these difficulties,
a standard reference fixed mesh is adopted for the reduced models. The solutions from the full
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REDUCED-ORDER MODELLING OF AN ADAPTIVE MESH OCEAN MODEL 829

models are then interpolated from their own mesh onto the same reference fixed mesh at each time
level. This allows the same number of base modes at each time level.

One of the important issues in reducing ocean models is to accurately represent the geostrophic
balance. In this study, the pressure variable is divided into two parts: non-geostrophic and
geostrophic pressures. The basis function for the geostrophic pressure is constructed by two sets,
which should satisfy the geostrophic balance and be calculated by the basis functions for the
velocity components u and v, respectively.

In order to construct an efficient POD model, a new numerical technique is introduced. A
general discretized reduced model at the time level n can be expressed as An�n =sn , where �n is
a vector of the coefficients associated with the basis functions for the variables in the full model.
Calculating matrix An at each time level is compute-intensive. To accelerate the POD simulation,
matrix An is constructed by a set of time-independent matrices, which are obtained prior to running
the reduced model.

Error estimation is a critical issue in reduced-order modelling. The references related to error
estimation can be found in [28–33] to cite but a few. Early work on error in model reduction has been
done by Utku et al. [28], where the first-order error estimation of the model reduction for nonlinear
systems is given at a small number of time steps. More recently, the dual-weighted-residual (DWR)
method, which makes use of the solution of an adjoint system, has been incorporated into the error
estimation of reduced models [21, 30, 32, 34]. Using this method, it is possible to obtain ‘a priori’
error estimate for a certain cost functional of solution. This error estimate can be used to satisfy a
given error tolerance. It can also be used to form a very efficient low-dimensional basis especially
tailored to the cost functional of interest. For example, Homescu et al. [30, 35] employed the DWR
method to determine the regions of validity of the reduced models, that is, ranges of perturbations
in the original system over which the reduced model is still appropriate. Furthermore, Hinze and
Volkwein [29] incorporated both the time derivatives and adjoint information into snapshots in
the error estimation for the partial differential equation-constrained optimization and POD inverse
model. In this study, the error estimation is carried out using a simple approach described in [18],
where, a spectral norm ‖A‖2 is defined to estimate the spatial error between the full and reduced
models. An error bound is given by

√
�(M+1) if M POD bases are chosen, where �(M+1) is the

(M+1)th eigenvalue of AAT.
The remainder of this paper is structured as follows: In Section 2, the ICOM is briefly described.

In Section 3, the reduced forward model is then derived, while the geostrophic pressure, mesh
adaptivity and acceleration of the POD simulation are discussed in detail in Section 4. In Section 5
the above reduced model is applied to and illustrated by some relevant cases. Summary and
conclusions are drawn in the final section.

2. DESCRIPTION OF ICOM

In this study, a POD-based reduced model is developed for ICOM that can simultaneously resolve
both small- and large-scale ocean flows while smoothly varying resolution and conforming to
complex coastlines and bathymetry [26, 27]. With more appropriate focused numerical resolution
(e.g. adaptive and anisotropic resolution of fronts and boundary layers, and optimal represen-
tation of vertical structures in the ocean) ocean dynamics may be accurately predicted during
future climatic change. To accurately represent local flow around steep topography, the hydrostatic
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assumption is not made in this study. Here, the pressure variable is split into the non-geostrophic
and geostrophic parts, which are solved separately. This allows the accurate representation of
hydrostatic/geostrophic balance [26]. In principle, coupling of the momentum and continuity
equations results in an extremely large system of equations to solve, for which an efficient solution
strategy is difficult to devise. Therefore, a technique (e.g. a projection method) is used in which
the pressure and velocity variables are solved for independently, thus reducing the total dimension
of the systems that must be solved for (for details see [27]).

The underlying model equations consist of the three-dimensional (3D) non-hydrostatic
Boussinesq equations,

∇ ·u= 0 (1)

�u
�t

+u·∇u+ f k×u= −∇ p−�gk+∇ ·s (2)

where u≡(u,v,w)T≡(u1,u2,u3)T is the velocity vector, x≡(x, y, z)T≡(x1, x2, x3)T are the
orthogonal Cartesian coordinates, p is the perturbation pressure (p := p/�0,�0 is the constant
reference density), f represents the Coriolis inertial force, g represents the acceleration due to
gravity, � is the perturbation density (� :=�/�0) and k=(0,0,1)T. The stress tensor s is used to
represent viscous terms and is defined in terms of the deformation rate tensor S as

�i j =2�i j Si j , Si j = 1

2

(
�ui
�x j

+ �u j

�xi

)
− 1

3

3∑
k=1

�uk
�xk

, 1�i, j�3

with no summation over repeated indices. In this study the horizontal kinematic viscosities
(�11,�22) and vertical kinematic viscosity (�33) take constant values with the off-diagonal compo-
nents of s defined by �i j =(�i i� j j )

1/2, see also [27, 36]. For barotropic flow (baroclinic flow
is incorporated in Section 4), the pressure p consists of hydrostatic ph(z) and non-hydrostatic
pnh(x, y, z, t) components. The hydrostatic component of pressure balances exactly the constant
buoyancy force and both terms are therefore dropped at this stage.

ICOM utilizes dynamic adaptation of a fully unstructured tetrahedral mesh in 3D, as presented
in Pain et al. [37]. This technique uses a form of h-refinement (or mesh optimization) to adapt the
mesh, changing the size, shape and location of tetrahedral elements to optimize the mesh according
to specific criteria, as defined by an error measure. The algorithm is based on a series of mesh
connectivity and node position searches, defining the mesh quality. A Riemannian metric tensor
reflecting the error measure is used to calculate the desired element size and, importantly, its shape.
A functional is used to gauge the mesh quality; this functional embodies both element size and
shape with respect to the metric tensor. A local-based search strategy is adopted to carry out the
adaptation operations (including face-to-edge and edge-to-face swapping; edge-to-edge swapping;
and local node movement or mesh smoothing) to minimize the functional. The algorithm is robust,
produces high-quality anisotropic meshes and has a time complexity, which varies linearly with the
number of elements, see Pain et al. [37]. An alternate approach of defining an error measure to guide
an adaptive meshing algorithm for unstructured tetrahedral finite elements is to utilize an adjoint
or goal-based method. This method is based on a functional, encompassing important features of
the flow structure. The sensitivity of this functional, with respect to the solution variables, is used
as the basis from which an error measure is derived. This error measure acts to predict those areas
of the domain where resolution should be changed.

Copyright q 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2009; 59:827–851
DOI: 10.1002/fld



REDUCED-ORDER MODELLING OF AN ADAPTIVE MESH OCEAN MODEL 831

3. REDUCED-ORDER OCEAN MODEL

A derivation of the 3D reduced forward equations is described in this section. The POD reduction
is the most efficient choice among linear decompositions in the sense that it can capture the greatest
possible kinetic energy.

3.1. Discretized ocean model

To construct the discretized ocean model, the linear basis function Ni is chosen for the velocity
components and non-geostrophic pressure, while quadratic basis function Mi is used for the
geostrophic pressure (Figure 1). The variables to be solved can be expressed in the finite-element
form:

u =
N∑
i=1

ui Ni , v=
N∑
i=1

vi Ni , w=
N∑
i=1

wi Ni

png =
N∑
i=1

png,i Ni , pg =
N∑
i=1

pg,i Mi

(3)

where N is the number of nodes; u,v and w are the velocity components in x, y and z directions,
respectively, and png and pg are the non-geostrophic and geostrophic pressures, respectively.

3.2. Proper orthogonal decomposition

The model variables (e.g. u,v,w, p) are sampled at defined checkpoints during the simulation
period [t1, . . . , tn, . . . , tK ], also referred to as snapshots (K being the number of snapshots). The
snapshots can be obtained either from a mathematical (numerical) model of the phenomenon or
from experiments/observations. The sampled values of variables at the snapshot i are stored in
a vector Ui with N entries (N being the number of nodes); here, U can represent one of the
variables u,v,w, p. The average of the ensemble of snapshots is defined as

Ūi = 1

K

K∑
k=1

Uk,i , 1�i�N (4)

Figure 1. Linear and quadratic mixed finite element. ©: u,v,w, png; �: pg .
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Taking the deviation from the mean of variables forms

Vk,i =Uk,i −Ūi , 1�i�N (5)

A collection of all Vk,i constructs a rectangular N×K matrix A. The goal of the POD is to find
a set of orthogonal basis functions �=�1,�2, . . . ,�K such that it maximizes

1

K

K∑
k=1

N∑
i=1

(Vk,i�k) (6)

subject to

K∑
k=1

�2
k =1 (7)

The Singular Value Decomposition (SVD) is used to find the optimal base � of the optimization
problem (6). From SVD, the matrix A∈ RN×K can be expressed as

A= X

(
� 0

0 0

)
Y T (8)

where K=diag(�1,�2, . . . ,�d)∈ Rd×d , X =(�1,�2, . . . ,�N)∈ RN×N and Y =(y1, y2, . . . , yK )∈
RK×K are matrices that consist of the orthogonal vectors for AAT and ATA, respectively. The
order N for matrix AAT is far larger than the order K for matrix ATA. Therefore, a K ×K
eigenvalue problem is solved

ATAyk =�k yk, 1�k�K (9)

This procedure is equivalent to an SVD. The eigenvalues �k =�2k are real and positive and should
be sorted in an descending order. The POD basis vectors �k associated with the eigenvalues �k
are orthogonal and expressed as follows:

�k = Ayk/
√

�k (10)

The kth eigenvalue is a measure of the kinetic energy transferred within the kth basis mode. If the
POD spectrum (energy) decays fast enough, practically all the support of the invariant measure is
contained in a compact set. Roughly speaking, all the likely realizations in the ensemble can be
found in a relatively small set of bounded extent. By neglecting modes corresponding to the small
eigenvalues, the following formula is therefore defined to choose a low-dimensional basis of size
M (M	K ):

I (M)=
∑M

i=1 �i∑K
i=1 �i

(11)

subject to

M=argmin{I (M) : I (M)��} (12)

where 0���1 is the percentage of energy, which is captured by the POD basis�1, . . . ,�m, . . . ,�M .
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3.3. POD reduced model for ICOM

The variables in (1) and (2) can be expressed as an expansion of the POD basis functions for
u,v,w, p, that is,

u(t, x, y, z) = ū+
Mu∑
m=1

�u,m(t)�u,m(x, y, z)

v(t, x, y, z) = v̄+
Mv∑
m=1

�v,m(t)�v,m(x, y, z)

w(t, x, y, z) = w̄+
Mw∑
m=1

�w,m(t)�w,m(x, y, z)

p(t, x, y, z) = p̄+
Mp∑
m=1

�p,m(t)�p,m(x, y, z)

(13)

where ū, v̄, w̄ and p̄ are the means of the ensemble of snapshots for the velocity components u,
v, w and pressure p, respectively; �u,m , �v,m , �w,m and �p,m are the POD bases for the velocity
components u, v, w and pressure p, respectively; Mu , Mv , Mw and Mp are the numbers of POD
bases, which are chosen for the velocity components u, v, w and pressure p, respectively; and
�u,m , �v,m , �w,m and �p,m are the coefficients to be determined.

Substituting (13) into (1) and (2) and taking the POD basis function as the test function, then
integrating over the computational domain, the POD reduced model is obtained as

��u,mu

�t
= Fu(t,�u,1, . . . ,�u,Mu ,�v,1, . . . ,�v,Mv ,�w,1, . . . ,�w,Mw,�p,1, . . . ,�p,Mp )

��v,mv

�t
= Fv(t,�u,1, . . . ,�u,Mu ,�v,1, . . . ,�v,Mv ,�w,1, . . . ,�w,Mw,�p,1, . . . ,�p,Mp )

��w,mw

�t
= Fw(t,�u,1, . . . ,�u,Mu ,�v,1, . . . ,�v,Mv ,�w,1, . . . ,�w,Mw,�p,1, . . . ,�p,Mp )

��p,mp

�t
= Fp(t,�u,1, . . . ,�u,Mu ,�v,1, . . . ,�v,Mv ,�w,1, . . . ,�w,Mw,�p,1, . . . ,�p,Mp )

(14)

where 1�mu�Mu,1�mv�Mv,1�mw�Mw,1�mp�Mp and Mu,Mv,Mw,Mp are the numbers
of the basis functions for u,v,w, p, respectively. The initial conditions for solving (14) are

�u,mu (0) = ((u(0, x, y, z)− ū(x, y, z)),�u,mu )

�v,mv (0) = ((v(0, x, y, z)− v̄(x, y, z)),�v,mv )

�w,mw(0) = ((w(0, x, y, z)−w̄(x, y, z)),�w,mw)

�p,mp (0) = ((p(0, x, y, z)− p̄(x, y, z)),�p,mp )

(15)
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The errors for the above POD model are bounded by the following expression (details of the
derivation can be found in Appendix B and Luo et al. [18]):

‖ufull−u‖2 �
√

�u(Mu+1)

‖vfull−v‖2 �
√

�v(Mv+1)

‖wfull−w‖2 �
√

�w(Mw+1)

‖pfull− p‖2 �
√

�p(Mp+1)

(16)

where �u(Mu+1) is the (Mu+1)th eigenvalue for Au AT
u , �v(Mv+1) is the (Mv +1)th eigenvalue

for AvAT
v , �w(Mw+1) is the (Mw +1)th eigenvalue for AwAT

w and �p(Mp+1) is the (Mp+1)th
eigenvalue for Ap AT

p; the matrices for each variable Au , Av , Aw and Ap can be calculated using
Equation (5).

4. GEOSTROPHIC PRESSURE, ADAPTIVE MESHES AND EFFICIENCY
IN POD SIMULATION

4.1. Geostrophic pressure

An important issue in ocean modelling is the treatment of the Coriolis term in the momentum
equation. To allow the accurate representation of the geostrophic balance (17) or (18) (i.e. to allow
for the use of equal-order interpolants for the representation of velocity f k×u and ∇ pg), quadratic
pressure and linear velocity are needed [38]. However, the LBB (Ladyzhenskaya–Babuska–Brezzi)
stability condition requires precisely the opposite: higher-order polynomials for u,v than p. To
solve this contradiction, the pressure in (2) is divided into two parts: p= png+ pg . The geostrophic
pressure has to satisfy the geostrophic balance:

−∇ pg = f k×u (17)

Taking the divergence of Equation (17), an elliptic equation for geostrophic pressure is obtained as

−∇2 pg = �(− f v)

�x
+ �( f u)

�y
(18)

To accurately represent geostrophic pressure, its basis functions are split into two sets: �pgu and
�pgv , which are associated with the u- and v-velocity components. The geostrophic pressure that
satisfies Equation (18) can be obtained from a quadratic finite-element representation (Figure 1)
while linear finite-element representations are used for the velocity components. Furthermore, the
geostrophic pressure can be represented by a summation of the two sets of geostrophic basis
functions, which are calculated by solving the following elliptic equations using a conjugate
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gradient iterative method:

−∇2�pgu,m = �( f �u,m)

�y

−∇2�pgv,m = �(− f �v,m)

�x

(19)

where �pgu,m and �pgv,m are the basis functions, respectively, for velocity components u and v.
m=(1, . . . ,M) indicates a set of basis functions, where M is the total number of basis functions.
The geostrophic pressure can therefore be expressed as

pg = p̄g+
M∑

m=1
�u,m�u,m+

M∑
m=1

�v,m�v,m (20)

In addition, the average geostrophic pressure is calculated from

−∇2 p̄g = �(− f v̄)

�x
+ �( f ū)

�y
(21)

where ū=(1/K )
∑K

k=1 uk and v̄=(1/K )
∑K

k=1 vk . Neumann boundary conditions are employed
for �pgu,m , �pgv,m and p̄g in Equations (19) and (21). This only serves to define �pgu,m , �pgv,m
and p̄g up to an arbitrary additive constant, �pgu,m , �pgv,m and p̄g are thus fixed by defining
them to be zero at an arbitrary node.

It can be seen that the numerical instability in the velocity field (Figure 2(b)) is removed by
using the new numerical method described above (Figure 2(a)). This method can also be easily
extended to represent buoyancy with temperature and salinity dependence by introducing more
basis functions with which to balance these buoyancy terms.

(a) (b)

Figure 2. Effect of geostrophic balance on results from POD simulation: (a) with and (b) without the
new geostrophic pressure method.
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4.2. Adaptive meshes in POD

When adaptive meshes are employed in ocean models, the mesh resolution requirements vary
spatially and temporally, as the meshes are adapted according to the flow features through the
whole simulation. The dimensional size of the variable vectors is different at each time level since
the number of nodes varies during the simulation. Snapshots can therefore be of different lengths
at different time levels. This unavoidably brings difficulties in the implementation of a POD-based
reduced model for an adaptive model. To overcome these difficulties, a standard reference fixed
mesh is adopted for the reduced model. The solutions from the original full model are interpolated
from their own mesh onto the same reference fixed mesh at each time level and then stored in the
snapshots. The information at the snapshots is used to find the optimal POD basis. This allows the
same length of base modes to be obtained at each time level. The resolution of the reference mesh
and the interpolation errors between the two meshes (the adaptive mesh and the fixed reference
mesh) may affect the accuracy of the POD simulation. This will be explained and discussed in
detail through the applications presented below. To reduce the interpolation error, a high-order
interpolation approach can be adopted.

4.3. Acceleration of the POD simulation

For simplicity, suppose the discrete forward model to be solved at the time level n assumes
the form

An�n =sn (22)

where

sn =Bn+ f (23)

where An and Bn are the matrices at the time level n, �n =(�n1, . . . ,�
n
m, . . . ,�nM ) is the vector

variables to be solved at the time level n, here including the coefficients related to the basis
functions for the velocity components and the pressure, i.e. �nm =(�nu,m,�nv,m,�nw,m,�np,m), sn is
a discretized source term at the time level n. Note that it is time-consuming to calculate the
time-dependent matrix An at each finite element and node over the computational domain at each
time level. To speed up the POD simulation, a new numerical technique is introduced, that is,
the time-dependent matrix An is constructed by a set of sub-matrices independent of time. For a
nonlinear simulation, matrices An and Bn can be expressed as

An = Â0+
M∑

m=1
�n−1
m Âm (24)

Bn = B̂0+
M∑

m=1
�n−1
m B̂m (25)

where matrices Â0, B̂0, Âm and B̂m are time independent and are derived in Appendix A. Therefore,
instead of calculating the time-dependent matrix An at each time level, one needs to calculate
those sub-matrices Ân and B̂n once prior to the POD simulation. This significantly speeds up the
POD simulation.

Copyright q 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2009; 59:827–851
DOI: 10.1002/fld



REDUCED-ORDER MODELLING OF AN ADAPTIVE MESH OCEAN MODEL 837

5. APPLICATION CASES AND NUMERICAL RESULTS

The utility of the new POD reduced-order model is herein assessed and validated in three two-
dimensional (2D), time-dependent test cases: flow past a cylinder, flow past a cylinder on a 	 plane
(whereby the Coriolis parameter is set to vary linearly in space, f =	y) and a gyre (defined as a
spiral system of movement, here, a wind-driven barotropic circulation).

5.1. Case 1: flow past a cylinder

The non-dimensional 2D case is composed of a cylinder with a radius of 1 in the computational
domain (1 element deep, 29 long and 10 wide). An inlet boundary with a velocity of 1 (non-
dimensional) flows parallel to the domain length towards the right of the domain. The centre of
the cylinder is placed 5 from the inlet boundary. The Reynolds number (Re) is 100. The boundary
conditions applied to the cylinder and both lateral sides are no normal flow and zero shear (slip)
boundary conditions with a spin-up period of 8 and a time step of 0.02 (non-dimensional).

The initial conditions are defined by running the full model from the ‘static’ state during the
spin-up (the process of a model adjusting to its forcing) period [0,8] (non-dimensional). In this
case, an adaptive mesh is adopted in the full model. To guarantee the same length of POD bases at the
snapshots, a reference fixed mesh is chosen for the POD simulation (right panel in Figure 3). The
information from the full model is interpolated from the adaptive mesh (right panel in Figure 3) onto
the referencemesh (rightpanel).Themesh for the fullmodel adapts every20 timesteps with maximum
and minimum mesh sizes of 0.1 and 0.04, respectively. The maximum mesh aspect ratio is 1000.

In this case, 31 snapshots and 20 basis functions are chosen for u, v, w and p, for which 98%
of energy is captured. Figure 3 shows the velocity field (vector) obtained from the full (left panel)
and POD (right panel) models. It is apparent that the results (especially the details of eddies near
the cylinder) from both models are in good agreement. For details, Figure 4 shows the blow-up of
the velocity field around the cylinder at the time level t=14. It is observed that the results obtained
by running the reduced model and the full model provide almost identical details of local flow. By
carrying out a comparison between the results from the full and reduced models, the overall error
of numerical POD solutions is less than max{√�u21,

√
�v21}�0.3 (here, �u21 and �v21 are the 21th

eigenvalues, respectively, for the velocity components u and v). The reduced model simulation
takes 9min, while it takes 40min to run the full forward model.

When adaptive meshes are adopted in the original model, an interpolation error is introduced
to snapshots and the POD reduced model. Evaluation of accuracy of the POD model is here
carried out through comparison of POD solutions with and without the mesh adaptivity scheme
in the POD basis. Figure 5 shows the velocity contour at time levels t=9.6,14,16,20, where the
heavy-weight, medium-weight and light-weight lines represent the numerical results from the full
model, and reduced model with and without the use of adaptive meshes, respectively. The POD
results are in good agreement with those from the full model. To further quantify the quality of the
POD results with the use of adaptive meshes, the root mean-squared error (RMSE) and correlation
coefficient of results between the POD model and the full model are plotted in Figure 6. It is seen
that the RMSE of the POD results is less than 0.15 while the correlation is within 97%.

5.2. Case 2: flow past a cylinder on a 	 plane (	=7.5)

The POD model developed here is further applied to a flow past a cylinder on a 	 plane. The
schematic of the model domain and the boundary conditions are the same as those in the previous
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(a) (b)

(c) (d)

(e) (f)

Figure 3. Case 1: comparison of the velocity field between the full and reduced models (Re=100) (left
panel: the full model; right panel: the reduced model; top panel: at the initial time level t=8; middle

panel: at the time level t=14; bottom panel: at the time level t=20).

case. The 	 effect on the flow is considered in this case. The Coriolis parameter is given by
f =	y, here 	=7.5. The novel approach described in Section 4 is used to calculate the geostrophic
pressure. The Reynolds number is Re=200. The spin-up period is 0.4. The simulation period is
1.6 and the time step is chosen to be 0.002.

Figure 7 shows the velocity field (vector) obtained from the full (left panel) and POD (right
panel) models. It can be seen (at time level t=1.6) from both the full and reduced simulations that
two meandering jets form downstream of the cylinder, with a small separated region in between,
which is caused by breaking the Rossby waves [39]. A total of 30 snapshots and 15 basis functions,
here, are chosen for u, v, w and p, for which 99.99% of energy is captured. The maximum error of
numerical POD solutions is less than max{√�u16,

√
�v16}�10−2 (here, �u16 and �v16 are the 16th

eigenvalues, respectively, for the velocity components u and v). It takes only 3 h to complete the
simulation by running the reduced model, which is considerably less than the CPU time (38–39 h)
required to run the full forward model. The computational cost is thus significantly reduced by
92% (i.e. by a factor of 13).
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(a) (b)

Figure 4. Case 1: blowup of the velocity field in Figure 3 around the cylinder at the time level t=14:
(a) the full model and (b) the reduced order model.

Figure 5. Contour of velocity at time levels: (a) t=9.6; (b) t=14; (c) t=16; (d) t=20 (the heavy-weight
lines: the full model; the medium-weight lines: the POD model without adaptive meshes; the light-weight

lines: the POD model with adaptive meshes).

5.3. Case 3: gyre

To simulate a wind-driven barotropic circulation, the computational domain is taken to be a square
box of 1000km with a depth of 500m. The wind forcing on the free surface is given as

�y =�0 cos(
y/L), �x =0.0 (26)
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Figure 6. RMSE and correlation of velocity results between the POD model and the full model
(a) RMS and (b) correlation (the solid line: without the use of adaptive mesh technique; the dashed

line: with the use of adaptive mesh technique).

where �x and �y are the wind stresses on the free surface along the x and y directions, respectively,
and L=1000km. A maximum zonal wind stress of �0=0.1Nm−1 is applied in the latitude
(y) direction. The Reynolds number Re=250,	=1.8×10−11 and the reference density �0=
1000kgm−1.

The problem is non-dimensionalized, so that the domain is a box of horizontal dimension 1,
and a depth of 0.0005 with one element in the vertical. Incorporating the 	-plane approximately
gives a non-dimensional rotation vector of �=(0,257.143,0) and non-dimensional wind stress of
�0=163.2653. The time step is 3.78×10−4, equivalent to 3h. No-slip boundary conditions are
applied to the lateral boundaries. The spin-up period is 0.3024 (100days). The simulation period
is [0.3024,0.6048] (i.e. [100,200] days).

As discussed above, the POD simulation could end up having results far from the true values
(Figure 2) if the geographic pressure is represented improperly. In this study, to accurately represent
the geostrophic balance, the geostrophic pressure is calculated using the novel approach described
in Section 4. A comparison of the velocity field between the full and POD models is provided in
Figure 8. The velocity fields at the different time levels exhibit an overall good agreement with
those from the full model.

To judge the quality of the POD model developed here, an error estimate is provided. The
percentage of energy represented by the POD bases is listed in Table I. About 99% of the energy
can be captured when 60 POD bases are chosen with 81 snapshots, and 97% of the energy is
captured when 30 POD bases and 41 snapshots are used. About 91% of energy is captured if half
the number of leading POD bases is chosen. In general, the more the POD bases and snapshots are
chosen, the better the energy is represented. A list of CPU times required for running the reduced
model is provided in Table II. It usually takes less than 3 h to complete the simulation by running
the reduced model. For all the settings, compared with the CPU time (30 h) required for running
the full model, the CPU time for running the reduced model decreases by a factor of 10 while
about 98.5% of the energy is captured. It is noted that 99% of CPU time required for the reduced
model is used to set up the POD bases and calculate the time-independent sub-matrices (details in
Section 4.3) for preparation of running the simulation. The actual CPU time required for running
the reduced model during the simulation period is less than 1min.

The error of numerical results obtained by a different number of POD bases can be calculated as
in Equation (16). Figure 9 displays the eigenvalues and the error associated with a corresponding
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Figure 7. Case 2—cylinder on a 	 plane (	=7.5, Re=200): comparison of the velocity field between
the full and reduced models (left panel: the full model; right panel: the reduced model; top panel: at the
initial time level t=0.4; middle panel: at the time level t=1.0; bottom panel: at the time level t=1.6).
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Figure 8. Comparison of the velocity field between full model (left column) and reduced model (right
column) in test case 3 for Re=250. Models are virtually indistinguishable. After POD basis and
time-independent component of the reduced model has been generated from the forward model, reduced
model took approximately 1min of the CPU time. In contrast, the full forward model took 30 h to run:

(a) and (b) t=100 days; (c) and (d) t=150 days; and (e) and (f) t=200 days.
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Table I. Energy percentage captured by the POD bases for
velocity components, u,v and pressure p.

Energy (%) captured Energy (%) captured
(41 snapshots) (81 snapshots)

77.373 (for u, 10 bases) 88.614 (for u, 20 bases)
76.003 (for v, 10 bases) 89.723 (for v, 20 bases)
81.103 (for p, 10 bases) 92.880 (for p, 20 bases)

91.448 (for u, 20 bases) 97.025 (for u, 40 bases)
91.693 (for v, 20 bases) 97.738 (for v, 40 bases)
94.343 (for p, 20 bases) 98.614 (for p, 40 bases)

97.386 (for u, 30 bases) 99.458 (for u, 60 bases)
97.624 (for v, 30 bases) 99.600 (for v, 60 bases)
98.584 (for p, 30 bases) 99.766 (for p, 60 bases)

Table II. A list of CPU times required for running the reduced model and the reduced percent of CPU
compared with that (30 h) required for running the full model.

CPU time (h) (41 snapshots) CPU time (h) (81 snapshots)

0.77 (reduced by 97% of the CPU time compared
with the full model while 10 bases are chosen)

1.4 (reduced by 95% of the CPU time compared
with the full model while 20 bases are chosen)

1.30 (reduced by 95% of the CPU time compared
with the full model while 20 bases are chosen)

2.47 (reduced by 92% of the CPU time compared
with the full model while 40 bases are chosen)

2.00 (reduced by 93% of the CPU time compared
with the full model while 30 bases are chosen)

11.0 (reduced by 63% of the CPU time compared
with the full model while 60 bases are chosen)

Note that the actual CPU time required for running the reduced model during the simulation period is less
than 1min after the POD bases and the time-independent sub-matrices (Section 4.3) are calculated.

number of POD bases for the velocity components u and v. It is noted that the first 25% of
the leading POD bases have a significant impact on POD results. The error of the POD results
decreases by 70–80% of its original values while about 76% of the energy can be captured if the
first 25% of the leading POD bases are chosen.

The RMSE and correlation coefficient of results between the full and POD models at different
time levels are provided in Figures 10 and 11. It can be seen that as the simulated time accrues,
the POD error increases, while the correlation decreases. During the first half of the simulation
period, the POD results are in general satisfactory since the correlations are mostly larger than 0.8
and the RMSE is less than 2.5ms−1. It is also shown that an increase in the number of snapshots
and POD bases leads to an improvement in the correlation coefficient and reduction in the RMSE
(Figure 12).

6. SUMMARY AND CONCLUSIONS

A POD reduced model has been developed for a finite-element adaptive mesh refinement ocean
model (ICOM). To the best of our knowledge, this is the first attempt to apply the POD approach
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Figure 9. Case 3: eigenvalues and errors for velocity components u and v (top panel: eigenvalues; bottom
panel: error left panel: 41 snapshots; right panel: 81 snapshots).
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Figure 10. Case 3: correlation of velocity results between the full and POD models versus time (left panel:
41 snapshots; right panel: 81 snapshots).

to an adaptive finite-element ocean model. To be able to obtain the same length of POD snapshots
at each time level, a reference fixed mesh is chosen for the POD reduced model. The results from
the full model are interpolated from the adaptive mesh onto the reference mesh for each of the
snapshots and stored to find the optimal POD bases. The interpolation errors between the two
meshes (the adaptive mesh and the fixed reference mesh) may affect the accuracy of the POD
simulation. Evaluation of accuracy of the POD model is carried out through comparison of POD
solutions with and without the mesh adaptivity scheme in the POD basis. It is noted in our case
that the results from the POD model become oscillatory and unstable as the Reynolds number
increases beyond 1000. To improve the stability of the POD model, an H1 norm is suggested to
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Figure 11. Case 3: RMS at time levels (left panel: 41 snapshots; right panel: 81 snapshots).
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Figure 12. Case 3: comparison of correlation and RMS of velocity results with different snapshot numbers
(left panel: correlation of velocity results between the full and POD models; right panel: RMS).

redefine the norms involved in the POD definition so that derivatives of the snapshots as well as
those of the basis functions are included in the POD average [40].

The POD reduced model is applied to 2D time-dependent ocean cases. The Coriolis effect is
taken into account in the POD model. An accurate representation of the geostrophic balance can
be achieved by two sets of basis functions for the geostrophic pressure, which are obtained from
the basis functions for the velocity components u and v, respectively.

An error analysis has also been carried out for the validation and accuracy of the adaptive POD
model. It is shown that the results from the reduced model coincide with those from the full model.
The correlation of results between the reduced and full models can achieve 80–99%, while the
RMSE results are less than 2.5ms−1 and 97% of the energy can be captured if a suitable number
of POD bases are chosen (say, if half of the leading POD bases are chosen with 81 snapshots).
The error for leading POD results decreases by 70–80% of its original values if only the first 25%
of leading POD bases are chosen. An increase in the number of snapshots and POD bases leads
to an improvement in the correlation coefficient and reduction in the RMSE.

To increase the efficiency of the POD simulation, a new numerical technique is introduced,
that is, one can generate a priori time-independent decomposition of the matrix in the discretized
POD equations prior to running the reduced model. It is proved that the computer cost required
for running the reduced model can decrease by a factor of 30.
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Further research will address the following issues of a goal-oriented POD to optimize the
weights of POD bases, Gappy POD, which allows the consideration of incomplete data sets, and
adjoint POD for data assimilation with adaptivity both in mesh as well as in the updating of the
reduced-order model controllers.

APPENDIX A

The second-order Crank–Nicolson time stepping algorithm is used here. Taking into account
Equation (13), i.e.

u(t, x, y, z) = ū+
Mu∑
m=1

�u,m(t)�u,m(t, x, y, z)

v(t, x, y, z) = v̄+
Mv∑
m=1

�v,m(t)�v,m(t, x, y, z)

w(t, x, y, z) = w̄+
Mw∑
m=1

�w,m(t)�w,m(t, x, y, z)

p(t, x, y, z) = p̄+
Mp∑
m=1

�p,m(t)�p,m(t, x, y, z)

(A1)

where ū, v̄, w̄ and p̄ are the means of the ensemble of snapshots for the velocity components
u, v, w and pressure p, respectively; �u,m , �v,m , �w,m and �p,m are the POD bases for the
velocity components u, v, w and pressure p, respectively; Mu , Mv , Mw and Mp are the number
of POD bases that are chosen for the velocity components u, v, w and pressure p, respectively
(here, Mu =Mv =Mw =Mp); �u,m , �v,m , �w,m , �p,m are the coefficients to be determined. The
sub-matrices A0 and B0 associated with each term in the momentum equations are expressed as
follows:

(1) The A0 matrices in u momentum equation;

Â0,i, j = 1

2
�t

N∑
k=1

�u,i,k

[
ūk

��u, j,k

�x
+ v̄k

��u, j,k

�y
+w̄k

��u, j,k

�z

+�

(
�2�u, j,k

�x2
+ �2�u, j,k

�y2
+ �2�u, j,k

�z2
�

)]

Â0,i,M+ j =
N∑
k=1

�u,i,k(− f �v, j,k)

Â0,i,2M+ j = 0

Â0,i,3M+ j = 1

2
�t

N∑
k=1

�u,i,k
��p, j,k

�x

(A2)
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(2) The A0 matrices in v momentum equation;

Â0,M+i, j =
N∑
k=1

�v,i,k( f �u, j,k)

Â0,M+i,M+ j = 1

2
�t

N∑
k=1

�v,i,k

[
ūk

��v, j,k

�x
+ v̄k

��v, j,k

�y
+w̄k

��v, j,k

�z

+�

(
�2�v, j,k

�x2
+ �2�v, j,k

�y2
+ �2�v, j,k

�z2
�

)]

Â0,M+i,2M+ j = 0

Â0,M+i,3M+ j = 1

2
�t

N∑
k=1

�v,i,k
��p, j,k

�y

(A3)

(3) The A0 matrices in w momentum equation;

Â0,2M+i, j = 0

Â0,2M+i,M+ j = 0

Â0,2M+i,2M+ j = 1

2
�t

N∑
k=1

�w,i,k

[
ūk

��w, j,k

�x
+ v̄k

��w, j,k

�y
+w̄k

��w, j,k

�z

+�

(
�2�w, j,k

�x2
+ �2�w, j,k

�y2
+ �2�w, j,k

�z2
�

)]

Â0,2M+i,3M+ j = 1

2
�t

N∑
k=1

�w,i,k
��p, j,k

�z

(A4)

(4) The A0 matrices in continuity equation;

Â0,3M+i, j =
N∑
k=1

�p,i,k
��u, j,k

�x

Â0,3M+i,M+ j =
N∑
k=1

�p,i,k
��v, j,k

�y

Â0,3M+i,2M+ j =
N∑
k=1

�p,i,k
��w, j,k

�z

(A5)
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(5) The B0 matrices in u momentum equation;

B̂0,i, j =
N∑
k=1

�u,i,k�u, j,k− 1

2
�t

N∑
k=1

�u,i,k

[
ūk

��u, j,k

�x
+ v̄k

��u, j,k

�y
+w̄k

��u, j,k

�z

+�

(
�2�u, j,k

�x2
+ �2�u, j,k

�y2
+ �2�u, j,k

�z2
�

)
+ �ūk

�x
�u, j,k

]

B̂0,i,M+ j =
N∑
k=1

�u,i,k

[
− f �v, j,k+ �ūk

�y
�v, j,k

]

B̂0,i,2M+ j =
N∑
k=1

�u,i,k
�ūk
�z

�w, j,k

B̂0,i,3M+ j = −1

2
�t

N∑
k=1

�u,i,k
��p, j,k

�x

(A6)

(6) The B0 matrices in v momentum equation;

B̂0,M+i, j =
N∑
k=1

�v,i,k

[
f �u, j,k+ �v̄k

�x
�u, j,k

]

B̂0,M+i,M+ j =
N∑
k=1

�v,i,k�v, j,k− 1

2
�t

N∑
k=1

�v,i,k

[
ūk

��v, j,k

�x
+ v̄k

��v, j,k

�y
+w̄k

��v, j,k

�z

+�

(
�2�v, j,k

�x2
+ �2�v, j,k

�y2
+ �2�v, j,k

�z2
�

)
+ �v̄k

�y
�v, j,k

]

B̂0,M+i,2M+ j =
N∑
k=1

�v,i,k
�v̄k

�z
�w, j,k

B̂0,M+i,3M+ j = −1

2
�t

N∑
k=1

�v,i,k
��p, j,k

�y

(A7)

(7) The B0 matrices in w momentum equation;

B̂0,2M+i, j =
N∑
k=1

�w,i,k
�w̄k

�x
�u, j,k

B̂0,2M+i,M+ j =
N∑
k=1

�w,i,k
�w̄k

�y
�v, j,k

B̂0,2M+i,2M+ j =
N∑
k=1

�w,i,k�w, j,k− 1

2
�t

N∑
k=1

�w, j,k

[
ūk

��w, j,k

�x
+ v̄k

��w, j,k

�y
+w̄k

��w, j,k

�z

+�

(
�2�w, j,k

�x2
+ �2�w, j,k

�y2
+ �2�w, j,k

�z2
�

)
+ �w̄k

�z
�w, j,k

]

B̂0,2M+i,3M+ j = −1

2
�t

N∑
k=1

�w,i,k
��p, j,k

�z

(A8)
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The sub-matrices Am and Bm associated with the nonlinear terms in the momentum equations are
written as follows:

(8) The Am matrices;

Âm,i, j = 1

2
�t

N∑
k=1

�u,i,k

[
�u,m,k

��u, j,k

�x
+�v,m,k

��u, j,k

�y
�w,m,k

��u, j,k

�z

]

Âm,M+i,2M+ j = 1

2
�t

N∑
k=1

�v,i,k

[
�u,m,k

��u, j,k

�x
+�v,m,k

��u, j,k

�y
�w,m,k

��u, j,k

�z

]

Âm,2M+i,3M+ j = 1

2
�t

N∑
k=1

�w,i,k

[
�u,m,k

��u, j,k

�x
+�v,m,k

��u, j,k

�y
�w,m,k

��u, j,k

�z

]
(A9)

(9) The Bm matrices;

B̂m,i, j = −1

2
�t

N∑
k=1

�u,i,k

[
�u,m,k

��u, j,k

�x
+�v,m,k

��u, j,k

�y
�w,m,k

��u, j,k

�z

]

B̂m,M+i,2M+ j = −1

2
�t

N∑
k=1

�v,i,k

[
�u,m,k

��u, j,k

�x
+�v,m,k

��u, j,k

�y
�w,m,k

��u, j,k

�z

]

B̂m,2M+i,3M+ j = −1

2
�t

N∑
k=1

�w,i,k

[
�u,m,k

��u, j,k

�x
+�v,m,k

��u, j,k

�y
�w,m,k

��u, j,k

�z

]
(A10)

where � is the kinematic viscosity, M represents the number of basis functions and N is the
number of nodes, 1�i, j�M .

APPENDIX B

As stated in Section 3.1, from SVD, matrix Au (N×K , a collection of snapshots where the
sampled values of variables, e.g. the velocity component u, are stored) can be expressed as

Au = X

(
�u 0

0 0

)
Y T (B1)

where Ku =diag(�1,�2, . . . ,�d)∈ Rd×d , X=(�1,�2, . . . ,�N)∈RN×N and Y =(y1, y2, . . . , yK )∈
RK×K are matrices that consist of the orthogonal vectors for Au AT

u and AT
u Au , respectively. Au

K ×K eigenvalue problem is therefore solved

AT
u Au yk =�u,k yk, 1�k�K (B2)

The eigenvalues �u,k =�2k (1�k�K ) are real and positive and should be sorted in an descending
order. The POD basis vectors �k associated with the eigenvalues �u,k are orthogonal and expressed
as follows:

�k = Au yk/
√

�u,k (B3)
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Using the relationship properties of spectral radius and ‖·‖2,2 for matrices, if Mu�r =
rank(Au) (r�K ), the following equation is then obtained:

�Mu+1= min
rank(B)�Mu

‖Au−B‖2,2=‖Au−AMu‖2,2 (B4)

where AMu =∑M
m=1�m�m yTm . The minimum distance between matrices Au and B is obtained by

using matrix AMu , i.e. AMu should be the optimal representation of Au .
Denote the K column vectors of matrices Au by uk and �k (k=1,2, . . . ,K ) by unit column

vectors. Using the compatibility of the norm for matrices and vectors yields

‖uk−PMu (u
k)‖2=‖(Au−AMu )�‖2�‖Au−AMu‖2,2‖�‖2=

√
�u(Mu+1) (B5)

where PMu (a
l)=∑Mu

m=1(�m,am)�m , (�m,um)�m is the canonical inner product for vectors
�m and um . Therefore, PMu (u

k) is the optimal approximation to um , whose error is less than√
�u(Mu+1).
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