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ABSTRACT

Numerical and theoretical aspects of solving optimal control problems for a 

continuous flow (suppression of the Karman vortex street for a flow around a 

cylinder) and for a discontinuous flow (changing the location of discontinuities for 

the shock-tube problem) are considered.

The minimization algorithms require the gradient (or a subgradient) for the 

smooth (respectively non smooth) cost functional. The numerical value of the 

gradient (respectively a subgradient) is obtained using the adjoint method.

The optimal solutions are verified using their physical interpretation. A very 

convincing argument for the validity of the numerical optimal solutions is obtained 

comparing the values corresponding to observed physical phenomena to the above- 

mentioned numerical optimal controls.

Sensitivity analysis of a discontinuous flow, namely for the shock-tube problem of 

gas dynamics, was also studied. Better results are obtained compared to the available 

literature, due to the use of adaptive mesh refinement.

xiii
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C H A PTER  1

INTRO DUC TIO N

Real-world applications arising from very different fields: fluid dynamics (Sritha- 

ran [179]. Gunzburger [91]), engineering (Siouris [176]). mechanics (Akulenko [3]). 

credit risk (Cossin [40]). management science and economics (Sethi [173], Seierstad 

[172]). thermodynamics (Berry [15]). chemistry (Edgar [50]). biomedicine (Swan 

[181]). electric power systems (Christensen [33]). distributed nuclear reactors (Chris­

tensen [34]), hydrosystems (Mays [142]) can be formulated as optimal control prob­

lems following a general description:

Influence the behavior o f th e system  

so as to  achieve a desired goal.

This is the equivalent to controlling the system by selecting a certain set of the 

parameters that determine its behavior. The optimal parameters are obtained by 

performing the minimization of a given cost functional measuring the discrepancy 

between model and observations in a given time interval.

The characteristics of the cost functional determine which optimization method 

is better suited for solving the minimization problem. For the subset of differentiable 

cost functions smooth optimization methods are more efficient, while non smooth 

optimization algorithms are more appropriate for the subset of non differentiable 

cost functionals. The object of this dissertation is to provide both a theoretical 

analysis as well as a numerical solution for optimal control problems representative 

of each category.

1
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An optimal control problem for a viscous flow past a circular cylinder is chosen 

for the case of a differentiable cost functional. Optimal control for the shock-tube 

problem is considered for the case of a non smooth cost functional. Sensitivity 

analysis for the discontinuous flow case is also studied.

1.1 Optimal control for flow past a circular cylinder

The viscous flow past a circular cylinder has been extensively studied due to its 

simple geometry and its representative behavior of general bluff body wakes. A deep 

understanding of the control strategies necessary to control flows past rotating bluff 

bodies could be applied in areas like drag reduction, lift enhancement, noise and 

vibration control, aerodynamics etc.

A very important characteristic of this flow is the Karman vortex shedding (which 

has been extensively studied for the last 90 years, starting with the pioneering work 

of Von Karman [119]).

Research on the problem of a flow past a cylindrical rotating body has been the 

subject of many experimental (Badr et al. [8]. [9]. Tokumaru and Dimotakis [188]). 

and numerical investigations (Chen et al. [28]. Baek and Sung [10], Dennis et al. 

[46]. Juarez et al. [117], Chou [31]). However most of these results are primarily 

focused on the study of formation and development of vortices in a cylinder wake 

and they do not attempt to suppress vortex shedding.

Examples of applying active control of vortex shedding in experiments are given 

by Gad-el-Hak [60], [61] and Modi [144]. Modi’s experiments are related to the 

moving surface boundary layer control for airfoils. The moving surfaces are provided 

by rotating cylinders located at the leading edge and/or trailing edge as well as the 

top surface of an airfoil. It has been shown that this mechanism of moving surfaces 

can prevent flow separation by retarding the initial growth of the boundary layer, with 

important consequences for lift enhancement and stall delay. The control parameter 

used was the speed ratio (which represents the ratio of cylinder speed to the free
2
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stream speed). This speed ratio can be either constant in time or time-dependent 

(e.g.. if the airfoil is undergoing a rapid maneuver). This type of result provided us 

with the motivation to consider flow control for either a constant or time-dependent 

angular rotation of the cylinder.

Different approaches for the control of a flow around a cylinder have been 

successfully employed in the last two decades. For example. Tang and Aubry [184] 

suppressed vortex shedding by inserting two small vortex perturbations in the flow: 

Gillies [68] used neural networks: Gunzburger and Lee [89] determined the amount 

of fluid injected or sucked on rear of the cylinder from a feedback law depending 

on pressure measurements at stations along the surface of the cylinder: Huang [106] 

suppressed vortex shedding by feedback sound; Joslin et al. [116] showed that flow 

instabilities can be controlled by wave cancellation: Kwon and Choi [123]. Ozono 

[156] and You et al. [207] employed splitter plates attached to the cylinder: Park et 

al. [157] used a pair of blowing/suction slots located on the surface of the cylinder: 

Sakamoto and Haniu [167] introduced a smaller cylinder near the main cylinder, 

with experiments conducted by changing the gap between the cylinders and the 

angle along circumference from the front stagnation point of the main cylinder: the 

flow is controlled via cylinder rotation (e.g.. Tang et al. [183]. Tao et al. [185]. 

Warui and Fujisawa [203]. He et al. [98]. or Tokumaru and Dimotakis [189]): Pentek 

and Kadtke [159] implemented a chaos control scheme to capture and stabilize a 

concentrated vortex around the cylinder, the control being actuated by uniformly 

rotating the cylinder and actively changing the background flow velocity far from 

the body.

Due to the complexity and large dimensions of the control problem, suboptimal 

control strategies have been considered and implemented. The concept of instanta­

neous control (e.g., control at every time step of the underlying dynamical systems) 

was applied in Choi et al. [30]. Another approach involves two stages:/irsf the 

approximation of the equations of the fluid flow using reduced order models and

3
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second an exact optimization for the reduced system, the difference among various 

research efforts consisting in the choice of the basis functions used for the reduced 

models. In the reduced basis approach one uses as basis functions the terms which 

arise in series expansion of the solution with respect to a parameter (e.g.. Ito and 

Ravindran [112]). The proper orthogonal decomposition (POD) approach is applied 

by Graham et al. [77], [78] and Afanasiev and Hinze [2] .

Optimal control methods (O CM ) have been employed for flow control. Dis­

tributed controls were used by Abergel and Temam [1], Gunzburger et al. [88]. 

Hou et al. [105]. [104]: blowing and suction on the surface of the cylinder was 

studied by Berggren [14], Bewley [17], Ghattas and Bark [63]. Li et al. [131]: velocity 

tracking (boundary velocity controls) was employed by Gunzburger and Manservisi 

[90]. Gunzburger et al. [87]. Hou and Ravindran [103], [102].

A key component of the process of flow control is the minimization of a cost 

functional aiming at the optimization of some of the flow characteristics.

Abergel and Temam [1] minimized the turbulence for a flow respectively driven by 

volume forces, a gradient of temperature and a gradient of pressure (the turbulence 

being measured by a L 2 norm of the curl of v (||V  x c||£.2) or. alternatively, by 

studying the stress at the boundary): Berggren [14] minimized the vorticity field. 

Bewley et al. [17] reduced the turbulent kinetic energy and drag: Ghattas and Bark 

[63] used as objective function the rate at which energy is dissipated in the fluid.

Our research presents the numerical solution to the problem of controlling vortex 

shedding for a flow past a rotating cylinder using optimal control methods. It is 

shown that the nature of the vortex shedding process is significantly altered by 

cylinder rotation. We employ a global control approach (the entire body is subjected 

to prescribed motion), as compared to a local control method (e.g.. blowing/suction 

as reported by Li et al. [131]).

The mathematical formulation of the problem implies minimization of a cost 

functional. Since all efficient local minimization algorithms require the computation

4
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of the gradient of an objective functional (functional described in chapter 7) with 

respect to the control parameters, part of this effort was dedicated to the gradient 

computation.

The adjoint method was employed to obtain the gradient of the discrete cost 

functional. The adjoint was constructed directly from the source code of the 

original discrete nonlinear model, circumventing difficulties which would appear if 

one were to first obtain the continuous adjoint model and then discretize the adjoint 

equations (the differences between the differentiate-then-discretize approach and the 

discretize-then-differentiate approach are discussed by Gunzburger [86]).

The objective functional included a regularization term since preliminary nu­

merical results suggested ill-posedness of the optimization problem. We chose the 

regularization term to be from the class of Tikhonov regularization (Tikhonov and 

Arsenin [187]). Another important characteristic is the length of the "control'' 

window (the time window employed for minimization). It was found that the length 

of this time window should be larger than the vortex shedding period if the angular 

velocity (which serves as the control parameter) is time-dependent. However, if the 

angular velocity is constant in time, the length of the time window should only exceed 

a certain threshold value which can be smaller than the vortex shedding period.

The results obtained show that vortex shedding is suppressed for the Reynolds 

number in the range: 40 <  Re <  1000. The regimes of flow change for different 

subsets of the range considered. The flow characteristics are different for 40 < Re <  

150. 150 < Re < 250 and 250 < Re <  1000 respectively. For the same values of 

optimal rotation rate employed to achieve the elimination of the vortex shedding, 

the time histories of the drag coefficient show that a significant reduction in the 

amplitude of its variation is obtained compared to the case of the fixed cylinder.

As far as we know our research is the first apply numerical optimal control 

methods for the flow control problem around a rotating cylinder. Our method
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converged for both cases considered: constant rotation in time or time-dependent 

rotation.

Comparable results were obtained for constant rotation (Kang et al. [118]. Chew 

et al. [29], Badr et al. [9] and Chou [32]) and. respectively, for the time-dependent 

rotation (Tokumaru and Dimotakis [188]. Baek and Sung [10] and He et al. [98]). 

The main difference between our approach and their research is the following: they 

obtained the values of the rotation parameters for which the flow has the required 

characteristics by experiments or active control applied to numerical simulations.

1.2 Sensitivities for a flow with discontinuities

Sensitivities (for both continuous and discontinuous flows) are derivatives of the 

variables or cost functionals that describe the model with respect to parameters that 

determine the behavior of the model (e.g.. initial conditions, boundary conditions, 

shape parameters). They provide information about what, where and when these 

parameters most influence the model output. Employed in an optimization setting 

they help determine the gradient of the objective functional used in the optimization 

process.

The sensitivity analysis (SA) means very different things to different people 

(compare the reviews of Turanyi [191]. Janssen et al. [115]. Helton [99] and Goldsmith 

[72]) but all its applications share a common goal: to investigate how a given

computational model responds to variations in its inputs.

We studied SA for a fluid dynamics problem (characterized by several types 

of discontinuities). Besides fluid dynamics. SA proved to be very useful in many 

other scientific fields. To exemplify the extent of SA applications we mention a 

very recent SA handbook by Satelli et al. [170] which describes the principles of 

sensitivity analysis in various settings and presents many SA methodologies for 

ecology, chemistry, mechanics, economics and policy-making, to mention but a few.
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The vast majority of SA applications were obtained for problems involving 

continuous functions. Research was also performed in the presence of discontinuities 

but many questions in this area remain yet unanswered. Sensitivity analysis in the 

case of a model with discontinuities was applied in fluid dynamics, aerodynamics, 

chemistry, financial analysis, meteorology' or environmental studies, and the list goes 

on.

Discontinuous SA  studies include shape optimization for fluids (Burgreen and 

Baysal [22], Newman et al. [149], Taylor et al. [186], Mohammadi and Pironneau 

[145]). noise analysis and optimization of electronic circuits (Nguyen et al. [150]). 

control of contaminant releases in rivers (Piasecki and Katopodes [160]). control 

of water movement through systems of irrigation canals (Sanders and Katopodes 

[168]). shallow water wave control (Sanders and Katopodes [169]). aeroelastic analysis 

(Giunta and Sobiesczanski-Sobieski [69]). shock sensitivity evaluations of dynamic- 

financial strategies (Gourieroux and Jasiak [75]) and meteorological applications 

(Zhang et al. [212]).

Theoretical and computational aspects of sensitivity calculation in the presence 

of discontinuities were also presented by Ulbrich [193]. Cliff et al. [36]. Godlewski 

and Raviart [71], Bouchut and James [21] and DiCesare and Pironneau [47].

Numerical sensitivities were computed by Narducei et al. [147] for optimization of 

duct flow with a shock using quasi-one-dimensional Euler equations. In their research 

they employed continuous (differentiate-then-discretize) and discrete (discretize-then- 

differentiate) methods to compute the design sensitivities. The continuous method 

requires analytical expressions for the derivatives of the velocity and shock location 

with respect to the design variables derived from the governing equations and the 

shock jump conditions (the difference between direct and adjoint method in this case 

is that the adjoint method avoids computing these derivatives directly). For the 

discrete method a coordinate-straining approach with a shock penalty was employed 

(to avoid difficulties caused by the presence of non smooth functions).
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For the same problem as Xarducci et al. (quasi-one dimensional duct flow) Cliff 

et al. [36] introduced the shock location as an explicit variable which allowed one to 

fit the shock and yielded a problem with sufficiently smoothed functions.

Cliff et al. [37] carried out sensitivity calculations for the 1-D Euler system. Xo 

numerical calculations were performed however.

Our research is focused on the numerical computation of flow sensitivities with 

respect to an initial flow parameter for the shock-tube problem (1-D Riemann 

problem for the Euler equations) for which the exact values of the flow sensitivities 

are known.

We chose the discrete {discretize-then-differentiate) approach which in our opinion 

is more suitable than the continuous approach for flows with discontinuities. Our 

numerical results were compared to the results presented by Gunzburger [86] and 

they proved to solve better the regions with discontinuities due to the use of adaptive 

mesh refinement.

1.3 Optim al control o f the 1-D Riemann problem of gas
dynamics

Recently optimal control involving non smooth functions has attracted the 

attention of an increasing number of researchers due to availability of new methods 

of non differentiable optimization employing subgradients following the seminal work 

of Lemarechal [125] (e.g.. Lemarechal [126]. Bonnans et al. [20], Schramm and Zowe 

[171], Luksan and Vlcek [136]. Makela and Xeittaanmaki [138] to cite but a few).

Xon smooth cost functionals were employed in variational data assimilation in 

atmospheric sciences (Zhang et al. [212]). for inverse design problems involving 

transonic diffusers : 1-D (Xarducci et al. [147]) or 2-D (Dadone et al. [44]). in 

acoustics (Habbal [93]), for the research of a convex hull with bounded curvature 

of a given set of points (Hassold [97]). in mechanical structures (minimizing the 

maximal stress over an arch structure Habbal [92]), for chromatography (James and
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Sepulveda [113]). capital asset management (Leonard and Long [127]). in the design 

of a duct flow with a shock (Frank and Shubin [58]. Cliff et al. [36]. Iollo et al. [111]), 

for airfoil design (Jameson [114], Matsuzawa and Hafez [140], [141]. Iollo and Salas 

[110] and Giles and Pierce [66]).

The presence of discontinuities creates serious theoretical and numerical difficul­

ties. Good shock-capturing schemes with low continuity properties often cannot be 

combined successfully with efficient optimization methods requiring smooth functions 

(e.g.. gradient-based methods). To alleviate this problem one can use methods that 

are relatively insensitive to the non smoothness of the cost function. Stochastic 

optimization methods were applied for the design of a minimum time changeover 

operation for a pressure vessel avoiding the formation of explosive mixtures (Barton 

et al. [12]) or for aerodynamic shape optimization (Huvse and Lewis [108]). Genetic 

algorithms (Oyama et al. [155]) were also used for wing optimization. For these 

non-gradient-based methods the drawback is the very large number of analyses 

required (i.e.. large memory demands) as the number of variables increases.

In the case of gradient-based methods different remedies to alleviate the influence 

of the discontinuities were employed. For variables continuous across the shock one 

can avoid dealing with shocks by considering cost functions based on the above 

variables (e.g.. the surface flux for inverse nozzle design as used by Matsuzawa 

and Hafez [140]). For most cases the shocks were smoothed using numerical 

dissipation. It was shown that sometimes smoothing is equivalent to modifying the 

cost function (Matsuzawa and Hafez [140]). An alternative smoothing procedure has 

been introduced by Valorani and Dadone [197], namely a filtering process which was 

obtained by modifying a set of sensitivity equations by adding artificial dissipative 

terms. The optimization search was performed on the original non smooth objective 

function computed with an accurate (non smoothed) flow analysis but with smoothed 

flow sensitivities.
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If the shocks are weak at design conditions (e.g.. transonic flows) acceptable 

results can be obtained by addition of artificial dissipation. However, accurate 

treatment of the shock waves is essential in other cases (e.g.. supersonic flows). 

The alternative approach to shock smearing is shock fitting which involves careful 

integration of the objective function through the shock wave (Xarducci et al. [147]). 

Perturbation of a discontinuous function produces delta functions and formulations 

based on variations of smooth functions have to be modified (Iollo et al. [111]). 

Another approach was to introduce the shock location as an explicit control variable 

(Cliff et al. [36]). A coordinate straining method was also employed by Xarducci et 

al. [147], It consists of a coordinate transformation aimed at aligning the calculated 

shock with the target, followed by addition of a penalty term proportional to the 

square of distance between the shocks.

Results for the optimal control of the Euler equations were obtained, among 

others, by Anderson and Venkatakrishnan [6] (in 2-D). Arian and Salas [7] (in 2-D). 

Dadone and Grossman [43], [42] (2-D and 3-D). Cliff et al. [35]. [36], [37], [38]) (1-D 

and 2-D).

Theoretical contributions (combined with practical applications in certain cases) 

for the adjoint method were provided by Giles and Pierce [64]. [65], [66]. [67] (for Euler 

equations) and Ulbrich [192]. [193]. [195]. [194] (in the setting of optimal control for 

scalar conservation laws). A generalized adjoint for physical processes in atmospheric 

sciences with parameterized discontinuities was studied by Xu [206]. Xumerical 

aspects of the adjoint model for discontinuous nonlinear atmospheric models were 

discussed by Zhang et al. [211].

Problems with discontinuities in an optimal control setting or in sensitivity-based 

control were studied by Mohammadi and Pironneau [145], Gunzburger [86], [85], 

Tolsma and Barton [190] and Zhang et al. [212].
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Practical aspects of control of problems with shocks were presented by Iollo and 

Salas [109]. Birkemeyer et al. [18]. Stanewsky [180], Jameson [114], Bein et al. [13] 

or Wang et al. [202].

Our research consists of theoretical and numerical results for an optimal control 

problem of the unsteady 1-D Riemann problem of Euler equations (shock-tube). 

The numerical solutions of the optimal control problem were obtained using both 

non smooth and smooth optimization algorithms.

This specific problem was chosen due to the fact that it has an analytical solution 

which is characterized by the presence of several types of discontinuities: shocks, 

contact discontinuities and wave rarefaction regions. This Riemann problem may be 

briefly described in the following wav: a gas tube is divided by a membrane into two 

regions with different values for pressure and density fields and a zero velocity field. 

After the membrane is suddenly removed the gas moves freely.

Our optimal control problem has very interesting aerodynamic applications, 

consisting in moving the regions of discontinuities to desired locations by matching 

the desired flow to the numerical flow. The control parameters consist of the initial 

values of pressure and density to the left and to the right of the membrane. We 

consider the initial velocity to the left and to the right of the membrane to be 

zero. The cost functional is the weighted L2 difference between the observations and 

the numerical values for density, pressure and velocity fields. The observations are 

computed from the analytical solution of the Riemann problem in two ways: either 

at the end of the assimilation window or distributed in time within the assimilation 

window.

Two numerical models were chosen, representative of possible approaches for 

solving a flow with discontinuities: a high-resolution model (HRM ) and a model 

with artificial viscosity (AVM ).

We employed a non smooth optimization algorithm (PVAR). developed by 

Luksan and Vlcek [136], [137]. [198]. We also used a smooth optimization algorithm
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(L-BFG S). described in Xocedal [151] and Liu and Xocedal [134]). Both methods 

require the computation of a subgradient (respectively the gradient) of the cost 

functional. This subgradient (respectively gradient) is obtained from the adjoint 

model derived from the original numerical model. Accuracy tests for both the 

gradient and subgradient obtained via the adjoint method are presented.

We considered two time horizons which are representative for the time evolution 

of the flow. Their length was chosen for two main reasons. First we wanted to ensure 

that all desired characteristics of the discontinuities are still present in the flow at the 

end of each time window. Second, we selected the larger time window such that if 

we were to slightly increase it some of the discontinuity characteristics will disappear 

from the spatial domain considered.

We obtained excellent results using non smooth optimization for both models and 

for both time horizons. The numerical flow corresponding to the optimized initial 

conditions matches closely the observations and the location of the discontinuities was 

changed to the desired location. The figures describing the evolution of entropy at 

various stages of the minimization process show that the numerical solution satisfies 

the entropy condition which is a requirement for a physical solution of the shock-tube 

problem.

The L-BFGS algorithm did not converge in many cases. Even for the cases where 

convergence was obtained one may notice a large difference between the L-BFGS 

optimization results and the desired values of the control parameters.

For the model with artificial viscosity a discontinuity detection method was used 

to eliminate the points where the shock is located from the computation of the cost 

functional and its gradient (or subgradient). As a result, the optimized results were 

obtained at the same level of accuracy but in fewer minimization iterations.
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C H A PT ER  2

THEORETICAL FRAM EW ORK FOR OPTIM AL  

CONTROL A N D  SENSITIVITY ANALYSIS

2.1 General characteristics o f an optimal control problem

Every problem of optimal control is characterized by several main features.

It has an objective, i.e. a reason why one wants to control the system. There 

are numerous objectives of interest in applications, e.g.. drag minimization, lift 

enhancement, preventing transition to turbulence, reducing noise, personnel task 

scheduling, shape optimization, control of heat transfer, operation of a cascade of 

power stations, mineral resource extraction in an open economy, stock selections. 

Mathematically, such an objective is expressed as a cost functional.

Constraints must be imposed on candidate optimizers. The constraints are 

derived from the given law according to which the system evolves. They are expressed 

in terms of a specific set of equations. One mav mention here partial differential equa­

tions P D E  (e.g.. X avier-Stokes or Euler equations for incompressible or compressible 

flows, heat equation, shallow-water equations. Black-Scholes equations for financial 

mathematics), ordinary differential equations O D E (chemical reactions, spreading 

of diseases), stochastic differential equations SD E (noisy evolution of stock values or 

porous media flow) and differential-algebraic equations DAE (for dynamical models).

The nature of the state equations and of the boundary conditions is determined 

by the mathematical model adopted. For this model one can identify a group 

of dependent variables called s ta te  v ariab les  (e.g.. velocity, pressure, density, 

temperature, energy).
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Finally one has control parameters which determine the behavior of the system. 

For the fluid applications one can have boundary value controls (injection or suction, 

heating or cooling), distributed controls (heat sources or magnetic fields) or shape 

controls (exit area for a nozzle, movable walls, leading or trailing edge flaps).

The optimal control problem (O C V ) is then stated as:

Find controls g and states  $  such that the cost functional £T($ .g )  is minimized 

subject to the flow equations V£OW(<P. g) =  0 (OCV)

The set of admissible controls is the set of all controls g allowed by the physical 

limitation of the problem. The optimal control g m which solves (OCV)  is selected 

from the set of admissible controls denoted by lAad-

2.2 T he adjoint approach for solving an optim al control
problem

We follow the adjoint approach as introduced by Talagrand and Courtier ([182]). 

The following two basic properties of Hilbert spaces form the basis of this 

approach.

If B is a Hilbert space with inner product denoted by (.) and v — F(v) a

differentiable scalar function defined on B. then the differential of F can be expressed

as

J F = (V vF. dv) (2.1)

where VvF is the "gradient" of F with respect to v.

Let C be another Hilbert space with inner product denoted by <. > and L a 

continuous linear operator from B to C. There exists a unique continuous linear 

operator L“. called the adjoint operator of L. from C to B such that

(v. Lz) = <  L‘v. z > (2.2)

for any v 6 C and any z e  B.

14
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Consider a differentiable function z —► v =  G(z) of B into C. The function F  is

a composite function of z (F(v) =  F[G(zj). Then the differential of v is equal to

Sv =  G  Sz (2.3)

where G  is the linear operator obtained by differentiation of G.

Introducing the adjoint G 'm of G ' and using (2.3) one obtains

dF = (VvF. G dz) = <  G *VvF. Sz > (2.4)

This shows that the gradient A UF of F  with respect to z is equal to

AZF =  G ‘VvF (2.5)

The formula (2.5) is at the basis of the use of adjoint equations in control theory. 

Assuming that the operation z —- v  =  G (z) denotes the integration of the numerical 

model, the formula (2.5) provides a very efficient way for the numerical computation 

of the gradient V ZF.

We present now details of the numerical computation of the gradient based on

the above discussion. Let us assume that the model evolution equation is written as

dU (X .Y .f)
   =  F(U . Y . t) (2.6)

U(f0) =  U 0

where X =  (A j X m) C is the position vector. U(X) = [L’i(X ).........L\-(X)]

is the state vector which belongs to a Hilbert space whose inner product is denoted

by <. > and Y (X) =  [Vj(X) Vp(X)] the vector of system parameters.

We consider the cost functional

J =  f  " H [U .U o6AT]df (2.7)
J to

where [t0, £»•] is the length of the assimilation window and H is a functional depending 

on the state vector U and the observations U 065 available at time t.
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For a given initial condition Uo and a given vector of system parameters Y  there 

exists a solution U(t) of (2.6). The first order variation d j '  is equal to
riw

& S  =  I  <  V uH (t). dU(<) > dt (2.8)
Jto

where V uH (t) is the gradient of H  with respect to U  taken at point (U (t).f) and 

SU(t)  is the first-order variation of U(f) resulting from the perturbations dU0 and 

S Y  of U 0 and respectively Y .

The variation d'U(t) is obtained from dU0 and d'Y by integrating the tangent 

linear model relative to the solution U

d[dJJ(t)} = F '{t)SlJ (2g}

where F  is the operator obtained by differentiating F with respect to U. taken at

point U(f). The solution of the linear equation (2.9) can be written as

SU(t) =  R ( t . t 0)dU 0 (2.10)

where R (f. t0) is a linear operator called the resolvent between times t and t0. 

Equation (2.8) can now be rewritten as
r t \v

d j  =  I < V u H (f).R (f.f0)<>'Uo > dt
J t o

=  [  " < R*(f.*o)VuH(*).d'Uo > dt 
J to

=  R - ( t . t 0 ) V v H ( t ) d t . 6 \J0^ (2.11)

where R*(f. to) is the adjoint of R(f. f0)-

We can see from (2.8) and (2.11) that the gradient of 3  with respect to U 0 is

V u03  =  [  R*(f. t0)V uH (i) dt  (2.12)
J to

Wre introduce the adjoint equation of (2.9). using the adjoint vector d’U(f) 

corresponding to dU(£):
d[S U(0] =  (2.13)

dt

where F  *1 is the adjoint of F \
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We denote by S(£\ t) its resolvent between times t and t :

d\ J{ t )  =  S { t . t ) 6 ' \ J{ t )  (2.14)

For any two solutions dU(t) and <5’U(f) of the direct and adjoint equations (2.9) and 

(2.13) respectively, the inner product < >  is constant in time since

= <  F' ( t ) 6 U ( t ) . d U ( t )  >  -  <  6 U ( t ) . F ' - d U( t )  > =  0

Let Z and 2'< be any two elements in the Hilbert space considered. The solution of 

the direct equation (2.9) defined bv the initial condition Z at time t assumes at time 

t the value R (f\ t )Z while the solution of the adjoint equation (2.13) defined by the 

condition Z at time t assumes at time t the value S ( t . t ) Z ' . Therefore we have

< R (t '.t)Z .Z ' > = <  Z.S(t. t')Z' >  (2.15)

The relation (2.15) is valid for any elements Z and Z \ which shows that S( t . t  )is 

the adjoint of H( t  , t).  In other words the resolvent of the adjoint equation between 

t and t is the adjoint of the resolvent of the direct equation between t and t .

The expression (2.12) then becomes

Vv 0J =  j  S(fo-f)VuH(t) dt
J t n

(2.16)
'*0

We consider next the "inhomogeneous adjoint equation":

dd U
=  F m(t)S U  + V uH (t) (2.11

dt

with initial condition:

<j'U(fir ) =  0 (2.18)

The solution of (2.17)-(2.18) is

d 'U (0  =  J  H S (t. r )V u H (r)  dr  (2.19)

1
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Comparing (2.16) and (2.19) we can see that

V Uo J  =  6 'U(t0) (2.20)

In summary, the gradient V u0«J can be obtained, for given U 0 and Y. by

performing the following operations:

• Starting from U 0 at time t 0  for state parameters Y  we integrate the basic- 

evolution equation (2.6) from t 0  to t\V: we store the values thus computed for 

U for t0  <  t <  t h •.

•  Starting from d'U(fn-) =  0 we integrate backwards in time (from d r  to t0) 

the adjoint equation (2.17). The operator F '’ (f) and the gradient V uH  are 

determined, at each time t. from the values U(£) computed in the direct 

integration of (2.6).

•  The final value <j,U(£0) is the required gradient. V \ jufT

This adjoint approach was implemented in our research for two optimal control 

problems. The first problem has the objective of suppressing the Karman vortices for 

a flow around a rotating cylinder. The second problem, for the shock-tube problem,

is related to the change of discontinuity location to a "desired" location.

We have studied the optimal control problems from a theoretical point of view 

(proving the existence of the solutions) as well as from a numerical perspective.

2.3 Sensitivity analysis

Sensitivity analysis (SA) studies the influence, quantitatively and qualitatively, 

of different internal or external parameters upon the model output (numerical and 

otherwise).
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A general sensitivity theory for nonlinear systems was formulated by Cacuci [24]. 

[25]. The physical problem under consideration is represented by the following system 

of K  coupled nonlinear equations written in operator form as

N [U (X ).Y (X )] =  Q [Y (X ).X ] (2.21)

where X = ( X \ , . . . .  X m) C Rm is the position vector. U(X) =  [C’i(X ).........^V(X)]

is the state vector and Y(X) =  [Y’i(X ) Yp(X)] the vector of system param­

eters. q [Y (X ) .x ]  represents inhomogeneous source terms and the components of

N[U(X).Y(X)] =  [-Y,(U. Y )  ,Ya.(U .Y )] are nonlinear operators acting not only

on the state vector U(X) but also on the vector of system parameters Y (X ).

The system response R  =  R(U. Y) associated with the problem modeled by Eq.

(2.21) must also be specified. The response considered here R  =  R(e) is a general 

nonlinear functional of e =  (U. Y) with values in the set of real numbers.

The most general definition of a response to variations in the system parameters 

is the Gateaux differential (G-differential). The G-differential V R (e°:h ) of R(e) at 

e° with increment h  =  (hu,  hy)  is defined as

V R (e°.h) =  l i mR(e0 + t h ) - R (e°> (2.22,
( - 0  e

A property of the G-differential is that R  need not be continuous in U and/or Y 

for VR(e°; h) to exist at e° =  (U°. Y°) (Cacuci [24]). This property will be employed 

for the sensitivities of a flow with discontinuities which are discussed in chapter 9.

Given the vector of changes hy around Y°. the sensitivity V R (e°. h) at e° can be 

evaluated only after determining the vector hy . since h Y and hu are not independent. 

A relationship between hy and hy is obtained by taking the G-differential of equation

( 2 .2 1 ):

VN(e°: h) -  VQ(Y°: hY) =  0 (2.23)

Once hu is determined it can be employed to evaluate the sensitivity VR(e°: h) 

of the response R (e) at e°.
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We exemplify this approach for the same model discussed in the previous section

Following Cacuci. sensitivity analysis can be applied to responses which are either 

functionals (i.e.. scalar-valued operators) or operators (time-dependent or time/space 

dependent) of the model's parameters and variables. We present the case when the 

specific response is a functional of U and Y.

In a similar way one approaches sensitivity analysis for responses which are 

operators (time-dependent or time/space dependent) of the model's parameters and 

variables.

We consider

where r(f: U .Y ) depends on model variables U. the parameters Y and the 

time interval [t0. t w ] represents the selected time window. The G-differential 

V R (U 0.Y 0:h u ,h Y) of the response function is given by

with K  the dimension of the model parameters and P  the dimension of the model 

variable Y.

Taking the G-differential of (2.24) we obtain the linear system

(2.24)

(2.25)

V R(U °. Y°: hy . hy) = / rv  ■ h\j dt +  j  rY - h y d t  (2.26)

where

Y°)hu(t) =  Q(U°(t).Y°)hy(f)

hu|t=f0 =  0 
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and I is a unit matrix.

The value of h u  may be obtained by integrating (2.27) and. as discussed above, it 

can be employed to evaluate the sensitivity VR. This approach is denoted as forward 

sensitivity formalism.  However, when the dimension of the initial state vector and 

the number of parameters are large, the computational cost of calculating h u  is very 

high. Therefore we eliminate hu  by using the adjoint sensitivity formalism.

The adjoint operator L* is defined through the relationship
r t w

f  hu (L*q) dt =  f  q (Lhu) dt  -  [hu • q]
J t n  J t n

t w

' t o J t o  l(0

where q  is an arbitrary vector of dimension P.

Defining the adjoint model as

we write equation (2.28) as

f t  H '  f t \ Vrl \V  r l \ v

/  rv - h u d t =  q - (L h u )d f+  hu(^o)-q(^o)
J t n  J t n' t o  J t n

Substituting (2.27) into (2.30) we get
f t » -  r t \i

(2.28)

L'q =  rv  (2.29)

q(^ir) =  0

(2.30)

f  rv hv d t = f  q • (QhY) dt  ■+■ hu(^o) • qUo) (2.31)
J to  j  to

A comparison (2.31) and (2.26) shows that

VR =  f  r'Y h Y d t + f  q - (Q h Y)df +  hu(fo)-q(fo) (2-32)
J to  J to

We  note that the adjoint variable q(t) is the solution of the adjoint equations

(2.29). which are independent of hu and hy-
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The value of h u , determined by the equation (2.27), does not depend on response 

and has to be computed only once. Therefore a single adjoint model calculation 

suffices to obtain the sensitivities to all the model parameters' variation. However, 

the forcing term r'v  in the adjoint model depends on the functional defining the 

response, so that for each response the adjoint equations model must be integrated 

again.

We conclude this section by mentioning that our research employed local sensi­

tivity analysis as compared to global sensi tivity analysis (Cacuci [26]) The objective 

of local sensitivity analysis is to analyze the behavior of the system responses locally 

around a chosen point or trajectory in the combined phase-space of parameters and 

state variables. On the other hand, the objective of global sensitivity analysis is 

to determine all of the system's critical points (namely bifurcations, turning points, 

extrema) in the combined phase-space formed by the parameters, state variables and 

adjoint variables and subsequently to analyze these critical points by local sensitivity 

analysis.
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C H A PT E R  3

NUM ERICAL IM PLEM ENTATION OF THE  

A D JO IN T  METHOD FO R C O M PU TIN G  THE 

G R A D IE N T  OF THE COST FUNCTIO NAL

In this chapter we present the numerical adjoint approach for the computation 

of the gradient of the cost functional with respect to the control parameters. First 

we describe a general form of the cost functional, which takes into account manv 

additional influences: e.g.. errors from observations, numerical computation errors 

or background terms.

3.1 T he general expression of the cost functional

We recall that the collection of numbers needed to represent the state of the 

model is collected as a column matrix called the state vector X. How the vector 

components relate to the real state depends on the choice of discretization, which is 

mathematically equivalent to a choice of basis.

One must distinguish between reality itself (which is more complex that what can 

be represented as a state vector) and the best possible representation of reality as 

a state vector, which we shall denote X true. the true state at the time of analysis. 

Another important value is X(,s. the a priori or background estimate of the true state 

before the analysis is carried out. valid at the same time. Finally the analysis is 

denoted by X an and this is what we are looking for.

In practice is often inconvenient to solve the analysis problem for all components 

of the model state. In these cases the work space of the analysis is not the model
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space but the space allowed for the corrections to the background. Then the analysis 

problem is to find a correction <5X such that

X an =  X bg+ S X  (3.1)

is as close as possible to X lrue.

For a given analysis we use a number of observed values. They are gathered into 

an observation vector X obs. To use them in the analysis procedure it is necessary to 

be able to compare them with the state vector. In practice it is very common that 

there are fewer observations than variables in the model and they are irregularly 

distributed, so that the only correct way to compare observations with the state 

vector is through the use of a function from model state space to observation space 

called an observation operator denoted by H.  This operator generates the values 

H( X)  that the observations would take if both they and the state vector were perfect, 

in the absence of any modeling error. In practice H  is a collection of interpolation 

operators from the model discretization to the observation points and conversions 

from model variables to the observed parameters. To evaluate the discrepancies 

between the observations and the state vector we consider the vector of departures 

at the observation points X obs — 7i ( X) .

In practice we may assume that there are errors between the above presented 

vectors and their true counterparts. They are modeled as follows:

•  BACKGROUND ERRORS €bg =  Xbg — X true. They are estimation errors of the 

background state, i.e. the difference between the background state vector vector 

and its true value. They do not include discretization errors.

•  OBSERVATION ERRORS eobs =  X obs -  H ( X true). They contain errors in the 

observation process (instrumental errors), errors in the design of the operator 

H and discretization errors which prevent X true from being a perfect image of 

the true state
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•  ANALYSIS ERRORS ean =  X an —X true. They are estimation errors of the analysis 

state, which is what we want to minimize.

To represent the fact that there is some uncertainty in the background, in the 

observations and in the analysis we assume some probability density function for each 

kind of error. We can calculate statistics such as averages, variances and histograms 

of frequencies for the errors ebg. eobs. ean.

As an example let us consider the case of background error ebg. If we were able 

to repeat each analysis experiment a large number of times, under exactly the same 

conditions, but with different realizations of errors generated by unknown cases. ebg 

would be different each time. In the limit of a very large number of realizations 

we expect the statistics to converge to values which depend only on the physical 

processes responsible for the errors and not on any particular realization of these 

errors.

For practical purposes some useful information on the average values of the 

statistics of errors can be gathered by different methods: for example, one can use 

forecast differences as surrogates to short-range forecast errors or one can estimate 

flow-dependent error covariances directly from a Kalman filter.

Uncertainty analysis methods can also be applied to ascertain the credibility of 

simulations using the numerical model. A review by Walters and Huyse [201] presents 

deterministic and probabilistic methods for uncertainty analysis.

We include the above mentioned terms in the expression of the cost functional. 

Over a given time interval, the analysis being at the initial time and the observations 

being distributed among nT  times in the interval, we denote by the subscript i 

the quantities at any given observation time i. Hence X.°bs. X, and X frue.i are the 

observations, the model and the true states at time i. is the error covariance 

matrix for the observation errors X . f s — 7il(X.true<i). The background error covariance 

matrix B is only defined at initial time (which is also the time of the background 

Xbg and of the analysis X an). We also consider a weighting matrix W.
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Then the cost functional will be written as a sum of a background term S  b g and 

an observation term S o b s '

S ( X )  =  S b g ( X ) + S o b s ( X )  (3.2)
nT

=  (X -  X ^ B - ^ X  -  X bg) +  ] T  (X°bs -  Hi(Xi)TW . R - ^ X f  -  ^ (X - )
i = 0

Thus solving the optimal control problem is reduced to the minimization of the 

above cost functional subject to the strong constraint that the sequence of model 

states X, must verify

Xi = Mo-i (X)  (3.3)

where M 0 is the numerical model from initial time to the z'-th time.

Since our model is computed using time integration from initial time to the final 

time we may assume that the numerical model can be expressed as the product of 

intermediate operators Ad;

X nT =  M nTMnt-\ • • • M .\X q (3.4)

where nT  corresponds to the final time and X0 is the initial condition.

We assume that we can linearize the operators H t and Ado—,, i.e..

X f s -  Hi Mo- i {X)  =  X°bs -  HiMo~i{Xhg) -  F T M o ^ X  -  X bg) (3.5)

obtaining the tangent linear model. The existence of the tangent linear model depends 

on the model itself as well as on the length of the time interval considered.

3.2 Numerical gradient of the cost functional using the
adjoint method

For simplicity, we employ a cost functional without the terms involved in error 

analysis to derive the algorithm of computing the numerical gradient of the cost 

functional using the adjoint method. Then we will present the a similar algorithm 

at the end of this section, this time for the general form of the cost functional (3.2).
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Let us consider the cost functional as follows:

1 nT
J [ X .  A] =  -  £ [X (* * ) -  X obs(tt )]r W (^ )[X (ffc) -  X o6s(f,)] (3.6)

k=0

where W (tk) a  diagonal weighting matrix. A is the vector of control parameters. 

to <  ffc < tR. [t0. t nr\ is the minimization window and n T  is the number of time steps 

in the minimization window.

To find the minimum of the cost functional, efficient minimization algorithms 

require the calculation of the gradient of the cost functional with respect to the 

control parameters: (V ;\«7'[Aj)7\

Near X (r) (the state vector at time r) the nonlinear model can be written as:

X(v +  A t)  =  F(X (r))].

To calculate the gradient of the cost functional with respect to the control param­

eters we define the change in the cost function resulting from a small perturbation 

SA about the model control parameters A:

S J [ X .  A] =  J [ X .  A + d'A] -  J [ X .  A] (3.7)

As we take the limit |(AA|) — 0. dJ[X. A] is the directional derivative in the S \  

direction and it is given by:

S J [ X .  A] =  { V xJ [ \ ] } t S A  (3.8)

On the other hand. 6 ^T\X. A] may also be expressed in the following form (using 

definition (3.6) of the cost functional):

nT

<s j [a:. a] =  £ ( W ( t t )[X(it ) -  (3.9)
k=0

where SX(tk)  is the perturbation of the state vector obtained from the perturbation 

of. the model parameters S.\.
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Combining relations (3.8) and (3.9) we obtain:

nT

{VA,7 [X. A]}r o'A =  £ ( W ( t t )(X(W -  X ^ ( t k)])T6 X( t k) (3.10)
k=0

From the above relation it is clear that we should express 8X ( t k) as a function of 

SA in order to obtain an expression for A).

We start by linearizing the model about the current model solution:

6X ( t 0 +  At )  =  " % ™ S A  (3.11)

Using (3.11) for each time step we obtain:

dX(«fc) =  N (tk -  At ) SX( t k -  At )  

=  N (tk -  A t ) N { t k -  2At ) 6 X( t k -  2At)  

=  N (tk -  A t ) N { t k -  2 A t ) N ( t k -  3A t ) S X ( t k -  3At )

=  Q*d'A (3.12)

where N(f) =  and Qfc represents the result of applying all the operator

matrices in the linear model to obtain SX( t k) from S\ .

With the relation 8X ( t k) =  QjtdA. equation (3.10) becomes:

nT
VAl7 [X. A] =  Y .  Q* W ((t )(X((t ) -  X ^ f e ) ]  (3.13)

k=Q

We define the adjoint equations for the adjoint variables A ‘k>:

Aw (*o) =  Q Tk A {k](tk). for k =  1. . . . .  nT  (3.14)

If the adjoint variable A ^ ( t )  at time tk is initialized as:

A {kHtk) =  W ( t k) [X( t k) -  X°bs(tk)}
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then the gradient of the cost function with respect to the control parameters is:

VA<7 [X ]= ]T A l‘'»(f*)
fc=0

Now we can write the algorithm for computing the gradient of the general cost 

functional (3.2).

The first stage is direct integration of the model from the initial time to the final

time and the computation of the observation term in the cost functional:

1. Integration of the model from initial time to observation time i:

X i =  • ■ • yV1[Xo (3.15)

2. Compute and store the "normalized departures"

d ^ R - ' i X ^ - H d X i ) )  (3.16)

3. Compute the contributions to the cost function

J o b s A X )  =  (Xobs -  Hi ( Xi ) ) Tdi (3.17)

n T
4. Finally compute 3 o b s  (X) =  J o b s  A * )

i=o

The second stage is the computation of the gradient of the cost functional T t f .  

First we perform a slightly complex factorization of V J o b s ' -

nT

— o b s  =  ~ y ̂  V .J  oBs.i
i=0

nT

i= 0
=  H or d0 + M [[H [ d l +  M .[[H[d,  +  • • • +  H [r dnT] ...  ]

where M, and H, are the linearized operators corresponding to A4, and Hi. 

The last expression is evaluated from right to left in the following steps:
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1. Initialize the adjoint variable X  to zero at final time: X rij  =  0.

2. For each time step i — 1 the variable X ,^  is obtained by adding the adjoint 

forcing H Jdi to Xj and by performing the adjoint integration by multiplying 

the result by M j .  i.e.

X ,—i = M f ( X 1 + H  Jdi) (3.18)

3. At the end of the recurrence the value of the adjoint variable X0 gives the 

required result for the gradient of the observation term  in the cost functional

Xo =  ~ - V J o b s ( X )  (3.19)

Finally add the gradient of the background term to compute the numerical value of 

the gradient of the cost functional (3.2)

V J ( X )  =  2B -1(X  -  X bg) + V J ’obs(X ) (3.20)

The terminology employed in the algorithm reflects the fact that the computations 

look like the integration of an adjoint model backward in tim e with a time-stepping 

defined by the transpose time-stepping operators and an external forcing H Jdi.  

which depends on the distance between the model trajectory and the observations.

3.3 Coding the adjoint and the tangent linear method

If we linearize the nonlinear model we obtain the tangent linear model (TLM ). 

The transpose of the TLM  is the adjoint model.

For coding the TLM . we linearize the original nonlinear forward model code line 

by line. DO loop by DO loop and subroutine by subroutine.

If we view the tangent linear model as the result of the multiplication of a number

of operator matrices: A iA 2 • • • A.u where each matrix .4;. (i =  1 M)  represents

either a subroutine or a single DO-loop. then the adjoint model can be viewed as 

being a product of adjoint subproblems: A ^ A ^ j  • • • A [ .
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The correctness of the adjoint of each operator was checked using the following 

identity:

(AQ)t (AQ) =  Q r (A r (AQ))

where Q represents the input of the original code and A can be either a single DO 

loop or a subroutine. All subroutines of the adjoint model were subjected to this 

test.

3.4 Accuracy o f the gradient for the continuous cost
functional

The accuracy of the gradients calculated by the adjoint method should be at the 

level of machine precision. Errors could result due to coding mistakes, round-off 

errors or the presence of non differentiable functions.

A method for the gradient check is described below, using the following Taylor 

expansion of the cost functional:

J ( X  +  rjh) =  J ( X )  +  r)hTV J { X )  + 0 ( n 2) (3.21)

where ||h || =  1,77 scalar and Vfc7’(X) is the gradient of the cost functional J ’(X)  

with respect to X computed using the adjoint code.

Rewriting the above formula, a function of r? can be defined as (see Xavon et al. 

[148]):

™  nhTv j ( X . )  1 1

The gradient computed using the adjoint model can be assumed to be completely 

accurate (up to the machine error) when lim |$ ( t?)| =  1. A validitv region of the
7)—  0

gradient test is normally obtained for 10~3 > 77 >  e (where e is the machine accuracy). 

For 17 >  10~3 we have truncation error and for 77 near the machine accuracy roundoff 

errors prevail.

The results of the gradient check test are displayed in Fig. 3.1.
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3.5 Accuracy of th e gradient of the non sm ooth cost
functional

If the cost functional is non smooth the gradient of the cost functional does not 

exist everywhere. In this case the adjoint method computes a subgradient of the cost 

functional.

We considered the subgradient obtained from the adjoint model to be sufficiently 

accurate if the following tolerances were satisfied

lim |$(r/)| = 6  (3.23)
1—0

for 10"3 > rj >  10“ 10

where 6  is a constant number which depends on the problem parameters. Fig. 3.1 

presents the subgradient check test.

We can see that the subgradient ratio tends to a constant number, a number 

which decreases slightly as we increase the time window.

3.6 Checkpointing

According to theoretical bounds (e.g.. Griewank [80]) the reverse mode of 

differentiation allows the generation of an adjoint code involving at most five times the 

number of operations of the original model. However this low operation count requires 

the storage of the full trajectory, which is formed by the values of the variables of 

the original model that may be used for the evaluation of linearized statements. The 

calculation of the trajectory has to be performed before (or during) the backward 

integration of the adjoint code. When the differentiated codes require too large an 

amount of memory, a possible solution to alleviate this problem is to implement a 

checkpointing algorithm (Griewank [81]. [84]). which provides an optimal logarithmic 

behavior in terms of time and memory requirements.
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The strategy to solve the trajectory problem arising in adjoint computations is 

based on "divide et impera". Griewank [81] proposed to save the state of the system 

from time to time during runs of the original code.

These are called checkpoints and they allow for the computation of parts of the 

trajectory without systematically coming back to the initial point. Checkpoints are 

stored on a stack in a Last-In-First-Out manner. Forward sweeps and reverse sweeps 

are then done, part by part, from checkpoints.

An example of a checkpointing algorithm is presented below:

1. run the original code and store the checkpoints

2. for all the checkpoints, taken in reverse order

(a) restore the checkpoint

(b) perform a forward sweep from the checkpoint to the previously removed 

one (or to a given iteration)

(c) perform a reverse sweep down to the checkpoint

(d) rem ove the checkpoint from the stack

Checkpointing is easy to implement for time-stepping problems, where a natural 

point is the beginning of a timestep. Using checkpointing introduces extra forward 

steps of the original model.

A practical implementation faces two challenges. The first task is the selection 

of checkpoints. The question is at which points of the whole computational process 

one should place the checkpoints to achieve an optimal reduction of the storage 

requirement. The second task is to manage all the information at every checkpoint 

that is necessary. This requires to save the system state at the checkpoint and 

to restore it in order to repeat the next computational steps, when that becomes 

necessary. Also the values of the adjoints must be managed to perform the successive 

reverse sweeps. This is a trade-off between memory and CPU time.
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From the user’s point of view the choice of a checkpointing scheme depends 

essentially on the particular code and the particular computer architecture the user 

deals with. A large variety of checkpointing schedules are discussed in the research 

of Charpentier [27] and Restrepo et al. [164].

3.7 Autom atic differentiation

Automatic differentiation AD is a technique for augmenting computer programs 

with derivative computations. It exploits the fact that even' computer program, no 

matter how complicated, executes a sequence of elementary arithmetic operations 

such as additions or elementary functions such as exp(). By applying the chain rule 

of derivative calculus repeatedly to these operations, derivatives of arbitrary order 

can be computed automatically and accurate to working precision.

In contrast to other methods like finite-difference gradients AD computes the 

exact derivative of the given code without any additional truncation error and 

without much additional theoretical work. Any computer code can be viewed as a 

concatenation of many evaluations of the intrinsic operators and functions. After 

finding the computational graph from the specified independent variable to the 

dependent variables, the derivative of such a concatenation can be obtained by 

applying the chain rule. This means formally the multiplications of all .Jacobians 

of the intrinsic functions.

The main techniques in AD are described in Griewank and Corliss [83], Berz et al. 

[16] and Griewank [82]. The given source code is either transformed into a new code 

computing the desired derivatives (by tools working with source transformation) 

or linked with libraries that include overloaded versions of the intrinsic functions 

and operators of th  used programming language (by tools based on operator 

overloading).

Based on how the chain rule is used to propagate derivatives through the 

computation two approaches to automatic differentiation have been developed: the

34

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



forward mode for which the chain rule is applied from the beginning to the end of the 

"active" section of the program and. respectively, the reverse mode if the computation 

is going from the end back to the beginning.

The forward mode propagates derivatives of intermediate variables with respect to

the independent variables. Let us assume that X = ( X i ,  X n) are the independent

variables and Y  =  (Ŷ  Ym) are the dependent variables. The linearity of

differentiation allows the forward mode to compute arbitrary linear combinations 

J * S. where S is a n x p matrix and J is the Jacobian

J =

/ d \ \ dY,
x , "  X n

dYm dYm
I X x ' ' '  x n /

(3.24)

The effort required is roughly O(p)  times the runtime and memory of the original 

program. In particular, when S is a vector s. we compute the directional derivative

f ( X  + f t . . ) - F ( X )
h—0 h

This type of differentiation is also used to obtain the tangent linear model.

The reverse mode of automatic differentiation propagates derivatives of the final 

result with respect to an intermediate quantity called the adjoint quantity. To 

propagate the adjoint one must be able to reverse the flow of the program and 

must remember or recompute any intermediate values that nonlinearly impacts the 

final result.

For a matrix q x m W. the reverse mode allows us to compute the row linear 

combination W * J with O(q)  times as many floating-point operations as required for 

the evaluations of F.  The storage requirements are harder to predict and depend to 

a large extent on the nonlinearity of the program and the implementation approach 

chosen. The reverse mode also corresponds to a method for obtaining the discrete 

adjoint.
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In general the forward mode is appropriate if the number of independent variables 

is higher than the number of the dependent variables and the reverse mode in the 

contrary case.

The most important scientific AD codes are the following:

1. A D I F O R / A D I C  available from Argonne National Laboratory/Rice Univer­

sity for Fortran77/C

2. O D Y S S E E  available from IXRIA for Fortran77

3. T A M C  by Ralf Giering for Fortran77/Fortran90

4. A D O L  — C  available from TU Dresden for C + +
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[a] [b]

[c] [d]

Figure 3.1. The accuracy check: the gradient of the cost functional vs. log (q ) for 
the flow around the cylinder in the constant rotation case ([a]) and. respectively, 
time-dependent rotation case ([b]): a subgradient of the cost functional vs. log (17) 
for the shock-tube flow at time=0.24 for AVM  model ( [c]) and. respectively. H R M  
model ([d])
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C H A PTER  4 

OPTIM IZATION ALGORITHM S

Consider the following nonlinear constrained optimization problem

minimize F (  X )  (4.1)

subject to X  £ G

where the objective function F  : R n —*• R  is a locally LIPSCHITZ function on the 

feasible set G  C f t ” (if G  = R n then the problem is unconstrained).

A general iterative algorithm to solve the problem (4.1) is as follows

•  Step 0. INITIALIZATION. Find a feasible starting point X i  £  G  and set

k =  1

•  Step 1. DIRECTION FINDING. Find a feasible descent direction dk £ R n

F ( X k  +  tdk) <  F { X k ) and AT +  tdk G G  for some t > 0 (4.2)

•  Step 2. STOPPING CRITERION. If Xk is "close enough" to the required 

solution then STOP

• Step 3. LINE SEARCH. Find a step size tk > 0 such that

tk =  arg min F { X k  + tdk) and X k  +  tkdk £ G  (4.3)

•  Step 4. UPDATING. Set AT+i =  X k  +  tkdk and go to Step 1
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4.1 N on differentiable minimization

If the function F  to be minimized is non smooth then methods of non differ­

entiable optimization are required. They can be divided into two main classes: 

subgradient methods and bundle methods.

Since the gradient of a non smooth function F  exists only almost anywhere we 

have to replace the gradient by the generalized gradient

d F ( X )  = conv{<7| there exists a sequence (A',);eN such that lim A', = A.
l — ~5C

F  differentiable at X i . i  € N. and lim VF(A',) = g}
i—■ OC

where "conv” stands for convex hull and it is defined as the closure of the set which 

contains all convex linear combinations of subgradients (an element of the generalized 

gradient is called subgradient).

The non smooth optimization methods are based on the assumptions that the 

function F  is locally Lipschitz continuous and we can evaluate the function and its 

arbitrary subgradient at each point.

4.1.1 The subgradient m ethods

The history of subgradient methods starts in the 60s: Shor (1962). Polyak (1964 ). 

Ermolev (1967).

The main idea is to employ only one subgradient £k <E 0 F ( X k ) instead of the 

gradient V F(X k). Hence the natural generalization of gradient method is to replace 

the gradient by the normalized gradient in the formula for dk defined in Step 2:

dk =  -&/l!£*il (4.4)

The above strategy of generating dk do not ensure descent and hence minimizing 

line searches becomes unrealistic. Also the standard stopping criterion can no longer 

be applied since an arbitrary subgradient contains no information on the optimality 

condition 0 € d F ( X ) .

39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Due to these facts we are forced to use a priori choice of step sizes tk to avoid line 

searches and the stopping criterion. Thus we define the next iteration point by

=  A t ~  ‘‘ i i t i i  (4'5)

where £*. e  8 F { X k )  and a suitable tk >  0 was chosen.

In order to accelerate the rate of convergence we may try to generalize more 

smooth methods than the gradient method. The most efficient methods at the 

moment are based on generalized Quasi-Xewton methods: ellipsoid and space dilation 

algorithms by Shor [175] and the variable metric method by Uryasev [196].

4.1.2 The bundle m ethods

The guiding principle behind them is to exploit the previous iterations by 

gathering the subgradient information into a bxindle of subgradients. The pioneering 

bundle method, the e-steepest descent method, was developed by Lemarechal [125]. 

The main difficulty in Lemarechars method is the a priori choice of an approximation 

tolerance which controls the radius of the ball in which the bundle model is thought 

to be a good approximation of the objective function.

A different approach was presented by Kiwiel [121]. based on the cutting plane 

method. The basic idea is to form a convex piecewise linear approximation to the 

objective function using the linearizations generated by subgradients. Kiwiel also 

presented two strategies to bound the number of stored subgradients: subgradient 

selection and aggregation. The main disadvantage of Kiwiel's method is its sensitivity 

to scaling of the objective function. Also the uncertain line search may require, in 

general, many function evaluations compared with the number of iterations.

In spite of different backgrounds, both methods (Lemarechal and Kiwiel) generate 

the search direction at each direction by solving quadratic detection finding problems.
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A new approach that combines the bundle idea with the trust region method was 

adopted by Schramm and Zowe (Bundle Trust Region method [171]) and by Kiwiel 

(Proximal Bundle method [122]).

The following two features are characteristic to bundle methods:

•  the gathering of subgradient information from past iterations into a bundle

•  the concept of s e r io u s  STEP and NULL s t e p  in line search

Let H - i  = A'k +  tkdk for some tk >  0 and G d F {Y k+i). Then we have the 

following sequence:

1. Make a s e r io u s  s t e p  AT-i = i if

F (Y k -1) < -P(AV) — Sk for some Sk >  0: add into bundle

2. Otherwise make a n u l l  s t e p  AT-i =  X k : add into bundle

4.1 .3  The hybrid algorithm (PV A R ) for nonsm ooth m inim ization

The most efficient globally convergent algorithms for nonconvex non smooth 

optimization are based on versions of the bundle methods (e.g. Lemarechal 11261. 

Bonnans et al. [20]. Schramm and Zowe [171]. Makela and Xeittaanmaki [138]). We 

employed a hybrid method (described in Vlcek and Luksan [198] and Luksan and 

Vlcek [137]) which combines the characteristics of the variable metric method and 

the bundle method.

The algorithm generates a sequence of basic points (xk)keN and a sequence of 

trial points (yk)keN satisfying

x k~ i = xk +  tkLdk. yk- i  =  xk +  tkRdk

with y x =  X\, where tkR G (0, t mSLX\ . t kL G [0 . tR] are appropriately chosen step sizes. 

d k =  —Hkgk is a direction vector and gk is an aggregate subgradient.
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The matrix Hk accumulates information about the previous subgradients and 

represents an approximation of the inverse Hessian matrix if the function F  is smooth.

If the descent condition F(yfc_ 1) < F{xk) -  cLtkRwk is satisfied with suitable tkR. 

where cL e  (0. 0.5) is fixed and —wk <  0 represents the desirable amount of descent, 

then x ^ i  =  yk„i (descent step).

Otherwise a null step is taken which keeps the basic points unchanged but 

accumulates information about the minimized function.

The construction of the aggregate subgradient is presented below.

Let us denote by m the lowest index j  satisfying x_, =  x k (index of the iteration 

after last descent step).

We define gk~i as a convex combination of the following (known) subgradients: 

the basic subgradient gm €  d f { x k). the trial subgradient gk. i  6 d f ( y k^i). and the 

current aggregate subgradient gk

9k-1 — ^k.l9rn +  ^k.n9k~l +  ^ k,s9k

The multipliers Xk can be determined easily by minimizing a simple quadratic 

function which depends on these three subgradients and two subgradient locality 

measures (this approach replaces the solution of a rather complicated quadratic 

programming problem which appears in the standard bundle method Lemarechal 

[126]).

The matrices Hk are generated using a symmetric quasi-Newton rank-one update 

after the null steps (to preserve the property of being bounded and other character­

istics required for the global convergence) or the standard BFGS update after the 

descent steps.

For a more in-depth discussion about both types of updates the reader is referred 

to Fletcher [57],
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4.2 Differentiable optim ization

4.2.1 T he Q-N algorithm for unconstrained minimization

A Quasi-Xewton (Q-N) algorithm (also called variable metric method) was 

employed for the minimization of the cost functional for the flow past a cylinder. 

Instead of obtaining an estimate of the Hessian matrix at a single point, this method 

gradually builds up an approximate Hessian matrix by using gradient information 

from some or all of the previous iterates visited by the algorithm.

We started with the identity matrix and then a better approximation to the 

inverse Hessian matrix was built up. iteratively, in such a way that the matrix H* 

preserves positive definiteness and symmetry.

Given the current iterate x t. and the approximate Hessian matrix Hk at x k ■ the 

linear system

HkXk =  - V J ' ( x i t )  ( 4 . 6 )

is solved to generate a direction p k. The next iterate is then found by performing a 

line search along pk and setting

x*-i = x fc +  H/t_i • (V J '(x yt_i) -  V J ’fx/t)) (4.7)

where the new approximation to the inverse Hessian is constructed using using 

the Davidon-Fletcher-Powell (DFP) rank-2 update formula.

We can make Hk~\ to mimic the behavior of V 2JT by enforcing the Quasi-Xewton 

condition

Hi+iSi =  y ,  (4.8)

where s*. =  x*+1 -  x k and y k =  V ,7 (x w ) -  V J(x * ).

This condition can be satisfied by making a simple low-rank update to Hk. The

most commonly used family of updates is the Broyden class of rank-two updates.

which have the form

„  _ u Hksk(Hksk)T y ky k , A r„ r u  „ ! rHk+i — Hk  jr—-1—   h 9k[skHksk}vkv k (4.9)skxiksk y  ksk
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where € [0. 1] and
y* Hksk

^k j- T II t -10)y  I s k s l H ks k
The choice <&k =  0 gives the Broyden-Fletcher-Goldfarb-Shanno (BFGS) update. 

The Davidon-Fletcher-Powell update, which was proposed earlier, is obtained by 

setting = 1.

We employed a modified version of the backtracking strategy implemented in 

Numerical Recipes [162] to choose a step along the direction of the Newton step p. 

The goal was to move to a new point x new along the direction of the Newton step p:

^neit' — Xold “V Ap. 0 < A ^  Aq ^  1

such that the function

g{A) =  {Jxota  +  Ap)

showed a sufficient decrease.

The convergence criteria used here are

) <  J (X o id )  +  o S J J  ■ (xnew -  Xoid). 0 <  a  <  1

or \ \ V J { x  new )!l <  i o - 5 .

4.2.2 The L-BFGS unconstrained optim ization  algorithm

We also implemented the L-B FG S method (Nocedal [151]. Liu and Noeedal 

[134]. Nocedal and Wright [152]) which performs the unconstrained minimization 

of a smooth nonlinear function for which the gradient is available. L -B FG S is a 

limited memory method based on the well-known BFGS (Broyden-Fletcher-Goldfarb- 

Shanno) algorithm.

The main idea of this method is to use curvature information only from the most 

recent iterations to construct the Hessian approximation. Instead of storing fully 

dense n x n approximations, this approach saves just a few vectors (of length n) that 

represent the approximations implicitly.
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Each step of the original BFGS method has the form

xk+i =  x k -  a kH k'V3k- k =  0. 1. 2----

where a k is the step length and 3  is the cost functional. H k is updated at each 

iteration by means of the formula

Hk— 1 =  \  k Hk '̂k +  (4.11)

where

Jt- =  —— \  k  =  I — 3kykSk (4.12)
Uk sk

and

Sk =  Xk- 1 -  Xk ijk : -  V 3 k  (4-13)

3 k being the cost functional at step k of the minimization iteration.

We say that the matrix Hk~\ is obtained by updating Hk using the pair (sk. ijk)- 

For L-BFGS a modified version of Hk is stored implicitly, by using a certain number 

(say m) of the vector pairs (s/. iji) that are used in the formulae (4.11)-(4.13).

The product Hk3 ^ k  can be obtained by performing a sequence of inner products 

and vector summations involving V 3 k  and the pairs (si.iji). After the new iterate 

is computed, the oldest vector pair in the set of pairs (.s;. yt ) is deleted and replaced 

by the new pair {sk. yk) obtained from the current step (4.13). In this way the set 

of vector pairs includes curvature information from the m most recent iterations 

(usually 3 < m <  10).

For numerical experiments using the L-BFGS method the reader is referred to 

Zou et al. [213].

We would like to conclude this section discussing our preference for L-BFGS over 

other smooth minimization algorithms. One may argue that for our case the number 

of control parameters may not justify the selection of a limited memory method.

While this may be true, we consider that our approach (using the adjoint method 

for the gradient computation) may be easily and successfully implemented for optimal
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control problems with a much greater number of control variables. In that case 

improvements in the efficiency of the numerical optimization will be determined not 

only by choosing the adjoint method over other methods for the gradient calculation 

but also by selecting a limited memory minimization algorithm.

4.2.3 Sequential Quadratic Programming SQP for constrained optim iza­
tion

One of the most effective methods for nonlinearly constrained optimization 

is to generate steps by solving quadratic problems. This sequential quadratic- 

programming (SQP) approach can be used both in line-search and trust region 

frameworks and it is appropriate for small or large problems.

Although we did not employ it in our research, it is described since it serves 

as an efficient minimization algorithm in large optimal control applications. A 

version of SQP coupled with trust-region methods and interior-point techniques 

was implemented in the package TR ICE [45].

Let us consider an equality-constrained problem

min F(X )  (4.14)

subject to C'(X) = 0  (4.15)

where F : R n —* R  and C  : R'1 —- R m are smooth functions.

The essential idea of SQ P is to model (4.14)-(4.15) at the current iterate AT by 

a quadratic programming subproblems and to use the miniinizer of this subproblem 

to define a new iterate AT-i-

The challenge is how to design the quadratic subproblem so that it yields a good 

step for the underlying constrained optimization problem while the overall SQP  

algorithm has good convergence properties and good practical performance.

We denote by C (X .  A) =  F ( X )  — \ TC ( X )  the Lagrangian.
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A is the Jacobian matrix of the constraints

A (X )r  =  [VC! (A'). V C 2 ( X )  VCm(A')l (4.16)

and by W ( X .  A )  =  V ^  Y £ ( X .  A )  the Hessian of the Lagrangian.

At iteration (Xk, Ak) we define the quadratic problem

min \ p TWkP +  V fJ /)  (4.17)
p 1

subject to AkP +  C \  — 0

with .4fc and \Vk the approximations for A and respectively W.

If the constraint Jacobian Ak has full row rank and the matrix \ \ \  satisfies 

dT\Ykd >  0 on the tangent space of constraints (i.e. for all d #  0 such that A kd =  0) 

then the problem (4.17) has a unique solution (p k . p k) that satisfies

H  k P  +  V F j p  -  A ^ p k  =  0  

Akpk +• C k =  0

If p is the vector of descent and A ^  is the step for descent obtained from solving 

the system
' \Vk - A l } 7 1

P ' - V F fc ‘
0 A*._!

then it can be shown that p =  pk and A = pk-

To be practical, an SQ P method must be able to converge from remote starting 

points and on nonconvex problems. If \Vk is positive definite on the tangent space of 

constraints, the quadratic subproblem (4.17) can be solved without any additional 

considerations. When IF*, does not have this property, line-search methods either 

replace it by a positive definite approximation Bk or modify \\\. directly during 

the process of matrix factorization. Another approach is given by the trust-region 

methods, which add a constraint to the subproblem, limiting the step to a region 

where the model (4.17) is considered to be reliable.
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Complications may arise, however, because the inclusion of the trust region may 

cause the subproblem to become infeasible. At some iterations it is necessary to relax 

the constraints, which complicates the algorithm and increases its computational 

cost. Due to these trade-offs, neither one of the two S Q P  approaches (line-search or 

trust region) can be regarded as clearly superior to the other.

Let us now consider the choice of the matrix \Vk in the quadratic model. Various 

implementations of S Q P  based on specific choices of U'* have performed well on 

many problems. They yielded poor performance or even failure for other problems, 

however.

For this reason there is not a unique choice for 11'*. We present here some of the 

most employed choices of IT*, based 011 Xocedal and Wright [152].

The first choice is based on maintaining a quasi-Newton approximation B* to the 

full Hessian of the Lagrangian V 2x x C ( X k. A*) using a BFGS update. The update for 

B* makes use of vectors s k and V*

The new approximation B*_! is then computed using the BFGS formula. For 

this approach the iteration will converge robustly and rapidly. If. however. X \ xC 

contains negative eigenvalues the BFGS approach of approximating it with a positive 

matrix may be ineffective.

A more effective modification is the damped BFGS updating which ensures that 

the update is always well-defined by modifying the definition of V*. If we define s k 

and V* as in (4.19) and set

s/t =  X k ~ i  — X k  V/t — V .y £ (A T _ i .  A*4-i) — X x C ( X k . \ k- \ )  (4.19)

rk =  0kYk +  ( l - 0 k)B ks k (4.20)

where the scalar 9k is defined as

(0 .8s^B*.s*)/(s[B*.s* -  sTkYk) if s j Y k <  0 . 2 s j B ksk
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B fc is updated as follows

B ks k( B ks k)T rkr% 
s£B*s* s j  r k=  B k ~ - \ T n '  - +  7r7~ <4-21)

which guarantees that B ^ i  is positive definite.

But this method still fails to address the underlying problem that the Lagrangian 

Hessian may not be positive definite.

A different approach modifies the Lagrangian Hessian directly by adding terms 

to the Lagrangian function, the effect of which is to ensure positive definiteness.

£ m a d i f ( X .  A :  u )  =  F ( X )  -  A T C ( X )  +  - ^ | | C ( A ' ) | | 2 ( 4 . 2 2 )

for some 0 < u < fj.'. where /j.’ is chosen such that the Hessian of the modified 

Lagrangian is positive definite. We could now choose the matrix W * to be V\- xCmodif 

or some quasi-Xewton approximation Bt to this matrix.

The main difficulty here is the choice of /i*. which depends on quantities which are 

not normally known (e.g.. bounds on the second derivatives of the problem functions).

To ensure that the SQ P method converges from remote starting points a merit 

function <f> is employed. This function 4> is used:

•  to control the size of the steps (in line search methods)

• to determine whether a step is acceptable or whether the trust-region radius 

needs to be modified (in trust-region methods)

It plays the role of the objective function in unconstrained optimization since we 

insist that each step provides a sufficient reduction in it.

The most employed are the l\ merit function and the Fletcher's merit function.

4 9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



The 11 merit function is defined as:

^ l ( X : p )  =  F ( X )  +  - \ \ C ( X ) \ \ l (4.23)
t*

The Fletcher's merit function has the formula:

$i(X :/x) = F ( X )  -  ATC'(X) +  -L V c . d ) -
2/i

(4.24)

The majority of line-search algorithms assume that the iteration step is obtained 

by means of (4.18). Other variants of SQ P such as reduced-Hessian methods and 

trust region approaches compute the search direction differently.

Reduced-Hessian quasi-Newt on methods are designed for solving problems in 

which second derivatives are difficult to compute, and for which the number of degrees 

of freedom in the problem, {n — m).  is small.

This approach is employed if we want to approximate only the reduced Hessian 

of the Lagrangian ZjWkZk.  where Zk is a matrix which spans the range of .-U-. The 

update is M k. an (n — m)  x (n — m)  version of the reduced-Hessian approximation.

As (n — m) is small. M k will be of high quality and the line-search computation is 

inexpensive. Also the reduced Hessian is much more likely to be positive definite, even 

when the current iterate is some distance from the solution, so that the safeguarding 

mechanism in the quasi-Xewton update will be required less often in line search 

implementation.

For the trust region approach a modified model is considered:

The trust region radius Ak will be updated depending on how the predicted reduction 

in the merit function compares to actual reduction. If there is good agreement, the

min - p T\\'kp +  X F [ p
D ZP

(4.25)

subject to AkP +  Ck =  0

I H I < (4.27)

(4.26)
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trust-region radius is unaltered or increased, whereas the radius is decreased if the 

agreement is poor.

Although we can simply increase At until the set of steps p satisfying the linear 

constraints (4.26) intersect the trust region, this approach is likely not to resolve 

the conflict between satisfying the linear constraints (4.26) and the trust-region 

constraint (4.27). A more appropriate viewpoint is to improve the feasibility of 

these constraints at each step and to satisfy them exactly only in the limit.
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C H A PT E R  5

REGULARIZATION OF ILL-POSED  

PROBLEM S

The computation of solutions to optimal control problems is ill-conditioned in 

many cases. That is. relatively large variations of parameter values are allowed for 

small variations of constraints and/or objective values.

The primary difficulty with ill-posed problems is that they are practically unde­

termined due to the condition number of the numerical implementation. Hence it is 

necessary to incorporate further information about the desired solution in order to 

stabilize the problem and to single out a useful and stable solution.

The aim of regularization is to make the computation better conditioned while 

changing the value of the objective only slightly. The numerical solution of the 

optimal control problem is obtained by minimizing a cost functional which describe 

the objective

min J ( u )  (5.1)
Û Uad

where a is the control variable. Uad Is the set of admissible controls and J  is the cost 

functional.

Following Hansen [94]. the dominant approach to regularization is to allow a 

certain residual to be associated with the regularized solution, with residual norm 

p(u). and then use one of the following schemes:

1. Minimize p(u)  subject to the constraint that u belongs to a specified subset of 

Mad
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2. Minimize p(u) subject to the constraint that a measure u:(u) of the "size" of u 

is less than some specified upper bound S. i.e.. ui(u) <  S

3. Minimize ^j(u) subject to the constraint p(u) <  a

4. Minimize a linear combination of (p(u))2 and ( j j (u) ) ' 2

where A is a specified weighting factor.

Here a.  6  and A are known as regularization terms which have to be determined 

and the function s  is sometimes referred to as the smoothing norm. The fourth 

scheme is the well-known Tikhonov regularization scheme [187].

Let us consider that our discrete ill-posed problem has the form

where A is a matrix m  x n (m >  ri) which is ill-conditioned in the sense that all its 

singular values decay gradually to zero, with no gap anywhere in the spectrum.

Typically the term b may contain noise due to measurement and/or approxima­

tion error. This noise, in combination with the ill-conditioning of A. means that 

the exact solution of (5.3) has little relationship to the noise-free solution. Instead, 

a regularization method is employed to determine a solution that approximates the 

noise-free solution. The regularization method replaces the original operator by a 

better-conditioned but related one. Sometimes the regularized solution is too large 

to solve exactly. In that case an approximate solution is computed by projection 

onto a smaller dimensional space, perhaps via iterative methods based on Krylov 

subspaces.

The conditioning of the new problem is controlled by one or more regularization 

parameters specific to the method. A large regularization parameter yields a new 

well-conditioned problem, but its solution may be far from the noise-free solution

min \ (p(u ) ) 2  +  A2 U'(u ) ) 2

min ||Au — b | |o (5.3)
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since the new operator is a poor approximation to A. A small regularization 

parameter generally yields a solution very close to the noise-contaminated solution 

of (5.3) and hence its distance from the noise-free solution also can be large. Thus 

a key issue in regularization methods is to choose a regularization parameter that 

balances the error due to the noise with the error due to regularization.

For problems small enough that a singular value decomposition of A can be 

computed, there are well-studied techniques for computing a good regularization 

parameter. These techniques include the Discrepancy Principle. Generalized Cross- 

Validation and the £-curve.

For larger problems treated the parameter choice is much less understood. 

Standard regularization methods for such a case include Tikhonov regularization 

or the truncated singular value decomposition. If regularization is applied to the 

projected problem generated by the iterative method we have an extra regularization 

parameter, controlling the number of iteration taken. This introduces the possibility 

that the standard regularization parameter that is correct for the (large) discretized 

problem may not be the optimal one for the lower-dimensional problem actually 

solved by the iteration. But the extra work due to the possible difference between 

the regularization parameters is offset by the fact that, in fact, we are regularizing a 

lower dimensional problem after projection by the iterative method.

5.1 Tikhonov regularization

One of the most common methods or regularization is Tikhonov regularization 

(Tikhonov and Arsenin [187]). In this method the problem (5.3) is replaced by

min (||Am -  b)|̂  +  A2||L«!|r]) (5.4)

where L denotes a matrix, often chosen to be the identity matrix I. a diagonal weight­

ing matrix or a discrete derivative operator and A is a positive scalar regularization 

parameter.
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If an a priori  estimate uap of the desired regularized solution is available, then

this information can be taken into account by including uap in the discrete smoothing

norm

min ||Au -  b(|g +  A2||L(u -  uqp) ||2 (5.5)

The Tikhonov problem (5.4) has alternative formulations

(A’A +  A2L ‘L)u = A*b (5.6)

and

mm AL ) U \ 0 (5.7)

Underlying the formulation in (5.4) is the assumption that the errors in the 

right-hand side are uncorrelated and with covariance matrix 0-5Irn. If the covariance 

matrix is of more general form C C T. where C has full rank m. then one should scale 

the least square residual with C -1 and solve the scaled problem

min ||C _1(A u -  b)J|| +  A2||Lu||o (5.8)

The most efficient and numerically stable way to compute the solution to the

Tikhonov problem in (5.4) is the bidiagonalization algorithm (Elden [52j). First we 

want to transform the general-form problem (5.5) into the following standard-form 

problem

m in||Au -  b | |2 +  A 2 j | ( u  -  t2*)|(.| (5.9)

The standard-form quantities A. u’ and b take the form

A =  ALjv b  =  b  —A u~ u =  L u ap (5.10)

where is the A-weighted generalized inverse of L.
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is defined using LT the pseudo-inverse of L:

L ; = ( i „ - ( a ( I „ - L ^ L ) ) ' a ) l ' (5.11)

and uA is the unregularized component of u which is not affected by the regularization 

scheme:

uA =  ( A(In - L ^ L ) ) f b (5.12)

The standard-form problem is then treated as a least squares problem of the form

min
A i m  ) U \ A  uap (5.13)

This problem can be reduced to an equivalent sparse and highly structured problem. 

The key idea is to transform A into a m x rn upper bidiagonal matrix B by means 

of alternating left and right orthogonal transformations

A =  U B V r (5.14)

Software for performing the bidiagonal reduction is available in many mathematical 

libraries (LAPACK. LIXPACK. XAG. Numerical Recipes).

Once A has been reduced to a bidiagonal matrix B we make the substitution 

u =  V y  and obtain the problem

min B \ . _ f  U r b 
A i m  } !J [ X V Ti aP (5.15)

which can be solved for y in only O( m)  operations.

A fundamental observation regarding Tikhonov regularization is that the ill- 

conditioning of A is circumvented by introducing a new problem with a new 

well-conditioned coefficient matrix with full rank. A different way to treat the 

ill-conditioning of A is to derive a new problem with a well-conditioned rank-deficient 

coefficient matrix. This is the philosophy behind methods based on singular value 

decomposition (SVD): truncated SVD. modified SV D  and generalized SV D . This 

technique is computationally more expensive than the above approach using A and 

B. but it provides much more insight into the regularization problem.
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5.2 Singular value decom position

Let us remember that A is a m x n rectangular matrix, with m > n. The singular

value decomposition (SVD) of A is a decomposition of the form
n

A =  U S V r  = ^ L > il f  (5.16)
i= 1

where U =  (Li  i n) G / ? m x n  and V = (Vi V n ) G Rnxn are matrices

with orthonormal columns. U U r  = V r V = I„ and where the diagonal matrix

D = diag(cri  cr„) has nonnegative diagonal elements appearing in non-increasing

order such that

ai > a 2  > ■ ■ ■ > o n (5.17)

The numbers a t are called the singular values of A  while the vectors i \  and \ ]  are

the left and right singular vectors of A. respectiveh'.

Discrete ill-posed problems are very often characterized by the following two 

features of the SV D :

• The singular values crl decay gradually to zero with no particular gap in the 

spectrum. An increase of the dimensions of A  will increase the number of small 

singular values.

• The left and right singular vectors L) and V) tend to have more sign changes 

in their elements as the index i increases, i.e.. as a t decreases.

To see how the SV D  gives insight into the ill-conditioning of A. consider the 

following relations which follows directly from (5.16):

A Vi = alUi 1l|A li||2 =  <7i

A TUl =  a iVi ||AT',||2 =  o l

If a singular value is small compared to a x =  | |A ||2. that means that there exists 

a certain linear combination of the columns of A. characterized by the elements of
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the right singular vector I; such that | ] At ' 112 =  05 is small. The same holds true for 

L'i and the rows of A. In other words, a situation with one or more small crl implies 

that A is nearly rank deficient and the vectors L\ and V] associated with the small 

crl are the numerical null vectors of A 7 and A. respectively.

Another use of the SV D  is for the solution of the least squares problem ! | A x —b| |2. 

We can write x and respectively Ax using the SV D  vectors of A:
n n

x =  ' ^ ( V iTx)Vi A x  =  J T a i(V?x)i:i (5.18)
1 = 1  i = i

If A is invertible, then its inverse is given by

A-' = Y,V,c-lLj  ( 5.19)
1 = 1

and therefore the solution to A x =  b is

X =  Y 1  (5.20)
1 = 1

Otherwise we define the generalized inverse (Golub and Van Loan [74]) A 7 as

rank(A)

A 7 =  ^  V'jcrf1U j  (5.21)
i=i

Then the least squares solution x Ls to the least squares problem j|Ax — b ||2 is 

given by
rank{ A )  ttJ-,

xls  =  A 7b = V  - ± - V i  (5.22)

The classical algorithm for computing the SV D  of a dense matrix is due to

Golub. Kahan and Reinsch [74]. It consists of two main stages. In the first stage. A is

transformed into upper bidiagonal form B by means of a finite sequence of alternating 

left and right Householder transformations. In the second (iterative) stage, the 

shifted QR algorithm is applied implicitly to the matrix B 7B and consequently 

B converges to S. The left and right orthogonal transformations, if accumulated, 

produce the matrices U and V.
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This algorithm, as well as other methods for computing the SV D  of a dense 

rectangular matrix, is available in many mathematical software libraries: IMSL. 

LAPACK. XAG. Numerical Recipes. There are also few subroutines available for 

large sparse matrices in the packages LAXCZOS and SVDPACK.

If we consider the regularization matrix L £ Rpxn with m >  n >  p then we 

introduce the generalized singular value decomposition (GSVD) of the matrix pair 

(A. L). The generalized singular values of (A .L) are essentially the square roots of 

the generalized eigenvalues of the matrix pair (Ar A .L r L).

Assuming that L has full row rank the G SV D  is a decomposition of A and L in 

the form

The columns of U € R mxn and V £ Rpxp are orthonormal. U r U = 1̂  and 

V r V =  Ip. Z £ R nxn is nonsingular with columns that are A r A orthogonal.

we can see that (-.f.Z;) are the generalized eigensolutions of the pair (A TA .LTL) 

associated with p finite generalized eigenvalues.

The following three characteristic features of G SV D  are common for a discrete 

ill-posed problem :

(5.23)

E =  d ia g ia i— . crp) and M  =  d i a g ( v  up) are p x p diagonal matrices. The

diagonal elements are nonnegative, ordered such that

(5.24)

and normalized such that

(5.25)

Then the generalized singular values ~:i of (A .L) are defined as the ratios

(5.26)

Since

(5.27)
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•  The generalized singular values ~a decay gradually to zero with no gap in the 

spectrum. An increase of the dimensions of A will increase the number of small 

generalized singular values.

•  The singular vectors £/,. and Z, tend to have more sign changes in their 

elements as the corresponding decreases.

•  If L approximates a derivative operator, then the last n — p columns Z, of Z 

have very few sign changes, since they are the null vectors of L.

5.3 Hybrid m ethods: projection plus regularization

If the problem is too large one may consider regularization achieved through 

projection onto a subspace (e.g.. Fleming [56]). The truncated SV D  (TSVD) is an 

example of such projection: the solution is constrained to lie in the subspace spanned 

by the singular vectors corresponding to the largest n — I singular values, where I is 

the number of terms to be dropped from the sum.

Hybrids methods were introduced by O'Leary and Simmons [153]. These methods 

combine a projection method with a direct regularization method like TSVD or 

Tikhonov regularization. The problem is projected onto a particular subspace 

of dimension k. but typically the restricted operator is still ill-conditioned. A 

regularization method is applied to the projected problem. Since the dimension 

k is usually small relative to n. regularization of the restricted problem is much less 

expensive. Yet. with an appropriately chosen subspace, the end results can be very 

similar to those achieved by applying the same direct regularization technique to 

the original problem (Kilmer and O'Leary [120]). Because the projected problems 

are usually generated iteratively by a Lanczos method, this approach is useful when 

the matrix is sparse or structured in such a way that matrix-vector products can be 

handled efficiently with minimal storage.
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5.4 Parameter selection m ethods

Xo regularization method is complete without an algorithm for choosing the 

regularization parameter. We discuss here several parameter-choice methods.

Without loss of generality restrict our discussion to the standard form case. This 

is possible due to the relations

i|Lu||o =  j]u||-2 |jAu -  b | |2 = ||Au -  b j |2 (5.28)

which ensure that application of a norm-based parameter-choice rule to the original 

problem with A and b. or to the standard-form problem with A and b. yields exactly 

the same regularization parameter.

We consider the norm of the error in the right hand side

|je||2 = | | b - b “ l|2 (5.29)

Parameter-choice methods can be divided into two classes depending on their 

assumptions about the error norm ||ej|2:

1. Methods based on knowledge, or a good estimate, of j|ej|2 (e.g.. the Discrepancy 

Principle).

2. Methods that do not require j|e||2. but instead seek to extract this information 

from the given right-hand side (e.g.. the Generalized Cross Validation and 

L-curve Criterion).

The most widespread ||ej|2-based method is the Discrepancy Principle D P  

(Morozov [146]). We suppose that the ill-posed problem is consistent in the sense 

that A uexact = bexac* holds exactly. Under D P . we consider all solutions with 

||A u — b ||2 < dc and select from these solutions the one that minimizes the norm of

u. This can be written as:

Minimize ||u || 

subject to ||Au — b ||2 < Sc 
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Generalized cross-validation G C V  (Golub et al. [73]. Wahba [199]. [200]) is 

based on statistical considerations, namely that a good value of the regularization 

parameter should predict missing data values. The main idea is to find a parameter 

A that minimizes the G C V  functional

||(I — A A f )b [|2
G(A) -  —----- —--— . (o.30

(trace{ I — A A j))2

where A j  denotes the matrix that maps the right hand side b  onto the regularized 

solution i \ .  G C V  chooses aregularization parameter that is not too dependent on 

any one data measurement.

The final parameter-choice method discussed here is the £-curve criterion (LCC). 

The £-curve is defined as a parametric plot of the norm of the regularized solution 

j jLurê r112 versus the corresponding residual norm ||A nreg — b ||2. with the regulariza­

tion parameter A as the parameter. As the regularization parameter increases the 

norm of the solution decreases while the residual increases.

The best regularization parameter should lie on the corner of the £-curve. For 

values higher than this the residual increases without reducing the norm of the 

solution much, while for values smaller than this, the norm of the solution increases 

rapidly without much decrease in residual.

In practice only a few points on the £-eurve are computed and the corner is

located by approximate methods, estimating the point of a maximum curvature

(Hansen and O'Leary [95]).
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C H A PT E R  6

D ESCRIPTIO N OF THE PH YSICAL  

PH ENO M ENA FOR THE FLOW A RO UN D A 

CYLINDER

When a fluid flows past a stationary body or. equivalently, when a body moves 

in a fluid at rest, a region of disturbed flow is always formed around the body. The 

extent of the disturbed flow region is largely dependent on the shape, orientation 

and size of the body, the velocity and viscosity of the fluid and may be influenced by 

a wide variety of small disturbances.

A particularly large and usually unsteady separated flow is generated by bluff 

bodies. Bluff bodies may have sharp edges on their circumferences such as flat plates, 

triangular, rectangular and polygonal cylinders or may be rounded like circular, 

elliptical and arbitrary oval cylinders. The common feature of flows around bluff 

bodies is the development of similar flow structures in the separated region.

Experiments showed the division of the disturbed flow field into four regions:

1. One narrow region of retarded flow

2. Two boundary layers attached to the surface of the cylinder

3. Two side-wise regions of displaced and accelerated flow

4. One wide downstream region of separated flow called the wake

The upstream retarded flow region presents high fluctuations in velocity. The 

inherently unstable retarded flow forms unsteady flow structures in a streamwise 

direction.
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The boundary layers around the cylinder are subject to a favorable pressure 

gradient followed by a small region of adverse pressure gradient before separation. 

The separated boundary layers continue to develop downstream as free shear layers 

and they initially border the near-wake.

In the third region, the displaced flow is vigorously entrained by the low pressure 

in the wake. The extent of the displaced region is strongly affected by the vicinity of 

confining walls of wind or water tunnels, phenomenom known as the blockage effect.

Large flow structures are formed in the near wake and gradually decay along the 

wake. The formation and decay of the flow structures depend on the state of flow 

which may be laminar, transitional or turbulent.

Reynolds (1883) discovered that transition from laminar to turbulent flow in a 

smooth pipe depends upon the fluid density p. the viscosity p. the velocity V' and 

the internal diameter of the pipe d. This transition takes place within a range of the 

Revnolds number Re =
d

The state of flow may be fully laminar L. it may be in any of the three transitions 

TrW. TrSL and TrBL. or. respectively, fully turbulent T.

6.1 The laminar state of flow

The laminar state of the disturbed flow can be subdivided into three basic flow 

regimes:

1. Xon-separation regime: 0 < Re < (4 — 5)

2. Closed near-wake regime: (4 — 5) < Re <  (30 — 48)

3. Periodic laminar regime: (30 — 48) <  Re <  (180 — 200)

The flow in the first region is firmly attached to the surface of the cylinder all 

around the circumference. The trail of steady and symmetric laminar shear layers 

does not form a visible wake in the non-separation regime.
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Separation initiates at Re  =  4 to 5 when a distinct, steady, symmetric and closed 

near-wake is formed. The free shear layers meet at the end of the near-wake at the 

confluence point.

The elongated closed near-wake becomes unstable for Re > (30 -  48) and 

a sinusoidal oscillation of shear layers commences at the confluence point. The 

amplitude of the trail oscillation increases with rising Re. The final product is a 

staggered array of laminar eddies.

Benard (1908) was the first to sketch the alternate procession of eddies behind 

a towed circular cylinder in water based on visible dimples on the water surface. 

Von Karman (1911) considered the stability of two rows of vortices theoretically and 

stimulated a widespread interest. The alternating eddies develop gradually along the 

laminar wake. Taneda (1956) proposed a subdivision of the periodic laminar regime 

into two separate phases: oscillating free shear layers without eddies and a Karman 

vortex street formed behind the closed near wake. The Karman vortices play an 

important role in the formulation of the optimal control problem for flow around a 

rotating cylinder, since our goal was to suppress the formation of these vortices using 

the rotation rate of the cylinder as the control parameter.

6.2 T he transition states o f flow

Dryden (1941) first noted the succession of transitions with Re in various regions 

of the disturbed flow. Experiments showed the development of transitions in three 

disturbed regions: wake (TrW). shear layers (TrSL) and boundary layers (TrBL).

The first transition TrW' occurs in the wake and it was discovered by Roshko 

(1954) in the range of Re being one order of magnitude lower than in pipe flow 

experiments. The second transition TrSL appears in the free shear layers. It was first 

noted by Linke (1931) then examined in detail by Bloor (1964) and Gerrard(1965). 

The third transition reaches the boundary layers at separation. It was discovered by 

W’ieselberger (1914) and Prandtl (1916).
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The laminar periodic wake becomes unstable at higher Re farther downstream in 

the wake. Gradually transition spreads upstream with increasing Re until the eddy 

becomes turbulent during its formation.

Transition-in-wake state can be divided into two regimes:

•  TrVVl: Transition of laminar eddies in the wake for

(180 -  200) < Re < (220 -  250)

•  Tr\V2: Transition of an irregular eddy during its formation for

(220 -  250) < Re < (350 -  400)

Between the two regimes TrW l and Tr\V2 the laminar wake instability mode of

eddy formation and shedding is replaced by the turbulent eddy roll up and shedding

mode from the cylinder. The change of the eddy shedding mode is reflected by

the different variation in shedding frequency expressed through a non-dimensional
fh'&Strouhal number S t  defined by St =  — —. where f K is the Karman vortex street

ho
frequency and D  is the diameter of the cylinder.

The second transition TrSL takes place along the free shear layers while the 

boundary layers remain fully laminar. There are three phases of transition along the 

free-shear layers:

•  TrSLl: Development of transition waves for

(350 -  400) < Re <  (103 -  2 x  10;i)

•  TrSL2: Formation of transition eddies for

(103 -  2 x 103) < Re <  (2 x 10'1 -  4 x 10‘)

•  TrSL3: Burst to turbulence for

(2 x lO'1 -  4 x 10') < Re <  (105 -  2 x 105)

The transition waves appear first as undulations of the free shear layers. As Re  

increases the transition waves roll up into discrete eddies, along the free shear layer.
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before becoming turbulent and then roll up in alternate eddies. Finally a sudden 

burst to turbulence occurs in the free shear layers near the side of the cylinder and 

the formation of eddies takes place close to the rear of the cylinder.

Five regimes were suggested for the transition-in-boundary-layers TrBL 

(Zdravkovieh [209]):

•  TrBLO: Precritical regime for (105 -  2 x  105) <  Re <  (3 x 105 — 3.4 x  105)

•  TrBLl: One-bubble regime for (3 x  105 — 3.4 x  105) <  Re <  (3.8 x  105 — 4 x  105)

•  TrBL2: Two-bubble regime for (3.8 x  105 — 4 x  105) < Re < (5 x  105 -  106)

•  TrBL3: Supercritical regime for (5 x 10° — 106) <  Re <  (3.4 x  10° — 6 x  106)

•  TrBL4: Post-critical regime for (3.4 x  106 — 6 x  106) < Re <  (unknown)

The precritical regime is characterized by the first onset of transition in free shear 

layers along separation lines. There is an initial fall in the drag coefficient while the 

eddy shedding remains prominent. TrBLO terminates abruptly at certain Re with a 

discontinuous fall in the drag coefficient and with a jum p in the frequency of eddy 

shedding.

For the next regime. TrBLl. the pressure distribution is asymmetric. On one 

side of the cylinder the free shear layers underwent sufficient transition to be able to 

reattach onto the cylinder surface. The closed thin separated region was termed a 

separation bubble. The asymmetric single-bubble regime TrBLl terminates at higher 

Re  with yet another discontinuous fall in the drag and a jump in the shedding 

frequency when a second bubble is formed on the other side of the cylinder.

The symmetric two-bubble regime TrBL2 represents an intricate combination 

of laminar separation transition, reattachment and turbulent separation on the 

boundary layers on both sides of the cylinder. Both TrBLl and TrBL2 are very 

sensitive to disturbances and can be eliminated by a sufficiently rough surface and/or 

turbulent free stream.
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Further increase in Re  brings transition to the primary laminar separation line in 

an irregular manner. This leads to the disruption and fragmentation of separation 

bubbles along the span of the cylinder. The irregularly fragmented separation lines 

prevent periodic eddy shedding, which is the main feature of the super-critical regime 

TrBL3.

Roshko (1961) discovered that eddy shedding reappears at higher Re when the 

boundary layers are turbulent before separation all along the span. This regime. 

TrBL4. is characterized by the transition in boundary layers being somewhere 

between the stagnation and separation lines. As Re increases, the transition advances 

asymptotically towards the stagnation line and hence the value of Re for the upper 

end of TrBL4 is hard to define.

6.3 Fully turbulent state o f flow

This state of flow is reached when all disturbed flow regions around the cylinder 

are turbulent. It is not known at present at which value of Re the turbulent state 

starts.

The flow past the cylinder and the associated drag and eddy shedding are expected 

to be invariant provided that the influencing parameters are kept small. However 

this becomes hardly possible because compressibility effects in air and cavitation in 

water cannot be avoided at very high Re and they become governing parameters.

6.4 Evolution of the fluid-dynamic section

The flow structures described in the previous sections determine the magnitude, 

direction and time variation of the fluid-dynamic force exerted upon the cylinder. 

For example, the symmetric flow regimes LI and L2 in the laminar state give rise to 

a steady resistance, while the laminar periodic regime L3 generates a regular periodic
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force with components in both drag and lift direction (drag and lift forces represent 

the resultant force along and respectively normal to the free stream velocity ).

The fluctuating drag and lift forces are denoted by C'D and C'L and the time- 

averaged values by C q and C l - The drag force Co is produced by viscous friction 

along the surface C d{ and by an asymmetric pressure distribution on the upstream 

and downstream side of the cylinder C'Dp:

C d — Coj + C p p (6.1)

The viscous friction C ds is significant in the laminar state but becomes negligible 

beyond the end of TrSL state of flow. The variation of pressure-drag C’Dp is 

closely related to the flow regimes. It oscillates, with three local minimum values 

corresponding to the elongated, steady and closed near-wake at the end of L2. the 

longest length of eddy formation region between TrSLl and TrSL2 and the separation 

bubbles on both sides of the cylinder in TrBL2 respectively.

The fall in Cp  and the appearance of mean C'l occur at the beginning of the 

single-bubble regime. TrBLl is followed by another fall in C D and C L at the start of 

the two-bubble regime TrBL2.

The fluctuating lift C'L is always greater than  the fluctuating drag C'D. The 

latter has two components: C'DS which is sinusoidal and C’’DT which is random and 

produced by turbulence. C l has also two similar components C'LS and C’LT (except 

in the L3 regime). C'LS is dominant in Tr\V2 and TrSL3 and vanishes in TrBL3. In 

the post-critical state TrBL4 C LS has the same order of magnitude as C'LT.

6.5 Additional considerations for th e  flow corresponding to  
the Reynolds number in th e  range 0 < Re < 1000

For our research we considered the flow around a cylinder for the Reynolds number 

in the interval [40.1000]. A more in-depth analysis of the flow in the range considered 

provides better insight for the validity of the optimized numerical results, by relating
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the physical phenomena to the corresponding numerical values obtained during and 

after the process of flow optimization.

The flow at very low Reynolds number Re  is dominated by viscous forces to such 

an extent that all disturbed regions remain laminar. The separation appears for 

Re s; 5. The most notable feature of the regime in the range 5 <  Re <  40 is a steady 

separated region in the form of a laminar closed near-wake behind the cylinder.

At Re =  3.5 it was observed that the cylinder is "pushing" and "dragging" thick 

shear layers by the action of large viscous forces. This "pushing" and "dragging" 

becomes self-evident by towing a cylinder through a fluid at rest. These two actions 

produce a large resistance force. The sidewise and upstream displacement of fluid 

from cylinder can be strongly influenced by the vicinity of side walls (it was observed 

that a cylinder confined in a 500D wide container was still affected by the side walls 

at very small Reynolds numbers).

This influence, called the wall blockage, occurs in most experiments and it is not 

present in applications. The confining walls of wind and water tunnels restrict the 

disturbed flow sidewise and impose an additional pressure gradient. The blockage 

ratio ^  (where G  is the distance between the walls) is enhanced by thick boundarv 

layers and it may become the dominant parameter.

The magnitude of viscous forces decreases with increasing Re until separation 

occurs at a certain Resep. The separation was first observed by using smoke 

visualization. The blockage has a strong effect on Resep. It is difficult to determine 

R esep experimentally because the size of the near-wake is small and separation occurs 

in a region where the velocity is also very small. The appearance of a steady separated 

region confined in a closed and symmetric near-wake is marked by a noticeable change 

in pressure distribution. The adverse pressure gradient is relieved by separation.

The closed near-wake characteristic for 5 < Re  < (30 — 48) is symmetric, steady 

and it is formed as the separated shear layers merge downstream. A metamorphosis 

of the near-wake was observed if Re increases from 20 to 40. There is a sequence of
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elongation and then obliteration of the initially closed near-wake. The formation of 

a new near-wake is accomplished by secondary separations of the free shear lavers 

from the near-wake.

Another unexpected feature of the closed near-wake regime is that the streamlines 

displaced by the cylinder do not follow the shape of the near-wake boundaries. One 

may observe a widening of the streamlines instead, which increases away from the 

cylinder.

The steady, elongated and closed near wake becomes unstable when Re > Reosc. 

where the subscript osc stands for oscillation. The transverse oscillation starts at the 

end of the near-wake and initiates a wave along the trail. As Re was increased from 

40 to 60 the development of secondary separations of the free shear layers from the 

near-wake boundary is accompanied by the transverse oscillation of the trail. The 

secondary separations prevent the free shear layers from meeting at the confluence 

point as they do behind the steady and closed near-wake.

The near-wake instability initiates a wavy trail for Re >  Reosc. The wavelength 

of the trail gradually decreases with rising Re. At the same time the amplitude of 

crests and troughs of the wavy trail increases with rising Re and the free shear lavers 

begin to roll up and form eddies.

A fully developed Karman vortex (eddy) street has three distinct features:

1. The staggered vortices are not shed from the cylinder but initiate at the end 

of the closed near wake:

2. The roll up is gradual and takes place along the wake until the pattern becomes 

"frozen":

3. The widening of the wake is accomplished by the entrainment of the external 

irrotational fluid.

We define the vortex shedding period (V S P ) as the inverse of the Strouhal 

number. The plot S t  versus Re  shows a logarithmic increase of S t  as we increase
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Re. From experimental data it was observed that a discontinuous drop in shedding 

frequency occurs in the range 80 < Re <  130. This suggested the existence of cells of 

different shedding frequencies along the span of the cylinder. But the coexistence of 

different shedding frequencies along the span cannot explain the discontinuity which 

occurs at a certain Reynolds number Red. A better explanation of the phenomenon, 

verified experimentally, is that the discontinuity in the frequency is produced by a 

transition inode from one slanting shedding mode to another slanted mode.

Flow in the laminar periodic wake is two-dimensional if all eddy filaments 

are parallel to the cylinder axis. The flow is truly two-dimensional in the range 

40 < Re <  80. For 80 < Re  < 120 the wake is sensitive to disturbances and mav 

become three-dimensional. The majority of experiments showed that the laminar 

eddy filaments were either slanted or wavy spamvise as Re >  120. This implied 

that the periodic wake has three-dimensional characteristics for that range of Re. 

although a small number of experiments obtained a two-dimensional wake even for 

the range 120 < Re <  180.

Considerable effort has been devoted for discovering what causes the existence 

of two modes of flow in the laminar periodic wake. The eddy filaments are more 

or less parallel to the cylinder axis in the initial phase of flow. The slanted eddy 

filaments developed subsequently as the effect of the ends spread along the span. It 

was suggested that the slantwise shedding is an intrinsic feature of the flow which 

arise from a difference in the end effects, although the magnitude of the effect may 

depend on the particular end effects of the cylinder.

Based on these observations researchers found methods to induce parallel vortex 

shedding: by fitting end plates on both sides of the cylinder, by addition of two short 

cylinders at both ends, by placing too cylinders of large diameters perpendicular 

to and upstream of the model cylinder or by applying suction at both ends of the 

cylinder.
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The eddy formation is completed when a maximum concentration of vorticity is 

attained. The distance of that point from the cylinder is named the length of the 

eddy formation region Lf. Beyond L j  the viscous dissipation and diffusion gradually 

reduce the strength of eddies. It might be expected that the decay of laminar vortices 

by diffusion and viscous dissipation would eventually annihilate the eddy street far 

downstream.

Experiments showed that after an almost complete obliteration of the primary 

vortex street a secondary eddy street gradually emerges in the far-wake. In some 

cases a tertiary eddy street followed the secondary one. There is wide agreement on 

the fact that the secondary eddy street can be found for 100 < Re <  160. For the 

range 70 <  Re <  100 there were results showing the secondary vortex street as well 

as research which could not detect it. After R e >  160 the wake becomes irregular 

and eventually turbulent, making the interpretation of flow visualization much more 

difficult.

All laminar flows eventually become unstable above a certain Re and undergo 

transition to turbulence. The flow in a wake does not become fully turbulent as soon 

as it ceases to follow the laws of laminar flow. There is a finite transition region 

characterized by the random initiation and growth of irregularities. The transition 

in periodic laminar wakes is further complicated by the viscous diffusion and mutual 

interaction.

As mentioned in the beginning of this chapter the transit ion-in-wake TrW may 

be divided into two flow regimes:

1. Lower transition regime TrWl: the vortices are formed laminar and regular, 

but become irregular and transitional further downstream

2. Upper transition regime TrW2: the eddies are formed laminar and irregular, 

but become partly turbulent before they are shed and carried downstream.
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The transitional wake in Tr\V2 is still surrounded by laminar free shear layers. 

It has been shown that a two-dimensional vortex filament subjected to three- 

dimensional disturbances is distorted progressively by its own induction. The 

continuous distortion of laminar eddy filaments leads ultimately to their breakdown.

The distortions of eddy filaments appeared at randomly disposed spanwise 

positions and followed each other at the same spanwise position. They were called 

"fingers" because they point towards the cylinder. They first appeared for Re > 150 

and persisted for 2 or 3 cycles, but as Re increased they appeared more frequently 

at each position and in clumps of a larger number.

The three-dimensional and random appearance of fingers may be related to a 

low-frequency signal detected by a hot wire. Low frequency irregularities were found 

for 200 < Re <  400. They became more vigorous downstream and eventually 

rendered the wake turbulent.

The shedding frequency of laminar and turbulent eddies has been measured 

by many researchers, starting with Strouhal (1878). The following ranges were 

suggested:

1. stable range. 40 <  Re <  150: regular velocity fluctuations and rising St:

2. unstable range. 150 < Re <  300: irregular bursts in velocity fluctuations and

St  unstable:

3. irregular range. Re  > 300: irregular and periodic. St  constant.

The boundary between TrW l and Tr\V2 is marked by a jump in St at Re 250

which separates rising S t  from S t =  const.

There are two modes of eddy shedding: low-speed mode and high-speed mode. 

The distinct feature of the low-speed mode is the sinusoidal trail and gradual roll 

up of free shear layers at crests and troughs. For the high-speed mode the vortices 

are not mutually connected. The upper eddy is formed in an almost stationary
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position and the cutoff of the upper shear layer is executed by the lower eddy on 

the opposite side. Measurements have demonstrated there was no smooth transition 

from low-speed to high-speed mode of eddy shedding.

The TrW’ state of flow is associated with transition to turbulence in wake. This 

means that all eddies are formed laminar in TrW'l and TrW’2 regimes and become 

turbulent downstream. Turbulent eddies are produced by mixing with the free stream 

flow around them. The eddies induce transverse flow across the wake which is an 

intrinsic feature of the high-speed mode of eddy shedding. Experiments showed that 

at Re =  210 we have fully laminar flow in both wake and eddies.

As Re increases to 270 the transverse flow between eddies becomes turbulent in 

the confluent region. As Re increases again to 400 the transition in confluent regions 

becomes more extended. Based on these observations it was suggested that the 

transition to turbulence in laminar eddies is initiated by the entrainment of turbulent 

fluid from the confluent regions into the otherwise laminar eddies, hypothesis which 

was confirmed experimentally.

It has been shown that the initiation of transition in TrW’l is associated with the 

appearance of •'fingers" and the latter are always irregular and three-dimensional. 

This indicates that the formation of "fingers" and three-dimensional flow should be 

postponed, in order to suppress transition. This was achieved by several methods, 

such as by forcing the cylinder to oscillate at high frequency or by enhancing 

two-dimensionality by placing two parallel cylinders in tandem arrangement to the 

oncoming free stream.

The transition to turbulence in the free shear layers (TrSL) develops through 

distinct phases as the Reynolds number rises (Zdravkovich [209]):

•  TrSLl (lower sub-critical regime): transition waves appear along free shear 

layers and stabilize the near wake:
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• TrSL2 (intermediate sub-critical regime): transition vortices are formed as a 

chain along free shear layers and they precede the transition to turbulence:

•  TrSL3 (upper sub-critical regime): an immediate transition to turbulence close 

to the cylinder is accompanied by a very short near-wake.

Since our research considered the Reynolds number in the range 2 < Re < 1000. 

we will end this chapter with considerations about TrSLl.

In the above regions turbulent eddies are regularly formed, periodically shed and 

rapidly dissipated along the wake. The wake energy decays rapidly as the fluid moves 

away from the cylinder.

The Karman vortex street evolves gradually by a roll-up of the free shear layers 

at crests and troughs of the wavy trail beyond Re =  60. Similar laminar waves are 

observed in boundary layers before the transition to turbulence. Transition waves, 

an analogous counterpart, are found in the free shear layers emanating from circular 

cylinders beyond Re =  500. The apparent similarity of all three kinds of waves 

suggests a universal mechanism of transition to turbulence.

We did not consider Reynolds numbers for which the flow is predominantly 

turbulent. For more about the characteristics of the turbulence regime for the 

flow around a cylinder the reader is referred to Zdravkovich [209], An overview 

of turbulent flow research in the areas of simulation and modeling is provided by 

Gatski et al. [62].
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CH APTER 7

O PTIM AL CONTROL OF A FLOW A R O U N D  A 

ROTATING CYLINDER

7.1 The governing equations of the m odel

Let B  denote a circular cylinder enclosed by an impermeable boundary f. while

the two-dimensional exterior domain D =  R- \  {j3 u T} is the region occupied by an 

incompressible viscous fluid (for numerical purposes, the domain will be restricted 

to a rectangle in R 2).

The fluid is moving with velocity L'0 in the x-direction and the cylinder rotates 

counterclockwise with angular velocity S7.

The problem can be mathematically described by the 2-D unsteady Xavier-Stokes 

equations, where (u. v) is the velocity vector and p is the pressure:

The equations are non dimensional. Re is the Reynolds number defined as

Ox dy

(7.2)

(7.3)

(7.1)

subject to initial condition

(u. e)|t=o =  (u0. t’0) in D.

Re =  where d is the diameter of the cylinder and u is the kinematic viscosity 

v =  —. with p  the viscosity and p the density.
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Xo-slip boundary condition are enforced at the upper and lower boundaries: an 

inflow boundary condition is applied at the left boundary:

u =  UQ and u =  0 l,.o

and an outflow boundary condition at the right boundary:

(7.6)

On the surface of the cylinder the velocity is equal to the angular velocity

ft = (nx.ntf) :

7.2 Space and tim e discretization

The region D is discretized using a staggered grid as presented in Fig. 7.1 

(Griebel et al. [79]). The pressure p is located at the cell centers, the horizontal 

velocity u at the midpoints of the vertical cell edges and the vertical velocity v at 

the midpoints of the horizontal cell edges. Cell ( i . j )  occupies the spatial region 

[(/ — l)_l:r. iAjJ x [(j — l ) A y , j A y ]  and the corresponding index ( i . j )  is assigned to 

the pressure at the cell center as well as to the u-value at the right edge and the 

o  velocity at the upper edge of the cell.

Consequently, not all extremal grid points come to lie on the domain boundary. 

The vertical boundaries, for instance, carry no u-values. just as the horizontal 

boundaries carry no u-value. For this reason, an extra boundary strip of grid cells 

is introduced (see Fig. 7.2). so that the boundary conditions may be applied by 

averaging the nearest grid points on either side.

We require that the discretized values of u and v on the boundary cells are equal 

to the components of the angular velocity on the circle. This boundary condition 

is enforced by averaging the values on either side of the boundary and setting this 

average to be equal to the angular velocity value.
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The continuity equation (7.3) is discretized at the center of each cell by replacing 

the spatial derivatives with centered differences using half of the mesh width. The 

momentum equation (7.1) for u. on the other hand, is discretized at the midpoints 

of the vertical cell edges, while the momentum equation (7.2) for v is discretized at 

the midpoints of the horizontal edges.

The second derivatives of u and c as well as the spatial derivatives of pressure 

are discretized using central differences with half the step size.

The discretization of the convective terms d(u1) / d x  d( uu) / dy .  however, poses

some difficulties. The first approach was to employ averages of u and/or c. For 

example, the discrete d( u v ) / d y  has the formula

’d(uu) '

. Qy J.J

Because the convective terms in the momentum equation become dominant at 

high Reynolds numbers or high velocities, it is necessary to use a mixture of the 

central differences and the donor-cell discretization. The discrete d { u v ) / d y  becomes

d(uvy

- i -J

+

_  _J_ f  i vi,j +  t ' j - l j )  (Uj j  +  Uj.j ,  i)  ̂ (Vj. j-l  +  t ' t v i j - t )  ( i q . j - i  +  U j j )

~  A y  V 2 2 2 2

_  1 (  ( v i , j  +  i u i . j  +  U j . j - l )  U ’j . j - 1  +  f-’t — I . j  — 1)  t l j . j )

A y \  2 2 2 2

1 f \ v i . j  +  \ U j j  +  U i j - i j  +  C j - i j - i l  j U j j - i  +  U j j

Qy

‘&y \  2 2 -2

where - is a parameter which should be chosen such that

max
ui j At

A x
< <  1

The time discretization is explicit in the velocities and implicit in the pressure: 

i.e.. the velocity field at each time step t n^\ can be computed once the corresponding 

pressure was computed. The time step is required to satisfy the stability condition :

-l, Re (  1 1
dt =  r m m |  T l — +  —

.Ax Ay
‘max c max

where r  £  [0.1] is the Courant-Fredrichs-Levy (CFL) number (set to 0.6 in the code).
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The domain is a rectangle of 22.0 units in length and 4.1 units in width. The 

cylinder (located inside the rectangle) measures 1.0 units in diameter and is situated 

at a distance of 1.5 units from the left boundary and 1.6 units from the upper 

boundary of the domain.

The cylinder is rotating with an angular velocity which can be either constant in 

time or a time-dependent function.

Figure 7.7 shows the uncontrolled flow for this domain.

7.3 Formulation of the optim al control problem

The control problem consists in finding the optimal angular velocity of the 

cylinder such that the Karman vortex shedding in the wake of the cylinder is 

suppressed.

In order to find the optimal value(s) of the angular velocity of the cylinder, we 

minimize a cost functional which depends on the state variables as well as on the 

control variables. The control variables are the rotation parameters: amplitude .4 

and frequency F.
uQ

We define the speed ratio a  =  — . where a is the radius of the cylinder. f> is the 

angular velocity and U  is the free stream velocity.

We considered both the constant rotation case: a( t )  = A as well as 

the tim e harmonic rotary oscillation case: a ( t ) =  As m{ 2~Ft ) .

The vector of control parameters is A =  .4 or A =  (.4. F) respectively.

With these notations, the optimal control problem becomes:

I f  A is  t h e  v e c t o r  o f  p a r a m e t e r s  w h ic h  d e t e r m in e  t h e  a n g u l a r

VELOCITY OF THE CYLINDER. MINIMIZE THE COST FUNCTIONAL 3  W ITH RESPECT 

TO A SUBJECT TO THE CONSTRAINTS IMPOSED BY THE 2 -D  UNSTEADY X.AVIER- 

S to k e s  EQUATIONS MODEL.
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Based on recent research work (e.g.. Abergel and Temam [1]. Burns and Ou [23], 

Ou [154], G hattas and Bark [63]. Berggren [14]. Bewley et al. [17]). several possible 

approaches to control the behavior of the flow can be employed, such as:

•  flow tracking (the velocity field should be "close" to  a desired field):

•  enstrophy m inim ization (the vorticity is minimized):

•  dissipation function (minimize the rate at which heat is generated by 

deformations of the velocity field).

In this research work we considered only flow tracking and vorticity mini­

mization. The mathematical expressions of the corresponding cost functionals are 

provided below.

We considered a cost functional for vorticity minimization of the form:

J{\) = \  f '  fD«2)dDdt ( " •«)

where the vorticitv is <;'(x . y ) = ^
ay ox

The best results were obtained when the cost functional J  was chosen to be of 

the flow tracking-type, namely:

«7(A  ̂ =  o Jt j  ^  -  Ud\2 +  \v ~ v<i\2)d D d t (7.9)

where D is the spatial domain and (ua. t’d) is the desired velocity field.

7.4 Existence o f the optimal solution

The control problem involving Xavier-Stokes equations was studied by Abergel 

and Temam [1]. Coron [39], Fursikov et al. [59].

Ou [154] proved an existence theorem for the optimal controls in the case of a

rotating cylinder, continuing the research of Sritharan [178].
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First, one needs to construct two solenoidal vector fields 'l '(r)  and <fc(r) which 

would carry the nonhomogenous boundary conditions at the solid surface of the 

cylinder and. in the far field, respectively. If r is the position vector and U(r. t) is 

the velocity vector for the model equations we introduce a change of variable

U (r.f)  =  V (r.f)  +  l'x '&{r) +  Q(f)<£(r) (7.10)

where is the far field velocity in the x direction and f> is the angular velocity of 

the cylinder.

The following system of equations with homogeneous boundary conditios is then 

obtained:

V, +  (V - V )V  + 6'3C(V - V * ) + Q ( t ) ( V -  V tf) +  r x ($ -V V )  +

VV) =  - V P  + -^-V 2V  in D xfO .T ]
Re 1

V • V =  0 in D X [0. r ]

= 0 (7.11)
r

V ' 0 as jr| —> oc 

V(r.O) =  0

where D is the domain considered and T its boundary.

Let H  be the solenoidal subspace defined by

"H — {V : D  —► R 2: V  6 Z,2(D). V • V  =  0 and V  • n =  0} (7.12)

The system of equations (7.11) is projected onto the solenoidal subspace H  by an 

orthogonal projector and we obtain:

i (V ( t : f l ) + | A V P )  +  N ((H .$ .V ((:0 )) =  F ( * .$ .Q )  (7.13)
He

V(0) =  0

where A is the Stokes operator.
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We denote Uad the set of all admissible pair ( V .  fi) 6 £ 2(0. T: H)  x H l(0. T) that 

satisfy equation (7.13).

If zd is the desired flow field (in our case a flow without Karman vortices) then 

the optimal control problem is to find an optimal pair ( V .  Q)  € Uad which minimizes 

the cost functional

J ( Y .  Q )=  f T ||V (f: O) +  i x qi +  Q ( t ) $  -  z d\\iHD) dt +  \  f  \9.t ? d t  (7.14) 
J  0 J  0

where A is a regularization parameter.

The following result was proved by Ou [154] following Sritharan [178]):

There exists an optimal solution ( V ' . Q ‘ ) 6  U ad  such that

J { \ \  fi*) =  inf J (V .Q )  (7.15)
t V . P . ) 6 t i ad

7.5 Regularization

Preliminary numerical experiments proved that the minimization is ill-posed 

(while the objective functional decreased by a very small percentage, the difference 

in the values of the parameter for which we have this decrease in the function may 

assume arbitrarily large values).

Our approach for dealing with ill-posedness was to apply a Tikhonov-tvpe 

regularization. We added a new term to the cost functional F:

J  R E G  =  3  +  An (7.16)

where A > 0 is a regularization parameter and n  a regularization function (see 

Tikhonov and Arsenin [187]).

The regularization term may also be viewed as playing the role of a penalty term 

aiming to ensure that the control parameter lies within a reasonable interval.

For the case of constant rotation the regularization function n  is:

n  =  I ^ ( u2 +  e2)d r

where (u. v) are the two components of velocity and T is the boundary of the cylinder.
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Such a choice was also made by Abergel and Temam [1] and Gunzburger and 

Manservisi [90] in their research.

For the time-harmonic case, the regularization function FI was chosen to be:

where Tw is the length of the time window for optimization.

An in-depth discussion about regularization is provided in chapter 5.

7.6 Overview o f num erical results

The optimization was performed over a short time interval (time window). The 

values of the state variables for each time step in this control window were saved 

and used in the adjoint computation (specifically the "forcing term" for the adjoint 

equation).

The time window was located at the beginning of the time evolution and had a 

length varying between 1.0 and 4.0 time units.

Even when the flow is considered over a time period of 25.0 time units (which 

exceeds by far the length of the control time window), the optimized values of the 

control parameters suppress the Karman vortex shedding far beyond the extent of 

the time window.

The choice of the length of the time window is very important. For both cases.

namely constant and time-dependent angular rotation, the length of the control

window should be larger than the vortex shedding period ( V S V ) .  the inverse of the
I k D

Strouhal number S t  =  —. . where is the Karman vortex street frequency and
VO

D  is the diameter of the cylinder.

Since the adjoint method requires availability of the values of the state variables 

for all the time steps in the control time window, the length of the time window 

should not to be much larger than VST*. Otherwise both the memory and the CPU 

time requirements for minimization may prove to be too large.
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For the case of the constant rotation we obtained satisfactory results with a 

control time window smaller than V S V  (but not smaller than 1.0 time unit). In 

the time-dependent case the choice of a time window smaller than V S V  leads to 

nonconvergence of the minimization process.

The cost functional which was minimized involved the Lo norm of the difference 

between the computed velocity and a "desired" velocity. Our "desired" flow was 

obtained for Reynolds number Re =  2 and the ratio between the angular velocity 

and the free stream velocity had a value of 2.0 (see Figure 7.6).

7.7 Suppression of Karman vortex shedding in the
constant rotation case

Let us consider the speed ratio
aQ

Q ~ i "

where a is the radius of the cylinder. Q is the angular velocity and U  is the free 

stream velocity.

The uncontrolled flow is taken at a =  0.5 (an example is provided in Fig. 

7.7. for Re =  100). The minimization satisfies the convergence criteria after 5-11 

minimization iterations for all the cases we considered: the Reynolds number in the 

range 60 < Re <  1000 .

For each case considered we found a threshold value for a  (denoted a r(,) such 

that for any a >  a/*e a full suppression of the Karman vortex shedding was obtained 

(see Figures 7.8.7.9. 7.10).

The CPU time required for a typical optimal flow control calculation was 2-3 

hours on a Silicon Graphics Indigo (SGI) machine.

The results for 60 <  Re < 160 were found to be in very good agreement with the 

numerical results obtained by Kang et al. [118] (see Fig. 7.3).

For the case 60 < Re <  140 the regularization parameter was found by using 

an empirically derived law. which relates it to the Reynolds number (see Fig. 7.5).
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We started by finding the values of the regularization parameter by trial and error 

for two Reynolds numbers (we considered Re =  60 and Re =  100) and then we 

assumed the existence of a logarithmic relation between the regularization parameter 

and the Reynolds number. Based on this assumption we were able to obtain the 

corresponding regularization parameters for the other Reynolds numbers (in our case 

Re =  80. Re =  120 and Re =  140. respectively).

For the case 160 < Re <  1000 the empirical law employed in the previous 

case for obtaining the regularization parameter did not yield good results and. as 

a consequence, the corresponding regularization parameters were found by trial and 

error. A possible explanation of this phenomenon is the following: the Karman vortex 

regime for 160 < Re < 1000 is inherently different than the regime for 60 < Re <  140 

(Zdravkovich [209]).

To check that the minimization results were robust, we performed for each case 

two different minimizations: one starting with an initial guess of a  = 0.9 (a value 

less than the optimal value) and one starting with an initial guess of q = 3.5 (a value 

greater than the optimal value of a). For both initial guesses, the results obtained 

for the optimal value of a  were identical.

As the Reynolds number increases from 60 to 1000 we can see from Figure 7.4 

that the rotation rate tends asymptotically to a limit. This behaviour is in good 

agreement with previously obtained experimental and numerical results.

At Re =  1000 we compared our results with the values obtained by Chew et 

al. [29]. They found that for a  =  2 and a  — 3 any vortex shed will be weak and 

Karman vortex shedding almost disappears for q =  3. a phenomenon which was also 

described experimentally by Badr et al. [9] and numerically by Chou [32]. We found 

the "optimal" a  to be q =  2.32 for Re =  1000.

For Re >  200 the flow is not completely free of vortex shedding (as it can be seen 

from Fig. 7.9 and 7.10). This situation was also described by Chen et al. [28].
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In the case presented here (time independent angular velocity) we found that 

control time windows smaller than the Karman vortex shedding period (but not 

smaller than 1.0 time units) gave satisfactory results. This observation is important 

since a smaller control window reduces the computer memory necessary for storing 

the state variables (which are required for the adjoint computation). A smaller time 

window also means a sizable reduction in the required CPU time.

7.8 The time histories of the drag coefficient in the
constant rotation case

Practical applications (in aerodynamics) of optimal control for flow around a 

rotating cylinder involve the optimization of the drag coefficient (CD ).

We compare the variation of the drag coefficient in the controlled case (with 

rotation) with the corresponding variation for the no-rotation case (a = 0 ) .  In order 

to compare them on the same plot we subtracted from C o  the corresponding mean 

value (C'd). The mean drag coefficients obtained numerically for the case of no 

rotation were in agreement with the values reported by He et al. [98] (see Table 7.1).

We noticed a very significant reduction in the amplitude of the fluctuation for 

the drag coefficient when the flow is controlled.

In a viscous flow the total drag forces are contributed by the pressure and skin

friction due to the viscous effects. For known vorticity values
. . du dc
( -r .  y )  =  -X T r ­ay o r

on the cylinder surface, the drag can be calculated in the polar coordinates r — 0:

C D(t) =  C Dp(t) + C Df(t) =  J  r sil1 O d d -  J  us{t)  ̂sin6W0

(7.17)

where the subscript T denotes quantities evaluated on the cylinder surface and 

the subscripts P  and /  represent the contributions from pressure and friction, 

respectively.
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Fig. 7.14 shows plots of the time histories of the drag coefficient for different 

Reynolds numbers and for time in the interval 0 <  t <  20 time units. On each plot 

we present 2 graphs: the drag obtained for a flow in the fixed cylinder case (a =  0) 

and. respectively, the drag for the flow obtained using the optimal value of the control 

speed ratio a  (after subtracting the corresponding mean value).

The results presented demonstrate the effectiveness in improving the drag per­

formance by selecting a proper rotation rate. An example is presented in Fig. 7.14. 

which shows a reduction of more than 60% of the amplitude of the drag variation.

7.9 Suppression o f  Karman vortex shedding for the tim e
harmonic rotary oscillation

We also considered the time dependent angular velocity. A special case is 

the time harmonic rotary oscillation, for which the speed ratio assumes the form 

a( t )  =  A sin(2~Ff).

The minimization was performed for values of the Reynolds numbers in the range 

100 <  Re <  1000.

Several time control windows were used (their length of the control varying 

between 1.0 and 5.0 time units). In order to obtain numerical convergence for 

the minimization we had to choose a time window longer than the Karman vortex 

shedding period, otherwise the minimization failed to converge.

The regularization parameter was chosen by trial and error. For this case we 

could not find a relationship between the regularization parameter and the Reynolds 

number, as for the previously described constant rotation rate case.

The flow obtained using the optimal values of the angular velocity after the 

minimization is presented in Fig. 7.12 and 7.13. In this case we did not obtain 

complete suppression of the vortex shedding.
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However, we can see that the flow determined by the optimal rotations parameters 

(obtained through the minimization process) is markedly less turbulent than the 

uncontrolled flow, described in Fig. 7.11.

7.10 The tim e histories o f the drag coefficient for the tim e
harmonic rotary oscillation

Reduction of the drag coefficient using time harmonic rotary oscillation was 

reported by Tokumaru and Dimotakis [188], Baek and Sung [10] and He et al. [98]. 

The research of He et al. [98] shows a 30% to 60% drag reduction if one uses a 

rotating cylinder, compared to the fixed cylinder configuration.

Our results are presented in Fig. 7.15 which show plots of the time histories of 

the drag coefficient for time in the interval 0 < t <  20 time units.

They are not as impressive as the results obtained for the constant rotation case, 

which may be related to the fact that we could not obtain the full suppression of 

Karman vortex shedding.

If one compares our results with He et al. [98], one may distinguish small 

differences in the numerical values obtained for the optimal control parameters (in 

both research articles, the forcing angular velocity is u:(t) =  sin(2~5ef ) and the 

optimal control parameters are the amplitude and the forcing frequency Se). Our 

"optimal" amplitude u,q differs by at most 10% from the value reported in their 

research. We did not obtain the same "optimal" forcing frequency (which in their 

case was very close to the lock-in forcing frequency).

One possible explanation for this situation is the following: there is a difference 

in the formulation of the cost functionals used in our research and those described in 

He et al. [98] (this difference appears to be due to the setting of the optimal control 

problem: our main goal was the suppression of the Karman vortex shedding, while 

their research was aimed toward reduction of drag).
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7.11 D escription of the physical phenom ena corresponding
to the com putational results

At low Reynolds numbers (Re < 40) the wake behind a non rotating cylinder 

comprises a steady recirculation region with two vortices symmetrically attached to 

the cylinder, whose size grows with increasing Reynolds number. When the Reynolds 

number is slightly larger. Re < 60. the trailing vortex street becomes unstable 

and develops an unsteady wavy pattern. For Reynolds numbers 60 < Re < 200. 

the Karman vortex shedding occurs in the near wake behind a cylinder due to the 

flow instability accompanying a large fluctuating pressure and. thus, a periodically 

oscillating lift force. The attached vortices become asymmetric and are shed 

alternately at a well defined frequency.

At higher Reynolds numbers (Re >  200) the flow becomes more turbulent and 

vortex shedding also occurs, but assuming more complicated patterns this time. In 

this last case the vortex structures are unstable to 3-D perturbations. For this reason, 

numerical results available from the 2-D codes agree well with the experimental data 

for Reynolds numbers Re  < 160 bwhile numerical results obtained for larger Reynolds 

numbers are not always consistent as a consequence of the three-dimensionality effect 

(e.g.. Graham [76]).

For higher Reynolds numbers 3-D codes will yield numerical results which will 

match experimental data  better than their 2-D counterparts. Zhang and Dalton [210] 

obtained smaller global quantities such as drag and lift (with better agreement with 

experimental values) than the corresponding 2-D simulation. The difference has been 

attributed to the phase difference of flows in different spanwise locations caused by 

three-dimensionality and to the 3-D mixing, both absent in the 2-D simulation.

For Reynolds numbers Re >  160 there are various instabilities. The primary 

instability can be seen when the wake undergoes a supercritical Hopf bifurcation that 

leads to 2-D Karman vortex street. The secondary instability occurs sequentially.
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which results in the onset of the 3-D flow. The periodic wakes are characterized by 

two critical modes which are respectively associated with large-scale and fine-scale 

structures in span (Williamson [205]. Ding and Kawahara [48]).

The rotation of a cylinder in a viscous uniform flow is expected to modify the wake 

flow pattern and vortex shedding configuration, which may reduce the flow-induced 

oscillation or augment the lift force. The basic physical rationale behind the rotation 

effect is that as the cylinder rotates, the flow of the upper cylinder is decelerated and 

easily separated, while the flow of the lower cylinder is accelerated and the separation 

can be delayed or suppressed. Hence the pressure on the accelerated side becomes 

smaller than tha t of the decelerated side, resulting in a mean lift force ( this effect is 

known as "Magnus effect": Barkla and Auchterlonie [11]).

As we increase the control parameter a  (the angular velocity normalized by the 

free stream velocity), the flow becomes asymmetric and at the same time the pressure 

on the lower (accelerated) side of the cylinder decreases, resulting in a negative 

downward mean lift. The rotation effect is mainly confined to the flow in the vicinity 

of the cylinder surface. For the near-surface flow, as a  increases, the negative vorticity 

on the upper side of the cylinder dominates the positive vorticity on the lower side, 

thus weakening the vortex shedding which eventually disappears.

There is a transition state (called critical state) between the state of periodically 

alternate double side shed vortex pattern for smaller a  and the state of steady single 

side attached vortex pattern for larger a  (e.g.. Ling and Shili [133]. Badr et al. [9], 

Chen et al. [28]).

Another characteristic of the flow is the synchronization between cylinder and 

wake. This will determine the apparition of a "lock-on" phenomenon. In the case of 

time harmonic rotary oscillations this phenomenon! was described experimentally by 

Tokumaru and Dimotakis [188] and numerically by Chou [31] and Dennis et al. [46] 

(who studied the effects of the forcing frequency and amplitude on a cylinder wake).
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The combined system of cylinder and wake will be locked in if the forcing 

frequency lies in the neighborhood of the natural Karman frequency. According 

to He et al. [98]. the natural Karman frequency is the optimal value for the forcing 

frequency for the drag reduction.

For this case (time dependent rotational oscillation) two co-rotating vortex pairs 

are shed away from the cylinder to form a co-rotating vortex pair which slows down 

their convection further downstream. This seems to delay the development of the 

periodic flow pattern in the near wake.

We have two phenomena when the forcing frequency is lower than the natural 

shedding frequency. An initial clockwise vortex is formed on the lower half of 

the cylinder when the cylinder is rotated in the counterclockwise direction while 

a counterclockwise vortex is formed on the upper half when the clockwise rotation 

starts. A non-synchronized vortex formation mode is developed which cannot lead 

to suppression of Karman vortex shedding.

One can also distinguis two vortices when the forcing frequency is higher than 

the natural shedding frequency. An initial reactive clockwise vortex is formed on 

the upper half of the cylinder when the cylinder is rotated in the counterclockwise 

direction while counterclockwise vortex is formed on the lower half when the clockwise 

rotation starts. This leads to a synchronized vortex mode, which is one of the reasons 

why the optimal values for the forcing frequency obtained in the previous section 

cannot be lower than the vortex shedding frequency.

The behavior of the drag coefficient C'D is determined by the fact that flow 

separation is a major source of pressure drag and the moving-wall effects will 

postpone this separation. As shown by Prandtl in 1925 [161] separation is completely 

eliminated on the side of the cylinder where the wall and the freestream move in the 

same direction while on the other side of the cylinder separation is developed only 

incompletely.
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Figure 7.1. Staggered grid
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Figure 7.2. Domain with boundary cells 
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Table 7.1. The mean value of the drag coefficient Cq  for various Reynolds numbers

Re 100 200 400 700 1000
Present work 
He et al. [98]

1.42
1.35

1.44
1.36

1.54
1.42

1.59
1.48

1.68
1.52

Figure 7.3. Comparison between our results (o) and the results obtained by Kang 
et al.(1999): the speed ratio a  vs. the Reynolds number Re
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Figure 7.4. The optimal speed ratio a  vs. the Reynolds number Re

Figure 7.5. Regularization parameter vs. Reynolds number Re
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Figure 7.6. Streaklines for the "desired" flow at Re  =  2 and speed ratio a  =  2.0
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Figure 7.7. Streaklines for uncontrolled flow a: Re =  100 and speed ratio a  =  0.5
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Figure 7.8. Streaklines for controlled flow at Re =  100 with optimal speed ratio 
a  =  1.84
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Figure 7.9. Streaklines for controlled flow at Re  =  400 with optimal speed ratio 
a  =  2.18
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F ig u re  7.10. Streaklines for controlled flow at Re =  1000 with optimal speed ratio 
a  =  2.35
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F ig u re  7.11. Streaklines for the uncontrolled flow at Re =  100 and speed ratio 
a( t)  =  2.5 sin (I.Ott*)
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F ig u re  7.12. Streaklines for the controlled flow at Re =  100 with optimal 
parameters A  =  6.5 and F  =  1.13: a ( t )  =  .4sin(2"F^)
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F ig u re  7.13. Streaklines for the controlled flow at Re =  1000 with optimal 
parameters A  =  6.0 and F =  0.86: a(t) =  .4 sin (2- F t )
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[b]

F ig u re  7.14. The variation of the drag for the constant rotation in the controlled 
(dotted line) and uncontrolled case (continuous line) for [a] Re  =  100 and [b] 
Re =  1000
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[b]

Figure 7.15. The variation of the drag for the time-dependent speed ratio a( t )  in 
the controlled (dotted line) and uncontrolled case (continuous line) for [a] Re =  100 
and [b] Re =  1000
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C H A PT ER  8

D ESC R IPTIO N  OF THE PHYSICAL  

PH E N O M E N A  FOR THE SHOCK-TUBE

PROBLEM

The shock-tube example corresponds to the 1-D Riemann problem for the Euler 

equations. Its mathematical formulation will be discussed in more detail in chapter 

10. This problem was chosen since it contains many "troublesome" aspects present 

in typical flow solutions, including shock waves, rarefaction waves and contact 

discontinuities.

The shock tube is also extensively used in studying unsteady short-duration 

phenomena in varied fields of aerodynamics, physics and chemistry. The transient 

wave phenomena when a shock wave propagates at a high speed, as well as wave 

structure and wave interactions, can be studied in shock tubes. Because of high 

stagnation enthalpies (and temperatures) that are attained, the shock tube provides 

means to study the thermodynamic properties of gases at high temperatures, 

dissociation, ionization and chemical kinetics.

The shock-tube consists of a long duct of constant cross-section divided into two 

chambers by a diaphragm, as shown in Fig. 8.1. The left chamber, called the driver 

section, contains gas at high pressure whereas the right chamber, called the expansion 

section, contains gas at a low pressure. The low-pressure gas may be the same as or 

different from the high-pressure gas.

At time t =  0 the diaphragm is ruptured and a series of compression waves 

rapidly coalesces into a normal shock wave. The pressure distribution at t =  0 is a
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"step" function. The variables are denoted by V  (velocity), p (density). P  (pressure) 

and T  (temperature). The wave propagates at supersonic speed in the expansion 

chamber and sets up the gas behind it in motion in the direction of the shock at 

velocity V2  (the subscripts correspond to the regions of the flow shown in Fig. 8.3). 

The laws of normal shock dictate that P 2 >  P \ . T 2 > T \  and p2 > p x. At the same 

time a rarefaction wave emanates at the diaphragm section and propagates in the 

opposite direction into the driver section (4). The leading rarefaction wave (head 

wave) propagates into the gas of the driver section at a local speed of sound of c.j.

Similarly, the tail wave propagates at a local speed of sound of c;i. The gas 

behind the last rarefaction wave (tail wave) is set in motion to the right at a velocity 

V3 equal to V2. The shock wave and the rarefaction wave interact in such a manner 

to establish a common pressure P 2 ( =  P . i )  and a common velocity \ 2( =  \':i) for the 

gas downstream of these waves. The velocity V2 can be either subsonic or supersonic.

The gases in regions (2) and (3) differ, however, in temperature and entropy. This 

creates a surface of discontinuity which moves to the right at the same velocity of 

the gases in these two regions. The distributions of properties of the gas along the 

shock tube at a later time T  =  0.24 are shown in Fig. 8.5. As shown in the figure, 

the velocity and pressure change in a continuous fashion between regions (3 ) and 

(4). owing to the passage of the expansion wave. These properties, however, change 

discontinuously between regions 1 and 2 as a result of the passage of the shock wave. 

The trajectories of fluid particles 011 both sides of the diaphragm are represented in 

Fig. 8.4 by abc and respectively a b e .

The properties in the regions (2) and (3) need to be determined in terms of the 

initial properties in chambers (1) and (4). The analytical solution is presented in 

chapter 10 using a basic parameter of the shock tube: the diaphragm pressure ratio 

P \ j P i- The properties in region (2). which is at a higher temperature than region 

(3), remain uniform until the passage of the reflected waves from either side of the 

tube or until the passage of the contact surface. The Mach number in this region

107

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



increases as the ratio P4/ P 1 increases. Unlike the flow across the shock wave, flow 

across the rarefaction wave is isentropic and these waves propagate into region (4) 

at the local speed of sound.

The region of the fluid which is traversed by the shock has the index (2) while 

the region traversed by the expansion wave is denoted by (3). as seen in Fig. 8.3. 

The interface between regions (2) and (3) is called the contact surface. It marks the 

boundary between the gases which were initially on either side of the diaphragm. 

Neglecting diffusion, they do not mix. but are permanently separated by the contact 

surface (which is like the front of a piston, driving into the low-pressure chamber).

On either side of the contact surface the temperatures and the densities may be 

different but it is necessary that the pressure and the velocity to be the same. These 

conditions are sufficient to determine the shock strength P*/P\  and the expansion 

strength in terms of the diaphragm pressure ratio P \ j  P\. Once the shock strength 

is known, all other flow quantities are easily determined from the normal shock 

relations.

Although the values of the velocity and pressure across the shock and expansion 

must be identical, this is not necessarily true for the density and temperature, and 

in fact they are different. The temperature behind the expansion wave is given 

by the isentropic relation while the temperature behind the shock is given by the 

Rankine-Hugoniot relation.

Experimentally it is not possible to start the flow the ideal way. since the bursting 

or shattering of the diaphragm is a complicated, three dimensional phenomenon. 

Nevertheless a plane shock is developed within few diameters, by the steepening effect 

associated with compression waves. The duration of flow is limited by the lengths of 

the expansion and compression chambers, since the shock wave and expansion wave 

reflect from the end of the chambers and eventually interact with each ether.

Many applications of the shock tube have been discovered. For instance, the 

uniform flow behind the shock may be used as a short-duration wind tunnel. In
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this role the shock tube is similar to an intermittent (blow-down tunnel), with the 

difference that the duration of flow is much shorter.

The abrupt changes of flow condition at the shock front have been utilized 

for studying transient aerodynamic effects and for studies of dynamic and thermal 

response.

In the field of molecular physics the shock tube model provides a simple tool for 

producing fast changes in the state of a fluid in order to observe relaxation effects, 

reaction rates, etc. In addition, dissociation and ionization were studied using the 

high enthalpies that were obtained in a shock tube.

As mentioned in the introduction, the shock-tube problem was chosen since it 

contains many characteristics of physical problems with discontinuities. We presented 

the dynamics of shocks only for the 1-D case. Aan extensive literature exists for the 

physical phenomena related to shock dynamics in 2-D or 3-D.

For many practical applications where the shocks are found (e.g.. aerodynamics 

Anderson [5]) it is very important to study not only the shocks alone but also 

their interaction with other organized structures of the flow: vortex or temperature 

(Erlebacher and Hussaini [53]). axisymmetric entropy or temperature spot (Hussaini 

and Erlebacher [107]). vortices (Erlebacher et al. [54]. [55]).

Based on these interactions one may consider a different optimal control problem 

than the one considered for our research: for example, one may control the nonlinear 

effects of the interactions such that only the most desired characteristics of the flow 

are kept at the end of the process of optimal control.
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F ig u re  8.1. The shock-tube problem at time t=0
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F ig u re  8.2. The solution shock-tube problem at time t =  T
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Figure 8.3. Evolution of the flow for the shock-tube problem
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F ig u re  8.4. The trajectory of the fluid particles for the shock-tube problem
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F igure  8.5. Exact solution of the shock-tube problem at time t — 0.24: [a] pressure, 
[b] density and [c] velocity
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C H A PT E R  9

SENSITIVITIES FOR A FLOW W IT H  

DISCO NTINUITIES

9.1 M odel formulation

We chose to perform linearization of 1-D Euler equations and sensitivity compu­

tation for this discontinuous flow, since the one-dimensional shock-tube problem from 

gas dynamics contains many potential "troublesome" characteristics of a flow with 

discontinuities, including shock waves, rarefaction waves and contact discontinuities.

The one-dimensional equations of gas dynamics can be written in conservation 

law form as:

U , + F ( U ) x = 0  (9.1)

where
’ p  '

m

u  = m F(U) = m i  j -  p  
, e 1

e
.  ( ? )  ( z +  P) _

and where p is the density, u is the velocity, m =  pu is momentum. P  is the 

pressure and e is the internal energy per unit volume. The variables are related by 

e =  pe -i- \ p u 2. where £ =  {.S\)P is t îe internal energy per internal mass with - the 

ratio of specific heats (which is taken to be 1.4).

We study the Riemann problem which was described in chapter 8. We review 

here its most important characteristics. There is a shock tube with 2 gases separated 

by a membrane. Initially both gases are at rest and are at different pressures and 

densities defined by Pj > Pi and p  ̂ >  pi where the subscript refers to the region in 

which the variables are defined (initially the region (4) is at the left of the membrane
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and region (1) is at the right of the membrane: afterwards the region (4) is the first 

region from the left boundary and the region (1) is the first region from the right 

boundary (see Fig. 9.2).

The exact solution can be found explicitly as a function of x  and t (Liepmann and 

Roshko [132]) and its plot (numerical solution versus analytical solution) is shown in 

Fig. 9.2. The analytical expression of the exact solution is presented in chapter 10. 

The solution has several distinct regions: a region of low pressure and density: an 

area between shock and contact discontinuity: an area between contact discontinuity 

and rarefaction wave: a rarefaction wave and a region of high pressure and density.

9.2 Tangent linear system  approach for th e sensitivity
com putation

We consider a symbolic form for a time-dependent system of equations

w  = s  (X) <9-3 '

Then the perturbed solution (X(f) +  SX{ t ) )  satisfies the equation

v , x ( () + « , . ) ) -

■V(X(()) +  (XW X'XW  + o t m  ())

where is the Jacobian of the nonlinear function .V with respect to the variables
Us\.

X. Upon retaining only the first order terms in dX the previous equation becomes

r  = l̂ ixfOMXfo (9.4)
To determine the sensitivity with respect to a parameter a  we differentiate

equation (9.3) and assuming that we can interchange the order of differentiation

we obtain
d  f d x \  _  d.V(X) o x
d t \ d a )  3 X  da  (9-o)

114

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



which implies that the sensitivity —-  with respect to the parameter a  satisfies also
oa

the tangent linear equation (9.4).

This provides the rationale for the numerical computation of the sensitivity using 

the tangent linear model.

9.3 Linearization o f the Euler equations

The following derivation follows Godlewski and Raviart [71].

Given a solution of (9.1). called basic solution, we study the behavior in time

of solutions of the linear hyperbolic system obtained by linearizing (9.1) at the

basic solution. Since the basic solution is discontinuous, the linearized system has 

discontinuous coefficients and it is not well posed in any class of functions. The 

solution of the linearized system consists of the sum of a function and a measure 

caused by the discontinuity of the basic solution.

Let U =  U(x. t) be the basic solution and the first order perturbation V. We

construct IT  which satisfies:

U £ =  U ( x . t ) + e V ( x . t )

U £(x. 0) =  U(x. 0) + eV(x. 0) =  U 0(x) + eV0(x)

with e >  0 a small parameter.

The first order perturbation V = V ( x . t )  is solution of the linearized problem

^  + | ; ( J ( U ) V ) = 0  ,9.6)

V(x. 0) =  V 0(x)

where J(U ) denote the Jacobian of F(U).

The basic solution U presents a discontinuity along the line L = { ( x . t ) . x  = 

<£(£). f >  0} where the function $(£) is determined by the location of the shock.
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In chapter 10 we derive the shock location as given by:

where the subscripts refer to the corresponding region in which the variables P i . P 2 

and pi are defined and x0 is the initial position of the diaphragm (at f = 0)).

U presents at most weak discontinuities outside the line L. Although for t small 

enough the linearized problem retains the same characteristics as the nonlinearized 

model, the perturbed solution U ( presents a discontinuity along a different line

and at most weak discontinuities outside L \

We introduce the equation of the front of the discontinuities as one of the 

unknowns and we use a  change of variables to reduce the problem to a fixed domain

The function U is now discontinuous along the fixed line x =  0 and is the solution 

of the Cauchy problem

L£ =  {(x. t). x =  4>'(f) =  <f>(f) + eV (t).t >  0}

x =  x — <P((t) 

U f (x. t) =  IT (x -f $ £(£). t) (9.8)

(9.7)

(9.9)

U c(x. 0) =  U 0(x +  $ e(0)) +  eV0(x + $>c(0))

Moreover U f satisfies the Rankine-Hugoniot jump relations across x = 0

(9.10.1

Recalling that

U(x. t) =  U ( x +  $(<).«)

=  U +  eU + • • •

+ e'l'
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we obtain that the pair (V. 'it) satisfies the linearized equations and the Rankine- 

Hugoniot relation:

dx
d v
dt

V -  ) =  0 (9.11)

V (x.0) =  V0(x) +  * ( 0 ) ^ ( x )
ax

- 1 )V
di> .

- a r ^ l

dU
Let us define V(x. t) =  V (i\ t) — 'l'(f)——(x. f).

ox
The following relation

^  + 4 ( 7 j (u , - : »
df d x \ \  dt  JvV = 0

is valid, since

dt  +  dx

d v
dt

d S 'd u
df d i

dt J

d 2 u
d tdx

+
du^j

In conclusion, he pair (V. ty) satisfies the following equations and jump condition:

d v
dt ^  dx (9.12)

V(x.0) =  Vo(i)
d # r _ du

The equations (9.12) have a unique solution (Godlewski [71]).

Finally, we can define the solution V of the system (9.6) as the sum of a function 

and a measure whose support is L

V(x. t) =  V (x -  $(f). t) -  ^[U]dL (9.13)

where <)'l is the Dirac measure with support L.
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9.4 Lr estim ates for the solution of the linearized Euler
equations

L2 estimates for the solution of the linearized system are obtained following the 

approach of Metivier [143]. Let 0  =  R  x [0. x ]  and jj =  {x =  0} the boundary of 

Q. We define L2 =  entL 2 and H * =  e ^ 1 H l.

In these spaces we consider the norms

where C  is a constant, r/ >  r]0  with q0  given and ||u ||/.2 = ||e i/110- with |]u!|0 being 

the usual norm in L2.

9.5 Numerical m odel using Adaptive M esh Refinement

To solve the Riemann problem we chose a code written by S. Li [130] which 

employs a method of adaptive mesh refinement in conjunction with a Riemann solver 

of Roe-type (Leveque [129]). The numerical solution is in very good agreement with 

the analytical solution and this eliminates a major source of errors in the numerical 

computation of the sensitivities.

We describe the method of adaptive mesh refinement by taking the grid in Fig. 

9.1 as an example.

The grid has three refinement levels (L0. L x. L2) (the order is from the coarsest 

level to the finest level) at time tm. Let us suppose that the corresponding time step 

sizes, for the corresponding refinement levels, are as follows:

(9.14)

The solution E H*(Q) x H rj(u;) of (9.12) satisfies the estimate
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The AMR method consists of the following steps:

•  S tep  1. We start from the coarsest level which advances one time step Af0.

•  S tep  2. L x advances its corresponding time step A t x and the boundary 

conditions are obtained from L0.

•  S tep  3. L2 advances two time steps A£2. We update the solution on L x with 

the solution on Lo which is more accurate.

•  S te p  4. L x advances one more corresponding time step A t x

•  S te p  5. Lo advances two more time steps Af2. Now we update the solutions 

on Lq and L\ respectively with the more accurate solution on L2.

•  S te p  6. We readapt the mesh (based on an "a posteriori" error estimate) and 

generate a new hierarchical grid.

The hierarchical grid data  structure G  = |n|Gi|G-2| • • ■ \ G n \ contains the number 

n of levels of the grid and pointers to the grid on each of the lower levels. The data 

structure for the grid on the i —th level G ,  =  \mi\pi\Giti\p2 \Gi,2 \ ■ • • i Pm,  | G j . m , | contains 

the number of patches m*. information about the j —th patch on the /—th level 

(denoted G t J ) and a pointer pj to the parent patch for Gi.j to facilitate operations 

between the coarse and fine grids.

The patch has the following attributes: levei of the current patch P.  integration 

time and time step size for P.  number of ghost boundary points, number of grid 

points, grid index andphysical grid location for each point, spatial step length, 

solution values, pointers to parent patches (only one in 1-D). refinement ratio between 

the parent patch and P  and pointers to siblings (in 2-D and 3-D).

The solution is obtained using an AMR recursive integration algorithm:
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IN T E G R A T E (/ece/): b e g i n

•  Let maxleve l  the maximum level allowable and / level  the finest level existin

•  R em esh Stage{level):

-  f  level  =  max ( f  level  +  1. maxlevel)

-  WHILE ( / level  — 1 n e e d s  no  re f in in g )  d e c r e a s e  / l e ve l  b v  1

-  FOR slevel  =  / l e v e l  -  1 d o w n t o  level  DO Refine (s/e re/)

* Select (slevel)

* Expand (slevel)

* Cluster(s/ere/)

-  FO R  slevel =  level  UPTO / level  — 1 DO R e g rid  (s/e c e /  +  1)

-  w h i l e  ( / l evel  <  maxleve l  AND / l e v e l  n e e d s  re f in in g )  DO

* Refine ( / l e v e l )

* R egrid(//e vel  +  1): Increase / l e v e l  by 1

•  A dvance Solution(/ece/)

-  Boundary C ollection(/ete/)

-  Advance(/ece/)

•  R ecursive Stage(/ece/)

-  I f  level ±  / l e v e l  t h e n  f o r  r =  0 t o  A t ( l e v e l ) /± t ( l e v e l  +  1) DO

* IN T E G R A T E (/e re /+ 1)

•  P roject Solution(/ece/. level +  1)

END
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The R em esh stage is split into two main processes: first readapt the available 

grid and then refine to generate the new finer grid. The refinement is divided into 

Selection (to flag the inaccurate points which needs refining). Expansion (to add 

buffer zones around the flagged region) and C lustering (to group the flagged points 

into clusters).

There may be features which appear in the finer levels which would not be 

captured if we start this first process of readaptation from the coarsest grid. For 

this reason we initialize the mesh refinement on the finest level available. The 

Regridding step (in which we define the solution values for the readapted grid) 

starts from the coarsest level available and we continue to Refine and Regrid if the 

finest level available does not reach the maximum level allowable.

In the Select step we flag the grid points that need to be refined. The monitor 

function to be used has the formula:

A/on(i) =  T  U^UFTo z ( l ^ v » ( , ) l )  < 9 - 1 6 )

where i r ( j )  £  (0 .1) indicates the relative importance of a PDE component. L'max(j)  

denotes the approximate maximum absolute value for each component uJ of the 

solution at grid point x, and T O L  is a spatial error tolerance.

A level refinement is initialized if there is a point where Mon(i) > 1.0 and then 

all the grid points with Mon(i)  >  0.5 are flagged (if the current level grid has a 

grandparent, those points are also flagged).

The Expand step is performed not to let escape the most interesting features of 

the solution escape the refinement region. We add buffer zones to the flagged points 

every k time steps.

During the C luster step adjacent flagged points are grouped together and patches 

which are within two buffer zones are joined together.

Regridding the (/ + 1) level includes computing the physical location for each 

fine grid and obtaining the solution for the new grid. Conservative interpolation
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is combined with the Minmod limiter. A new refinement is partially or completely 

contained in an existing patch. This refinement will preserve accuracy in the domains 

with discontinuities due to overlapping regions between the old and the new grid.

During the Advance stage the solver advances the solution for all the patches 

in a level I one time step. The boundary values are obtained from the level 

I — 1 (Boundary Collection). The external boundaries are given. The internal 

boundaries (needed by the patches) are computed using linear interpolation between 

the values for the internal boundaries from the parent coarse grid at the forward time 

fr,_i and the boundary values at t n on the finer grid.

If necessary the Recursive Stage is performed to advance the solution on the 

next level I +  1 one time step.

After integrating the finest grid T  time steps the finest grid reaches the same time 

level as the coarser grid and the coarser grid starts integration again. The solution 

is updated using Projection: the more accurate values of the solution on the finer 

level replace the values of the solution on the coarser level when they coincide.

9.6 Numerical considerations

One cannot differentiate the flow across the shock or the contact discontinuity 

since the flow is not even continuous there. As one differentiates across the 

phenomena Dirac delta functions will appear at these locations. The flow is 

also not differentiable (although continuous) at the edges of the rarefaction wave. 

Differentiation across the edges of that wave result in jump discontinuities in the 

sensitivities.

However the flow solution can be differentiated within each of the five regions. 

The numerical derivatives at the edges make sense if constructed limits (left or right) 

of the derivatives inside the five regions.

The tangent linear model is obtained at the level code, being the discrete 

equivalent of the linearization around the basic state. We computed the sensitivity of

122

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



the flow variables (pressure, density and velocity) with respect to an initial parameter 

(the high pressure initial condition at the left of the membrane).

The numerical sensitivities show spikes at locations where the analytic derivatives 

do not exist. They approximate relatively well the phenomenon! of Dirac measure at 

the edges (where the analytical solution is not differentiable). This is to be expected 

since the purpose of this research is to obtain numerical sensitivities which are as 

close as possible to the analytical sensitivities.

Our results (see Fig. 9.3-9.5) approximate very well the exact sensitivities in 

the five regions. We compared them with previously obtained numerical results 

(Gunzburger [86] computed the numerical sensitivity using finite differences, the 

sensitivity equation and automatic differentiation). Our results show improvement 

both inside the five regions and at the edges of these regions where the flow is not 

differentiable. We think that this improvement is mainly due to the implementation 

of the tangent linear model derived from a forward model with adaptive mesh 

refinement.

First we discuss our results at the locations where the flow is continuous (i.e.. 

inside the five regions). Both our numerical sensitivities and the numerical values 

presented by Gunzburger in [86] practically coincide to the analytical sensitivities on 

these regions.

At the edges of the five regions the situation is different. We have non differen­

tiable points there, which result in spikes in the graph of the analytical sensitivities. 

The numerical sensitivities attempt to approximate these spikes. The main difference 

between our results and the results in [86] can be seen around the location of the 

shock wave. The amplitude of the numerical spike in our case is 1.15 for the derivative 

of the velocity. 0.5 for the derivative of the pressure and 0.35 for the derivative of 

the density (compared to 3.5. 0.85 and respectively 0.55 in [86]).

We chose the adaptive mesh refinement coupled with a Riemann solver as the 

forward model to eliminate as much as possible the errors propagating from solving
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numerically the discontinuities. The consequence of this choice is a much better 

approximation of the sensitivities at the location of discontinuities.

Our experience with tangent linear models in higher dimensions (although the 

application did not involve non smooth functions: Homescu et al. [101]) suggests the 

possibility of application of the numerical methodology presented here for spatial 

higher dimensions. Future directions of research include the application of this 

methodology for problems in 2-D. where we expect a decrease in the numerical 

accuracy of sensitivity computation. A possible remedy in order (Dadone et al. 

[44]) to alleviate this problem is to apply a smoother to the sensitivities after they 

were computed using the tangent linear model.
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Figure 9.2. Exact solution of the shock-tube problem: numerical and exact values 
for [a] pressure, [b] density and [c] velocity.
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Figure 9.3. Sensitivity with respect to the high initial pressure: numerical and
exact values for pressure
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Figure 9.4. Sensitivity with respect to the high initial pressure: numerical and
exact values for velocity
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C H A PTER  10

OPTIM AL CONTROL OF FLOW  WITH  

DISCO NTINUITIES

10.1 Governing equations

Let us remind you the conservation law form of the one-dimensional unsteady 

equations of gas dynamics (Euler equations):

U* + F(U)J = 0 (10.1)

where

u =

1
3 

-o
i

F(U) =
m

*  +  P

e ( f )  (e +  P)_
p is the density, u is the velocity, m =  pu is momentum. P  is the pressure and e

is the internal energy per unit volume. The variables are related by c — pe +  ~pu2- 
P

where £ =  ------—— is the internal energv per internal mass with ~ the ratio of specific
h  -  l)p  

heats (which is taken to be 1.4).

We consider the Riemann problem of the Euler equations which, as mentioned

in earlier chapters, corresponds to the "shock-tube problem". We review here its

principal characteristics: a tube, filled with gas. is initially divided by a membrane

into two sections. The gas has a higher density and pressure in one half of the

tube than in the other half, with zero velocity everywhere. The initial conditions

for density, velocity and pressure are similar to the values for the Sod shock-tube

problem [177]:

Pleft =  1-0 ^  Pright =  0.125. Uleft = bright =  0.0, Pleft =  TO >  Pright =  0.1
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where the subscripts l e f t  and right  correspond to the initial position with respect 

to the membrane. At time t =  0 the membrane is suddenly removed and the gas is 

allowed to flow. We expect a net motion in the direction of lower pressure. Assuming 

uniform flow across the tube, there is variation in only one direction and the 1-D 

Euler equations apply. One should calculate the flow variables: pressure, density and 

velocity as a function of time and space.

The solution of this Riemann problem for Euler equations consists of 5 distinct 

regions (see Fig. 10.13). The description of these regions follows with the corre­

sponding region index in the parentheses: low pressure and density region (region 

1). area between shock and contact discontinuity (region 2). area between contact 

discontinuity and rarefaction wave (region 3). rarefaction wave region (region R). 

high pressure and density region (region 4).

The exact solution can be found explicitly as a function of x  and t (Liepmann 

and Roshko [132]). It is given by the following equations (the indices 1. 2.3.4 and R  

are related to the above mentioned 5 regions):

/
■ Pa ‘ Phigh

Pa = Phigh
. u-i . - R-high

'  P r r P r  ■
PR = PR

. un UR

p ' ' P3 ‘ ' P i '
p =  < P3 = Pi
u . “3 . U-2

' P-2 ' o
P2 = P'l
ILo Ul

' Px '
r

Plow
Pi = Plow

k . “ 1 . ulow

x < — a^t 4- c

-a.\t 4- c < x < (  ̂a3 — a.j ) t 4- c

■M  ̂U;3 — 11 4- c < x < U )t

u-2t +  c <  x < a i 1 4- ~t 4- (

a i (  n2~ix * + t +  c ^ x
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where a'f =  for / =  1..........4

and where o is given implicitly by

('m -  l ) (a i /a . i ) (o /P i  -  1) \  “4 -  i
(10.3)

The remaining variables : p2. u2  and p3 are given by

i  +  V

1 ‘ n
17-1 P 2

1  +  —
1 - 1  P iP > = P iTTl 7 , -^ S  ) (10-4)

-■i*i Pi

=  Q! I y r  -  1) . 17----   \ P~~ 1 , T7 (10.5)
*̂i /  y (~i + i )pf+ (~ i - 1)

Pz =  Pa ( (10.6)

and. in the rarefaction wave, the quantities P r . Pr and uR are given by

=  (10.7)

=  ( 10.8 )

The subscripts for the variables u2. P r  match the corresponding region of the

solution in which they are located (for example. p R is the value of the pressure in the 

rarefaction region).

We also present the formula for the physical entropy. The entropy is necessary 

while selecting the solution of the shock-tube problem in the weak sense. The correct 

weak solution should satisfy the entropy condition, which states that the entropy of

fluid particles does not decrease. We are employing the following formula for the

entropy 5  (Wesseling [204]):

S =  cv- l n ^ - ^  (10.10)

where cv is the specific heat at constant volume, p  is the pressure, p  is the density 

and ~ the ratio of specific heats.
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10.2 Description o f the numerical models: AVM  and HRM

The main difficulties encountered when solving numerically the shock-tube prob­

lem of gas dynamics (and. in general, for any problem which has a non smooth 

solution) appear in the regions of discontinuities. The numerical solution may be 

smoothed in those regions (e.g.. due to introduction of a dissipation term) or the 

discontinuities ca be captured in a sharper way (using high-resolution methods). 

For this reason we chose one numerical model from each of the above mentioned 

categories: namely a model with artificial viscosity (AVM) and a high-resolution 

model (HRM) with a Riemann solver.

As a footnote we mention that for very accurate numerical solutions adaptive 

mesh refinement A M R  may be used in conjunction with Riemann solvers (e.g.. 

Leveque [128] for Euler equations). Our experience with a model AM R in the 

framework of sensitivity analysis for discontinuous flows was presented in chapter 9 

(also in Homescu and Xavon [100]).

Our research aims to perform optimal control of flow with discontinuities using 

either smooth or non smooth optimization techniques for minimizing the cost 

functional. The minimization requires availability of either the gradient or of 

subgradients for the cost functional (with respect to the control variables) obtained 

using the adjoint model derived from the forward model (either AVM or HRM  

models).

10.2.1 The num erical m odel with artificial viscosity AVM

The AVM model (by T .J. Cowan [41]) uses finite elements which are piecewise 

constant in time and piecewise linear in space. The elements are discontinuous in time 

but continuous in space. By using discontinuous discretization in time we were able 

to march sequentially through time and solve for only a fraction of the total solution 

at one time. To improve the stability of the method a least-squares operator is added
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to the basic Galerkin formulation. In order to obtain non-oscillatory approximations 

to discontinuities, discontinuity-capturing operators have been developed within the 

framework of this modified discontinuous Galerkin/least squares method (Shakib et 

al. [174]).

An artificial viscosity term (included to stabilize the numerical solution) has the 

effect of spreading flow discontinuities over several computational cells. The method 

employs a high-order scheme for the smooth regions of the flow combined with a 

low-order solution which is employed near the discontinuities.

The combination, described in Lohner et al. [163], is based on the generalization 

of flux-corrected transport (FC T ) algorithm developed by Zalesak [208]. FC T  

combines a high-order scheme with a low-order scheme. The high-order scheme 

is employed in regions where the variables under consideration vary smoothly (so 

that a Taylor expansion makes sense), whereas in those regions where the variables 

vary abruptly the schemes are combined, in a conservative manner, in an attempt to 

ensure a monotonic solution.

Let us assume that the temporal discretization of the Euler equations yields

C n~l = C n +  A C  (10.11)

where AC  is the increment of unknowns obtained for a given scheme at time t =  t n. 

Our aim is to obtain a A C  of as high an order as possible without introducing 

overshoots. To this end we rewrite the equation (10.11) as

C n~l =  C n +  A C lou' +  ( A C high -  A C low) =  C low +  ( A C ll‘9h -  AL'/otr) (10.12)

where AU high and A C low denote the increments obtained by some high- and low- 

order scheme and U low is the monotone, ripple-free solution at time t =  t n~l of the 

low-order scheme.

The idea behind F C T  is to limit the second term on the right-hand side of 

equation (10.12) in such a way that no new over/undershoots are created. A further
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constraint, given by the conservation law itself, must be also taken into account: 

strict conservation on the discrete level should be maintained. The simplest way to 

guarantee this for node-centered schemes is by constructing schemes for which the 

sum of the contributions of each individual element (cell) to its surrounding nodes 

vanishes (" all that comes in goes out").

F C T  consists of the following steps:

1. Compute the low-order contribution (L E C ) from some low-order scheme guar­

antee to give monotonic results for the problem at hand:

2. Compute the high-order contribution (H E C ) given by some high-order scheme:

3. Define the antidiffusive element contributions (A E C ):

A E C  =  H E C  - L E C

4. Compute the updated low-order solution:

c iow = Un + ^  LEC' = Un + Ah low— O T J b
elem

5. Limit ("correct") the A E C  so that Un 1 (as computed in step 6 below) is free 

of extrema:

A E C corr =  A * A E C  0 <  A < 1

6. Apply the limited A E C :

C-n-l =  (-low +  ^  A E C corr.niA u
elem

The high-order scheme chosen was the consistent-mass Taylor-Galerkin while 

the low-order scheme employed was the lumped-mass Taylor-Galerkin scheme plus 

diffusion.
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10.2.2 Numerical high-resolution m odel HRM

The HRM model is part of the package CLAWPACK written by R. Leveque 

[129]. [128]) which employs Roe's approximate Riemann solver (Roe [165]) combined 

with an entropy fix.

YVe present the basic ideas of the Roe solver. Let us consider a standard form of 

a homogeneous conservation law:

qt(x. t) + f { q { x . t ) ) I =  0 (10.13)

The basic algorithm depends on a Riemann solver that, for each set of data (qL. q R) 

returns a set of M w waves \ Y P and speeds Ap satisfying
Mur

Y ,  W  = qR -  s
p= 1

It also returns the left-going and right-going flux differences A ~ ^ q  and A ~ ^ q  

that satisfy the relationship:

A ' ^ q  +  A " ± q  =  f { q R) - f ( q L) (10.14)

The Roe solver employed here consists of solving a particular linear system

qt +  Aiqx =  0 (10.15)

where .4, is the Roe matrix depending on data (<& _qt).

The solution consists of waves of the form VVf = Afrf where rf is the p —th

eigenvector of .4,. which propagate with speeds Af. the corresponding eigenvalue of

-4;.

The flux differences are defined as:

A T A q t =  AfVVf
Af>0

A~&qi = ^  AfWf
Af<0

Linearized Riemann problem solutions consist of discontinuous jumps only. This 

can be a good approximation for contacts and shocks, in that the discontinuous
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character of the wave is correct, although the size of the jum p may not be correctly 

approximated by the linearized solution. Rarefaction waves, on the other hand, 

carry a continuous change in flow variables and. as time increases, they tend to 

spread. In that case the linearized approximation via discontinuous jumps is inexact. 

In a practical computational setup, however, linearized approximations encounter 

difficulties only if the rarefaction wave is transonic. In this case unphysical, entropy 

violating discontinuous waves may appear.

Roe's solver can be modified to avoid entropy violating solutions. This is usually 

referred to as an entropy fix. We employed an entropy fix for the Roe s method 

developed by Harten and Hyman [96], entropy fix which has widespread use. Other 

ways of correcting the scheme have been discussed by Roe [166] and Dubois and 

Mehlman [49]. among others.

10.3 E xistence of the solution of the optim al control
problem

We solve the following optimal control problem

Minimize the cost functional J ' { \ ] . z )  subject to z € Ua(i (OPT)

where c is the control. Uad is the space of admissible controls and U =  U(c) is the 

entropy solution of the system of conservation laws (Euler 1-D equations described 

in the previous section):
d u  dF(  u)
—  + — 7— - =  0 10.16
d t  dx

U (x .  0) = z{x) (10.17)

with 0 < x < 1 and 0 <  t <  TV (TV being the length of the assimilation window).

Since the solution of the system (10.16) may develop discontinuities after a finite 

time, weak solutions should be considered. An additional entropy condition must be 

imposed to select the "physically" relevant weak solution.
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We define an entropy function S T .  for which an additional conservation law that 

holds for smooth solutions becomes an inequality for discontinuous solutions (Leveque 

[129]. Godlewski and Raviart [51]). It is known that there exists a physical quantity 

called the entrop for the Euler equations of gas dynamics (which are employed for 

this research). The physical entropy is constant along particle paths in smooth flow 

and it jumps to higher values as the gas crosses a shock. The correct weak solution is 

picked out using a property of the entropy, namely that it can never jum p to a lower 

value (a numerical version of this approach was employed for the high resolution 

model described in the previous section).

For the system of gas dynamics equations, which is a strictly hyperbolic sym- 

metrizable nonlinear system of conservation laws, entropy functions can be found 

(e.g.. Godlewski and Raviart [51]. Leveque [129] ).

We introduce the definition of the entropy solution, according to Godlewski and 

Raviart [51]:

A weak solution U  of (10.16)-(10.17) is called an entropy solution if  U  satisfies, 

for  all entropy functions S T  of (10.16) and for all test functions o  €  C'o([0. 1] x 

[0. oc)). o  > 0.

/•* rx=l (  do do \  rx=l
J  j  [ S T ( U ) —  +  F ( U ) — j d x d t - r J  S T ( z ( x ) ) o ( x . 0 )dx >  0 (10.18)

To derive existence results for optimal controls we follow the approach of Ulbrich 

[195]. His work, related to scalar laws of conservation with source terms, was extended 

to our case (the 1-D system of Euler equations without source terms).

For our problem the control vector r(x) is:

:{x) =
'  p(x.  0)

m(x. 0) —

e(x. 0)

p(x. 0) 
p(x. 0 )u(x. 0)

+  ^p(x.O)(u(x.O))'2

with p the density, u the velocity, m  =  pu. P  the pressure. * the ratio of specific 

heats and e the internal energy per unit volume.

138

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Since the control vector c is bounded (being obtained using initial values of the 

pressure, velocity and density) we may consider that the controls are in ^ £ ^ [0. 1]^ . 

If the control problem (OPT) is particularized to the optimal control problem for 

I-D Euler equations for gas dynamics then the existence of the optimal controls is 

obtained as a consequence of four properties described below.

(P i) The function F. which appears in the system of conservation laws (10.16). 

is locally Lipschitz.

(P2) The admissible set Uad is bounded in ^T^fO. 1])

and closed in ( £L ([o-1]

(P3) Let us we denote by BV'[(0. 1)] the space of functions of bounded variations 

on the interval (0 .1). Based on the choice of controls the admissible set Uad is 

bounded in ^ £ P [(0. 1)]^ . The embedding -  > ^ L l (Q)^j is compact

for any open bounded set with Lipschitz-boundary Q C (0. 1) (Giusti [70]). Thus we 

obtain that Uad is compact in ( C U m )  .

In our research the cost functional J  for the optimal control problem (OPT) 

assumes two possible forms.

The first expression of the cost functional is

J ( \ J . z ) =  [  (U (x .Tn- ) - U obs(x.Tu-))2d i  (10.19)
Jo

with U o6s 6 L^QO. l]) the observations distributed at assimilation time TV.

The second cost functional is defined as

rf=7u- /*x= 1
J { U . z ) =  [  " r  (U (x . t )  - V obs{x . t ) ) 2dxdt

J 1 = 0  Jx=0
: 10.20)

with U o6s € ^ ^ ( [ 0 , 1] x (0. T\\-))^ the observations at assimilation times 0 < t <

Tw -

We have the following property for both forms: (10.19) and (10.20)

(P4) The cost functional J" is (at least) sequentially lower semicontinuous.
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Using the properties (Pl)-(P4) one can prove that the optimal control problem 

(OPT) has a solution i  6 Uad in a similar way to the proof of existence of optimal 

controls obtained by Ulbrich [195].

First we prove that if J  satisfies (P4) then

r  e  (Uad C ( l / oc[0.1]^ ) —  J ( U. =) (10.21)

is sequentially lower semicontinuous.

Indeed let the sequence (zk) C Uad converge in ^Lloc[0 .1]^ to z0. We have that 

~o € Uad using property (P2). We have also that U(cfc) — U(c0) (Godlewski and 

Raviart [51]). It follows from property (P4) that

limt/ ( U ( ^ ) . r fc) > ^ ( U ( c 0).~o)
f c —  -X

which establishes the lower semicontinuity of the operator defined in (10.21).

Finally let (z3) be a minimizing sequence for the optimal control problem (OPT). 

Using compactness oiU ad there exists a subsequence which converges to z G Uad- We 

have proved that the operator (10.21) is sequentially lower semicontinuous. which 

implies that z is a solution for the optimal control problem (OPT).

This concludes the proof of existence of solutions for (OPT).

10.4 D etection o f  discontinuities in data

In the setting of smooth minimization one may consider that, by eliminating 

some discontinuities from the computation of the cost functional and its gradient (or 

subgradient) one may obtain a function which is smoother (i.e.. more appropriate for 

smooth optimization). Several approaches can be found in literature for the detection 

of discontinuities.

The discontinuity locking system (DLS) is employed for differential-algebraic 

equations (D A E) by Birta and Oren [19]. Park and Barton [158], Mao and Petzold 

[139]. to cite but a few. The idea for this approach (DLS) is to lock the function
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evaluator for the initial-value problem solver so that the equations evaluated are fixed 

while an integration step is being taken, thus presenting a smooth vector field to the 

solver.

The approach we present here is a modified application of a discrete regularization 

method proposed by Lee and Pavlidis [124].

Let (xt. yi) i=o n be the set of data points with x t <  x ^ {. We want to find the

n +  1 quantities c* that minimize a combination of the discrete curvature and the 

discrete difference between observation and desired data:

f> ( rT T r -H fy )  d o .22)
i = o  2 '- , = o

with Qo =  a n == 0 and a* =  1 for i =  1. • • • . n — 1.

Differentiating (10.22) with respect to zk and setting the derivatives to zero yields 

a system of n +  1 equations with n +  1 equations, namely:

P k 0~k +2  — ( P e l  +  P*0 +  P k - l . o ) z k-rl  +  ( p t l  +  P e 2  +  2 p t - i . O  +  3 ) z k 

( Pk '2  +  Pfc3 +  P k — l.o)~Ar— 1 +  P k 3 ~ k - 2  =  3 y k

where

Pko =  

P k i  =  

Pk2  =

Pfe3 =

afc.i
( X k ~ 2 ~  X k - i ) ( x k + i  -  Xfc) 

a k- l  +  Qfc 
(xk^i -  x k)'2 

O-k - l  +  Q-k 

(xk -  x k_ l)2
_____________a k - _1_____________

( X k  -  X k - i ) ( x k - i  - x fc_ 2 )

and £_•> — ~ - l  — ~ n + l  — 2 — 0 .

The parameter 3 is chosen such that it satisfies:

1
mink (xfe+i -  x k)2

which implies diagonal dominance for the system of equations (10.23).
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To find discontinuities in the function or for its derivative we look at zero crossings 

of the error between the observation and the desired data

Z i - y t  (10.23)

and at zero crossings of the approximate curvature

1 -t i -f i — 1

Slope discontinuities are characterized by successive zero crossings of type (10.23) 

and function discontinuities are characterized by zero crossings of type (10.23) and 

(10.24).

For our problem we are interested in eliminating only the points which are 

associated with the shocks. This is a trade-off between obtaining a smoother function 

and preserving as much as possible the discontinuous character of the problem for a 

given time interval. If one would like to single out a region of the solution (among the 

five regions of the flow described earlier) with the greatest influence during numerical 

optimization, one would select the points where the shock occurs.

For this reason we restricted the algorithm of discontinuity detection to eliminate 

only the shock points.

The detection of shock points was performed by considering only points with ap­

proximate curvatures above a certain threshold value. This approach was suggested 

to us by the fact that the curvature for the analytical solution is very steep in the 

shock region.

The result of discontinuities detection is shown in Fig. 10.8.

10.5 Overview o f numerical results

Our goal was to control the location of the discontinuities by matching the 

numerical flow to observations that contain the desired location of discontinuities.
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For man}' problems (including ours) the problem of finding a "matching" flow 

at a given time is equivalent to the problem of finding the corresponding vector of 

initial conditions (the initial conditions serving as the control variables in the optimal 

control setting).

For practical applications it is more important to consider the impact of the 

change of shock location on the flow parameters rather than the explicit description 

of the new discontinuity location. For this reason we concentrated our research 

efforts on matching the flow to a desired flow rather than introducing the explicit 

shock location as a variable in the optimal control setup (as performed by Cliff et al. 

[36] for duct flow with quasi 1-D Euler equations).

We used the discrete forward model to obtain the tangent linear model and then 

the adjoint model, which provides the gradient or a subgradient of the cost functional 

to the smooth (non smooth) minimizer.

If the location of the discontinuities were to be introduced as an explicit variable, 

then the original model should be modified to accommodate the new requirements, 

a change requiring complex adjustments. This is one of the arguments supporting 

our claim that our approach is more appropriate for practical optimization problems 

involving discontinuities.

We considered as forward models the artificial viscosity model AVM  and the 

high-resolution model H R M . For each of the two numerical models we employed 

unconstrained optimization methods (L-RFGS algorithm for smooth optimization 

and P V A R  algorithm for non smooth optimization) described in chapter 4.

The control variables were chosen to be the initial parameters to the left and to 

the right of the membrane: pressure P l - P r  and density P l - P r -

The desired observations were obtained as exact solutions of the shoek-tube 

problem at times t =  0.15 or t =  0.24. starting with prescribed initial conditions.

We considered three sets of initial parameters, which are referred to as:
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•  the first set of parameters { T S V )

T S V  =  \ p L =  1.1. p L =  1.1. pR =  0.2. pR =  0.2]

•  the second set of parameters (S S V )

S S V  =  [ pL =  1.2. P i =  1.2. p r  =  0.3. p r  =  0.3] 

and the third set of parameters {T S V ):

T S V  =  [p L - 2.5. pr. =  2.0. p r  =  0.5. p r  =  0.6]

The initial guess for both minimization methods (ZAf T T )  is characteristic for the 

Sod shock-tube problem ([177]):

1 N 1 T  =  [ P i  =  1.0. P i  =  1.0. Pr =  0.1. PR =  0.1]

The initial values for velocities to the left and to the right of the membrane were 

taken to be zero.

The flow obtained using the first set { T S V ) .  the second set {S S V )  and the third 

set of parameters { T S V )  as initial conditions is compared in Fig. 10.1. 10.2 and 10.3 

to the flow obtained using the initial guess {TJ\fTT) as initial conditions. It can be 

seen, especially from the plot corresponding to the third set of parameters {T S V ) .  

that there is a large discrepancy between the initial guess and the observations. 

Despite this discrepancy the minimization will be performed succesfully (using the 

nonsmooth minimizer PV A R ) and its numerical results are shown in Fig. 10.19. 

10.20 and 10.18.

The numerical results for both models (AVM  and H R M ). using each of the 

optimization methods (L-BFGS and PV A R ). are presented in Fig. 10.4 - 10.5 

(the evolution of the cost functional vs. the number of minimization iterations) and 

in Fig. 10.6 - 10.7 (the numerical flow obtained using the results of optimization 

compared with the observations). The values of the optimized control parameters 

are presented in Table 10.1 (HRM ) and Table 10.2 (AVM).

We considered two different time horizons for the optimal control problem: 

T\v =  0.15 or Tw  =  0.24 (in non dimensional units). They were chosen for two
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main reasons. First, at the end of the time window the flow exhibits all five regions 

of discontinuities previously discussed. Second, if one increases the time horizon 

from Th- =  0.24 to a slightly larger value t ime  =  0.3. one can see from Fig. 10.9 

that several characteristics of the discontinuities have already disappeared, from the 

spatial domain considered.

We also employed two expressions for the cost functional, with observations 

located either at the end of the assimilation window or with distributed observations 

in time.

When the observations were located at the end of the time window (t =  Tu ) the 

following discrete form of the cost functional was considered:
Xpoints .

j : ( U ( ,o ) .p ( ,o ) .p ( ,o ) ) =  Y .  ( i i u ( 0 x ( u - m( z ) - u o6s(0 )2
i = I  ^

+ W p(i )  X (P num(i) -  P obs{ i ) ) 2 +  Wp X (pnum{i) -  pobs(i))'^j

where

U f x . o )  =  (  °  ?  P ( x . 0 )  =  (  P L - x  <  !? •!  p U . 0 )  =  /  ■ 1  <  “ ■?
[ 0.0. X >  O.o \  PR. x >  O.o |  pR. X > O.o

with ( p l - P l - P r - P r ) the control variables described above.

X po in t s  is the number of points for space discretization, H j j .n ’p. Hp are the

weights matrices attached to points (we considered weight =  0.0. weight  =  1.0 or

weight =  25.0). Unum. p num. pnum are the fields of velocity, pressure and density at 

time tfinai while Uo6s. p o6i. pobs are the observations for velocity, pressure and density. 

For distributed observations the discrete form of the cost functional is:
Sobs  Xpoints ,

j ( u ( , o ) . p ( . . o ) . P( ,o ))  =  y .  T .  ( i,/u (‘) x ( y r w  -  t o o ) 2
j = i  i = i  \

+H-P(i) x ( p ^ ” (o  -  p f j u ) ) 2 +  w „ x ( p ^ u )  -  p f t p t y

In addition to the notations for the previous cost functional we denote by Xobs  

the number of instances during the assimilation window for which we consider the
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observations. U "“m. P (j|m-P"j“m are the fields of velocity, pressure and density at time 

t(j). (1 < j  <  Nobs) while P a r e  the observations for velocity, pressure 

and density at the same observation times respectively.

10.6 Numerical results for the high-resolution model HRM

For the H R M  model the optimized values of the control parameters are in 

excellent agreement with the parameters' desired values for both assimilation windows 

when the non smooth optimization package P V A R  was employed. Fig. 10.4 shows 

a decrease of more than 2 orders of magnitude for the cost functional. The optimized 

values of the control parameters [p l - P l - P r - P r ] obtained as a result of non smooth 

minimization (the row P V A R  in Table 10.1) display a very good agreement with 

the desired parameters. This remark is also supported by Fig. 10.6 which presents 

the comparison between the numerical optimized solution and the observations.

For the model H R M  we also employed a cost functional with time-distributed 

observations for the larger time window T\y =  0.24. The optimized values of 

the control parameters obtained as a result of the non smooth minimization are 

shown as entries in the column PV A R  [d.c.] (distributed controls) in Table 10.1. 

Since we have already obtained excellent optimized results (almost identical to the 

desired values of the parameters) for a cost functional computed using only final 

time observations, we may conclude that the additional information provided by 

time-distributed observations was extraneous.

To verify the robustness of our approach we considered the third set of parameters 

( T S V ) .  The results obtained using non smooth optimization P V A R  (also shown in 

Table 10.1) are in very good agreement with the desired values of the parameters. 

Fig. 10.10 shows that the flow obtained with the optimized control parameters as 

initial conditions matches closely the observations. We can also see that the new 

location of discontinuities matches the desired location.
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The evolution of the numerical optimal solution obtained during different stages 

of optimization versus the observations was plotted in Fig. 10.19. 10.20 and 

10.18. It can be seen from these plots that the numerical solution obtained during 

minimization has the characteristics of a solution acceptable from the physical point 

of view. Another argument in favor of this affirmation is presented next, using the 

physical entropy.

The evolution of the entropy during various stages of the minimization process 

(computed at the end of the assimilation window) is displayed in Fig. 10.11 and 

Fig. 10.12. It is known that the correct weak solution should satisfy the entropy 

condition, which states that the entropy of fluid particles does not decrease. Over 

the contact discontinuity the entropy decreases, but since fluid particles do not cross 

the contact discontinuity, the entropy of the particles does not decrease. This shows 

that the numerical solution has indeed the characteristics of a physical solution.

The L -B FG S minimization converged to the desired parameters only for the 

shorter time window ( T \ =  0.15). For the larger time window (TV =  0.24) the 

L-BFGS minimization failed.

10.7 Num erical results for the artificial viscosity model
AVM

We also applied successfully the non smooth minimization algorithm P V A R  to 

the artificial viscosity model AVM  which represents the class of models which smooth 

the discontinuities (see Table 10.2).

As seen in Table 10.2. L-B FG S converged only for the time window TV =  0.15. 

although the cost functional becomes "numerically" smoother  for AVM model. For 

the larger time window 7V =  0.24 L-B FG S proved useful in a different setting. By 

using the L -B FG S output as an initial guess for the P V A R  method we obtained 

convergence to the desired parameters in fewer minimization iterations. The values
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of the control parameters obtained using this approach are shown in Table 10.2 (row 

P V A R  [input]).

Scaling for the gradient of the cost functional was applied to the cases when 

L-B FG S unconstrained optimization failed. The scaling was chosen such that all 

components of the gradient have numerical values of order one. The scaled gradient 

L-B FG S optimization did not converge to the desired values of control parameters 

(rows L-B FG S [5.] (scaled) of Table 10.2).

To alleviate the impact of discontinuities we tested a method whereby we 

selectively applied weights to the points of discontinuities. The choice of the points 

where weights are applied was based 011 the trade-off between the desire for a smoother 

function and the requirement of preserving as much as possible of the properties for 

the original problem. Thus we assigned weights only to points where the shock 

occurred and we did not consider contact discontinuities nor rarefaction waves. 

Fig. 10.8 shows the "shock" points after they were selected using the discontinuity 

detection method described earlier in this chapter.

Different weights were considered in the computation the cost functional and 

its gradient {weight  =  0.0 corresponds to removal of these points from the cost 

functional and its gradient computation, weight =  1.0 means that all the mesh points 

are considered to have the same influence while for weight  = 25.0 the influence of 

the shock is dominant). Since the shock location changes in the forward model after 

each minimization iteration the method of discontinuity detection was re-applied and 

corresponding shock points were found.

The weighted minimization with weight  =  25.0 failed for both time windows 

T \\■ =  0.15 and T\y =  0.24.

For weight =  0.0 a successful minimization was obtained (see row L-BFG S 

[■it’ =  0] of Table 10.2). The values of the control vector obtained using this 

approach were similar in quality to the values obtained with P V A R  and no weight 

considerations.
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10.8 Additional num erical considerations

The control variables employed for this research were the initial values for pressure 

and density. Since the desired value for the initial velocity is 0.0 (both to the 

left and to the right of the membrane) we did not consider the initial value of 

the velocity among the control variables. Another reason for selecting the initial 

values of the velocity to be zero is related to the physical aspects of the shoek-tube 

problem. If the initial values for the velocity are considered as control variables, then 

during the minimization their updates may have values which are not physical or the 

corresponding adjoint variables may lead to solutions developing bifurcation points 

(Cacuci [26]).

Comparing the three sets of desired parameters one may argue that the distance 

between the first or second set of parameters ( T S V )  or ( S S V )  and the initial guess 

( I jV I T )  is rather small. But comparing the flow corresponding to (JA'TT) with 

the flow obtained for either (TSV)  or ( S S V )  (Fig. 10.1 and 10.2) one notices large 

differences in the location of discontinuities and the values for the flow variables, 

which provides a very good argument for our choices. The third set of parameters 

( T S V )  was chosen to be at a much larger distance to the initial guess (J.Y 'JT) in 

order to test the robustness of our approach.

We would like to describe in more detail the " failure" of the L-BFGS method for 

our problem. For some cases (e.g.. for H RM  model using the first set of observations 

and time window TV =  0.24) the minimization per se performed successfully from 

the optimization point of view (i.e.. decrease of the cost functional and update of the 

vector of control variables using a computed new step size). The failure is due to the 

fact that the updated vector of control variables did not qualify as a solution from 

the physical point of view.

Although the non smooth minimization algorithm P V A R  performed successfully 

for both numerical models there are large differences in the memory and CPU time
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requirements. For comparable accuracy the number of mesh points for H R M  model 

was 200 while it was 500 for AVM . with corresponding differences in the number of 

time steps required.

The influence of the numerical model over the optimization results for the first 

two sets of observations is presented in Fig. 10.14 and 10.15 for the non smooth 

optimization algorithm PV A R . respectively in Fig. 10.17 and 10.16 for the L-B FG S 

minimization algorithm.
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Table 10.1. Optimization results for the high-resolution model
FIRST SET OF OBSERVATIONS AND TIME=0.15

P a r a m e t e r PL PL PR PR
D esired

L-BFGS
PVAR

1.1
1.10143
1.10059

1.1
1.10251
1.10187

0.2
0.19934
0.19942

0.2
0.19865
0.19884

FIRST SET OF OBSERVATIONS AND TIME=0.24
P a r a m e t e r PL PL PR PR

D esir ed  
L-BFGS 
PVAR 

L-BFGS [s.] 
PVAR [d.c.j

1.1
Fa i l e d

1.09815
1.04032
1.10088

1.1
Fa il e d

1.08966
0.99664
1.10915

0.2
Failed

0.19993
0.13887
0.20122

0.2
Fa il e d

0.19894
0.99628
0.19886

SECOND SET OF OBSERVATIONS AND TIME=0.15
P a r a m e t e r PL PL PR PR

D esired

L-BFGS
PVAR

1.2
1.20161
1.20052

1.2
1.20342
1.20278

0.3
0.29712
0.29752

0.3
0.29973
0.29953

SECOND SET OF OBSERVATIONS AND TIME=0.24
P a r a m e t e r PL PL PR PR

D esir ed  
L-BFGS 
PVAR 

L-BFGS [s.] 
PVAR [d.c.j

1.2
1.03479
1.19406
1.38023
1.20689

1.2
0.85757
1.19203
0.84461
1.20698

0.3
0.35072
0.30308
0.37357
0.30294

0.3
0.25325
0.29946
0.26728
0.29962

THIRD SET OF OBSERVATIONS AND TIME=0.24
P a r a m e t e r PL PL PR PR

D esir ed 2.5 2.0 0.5 0.6
PVAR 2.49591 1.97919 0.49941 0.60096
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Table 10.2. Optimization results for the artificial viscosity model

FIRST SET OF OBSERVATIONS AND TIME=0.15
P a r a m e t e r PL PL PR PR

D e s ir e d 1.1 1.1 0.2 0.2
L-BFGS 1.09712 1.09947 0.20432 0.19756

L-BFGS [w=0j 1.10031 1.10459 0.20514 0.19786
PVAR 1.09685 1.09933 0.20439 0.19782

FIRST SET OF OBSERVATIONS AND TIME=0.24
P a r a m e t e r PL PL PR PR

D e s ir e d 1.1 1.1 0.2 0.2
L-BFGS 1.02638 1.00347 0.18012 0.19296

L-BFGS [w=0] 1.09742 1.10173 0.20004 0.20154
PVAR 1.09737 1.09966 0.20357 0.19874

PVAR [input] 1.09741 1.09961 0.20344 0.19867
L-BFGS [s.] 1.03685 0.96042 0.13276 0.35517

SECOND SET OF OBSERVATIONS AND TIME=0.1o
P a r a m e t e r PL PL PR PR

D e sir e d 1.2 1.2 0.3 0.3
L-BFGS 1.19784 1.19856 0.30582 0.29714

L-BFGS [w=0] 1.19327 1.18962 0.29983 0.30134
PVAR 1.19768 1.19778 0.30583 0.29702

SECOND SET OF OBSERVATIONS AND TIME=0.24
P a r a m e t e r PL PL PR PR

D esir e d 1.2 1.2 0.3 0.3
L-BFGS 1.19832 1.19846 0.30615 0.29891

L-BFGS [w=0] 1.19872 1.19641 0.30373 0.29778
PVAR 1.19764 1.19825 0.30527 0.29735

THIRD SET OF OBSERVATIONS AND TIME=0.24
P a r a m e t e r PL PL PR PR

D esir ed 2.5 2.0 0.5 0.6
L-BFGS [s.] 2.488975 1.904185 0.65136 0.83691
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» I

[a] [b]

[c] [d]

«

M (f)

Figure 10.1. Pressure, velocity and density: initial guess (o) and exact observation 
(red line) at time=0.24 for the H R M  model: first set of observations ([a], [cj. [e]) 
and the second set of observations ([b], [d]. [f])
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[a] [b]

M [d]

M (f)

Figure 10.2. Pressure, velocity and density: initial guess (o) and exact observation 
(red line) at time=0.24 for the AVM  model: first set of observations ([a], [c], [e]) 
and the second set of observations ([b], [d]. [f])
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[a] [b]

N [d]

[e] (f)

Figure 10.3. Pressure, velocity and density: initial guess (o) and exact observation 
(red line) at time=0.24 for the third set of observations: for the H R M  model ([a],
[c], [e]) and for the AVM model ([b], [d]. [f])
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[a] [b]

7c] [d]

[e]

Figure 10.4. Evolution of the logarithm of cost functional vs. number of iterations 
during non smooth minimization P V A R  for the H RM  model at time=0.24: first 
set of observations without ([a]) or with ([b]) distributed observations: second set 
of observations without ([c]) or with ([d]) distributed observations: third set of 
observations [e]
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Figure 10.5. Evolution of the logarithm of cost functional vs. number of mini­
mization iterations with the AVM model at time=0.24: non smooth optimization 
P V A R  and first ([a]) or second ([c]) set of observations; L-BFGS optimization with 
weight=0.0 for the first ([b]) or second ([d]) set of observations: (L-BFGS) scaled 
optimization for the final set of observations [e]
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[a] [b]

♦

«

W) [d]

[e]

Figure 10.6. Pressure, density and velocity: observations (red line) and numerical 
solution (o) of non smooth optimization PV A R  for the HRM  model at time=0.24: 
first set of observations ([a], [c], [e]) and second set of observations ([b], [d] and [f])
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(a) (b)

( c )

Figure 10.7. Pressure ([a]), density ([b]) and velocity ( [c]): first set of observations 
(red line) and numerical solution (o) of L-BFGS optimization (with weight=0.0) for 
the AVM  model at time=0.24.
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(a) (b)

(c)

F ig u re  10.8. Discontinuity detection for the A V M  model: the selected points (red) 
for pressure ([a]), density ([b]) and velocity ([c])

160

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



;

(a) (b)

(c)

F igu re  10.9. Pressure ([a]), density ([b]) and velocity ([cj): Numerical (o) and 
analytical (red line) solution of high-resolution model for the shock-tube problem at 
time=0.30
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F ig u re  10.10. Pressure ([a]), density ([b]) and velocity ([c]): observations (red 
line) and numerical solution(o) of P V A R  for the H R M  model at time=0.24 for the 
final set of observations
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F ig u re  10.11. Evolution of numerical (o) and analytical (red line) entropy (shown 
at final time t =  0.24 for the H R M  model and for the first set of observations) during 
non smooth minimization PV A R : [a] iteration=0. [b] iteration=5. [c] iteration=10.
[d] iteration=15, [e] iteration=20. [f] final iteration
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W [b]

(cl) [d]

[ej [f]

F igu re  10.12. Evolution of numerical (o) and analytical (red line) entropy (shown at 
final time t =  0.24 for the H R M  model and for the second set of observations) during 
non smooth minimization PV A R : [a] iteration=0. [b] iteration=10. [c] iteration=20.
[d] iteration=35. [e] iteration=45, [f] final iteration
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[a] [b]

W) [d]

(

[e] [f]

Figure 10.13. Pressure, density and velocity: numerical (o) and analytical (red 
line) solution for the shock-tube problem at time=0.24 for H R M  model ([a], [c] and 
[e]). respectively for the AVM  model ([b]. [d] and [f])
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I

[a] [b]

W) [ d ]

[e] m

F ig u re  10.14. Pressure, density and velocity: numerical solution (o) after non 
smooth optimization P V A R  and first set of observations (red line) for the shock-tube 
problem at time=0.24 for H R M  model ([a], [c] and [e]). respectively for the AVM 
model ([b], [d] and [f])
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[a] [b]

H ) [d]

«

*

[ej m

F igure  10.15. Pressure, density and velocity: numerical solution (o) after non 
smooth optimization P V A R  and second set of observations (red line) for the 
shock-tube problem at time=0.24 for H R M  model ([a], [c] and [e]). respectively 
for the AVM model ([b], [d] and [f])
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[a] [b]

r

[c]) [d]

[e] [f]

F igu re  10.16. Pressure, density and velocity: numerical solution (o) after L-BFG S 
optimization and second set of observations (red line) for the shock-tube problem at 
time=0.24 for H R M  model ([a], [c] and [e]). respectively for the AVM model (fbl.
[d] and [f])
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[a] [b]

[c]) [d]

[ej [f]

F ig u re  10.17. Pressure, density and velocity: numerical solution after L-BFG S 
optimization (o) and first set of observations (red line) for the shock-tube problem 
at tiine=0.24 for the AVM  model for weight=0.0 ([a], [c] and [e]). respectively for 
no weight considered ([b], [d] and [f])
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[a] [b]

H  [dj

m
*

N  (f)

F igure 10.18. Pressure: numerical solution (o) and exact observation (red line) at 
time=0.24 for the third set of observations and for the H R M  model during PV A R  
minimization: [a] iteration=0: [b] iteration=50; [c] iteration=100: [d] iteration=150: 
[e] iteration=200; [f] iteration=268
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[a] [b]

\

H  Id]

M (f)

F ig u re  10.19. Density: numerical solution (o) and exact observation (red line) at 
time=0.24 for the third set of observations and for the H R M  model during PV A R  
minimization: [a] iteration=0: [b] iteration=50: [c] iteration=100: [d] iteration=150:
[e] iteration=200; [f] iteration=268
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[a] [b]

[c] [d]

r

[e] ( f j

Figure 10.20. Velocity: numerical solution (o) and exact observation (red line) at 
time=0.24 for the third set of observations and for the H R M  model during P V A R  
minimization: [a] iteration=0: [b] iteration=50: [c] iteration=100: [d] iteration=150:
[e] iteration=200; [f] iteration=268
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C H A PT E R  11

CONCLUSIONS

We have applied optimal control methods to solve fluid dynamics problems using 

the adjoint approach for the numerical computation of the gradient (or subgradient) 

of the cost functional. We investigated differentiable and non differentiable cost func­

tionals which were minimized using smooth or non smooth optimization algorithms.

An optimal control problem of a viscous flow past a roating circular cylinder was 

chosen for the case of a differentiable cost functional. The 1-D Riemann problem 

for the Euler equations (shock-tube problem) was considered to exemplify optimal 

control with a non smooth cost functional. Sensitivity analysis for discontinuous flow 

was also studied.

Suppression of Karman vortex shedding was achieved for a flow around a rotating 

cylinder using optimal control. The numerical results obtained agree to a large extent 

with results obtained by other researchers using other numerical or experimental 

methods to solve this problem.

An additional result obtained was the significant reduction of the amplitude of 

the drag coefficient for the flow corresponding to the rotation parameters obtained 

by the optimal control approach.

The main advantage of the optimal-control approach to flow control is the con­

siderable freedom in choosing the objective function and the parameters of interest. 

However this approach is very complex and quite demanding computationally.

1 7 3
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The adjoint method for computing the gradient of the cost functional with respect 

to the control parameters provides us with the necessary tool to apply optimal control 

to the problem of a flow around a rotating cylinder.

Our results were obtained for Reynolds numbers in the range [60. 1000]. Future 

research will apply this method for higher Reynolds numbers, for which there are 

other regimes, with different characteristics.

Adaptive grid refinement should be considered for improving the accuracy of the 

results. Another issue, dealing with improving the efficiency of this approach, is to 

consider the design model version where both forward and adjoint models use parallel 

programming.

This optimization problem was characterized by its ill-posedness. Our approach 

for circumventing it was the inclusion of a regularization term in the objective 

functional. An empirical law for finding suitable penalty parameters was found, 

allowing efficient minimization to be performed. There are other approaches for 

dealing with ill-posedness which can be used as well: the utilization of a second-order 

Tikhonov regularization function (e.g.. Alekseev and Xavon [4]) or the method 

of SV D  (Singular Value Decomposition) which will decompose the problem into 

well-posed and ill-posed components (e.g.. Liu et al. [135], Alekseev and Xavon [4]).

Sensitivities are derivatives of the variables or cost functionals that describe 

the model with respect to parameters that determine the behavior of the model 

(e.g.. initial conditions, boundary conditions or model parameters). They provide 

information about which of these parameters most influence the model output. We 

studied sensitivity analysis for a fluid dynamics problem characterized by several 

types of discontinuities.

Our research was focused on the numerical computation of flow sensitivities 

with respect to an initial flow parameter for the shock-tube problem (1-D Riemann 

problem described by Euler equations) for which the exact values of the flow 

sensitivities are known.
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The forward model was chosen such that numerical errors from solving the 

discontinuities are minimized by a large extent. This was achieved by using an 

adaptive mesh refinement coupled with a Riemann solver as the discrete forward 

model. Since the numerical sensitivities are obtained using the tangent linear model 

(which is derived from the forward model), this implies that we eliminated a majoor 

source of errors from the numerical values of sensitivities.

Our experience with tangent linear models in higher dimensions (Homescu et al.

[101] suggests extending the numerical methodology presented here to higher spatial 

dimensions. For problems with discontinuities in 2-D or 3-D we expect a decrease 

in the numerical accuracy of sensitivity computation, compared to the 1-D case. A 

possible remedy for alleviating this problem was presented by Dadone et al. [44]) 

and it consists in the application of a smoother to the sensitivities.

Theoretical aspects of linearization for Euler equations were presented. The 

solution of the linearized system of equations and the sensitivity with respect to 

a model parameter are solutions of the tangent linear system. The tangent linear 

model provides a numerical value of the sensitivity which is in better agreement with 

the analytical solution than any previously published numerical results, to a high 

extent due to the use of highly accurate adaptive mesh refinement code.

The example chosen for an optimal control problem of a flow with discontinuities 

was one of flow matching for a 1-D Riemann problem for Euler equations, namely 

the shock-tube problem, which includes several types of discontinuities. The control 

variables considered were the initial conditions at the left and at the right of the 

membrane for pressure and density. Existence results were proved for the solution 

of the optimal control problem considered here. The cost functional was taken to 

be the (weighted) difference between the numerical and the desired solution of the 

model. The observations were taken either at the end of the time window or they 

were time distributed within the assimilation time horizon.
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For the present problem flow matching was equivalent to relocation of discontinu­

ities to a desired location. Since in all practical control applications discontinuities 

are captured using either high-resolution models or models which smooth the solution 

we employed here two numerical models representative of both approaches. For 

each forward model its corresponding discrete adjoint model was then employed for 

computing the gradient (or a subgradient) of the cost functional required for carrying 

out the minimization of the cost functional with respect to the control variables (using 

either non smooth or smooth algorithms for minimization). The two assimilation 

windows for minimization were chosen such that the flow with discontinuities retained 

all its characteristics at the end of each time window. If we were to use a slightly 

larger time window the model time evolution would change some of the characteristics 

of discontinuities.

The method of non smooth optimization (PV A R ) employed for minimizing the 

cost functional was found to be very robust for our test cases. For each of the different 

sets of observations employed we obtained optimized values of the control parameters 

in very good agreement with the desired results. The smooth minimization algorithm 

(L-BFG S) provided good results for the shorter time window but failed for the longer 

time window, even when a scaling the gradient of the cost functional was performed. 

Better results for L -B FG S minimization were obtained if weights were assigned to 

the points were the shock occurs (the shock points were identified using a method 

of discontinuities detection). The evolution of the entropy during various stages of 

the minimization process shows that the numerical solution of the optimal control 

problem obtained does indeed satisfy the entropy condition. This fact supports our 

conclusion that the numerical optimal solution is a physical solution, since it is known 

that the correct weak solution of the shock tube problem must satisfy the entropy 

condition.

A very useful characteristic of the methodology for optimal control for discon­

tinuous flow presented in this article is the ease with which it can be implemented
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in applications where the forward model is already discretized (the discretize-then- 

differentiate approach).

Extending this approach to optimal control problems with discontinuities in 2-D 

or 3-D would render the adjoint method even more appealing computationally, due 

to the larger number of control parameters involved. It would also apply to more 

realistic test cases, in particular in aerodynamics (e.g.. Jameson [114]).

If the observations are "noisy", one may expect that the cost functional should 

have new components which will account for the effect of the noise. Both noisy 

observations and model errors are issues to be addressed in future research.

I plan also to look further into the issue of controllability and observability for 

the optimal control problem of discontinuous flow. We recall that by controllability 

of the system one means the possibility of influencing independently each state of the 

system through the inputs: by observability of the system one means the possibility 

of reconstructing each state of the system from the outputs.

An important question which should be addressed in subsequent research is 

related to the the bounds for the controls. In other words we will try to determine 

the desired values of the flow parameters such that either the optimal control problem 

cannot be solved theoretically or its numerical solution cannot be found.

We consider our research to be only a small step towards the complete solution 

of optimal control of problems with discontinuities. Although published results are 

rather few. one may foresee a growing number of research efforts dedicated to the 

numerical and theoretical studies of this class of important optimal control problems.
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