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(Received 15 January 2014; accepted 5 May 2014)

This article presents a new reduced order model based on proper orthogonal decomposition (POD) for solving the electromag-
netic equation for borehole modelling applications. The method aims to accurately and efficiently predict the electromagnetic
fields generated by an array induction tool – an instrument that transmits and receives electrical signals along different
positions within a borehole. The motivation for this approach is in the generation of an efficient ‘forward model’ (which
provides solutions to the electromagnetic equation) for the purpose of improving the efficiency of inversion calculations
(which typically require a large number of forward solutions) that are used to determine surrounding material properties.
This article develops a reduced order model for this purpose as it can be significantly more efficient to compute than standard
models, for example, those based on finite elements. It is shown here how the POD basis functions are generated from the
snapshot solutions of a high resolution model, and how the discretised equations can be generated efficiently. The novelty
is that this is the first time such a POD model reduction approach has been developed for this application, it is also unique
in its use of separate POD basis functions for the real and complex solution fields. A numerical example for predicting the
electromagnetic field is used to demonstrate the accuracy of the POD method for use as a forward model. It is shown that
the method retains accuracy whilst reducing the costs of the computation by several orders of magnitude in comparison to
an established method.

Keywords: POD; reduced order model; array induction tool; Maxwell equations

1. Introduction

Electromagnetic induction tools are used in the oil and gas
industry to determine the electrical conductivity (or its con-
verse resistivity) of geological formations which, in turn,
indicates the content of hydrocarbons. Boreholes are drilled
into regions of interest and downhole measurements made
using instruments, such as the array induction tool, that
transmit and detect electrical signals along different loca-
tions in the hole. The data containing the sent and received
signals are processed to provide a profile of the conductivity
of the surrounding materials. This can be achieved through
the use of computational models and the technique known
as inversion.

When using inversion on the measured (induction) sig-
nal to estimate the formation conductivity, one uses an iter-
ative optimisation technique based on the solutions of a for-
ward model. A forward model is typically generated from
the discretisation of a partial differential equation (PDE)
that describes the physics of the problem, and popular dis-
cretisation techniques include the finite element method
(FEM) and finite difference methods, to mention but a few.
However, if the complexity of the problem is such that high
modelling resolution is required, solutions from these types
of models can become expensive to compute. The result

∗
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is that the overall inversion process, which often requires
many forward model solutions, may take exceptionally long
times to solve (Lin, Gianzera, and Strickland 1984).

In an attempt to reduce the computational expense of
a forward model, early work includes that of Anderson
and Gianzero (1983) who developed a one-dimensional
spectral integral technique. This computed induction
responses through media with an arbitrary number of
planar layers. Although this was successful in improving
the speed of the calculation, compared to (say) the FEM
(Lin, Gianzera, and Strickland 1984; Dyos 1987; Freedman
and Minerbo 1991), these models were still too inefficient
for realistic use in well-site identification. Simplification
techniques have also been introduced including that of
the Born approximation (Thadani, Merchant, and Verbout
1983). This used the method of geometrical factor theory
(Doll 1949; Moran 1982) and was successful in providing a
considerable speed up of the inversion process (Dyos 1987;
Freedman and Minerbo 1991). This method however did
have its drawbacks in that it would break down in highly
conductive beds, or where the problem contained large
variations in conductivity. Other methods for improving
the efficiency of inversion include the substitution of
the forward model with a neural network. This approach

C© 2014 Taylor & Francis
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used the layered conductivities as its inputs and the array
responses as the outputs. Whilst being relatively successful
for improving efficiency, a large training set was required
in order for it to resolve the range of conductivities seen in
bed formations. This was partially resolved in the thesis of
Ardjmandpour (2010) enabling the efficient collection of
training data, but even this method had its limitations.

In this article a new approach is described for the ef-
ficient implementation of a forward model based on a re-
duced order model using the method of proper orthogonal
decomposition (POD). This approach is attractive to this
field of research as it has the ability to extract optimal basis
functions for a dynamic system based on information of
its experimental data or numerical solutions. Specifically
it extracts the most energetic modes of the data and forms
its basis functions that recover this information in the most
efficient way. In this paper the data used to form the model
are based on the method of snapshots, Sirovich (1987). This
uses the numerical solutions from a high resolution model.

The origins of POD date back to the early work of
Pearson (1901) and since then the method has developed
under other names such as principal component analysis
(Kosambi 1943; Fukunaga 1990) (in statistics), the
Karhunen–Loève decomposition (Loève 1945; Karhunen
1946), drill string dynamics (Liao et al. 2011) and
empirical orthogonal functions (used in oceanography and
meteorology) (Jolliffe 2002; Crommelin and Majda 2004;
Majda, Timofeyev, and Vanden-Eijnden 2003). It has been
used successfully in several fields including those of fluid
dynamics and coherent structures (Lumley 1967; Aubry,
Holmes, and Lumley 1988; Holmes, Lumley, and Berkooz
1998; Willcox and Peraire 2002), signal processing and
pattern recognition (Fukunaga 1990), image reconstruction
(Kirby and Sirovich 1990), inverse problems (Vauhkonen
et al. 1997; Banks et al. 2000; Hopcroftand et al. 2009)
and ocean modelling. Recent work has also combined this
method within the four-dimensional variational (4D-Var)
data assimilation technique (Robert et al. 2005; Hoteit and
Köhl 2006; Luo et al. 2007; Fang et al. 2009; Cao et al.
2007). POD is particularly effective and simple to use with
linear PDEs, and methods have been developed for their use
with non-linear equations in order to maintain efficiency.
Such methods include quadratic expansion, Gauss-Newton
with approximated tensors (GNAT) (Carlberg et al. 2013)
and Discrete Empirical Interpolation Method (DEIM)
(Chaturantabut and Sorensen 2010), and more recent work
includes the hybrid approach residual-DEIM (combining
the quadratic expansion and DEIM) (Xiao et al. 2014).
Other works that aim to maintain effectiveness of the
method include those centred on optimally selecting
snapshot sets, as this has profound impacts on the resulting
POD models (Gunzburger 2003). This includes the work
of the dual-weighed approach (Daescu and Navon 2008;
Chen, Navon, and Fang 2011; Kunisch and Volkwein 2010)
and also that of Kunisch and Volkwein (2010). This article

expands this extensive list of applications by developing
the first POD method for solving the electromagnetic
equations used in downhole measurements. This involves
the reduced order modelling of a linear PDE; however, it is
complex in nature and so requires separate POD functions
for the real and complex terms of the equation.

As previously mentioned the POD model developed
here is constructed through the method of snapshots which
comprises a collection of solutions generated by a high res-
olution model. For this the finite element based COMSOL
model1is employed. A sequence of solutions are generated
by solving the electromagnetic equation (the solutions be-
ing the azimuthal magnetic vector potentials) on problems
based on domains that mimic those seen in borehole exper-
iments. Essentially this applies a charge within a domain
that allows the electromagnetic field to interact with its sur-
rounding materials, and how this interacts depends on the
material’s electrical properties. The snapshot solutions are
created by repeated solves of the equation using different
electrical properties of the surrounding materials – in these
examples conductivities are layered and vary as a function
of depth. Once these solutions are collected the POD basis
functions and their associated discretised equations are gen-
erated through the standard singular value decomposition
(SVD) approach. In this article the technique developed in
Fang et al. (2009, 2011) is applied for the efficient genera-
tion of the POD model equations.

The sections of this article are structured as follows.
Section 2 provides a brief introduction to array induction
tools followed by a description of the governing electromag-
netic equations. Section 3 details the POD method gener-
ated through the method of snapshots and generates the
reduced order model for the application of solving the elec-
tromagnetic equations. Section 4 presents some numerical
examples applying the POD models and conclusions are
drawn in Section 5.

2. Induction tools

2.1. Fundamental aspects

Commercial induction tools are normally composed of sev-
eral transmitter and receiver coils. Their basic element is
a two-coil sonde consisting of a transmitter and a receiver
mounted coaxially on a mandrel, as shown in Figure 1.
It functions by applying a constant-amplitude alternating
current to the transmitter coil to form a primary electro-
magnetic field around the tool. This, in turn, induces eddy
currents (often called ‘ground loops’) within the formation
(i.e. the material surrounding the tool), which flow coaxially
to the borehole and have intensity proportional to the ma-
terial’s conductivity. From these eddy currents a secondary
voltage is induced within the receiver coil, and through the
use of ‘bucking coils’ the voltage that would arise directly
from the transmitter is eliminated. The induced voltage at
the receiver is therefore a result of only the electromagnetic
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Figure 1. Basic two-coil induction tool. The vertical component
of the magnetic field from the transmitter coil induces ground loop
currents. The current loops in the conductive formation produce a
secondary magnetic field detected by the receiver coil (Anderson
2001).

field from within the media. This information allows us to
probe the media and investigate its electrical properties.

The magnetic field induced by the transmitter is affected
by several factors associated with the logging environment,
some of which are illustrated in Figure 2. These include
the effects due to the presence of the borehole, mud filtra-
tion (mud from the borehole entering the media), shoulder
effects (conductivities in regions above and below the re-
gions of interest) and dipping beds (non-horizontal layers

that smear voltage responses, Barber et al. 1999). These
effects must be accounted for, and some correction method
applied, in order to accurately estimate the formation con-
ductivity. Quite often, in the past, it came down to the
experience of the log analyst to make such corrections, oth-
ers used a series of correction charts (Rust and Anderson
1975; Anderson 2001; Hardman and Shen 1987). However
from the mid 1980s the use of computer modelling made
it possible for the log analyst to use correction algorithms
based on forward modelling, Anderson (2001).

Grove and Minerbo, in 1991, designed a correction al-
gorithm to solve for borehole parameters by minimising
the difference between the model and measured signals
from array induction tool. The borehole corrected signals
were combined to form the log responses which had the
desired vertical response, radial response and a smooth
near-borehole two-dimensional (2D) response (Barber and
Rosthal 1991; Ellis and Singer 2007). With this a 2D in-
version method was then used to estimate the formation
conductivity and invasion parameters, that is, invasion con-
ductivity and invasion radius (Howard 1992). In horizontal
and deviated wells the dip correction algorithm, based on
filtering (Xiao, Geldmacher, and Rabinovich 2000), and the
iterative inversion (Barber et al. 1999) have been developed
to remove the ‘dip effects’.

2.2. The governing electromagnetic equation

This article considers the 2D electromagnetic equation,
which is expressed as

(
iωσ − ω2ε0εr

)
Aφ(r, z) + ∇ × (

μ−1
0 μ−1

r ∇ × Aφ(r, z)
)

= J e
φ (r, z) (1)

Figure 2. The logging environment such as mud conductivity and borehole size, mud filtrate invasion, adjacent bed and dipping beds
affect the measured signal. To estimate the true formation conductivity, one needs to correct for these effects.
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4 N. Ardjmandpour et al.

in terms of the solution variable Aφ(r, z). This variable de-
fines the azimuthal vector potential as a function that varies
with radial distance (r) (from the borehole) and vertical
depth (z). The potential arises as a result from an exter-
nal current density (i.e. the source term initiated from the
induction tool) which is denoted as J e

φ (r, z). Of the sev-
eral parameters within the equation the terms ω denote the
current frequency and μr the formation’s relative magnetic
permeability. The term σ denotes the formation conductiv-
ity and εr is the relative dielectric permittivity. μ0 and ε0 are
the magnetic permeability and the dielectric permittivity of
free space, respectively. As this paper is only concerned
with a forward model, it is the solution Aφ that is being
sought here. Therefore remaining variables, which are the
properties of the materials contained within the problem
domain, are considered to be known.

Given the solution Aφ across the domain of interest, the
voltage induced within a receiver coil is calculated from the
relation, E = iωAφ , where E is the electric field strength. For
a receiver coil that has radius ρ and NR turns, the induced
voltage is given as

V = 2πρNRE = 2πρNRiωAφ. (2)

The model COMSOL is employed to generate the full
solutions of Equation (1), and from this the snapshots for
generating the POD model are recorded. COMSOL uses
linear finite element functions on triangular element meshes
to discretise the 2D domain. Its approximation of Aφ is
written as

Aφ(r, z) =
N∑

i=1

Ni(r, z)Aφi, (3)

where N denotes the finite element functions, Aφ i are
the corresponding coefficients and N denotes the size of
the expansion. The discretisation generates a linear sys-
tem through a weighted residual approach. Equation (1) is
weighted with each finite element function, the solution re-
placed with its approximation and whole system integrated
over space,

∫
�

Nj (r, z)((iωσ − ω2ε0εr )

(
N∑

i=1

Ni(r, z)Aφi

)

+∇ ×
(

μ−1
0 μ−1

r ∇ ×
(

N∑
i=1

Ni(r, z)Aφi

)

− J e
φ (r, z)

)
d� = 0, j ∈ {1, 2, . . . , N}. (4)

This system can be expressed as the following linear
system:

E(σ )Aφ = b, (5)

where E(σ ) is an N × N matrix (containing the discretised
terms on the left side of Equation (1)), b is a vector of size N
containing the discretised source and Aφ is a vector of size
N containing the coefficients of Equation (3). In an attempt
to reduce notation between working in continuous and dis-
crete spaces, when the solution variables are expressed with
(r, z) then they are being referred to as continuous variables
(as Equation (4)), else they will be assumed to be discrete
(as in Equation (5)).

3. Construction of the POD model from a snapshot
data set

The full model described in the previous section is used
to provide solutions (called snapshots) of the electromag-
netic equation for problem domains with varying material
properties. These solutions are collected together to provide
what is called a snapshot data set. As the solutions can be
regarded as the coefficients of the finite element expansion,
each of these snapshots is simply a vector Aφ , as defined in
Equation (5). The snapshot matrix A is defined to represent
all the solution data by storing each snapshot, each in turn,
in its columns. That is, the ith snapshot taken of Aφ forms
the ith column of A. This matrix therefore has dimensions
N × K, where N is the size of the finite element expansion
and K the number of snapshots (or solutions) recorded.

In the POD approach the average of the collection of
snapshots is defined as

Ā = 1

K

K∑
k=1

Ak, (6)

where Ā is a vector of size N and Ak is the kth column
vector of the snapshot matrix A. A modified matrix Ã
is now defined, where each of its column vectors, Ãk , is
expressed as

Ãk = Ak − Ā. (7)

Essentially this is just the original snapshot matrix with the
mean column vector removed.

POD now sets out to find a set of orthogonal basis
functions that best spans this data set. A simple way of
achieving this is through the SVD of the matrix Ã. Without
going into excessive detail, Ã is represented by its SVD,

Ã = U	V t, (8)

where U and V are unitary matrices (with dimensions N × N
and K × K, respectively) and 	 a diagonal matrix (dimen-
sions N × K) containing the singular values (arranged in
descending order of magnitude). It is shown, from the well-
developed theory, that choosing the first set of M singu-
lar values, and zeroing out the rest, provides the optimal
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reduced representation of this matrix (in the sense that no
other rank M matrix can produce a closer representation).
From this fact, it can also be shown that the first M column
vectors of U define the optimal basis vectors, and it is these
vectors that define the POD basis functions. That is, the
vectors 
i = Ui, i ∈ {1, 2, . . . M}, where Ui denotes the ith
column of U, are defined as the POD vectors which are of
size N. These POD vectors can be used to reconstruct the
corresponding POD functions through the finite element
representation,


j (r, z) =
N∑

i=1

Ni(r, z)[
j ]i , (9)

and a similar expression can be written for the average
snapshot vector, that is,

Ā(r, z) =
N∑

i=1

Ni(r, z)Āi . (10)

Together Equations (9) and (10) can be combined to form
an expansion of the continuous solution variables in terms
of POD functions,

APOD

 (r, z) = Ā
(r, z) +

M∑
m=1


m(r, z)am, (11)

where am are the expansion coefficients. Alternatively, in
terms of a discrete representation this expansion can be
written as

APOD

 = Ā +

M∑
i=1


mam, (12)

which expresses the solution in terms of the finite element
expansion coefficients.

A measure of the expected quality of the approximation
can be gained from the calculation of its energy. This is
defined as the ratio of sum of singular values that were
retained vs. the sum of total number of eigenvalues,

I (M) =
∑M

i=1 �i,i∑�
i=1 �i,i

, (13)

where �i,i = 	2
i,i . This value varies between 0 and 1 (1

being a complete recovery) and provides a guide to how
much information of the snapshot data the POD functions
will capture.

3.1. The POD discretisation of the
electromagnetic equations

The POD model of the electromagnetic equation can now be
derived through a Galerkin projection on Equation (1). The
equation is weighted with each POD function, the vector
potential is replaced with its POD representation (11) and
the whole system is integrated over space. This results in
the following system:

∫
�


j (r, z)

(
(iωσ − ω2ε0εr )

(
Ā(r, z) +

M∑
m=1

am 
m(r, z)

)

+∇ ×
(

μ−1
0 μ−1

r ∇ ×
(
Ā(r, z) +

M∑
m=1

am 
m(r, z)

))

− J e
φ (r, z)

)
d� = 0, (14)

for each POD function j ∈ {1, 2, . . . , M}. Analogous to the
full model derivation, this can also be recast into a linear
system of equations,

Ê(σ )a = b̂, (15)

where Ê(σ ) is an M × M matrix containing the discretised
terms of Equation (14), b̂ is the vector of size M containing
the discretised source and a the vector of size M containing
the POD coefficients. This linear system can also be cal-
culated directly from the discrete form if the original finite
element linear system of equations (5) is available,

Ê(σ ) = 
T E(σ )
,

b̂ = 
T b. (16)

That is, the entries of the matrix Ê(σ ) (and the elements
of the vector b̂) can be constructed from the entries of the
matrix E (and vector b) by the relationships

Êm,l(σ ) =
N∑

p=1

N∑
q=1

Ep,q(σ )
m,p
l,q, (17)

b̂m =
N∑

p=1

bp
m,p. (18)

A problem now arises with regards to the efficient
construction of the linear system through relationships (17)
and (18). This is because each POD model requires a new
full system of equations to be formed, and its reduction
through the matrix–matrix multiplications is expensive to
compute. In fact the computational costs are such that the
procedure will remove the benefits from solving on the
reduced POD space. To overcome this, this article uses
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6 N. Ardjmandpour et al.

the approach developed by Fang et al. (2009, 2011) which
constructs the full system of equations from the sum of a
set of reference system of equations

E(σ ) = E0 +
L∑

l=1

σ l(El
1 − E0). (19)

In this expression the matrix E0 is derived from Equation
(1) using the material property σ = 0. The summation in
the expression relates to the number of layers present in the
problem, here this is assumed to be L, and a matrix El

1 is
defined for each of these layers. El

1 in fact only has non-zero
components that contribute to its level. That is, in the finite

element discretisation, if an element is within the region
of layer l then its contribution gets added to El

1, else it is
ignored. When contributing to each matrix El

1 the value of
the conductivity is set to σ = 1. One can now see that in
the summation, involving the multiplication of (El

1 − E0)
by the conductivity of the layer σ l, the exact full system is
reproduced. The operations defined in Equations (17) and
(18) can now be performed on these reference matrices,
and since these can be pre-computed and their numbers are
generally small, this process is efficient. From these reduced
reference matrices the POD model can be generated from
their summation in a form analogous to that in Equation
(19).

Figure 3. Layered media to be modelled to generate the required snapshots for POD model reduction. We assume that the data are
borehole corrected, therefore the borehole is not included in the model. Layer thickness (layers 1–5) is 0.07 m (3 inch). The transmitter coil
(Tx) is situated within layer 2 and main (RxM) and bucking (RxB) coils are located 0.15 m (6 inch) and 0.1 m (4 inch), respectively, from
Tx. The solution is calculated as the azimuthal component of magnetic vector potential Aφ , the model imposes the Dirichlet boundary
conditions Aφ = 0 on the symmetry axis.
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3.2. Forming the complex POD reduced
order model

The linear system defined by Equation (5) is complex and
has a complex solution; it may therefore be written as

(P + i Q)(A
,R + i A
,I ) = (bR + i bI )

or in a matrix form as

(
P −Q

Q P

)(
A
,R

A
,I

)
=

(
bR

bI

)
. (20)

Here the matrices P and Q are the real and imaginary parts of
full matrix E, respectively. The subscript R and L relate the
solution and source vectors to their real part and imaginary
parts, respectively.

In order to generate representative POD functions for
the system of equations (20), separate POD functions are
created for the real and imaginary terms of its solution. The
creation of the POD discretisation therefore applies the
SVD procedure to two sets of snapshot matrices, namely
AR and AI , that contain the real and imaginary parts of the
full snapshot solutions. By following the previous section,
two vectors are generated, namely ĀR and ĀI , that rep-
resent the average of these two snapshot sets. From these
the modified matrices ÃR and ÃI (denoting the real and
imaginary) are created by removing from the columns of
the original snapshots these average vectors. The POD vec-
tors are generated by applying the SVD upon these modi-
fied matrices, these are denoted as (
R)i and (
I)i, for i ∈
{1, 2, . . . M}, respectively, which when concatenated to-
gether, column by column, form the matrices 
R and 
I.

A new set of POD basis vectors 
 is formed from the
real and imaginary POD basis vectors,


 =
(


R 0
0 
I

)
(21)

and these are used to pre- and post-multiply (as with Equa-
tion (16)) with the full linear system in Equation (20). The
reduced linear system can be written as

Ê(σ ) = 
T E(σ )
 =
(


T
RP
R −
T

RQ
I


T
I Q
R 
T

I P
I

)
, (22)

and, in the form of the summation defined in Equation (19),
this reads as(


T
RP0
R + ∑L

l=1 σ l(
T
RP l

1
R − 
T
RP0
R) −(
T

RQ0
I + ∑L
l=1 σ l(
T

RQl
1
I − 
T

RQ0
I ))


T
I Q0
R + ∑L

l=1 σ l(
T
I Ql

1
R − 
T
I Q0
R) 
T

I P0
I + ∑L
l=1 σ (
T

I P l
1
I − 
T

I P0
I )

)
, (23)

where P0 and Q0 are the real and imaginary parts (respec-
tively) of E0 with σ = 0. Similarly the matrices P l

1 and Ql
1

Table 1. The 27 best runs of three values of conductivities (0.001,
0.03 and 1 S/m) for five layers determined based on the fractional
factorial design (Xu 2005).

No of cases Layer 1 Layer 2 Layer 3 Layer 4 Layer 5

1 0.001 0.001 0.001 0.001 0.001
2 0.001 0.001 0.03 0.03 0.001
3 0.001 0.001 1 1 0.001
4 0.001 0.03 0.001 0.03 1
5 0.001 0.03 0.03 1 1
6 0.001 0.03 1 0.001 1
7 0.001 1 0.001 1 0.03
8 0.001 1 0.03 0.001 0.03
9 0.001 1 1 0.03 0.03

10 0.03 0.001 0.001 0.03 0.03
11 0.03 0.001 0.03 1 0.03
12 0.03 0.001 1 0.001 0.03
13 0.03 0.03 0.001 1 0.001
14 0.03 0.03 0.03 0.001 0.001
15 0.03 0.03 1 0.03 0.001
16 0.03 1 1 0.001 1
17 0.03 1 0.03 0.03 1
18 0.03 1 1 1 1
19 1 0.001 0.001 1 1
20 1 0.001 0.03 0.001 1
21 1 0.001 1 0.03 1
22 1 0.03 0.001 1 0.03
23 1 0.03 1 0.03 0.03
24 1 0.03 1 1 0.03
25 1 1 0.001 0.03 0.001
26 1 1 1 1 0.001
27 1 1 0.001 0.001 0.001

are the real and imaginary parts (respectively) of E1 relating
to level l and with material σ = 1.

The Right Hand Side (RHS) vector b̂ is composed of
both the discretised source and the term involving the mean
vector Ā. When pre-multiplied by the 
T its expression
reads as

b̂ = 
T (b − E(σ )Ā), (24)

which, when expanded out in terms of the real and imagi-
nary components, is given as

(

T

Rb − 
T
RP ĀR + 
T

RQĀI

−
T
I QĀR − 
T

I P ĀI

)
. (25)

Again using the summing technique described in Equation
(19), the expression for the source terms in the POD system
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reads as

⎛
⎝
T

Rb −
(

T

RP0ĀR + ∑L
l=1 σ l(
T

RP l
1ĀR − 
T

RP0ĀR)
)

+
(

T

RQ0ĀI + ∑L
l=1 σ l(
T

RQl
1ĀI − 
T

RQ0ĀI )
)

−
(

T

I P0ĀI + ∑L
l=1 σ l(
T

I P l
1ĀI − 
T

I P0ĀI )
)

−
(

T

I Q0ĀR + ∑L
l=1 σ l(
T

I Ql
1ĀR − 
T

I Q0ĀR)
)

⎞
⎠ . (26)

Together the expressions given in Equations (23) and (26)
can be condensed into the form

(
P̂ −Q̂

Q̂ P̂

)(
aR

aI

)
=

(
b̂R

b̂I

)
. (27)

Here the vectors aI and aR are the coefficients for the re-
duced order model expressing the solution in its real and
complex parts. The system is of dimension 2M × 2M where
M � N and, more importantly, the elements of the systems
and RHS can be constructed efficiently.

The coefficients of the original Finite Element (FE)
expansion can be recovered using the relationship

APOD
R = ĀR + 
T

RaR; real part,

APOD
I = ĀI + 
T

I aI ; imaginary part. (28)

4. Numerical experiments

In this section a demonstration of the capabilities of the
POD model is provided by its application to solving the
electromagnetic equation. The problem used in this demon-
stration is designed to mimic that which would be found in
a typical borehole measurement calculation. This is in order
that it provides a true guidance on the method’s capabilities
for realistic applications. The problem domain is presented

in Figure 3, this has a 2D axi-symmetric (i.e. (r,z)) geometry
and is of size 2 metres (m) in radius and 4 metres in height.
The domain is layered horizontally in the sense that the
material properties (i.e. the electrical conductivities) only
vary as a function of height. In this example there are seven
layers in total, these are labelled levels 0–6 and are ordered
with increasing levels of depth. Layers 0 and 6 are the
thickest, and both cover a vertical depth of 1.825 metres.
The middle section of the domain is occupied by layers 1–5,
and each of these has a depth of 0.07 metres.

The electromagnetic equation was solved in order to
find the vector potential A
(r, z). As explained earlier these
were generated through the COMSOL model, and this ap-
plied a mesh consisting of 10,929 triangular elements and
111,081 nodes. These solutions provided the full model
solutions used to form the snapshots in order to gener-
ate the POD model. In total 27 solutions were generated,
and for each a different set of electrical material properties
was used in the problem’s layers. The material properties
for each calculation are summarised in Table 1. Their val-
ues were varied within layers 1–5 with magnitude between
0.001 and 1 S/m, which is the typical range of material
properties found in these applications. In layers 0 and 6 the
properties were fixed with value 0.016 S/m. For all sim-
ulations, to initiate the electromagnetic field, an electrical

Figure 4. Energy percentage captured by POD basis for real and imaginary parts. In our case, we choose 20 POD basis functions which
can capture 99% energy from the real part and 99.99% energy from the imaginary part.
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Figure 5. Comparison of the real part of azimuthal vector potential between the full model (a) and the reduced model (b) for a seen case
with conductivities of 0.03, 0.03, 0.001, 1 and 0.001 S/m for each layer. (c) The error between the forward and POD solutions.
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10 N. Ardjmandpour et al.

Figure 6. Comparison of the imaginary part of azimuthal vector potential between the full model (a) and the reduced model (b) for a
seen case with conductivities of 0.03, 0.03, 0.001, 1 and 0.001 S/m for each layer. (c) The error between the forward and POD solutions.
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Figure 7. Comparison of the real part of azimuthal vector potential between the full model (a) and the reduced model (b) for an unseen
case with conductivities of 0.025, 0.033, 0.08, 0.09 and 0.09 S/m for each layer. (c) The error between the forward and POD solutions.
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12 N. Ardjmandpour et al.

Figure 8. Comparison of the imaginary part of azimuthal vector potential between the full model (a) and the reduced model (b) for
an unseen case with conductivities of 0.025, 0.033, 0.08, 0.09 and 0.09 S/m for each layer. (c) The error between the forward and POD
solutions.
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source was used which is of a type similar to that generated
by an induction tool. This source is positioned horizontally
in the centre of the domain at r = 0, and has a depth so that
it is positioned in the middle of layer 4. For all calculations
the Dirichlet boundary Aφ = 0 was applied to the domain’s
central axis at r = 0.

The snapshot matrices, POD functions and resulting re-
duced order models were generated for the real and imagi-
nary solution parts using the methods described in the pre-
vious sections. The graph presented in Figure 4 shows the
energy values from the resulting POD basis vectors gener-

ated for both real and imaginary snapshot sets. It is shown
that with just five POD functions 98% of the imaginary
solution data and 86.68% of the real solution data are cap-
tured. Using 20 POD basis functions the energy captured
increases to 99% (real) and 99.99% (imaginary).

The profiles presented in Figures 5–8 compare the
results and absolute differences between the COMSOL
and POD model solutions. In the POD model calculations,
20 POD basis functions were used to resolve both the real
and imaginary parts of its solution (as this generates a
40 × 40 matrix, a simple direct solver is used). Figures 5

Figure 9. Comparison between the real part (a) and imaginary part (c) of the voltages of main coil calculated from COMSOL and POD
solutions for 27 snapshots (Table 1) that are used to obtain the POD basis functions. (b) and (d) show the absolute error between the
calculated voltages from POD and COMSOL solutions.
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14 N. Ardjmandpour et al.

and 6 compare the solutions for a problem with material
properties identical to one of those used in creating the
snapshot data – case 13 in Table 1. In this case the two sets
of solutions are in very close agreement. Figures 7 and 8
present the solutions from both models to a problem with
material properties that vary from those used to generate the
snapshot sets (the conductivities of layers 1–5 were set to
0.025, 0.033, 0.08, 0.09 and 0.09 S/m, respectively). Again
the POD model has performed well as both sets of solutions
are in close agreement. This close agreement is supported
by the fact that the maximum difference between the COM-

SOL and POD model solutions is less than 0.4 × 10−11,
for real part, and 0.4 × 10−12 for imaginary part.

To further quantify the accuracy of the POD model,
voltages have been estimated from its solution across the
main and bucking coils. These are positioned along the
central vertical axis of the problem, as shown in Figure 3,
and sit within layer 3, for bucking coil, and layer 2, for main
coil. The voltage is calculated from the formula

V = iω
NR

h

∫
line

2πρAφdz, (29)

Figure 10. Comparison between the real (a) and imaginary (c) parts of voltages of bucking coil calculated from COMSOL and POD
solutions for 27 snapshots (Table 1) that are used to obtain the POD basis functions. (b) and (d) show the absolute error between the
estimated voltages from POD and COMSOL solutions.
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where h denotes the coil’s length and z is the vertical coor-
dinate. The integral is taken over the line representing the
cylindrical surface of the coil.

Figures 9 and 10 present graphs that show the voltage
solutions, both the real and imaginary parts, and their dif-
ferences as calculated by the COMSOL and POD models.
These results were generated by solving the 27 problem
domains used in generating the snapshot data sets. For the
majority of cases, particularly with low conducting mate-
rials, the absolute difference in the real solutions between
the two models is below 0.5 × 10−4 S/m in the main coil,

and 0.5 × 10−6 S/m within the bucking coil – this variation
is within 6%. For higher conductivities, in particular cases
18 and 27, there are larger errors. The imaginary parts of
the voltage are resolved accurately by the POD model. Typ-
ically the difference remains below 1.5 × 10−5 S/m (within
the main coil) and 3.8 × 10−6 S/m (within the bucking coil)
which is a less than 1% variation between the two model
predictions.

The voltages were also calculated for problems with
material properties different from those used in generating
the snapshot data. In total 22 problem domains were

Figure 11. Comparison between the real (a) and imaginary (c) parts of the voltages of main coil calculated from COMSOL and POD
solutions for unseen cases (Table 2). (b) and (d) show the absolute error between the calculated voltages from POD and COMSOL
solutions.
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16 N. Ardjmandpour et al.

resolved, the corresponding material properties are listed in
Table 2. The voltages calculated by the POD and COMSOL
models, and their differences, are presented in Figures 11
and 12. Again there is good agreement between the two
model predictions. For the real part of the solution the dif-
ference remains below 5 × 10−6 S/m for both coils, for the
imaginary part the difference does not exceed 2 × 10−6. The
voltages in the main and bucking coils have been predicted
to be within 6% (real) and 1% (imaginary) of each other,
respectively.

The computational times for executing the various pro-
cedures in the formulation of the POD model have been
recorded. The time to compute the reduced order ‘refer-
ence matrices’ used in Equation (26) was found to be in the
region of around 100 seconds. This was the most expen-
sive component; however, as this is a pre-processing step it
is only required to be computed once. The generation and
solving of the reduced order system requires less than a sec-
ond. This is exceptionally fast in comparison to solving the
full model, this is required in the region of 60–70 seconds
per solution.

Figure 12. Comparison between the real (a) and imaginary (c) parts of the voltages of bucking coil calculated from COMSOL and
POD solutions for unseen cases (Table 2). (b) and (d) show the absolute error between the calculated voltages from POD and COMSOL
solutions.
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Table 2. The conductivity of the each layer for unseen cases.

No of cases Layer 1 Layer 2 Layer 3 Layer 4 Layer 5

1 0.25 0.25 0.25 0.25 0.25
2 0.25 0.22 0.05 0.025 0.025
3 0.05 0.025 0.025 0.025 0.025
4 0.025 0.025 0.025 0.025 0.025
5 0.025 0.025 0.03 0.08 0.09
6 0.03 0.08 0.09 0.09 0.09
7 0.09 0.09 0.09 0.09 0.09
8 0.08 0.03 0.025 0.025 0.025
9 0.03 0.025 0.025 0.025 0.025

10 0.025 0.025 0.025 0.015 0.014
11 0.025 0.023 0.015 0.014 0.014
12 0.023 0.015 0.014 0.014 0.014
13 0.015 0.014 0.014 0.014 0.014
14 0.014 0.03 0.17 0.2 0.2
15 0.03 0.17 0.2 0.2 0.2
16 0.017 0.2 0.2 0.2 0.2
17 0.2 0.2 0.2 0.2 0.2
18 0.2 0.2 0.2 0.19 0.17
19 0.2 0.2 0.19 0.17 0.16
20 0.2 0.19 0.17 0.16 0.16
21 0.19 0.17 0.16 0.16 0.16
22 0.17 0.16 0.16 0.16 0.16

5. Conclusions

This paper has presented a new method for an efficient ‘for-
ward model’ solution of the electromagnetic equation that
may be used in borehole measurement calculations. This
is based on a reduced order model that uses the method
of POD in conjunction with the method of snapshots. This
approach uses the solutions of the electromagnetic equa-
tion generated from a high resolution (or full) model, in
this article COMSOL was employed. These solutions form
snapshots of the vector potential, which in turn were used to
form the POD basis functions. These functions are optimal
in the sense that they can efficiently capture the energy of
the snapshot data. The result is that when used to form a
new discretised model, only a small number of functions
were required. This meant that linear system generated by
POD was significantly smaller in size in comparison to the
original full model, thus it was more efficient to solve. The
novelty of this article is in the use of POD for the application
of solving the electromagnetic equation, and with it being
used to resolve the real and imaginary parts of its solution.
It has also been shown how the reduced order models can
be generated efficiently.

A demonstration in the capabilities of the POD model
has been presented by solving a problem similar to that
found in borehole measurement calculations. Here a layered
formation of the problem was represented in axi-symmetric
geometry for which the layer’s conductivities were varied
across the range of values seen in typical problems. Using
just 27 snapshots and 20 POD basis functions the reduced
order model could capture more that 99% of the real and
99.99% imaginary parts of the energy. This was reflected

in the results as there was close agreement in the solutions
calculated by the POD and COMSOL models. This was
demonstrated by solving problems that were used in gen-
erating the snapshot set, and also problems that were not.
In both cases the POD model accurately resolved these do-
mains and provided significant improvement in efficiency
though a reduction in the computational time. Problem sizes
between the full models and POD were reduced by four or-
ders of magnitude.
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