Model Reduction of A Coupled Numerical Model Using Proper Orthogonal Decomposition

Xinya Li¹, Xiao Chen², Bill X. Hu³,*, and I. Michael Navon⁴

¹Hydrology, Energy & Environment Directorate, Pacific Northwest National Laboratory, Richland, WA 99352, United States
²Center for Applied Scientific Computing, Lawrence Livermore National Laboratory, Livermore, CA 94551, United States
³Department of Earth, Ocean and Atmospheric Science, Florida State University, Tallahassee, FL 32306, United States
⁴Department of Scientific Computing, Florida State University, Tallahassee, FL 32306, United States

Jan 6th, 2012

Manuscript submitted to

Journal of Hydrology

*Corresponding Author: Tel: 850-644-3743; Fax: 850-644-4214; Email: bill.x.hu@gmail.com
Abstract

Numerical models for variable-density flow and solute transport (VDFST) are widely used to simulate seawater intrusion and related problems. The mathematical model for VDFST is a coupled nonlinear system written in state-space and time form, so the numerical discretization in time and space are usually required to be as fine as possible. As a result, such large space and time transient models demand large computational time, which is the disadvantage for state estimation, forward prediction or model inversion. The purpose of this research was to develop mathematical and numerical methods to simulate variable-density flow and solute transport via a model reduction technique called Proper Orthogonal Decomposition (POD) designed for both linear and nonlinear models. This method can restore the information reflecting the solutions of the original partial differential equations. POD was applied to extract leading “model features” (basis functions) through singular value decomposition from observational data or detailed simulations (snapshots) of high-dimensional systems. These basis functions were then used in the Galerkin projection procedure that yielded low-dimensional (reduced-order) models. The original full numerical models were discretized by the Galerkin Finite-Element method (GFEM). The implementation of the POD reduced-order method was straightforward referring to the complex full model. The developed GFEM-POD model was applied to solve two classic VDFST cases, the Henry problem and the Elder problem, to investigate the accuracy and efficiency of the POD method. The reduced-order model can reproduce and predict the full model results very accurately with much less computational labor in comparison with the full model. The accuracy and efficiency of the POD reduced-order model is mainly determined by the optimal selection of snapshots and POD bases.
1. Introduction

Standard spatial discretization schemes for hydrogeological models usually lead to large-size, high-dimensional, and in general, nonlinear systems of partial differential equations. Due to limited computational and storage capabilities, model reduction techniques provide an attractive approach to approximate the large-size discretized state equations using low-dimensional model. Thus, the model reduction techniques have received significant attention in recent years. The application of model reduction techniques for subsurface flow problems has been developed, analyzed and implemented by Vermeulen and his colleagues (Vermeulen et al., 2004a; 2004b; 2005; Vermeulen and Heemink, 2006a). In these pioneering studies, a proposed minimization procedure results in a significant time reduction, whereas the forward original full model must be executed certain times in order to determine optimal design or the operating parameters. The model reduction procedures developed for subsurface flow applications are based on the use of proper orthogonal decomposition (POD) (Cardoso and Durlofsky, 2010).

Lumley (1967) introduced POD in the context of analysis of turbulent flow. It is a powerful and efficient method of data analysis aiming at obtaining low-dimensional approximate descriptions (reduced-order model) of high-dimensional processes (Holmes et al., 1996). Data analysis using POD is often conducted to extract dominant “model characters” or basis functions, from an ensemble of experimental data or detailed simulations of high-dimensional systems, for subsequent use in the Galerkin projection procedure that yield low-dimensional models.
This model reduction technique essentially identifies the most energetic models in a time-dependent system, thus providing a way to obtain a low-dimensional description of the system’s dynamics (Fang et al., 2008). POD reduced-order approach is introduced to transform the original flow and transport equations into a reduced form that can reproduce the behaviors of the original model. The basic idea is to collect an ensemble of data of state variables (hydraulic head or solute concentration) called snapshots, by running the original model, and then use singular value decomposition (SVD) to create a set of basis functions that span the snapshot collection. The snapshots can be reconstructed using these basis functions. The state variable at any time and location in the domain is expressed as a linear combination of these POD basis functions and time coefficients. A Galerkin numerical discretization method is applied to the original model to obtain a set of ordinary differential equations for the time coefficients in the linear representation (Kunisch and Volkwein, 2002).

POD have been introduced and applied to various linear and nonlinear systems (Kunisch and Volkwein, 2002; Zheng et al., 2002; Ravindran, 2002; Meyer and Matthies, 2003; Vermeulen et al., 2006b; Cao et al., 2006; Khalil et al., 2007; Fang et al., 2008; Reis and Stykel, 2007, Siade et al., 2010). In practice, groundwater related problems in field that can be solved by a single flow model are very limited. More complicated groundwater processes are involved in coupled modeling using different numerical models. Robinson et al. (2009) attempted a simulation on solute transport in heterogeneous porous media using model reduction techniques. POD was also applied to multiphase (oil-water) flow (van Doren et al., 2006). Overall, model reduction via POD procedures is still a new mathematical technique in the area of hydrogeological modeling. Its effective application to other groundwater flow and transport processes, such as the variable-density flow and solute transport (VDFST), constitutes challenging issues.
Numerical models of VDFST are widely used to simulate seawater intrusion and submarine groundwater discharge processes (Bear, 1999; Diersch and Kolditz, 2002; Guo and Langevin, 2002; Voss and Provost, 2002; Li et al., 2009). In the process of high-density fluid mixing with low-density fluid in an aquifer, fresh water flow causes the redistribution of fluid density and thus the variation of solute concentration, and conversely affects groundwater movement. The groundwater flow and the solute transport are coupled processes, and the governing equations for the two processes must be solved jointly. Consequently, governing equations for a VDFST problem are both transient and nonlinear. The classical numerical method, Galerkin Finite Element Method (GFEM), is often adopted to solve the VDFST problem, converting a continuous operator problem to a discrete problem (Segol et al., 1975; Navon, 1979; Navon and Muller, 1979). Comparing to finite difference method, GFEM approach is more straightforward for reduction of a complicated model because its approximate solution has a similar weighting structure as the structure for trial solution of the reduced-order model.

In this study, a GFEM-POD reduced-order method was developed to transform the original VDFST model into a low-dimensional form that can approximately reproduce or predict the results with much less computational effort. To our best knowledge, this is the first time when POD reduction method is introduced to a density-dependent flow system. Two benchmark cases were used to testify the capability of this method to approximately solve density-dependent flow problems. As a boundary controlled system, the modified Henry problem was used to test the quality of the GFEM-POD model. Additionally, the GFEM-POD model was applied to another classic VDFST problem, the Elder problem, in which the calculation results are only determined by coupled governing equations and not by boundary forcing. Reproduction and prediction tests were performed for the two problems with various permeability distributions to investigate the
accuracy and efficiency of the POD method in approximating the density-dependent flow fields.

The developed method paves the way for future study on the parameter estimation for VDFST problem based on POD reduced-order modeling.

This paper is organized as follows. In section 2, the variable density flow and solute transport model is introduced and a numerical GFEM is applied to solve the mathematical model. In section 3, the model reduction method using POD to a density dependent flow approximation is developed. The developed method is applied to two density dependent flow problems to show the efficiency and accuracy of the POD method in various scenarios in section 4. Finally, in section 5, we provide conclusive remarks based on the findings from this study.

2. Variable Density Flow and Solute Transport (VDFST) Model

2.1. Mathematical Description of Variable-Density Flow and Solute transport Problems

Using a Cartesian coordinate system with the axes of coordinates coinciding with principal directions of an anisotropic medium, the governing equation of two-dimensional (cross-section) variable-density flow in terms of equivalent freshwater head and fluid concentration is (Guo and Langevin, 2002):

$$\frac{\partial}{\partial x} \left[(1 + \eta C) K_f \frac{\partial h_f}{\partial x} \right] + \frac{\partial}{\partial z} \left[(1 + \eta C) K_f \frac{\partial h_f}{\partial z} + \eta C \right] = S_f \frac{\partial h_f}{\partial t} + \theta \eta \frac{\partial C}{\partial t} - \frac{\rho_{ss}}{\rho_0} q_{ss}$$

(1)

where $h_f[L]$ is the equivalent freshwater head, $K_f(x, z)[LT^{-1}]$ is the freshwater hydraulic conductivity tensor, $S_f[L^{-1}]$ is specific storage, θ is the effective porosity, $\rho_{ss}[ML^{-3}]$ and $q_{ss}[T^{-1}]$ represent the source and/or sink term, and $C[ML^{-3}]$ is the fluid concentration. $C_s[ML^{-3}]$ is the maximum fluid concentration, $\rho_s[ML^{-3}]$ is the corresponding maximum fluid density,
\(\rho_0 [ML^3] \) is the freshwater density. \(\eta \) is a dimensionless constant that represents the density-coupling coefficient, where \(\eta = \varepsilon / C_s \), \(\varepsilon = (\rho_s - \rho_0) / \rho_0 \) and thus \(\frac{\rho}{\rho_0} = 1 + \eta C \). The relationship between concentration and density is assumed to be linear. \(\Omega \) represents the bounded calculation domain and \(T \) is the time period of calculation. Equation (1) is subject to the following initial and boundary conditions:

\[
\begin{align*}
 h(x, z, 0) &= h_0(x, z) \quad (x, z) \in \Omega \\
 h(x, z, t)|_{s_1} &= h_1(x, z, t) \quad (x, z) \in s_1 \\
 \left(\rho K_{xx} \frac{\partial h_f}{\partial x} \right) n_x + \left(\rho K_{zz} \frac{\partial h_f}{\partial z} + \eta \frac{\epsilon}{C_s} \right) n_z |_{s_2} &= \rho_s q(x, y, t) \quad (x, z) \in s_2
\end{align*}
\]

(2)

\(s_1 \): Dirichlet Boundary Condition
\(s_2 \): Neumann Boundary Condition

A second governing equation for the two-dimensional transport of solute mass in the porous medium is \((Guo and Langevin, 2002)\),

\[
\frac{\partial}{\partial x} \left(D_{xx} \frac{\partial C}{\partial x} \right) + \frac{\partial}{\partial z} \left(D_{zz} \frac{\partial C}{\partial z} \right) - \frac{\partial (u_x C)}{\partial x} - \frac{\partial (u_z C)}{\partial z} = \frac{\partial C}{\partial t} - \frac{q_{ss}}{\theta} C_{ss}
\]

(3)

where \(D[LT^{-1}] \) is the hydrodynamic dispersion coefficient, \(u[LT^{-1}] \) is the pore velocity, and \(C_{ss}[ML^{-3}] \) is the solute concentration of source or sinks terms.

Equation (3) is subject to the following initial and boundary conditions,

\[
\begin{align*}
 c(x, z, 0) &= c_0(x, z) \quad (x, z) \in \Omega \\
 c(x, z, t)|_{s_1} &= c_1(x, z, t) \quad (x, z) \in s_1 \\
 \left(D_{xx} \frac{\partial C}{\partial x} \right) n_x + \left(D_{zz} \frac{\partial C}{\partial z} \right) n_z |_{s_2} &= g(x, z, t) \quad (x, z) \in s_2
\end{align*}
\]

(4)

Darcy’s Law is adopted in the variable-density form as,
\[u_s = -\frac{K_{ls}}{\theta} \frac{\partial h_f}{\partial x} \]
\[u_z = -\frac{K_{lz}}{\theta} \left(\frac{\partial h_f}{\partial z} + \eta c \right) \] \hspace{1cm} (5)

Inserting (5) into (1) and (3) and using the empirical linear relation between the saltwater density and concentration to obtain,

\[\frac{\partial}{\partial x} \left((1+\eta C) K_{lx} \frac{\partial h_f}{\partial x} \right) + \frac{\partial}{\partial z} \left((1+\eta C) K_{lz} \left[\frac{\partial h_f}{\partial z} + \eta C \right] \right) = S_f \frac{\partial h_f}{\partial t} + \theta \eta \frac{\partial C}{\partial t} - \frac{\rho_u}{\rho_0} q_{ss}, \] \hspace{1cm} (6)

\[x, z \in \Omega \quad 0 \leq t \leq T \]

\[\frac{\partial}{\partial x} \left(D_{xx} \frac{\partial C}{\partial x} \right) + \frac{\partial}{\partial z} \left(D_{zz} \frac{\partial C}{\partial z} \right) + \frac{\partial}{\partial x} \left(K_{lx} \frac{\partial h_f}{\partial x} C \right) + \frac{\partial}{\partial z} \left(K_{lz} \left(\frac{\partial h_f}{\partial z} + \eta C \right) C \right) = \frac{\partial C}{\partial t} - \frac{q_{ss}}{\theta} C_{ss}, \] \hspace{1cm} (7)

\[x, z \in \Omega \quad 0 \leq t \leq T \]

Eqs. (6) and (7) are the governing equations of a coupled nonlinear system of VDFST.

2.2 Numerical GFEM Solutions

The approximate solutions for hydraulic head and solute concentration in Eq. (6) and (7) are defined in Eq. (8) using the nodal basis function according to Galerkin finite element method (Xue and Xie, 2007),

\[h_f(x, z, t) \approx \tilde{h}(x, z, t) = \sum_{L}^{NNODE} h_L(t) N_L(x, z) \]

\[C(x, z, t) \approx \tilde{c}(x, z, t) = \sum_{L}^{NNODE} c_L(t) N_L(x, z) \] \hspace{1cm} (8)

where \(h_L(t) \) is the approximated hydraulic head at node \(L \) and time \(t \), \(c_L(t) \) is the approximate solute concentration at node \(L \) and time \(t \). \(N_L(x, z) \) is the finite-element basis function, \(NNODE \) is the total number of nodes used across the domain. In general, the approximations are better with larger \(NNODE \).
An implicit time-extrapolated method was used to integrate the system of ordinary differential equations in time. The boundary conditions must be implemented into the global matrices by modifying the global matrices in GFEM. Aquifer parameters such as hydraulic conductivity distribution in space are represented in an element-wise discrete way (Voss and Provost, 2002). The coupling between flow and transport is accomplished through the synchronous approach (Guo and Langevin, 2002), iterating the solutions between the flow and transport equations. This kind of procedure leads to a larger amount of calculation labor, comparing with the constant-density flow and transport model due to the additional coupling loop and also brings in difficulties into parts of the POD model. The application of POD model will significantly reduce computation time in such a calculation-expensive system.

3. Model Reduction using Proper Orthogonal Decomposition (POD)

The reduced-order model construction methodology is given in Figure 1, modified from Vermeulen et al. (2004b). First, the original full numerical model is run to generate several snapshots of model states. Second, we extract dominant patterns (the basis functions) from these state snapshots via SVD. These two steps can be treated as the preprocessing steps for the reduced-order model. With the unchanged numerical formulation and system inputs (e.g. parameters, boundary conditions, initial conditions) of the original model, the selected bases are used in Galerkin projection. The Galerkin projection is the central procedure used to construct the reduced-order model by projecting both the partial differential equations of groundwater flow and solute transport into a low-dimensional space. After the projection step, the reduced-order model is able to simulate the same model behaviors through the reconstruction of model states with significantly decreased computational burden. In this section, we will describe the
summarized formulation of the GFEM-POD model, which is capable of simulating the coupled process of VDFST.

3.1. Snapshots and Singular Value Decomposition

As known for the VDFST model, the most important simulation results from the numerical model as described above are the equivalent freshwater heads and the solute concentrations in the model domain. The two variables are sampled from simulation results at defined time points during the simulation period as snapshots. An ensemble of nodal-value represented snapshots chosen in the analysis time interval $[0, T]$ can be written as (Chen et al., 2011):

$$\{h_f^1, h_f^2, ..., h_f^n\} \quad h_f^i \in \mathbb{R}^{NN}, \quad i = 1, 2, ..., n$$

$$\{c^1, c^2, ..., c^n\} \quad c^i \in \mathbb{R}^{NN}, \quad i = 1, 2, ..., n$$

(9)

where n is the number of snapshots and NN is the number of nodes across the mesh, the vectors h_f^i and c^i both have NN entries:

$$h_f^i = (h_f^i_1, ..., h_f^i_{NN})^T$$

$$c^i = (c^i_1, ..., c^i_{NN})^T$$

(10)

The collection of all h_f^i constructs a rectangular $NN \times n$ matrix R_1, and the collection of all c^i constructs a rectangular $NN \times n$ matrix R_2. The aim of POD is to find a set of orthogonal basis functions of R_1 and R_2 respectively that can capture the most energy in the original VDFST system (Fang et al., 2008).

Singular Value Decomposition (SVD) is a well-known technique for extracting dominant “features” and coherent structures from 2D data and “compressing” that information into a few
low order “weights” (singular values) and associated orthonormal eigenfunctions (Golub and van Loan, 1996). The SVD of the matrix R, is calculated through the equation,

$$ R = USV^T $$ \hfill (11)

where U is an $NN \times NN$ orthogonal matrix whose columns are constructed by the eigenvectors of RR^T, V is an $n \times n$ orthogonal matrix whose columns are constructed by the eigenvectors of R^TR, and S is a diagonal $NN \times n$ matrix with singular values. The singular values in S are square roots of eigenvalues from RR^T or R^TR. The singular values are arranged in descending order. An optimal rank m approximation to R is calculated by,

$$ R_m = U_m S_m V^T $$ \hfill (12)

In computation, one would actually replace U and V with the matrices of their first m columns; and replace S_m by its leading $m \times m$ principal minor, the sub-matrix consisting of first m rows and first m columns of S. The optimality of the approximation in Eq. (12) lies in the fact that no other rank m matrix can be closer to R in the Frobenius norm, which is a discrete version of the L_2 norm (Chatterjee, 2000). So the first m^{th} columns of the matrix U (for any m) give an optimal orthonormal basis for approximating the data. The basis vectors are given by:

$$ \phi_m = U_m, \quad 1 \leq m \leq M $$ \hfill (13)

where M is the number of basis functions.

SVD is applied to snapshots matrices R_1 and R_2, respectively, to obtain the POD basis functions of head and concentration:

$$ \Psi^h = \{\psi^{h,1}, \psi^{h,2}, ..., \psi^{h,M_h}\} $$

$$ \Psi^c = \{\psi^{c,1}, \psi^{c,2}, ..., \psi^{c,M_c}\} $$ \hfill (14)
where M_h is the number of bases from snapshots of hydraulic head, M_c is the number of bases from snapshots of solute concentration.

The eigenvalues λ_j are real and positive, and they are sorted in descending order where the j^{th} eigenvalue is a measure of the energy transferred within the j^{th} basis mode (Fang et al., 2008). Hence, if λ_j decays very fast, the basis functions corresponding to small eigenvalues can be neglected. The following formula is defined as the criterion of choosing a low-dimensional basis of size M ($M << n$) (Fang et al., 2008):

$$I(M) = \frac{\sum_{j=1}^{M} \lambda_j}{\sum_{j=1}^{n} \lambda_j} \quad (15)$$

where $I(M)$ represents the percentage of energy which is captured by the POD basis $\Psi_1, ..., \Psi_m, ..., \Psi_M$. This equation is used for both heads and concentrations.

3.2. Generation of POD Reduced-Order Model Using Galerkin Projection

To obtain the reduced-order model, we solved the numerical models of (6) and (7) to obtain an ensemble of snapshots to generate POD bases, and then used a Galerkin projection scheme to project the model equations onto the subspace spanned by the POD basis elements (Chen et al., 2011). The POD solution can be expressed as (Chatterjee, 2000; Pinnau, 2008):

$$\begin{cases}
h_f^{POD}(x, z, t) = \sum_{i=1}^{M_h} \psi_i^{h_j}(x, z)^{FEM-POD} \alpha_i^h(t) \\
c^{POD}(x, z, t) = \sum_{i=1}^{M_c} \psi_i^{c_j}(x, z)^{FEM-POD} \alpha_i^c(t)
\end{cases} \quad (16)$$

where $\psi^i(x, z)$ are POD basis functions, also known as POD modes. These modes can be used to incorporate characteristics of the solution into a bounded problem by using results from
numerical simulation and/or observational data. \(h_j(x, z, t) \) and \(c(x, z, t) \) are decomposed into linear combinations of time coefficients and POD modes which are the functions of space.

The POD modes are interpolated using finite element basis functions to form the GFEM-POD modes as (Aquino et al., 2008):

\[
\begin{align*}
\psi^{h,j}(x, z)^{\text{FEM-POD}} &= \sum_{j=1}^{NN} N_j(x, z) \psi^{h,j}_f i = 1, \ldots, M_h \\
\psi^{c,j}(x, z)^{\text{FEM-POD}} &= \sum_{j=1}^{NN} N_j(x, z) \psi^{c,j}_f i = 1, \ldots, M_c
\end{align*}
\] (17)

where \(\{\psi^i\} \) is a column vector that contains the nodal values of mode \(i \).

The GFEM-POD used a distinct mesh from the discretization mesh of the original model. Therefore, we must use a Galerkin projection approach to smooth the derivatives of the modes later (Aquino et al., 2008). Based on Eq. (16) and (17), corresponding finite-element represented POD solution can be expressed as (Chen et al., 2011):

\[
\begin{align*}
h_j(x, z, t) &\approx \hat{h}(x, z, t) = \sum_{i=1}^{M_h} \sum_{j=1}^{NN} N_j(x, z) \psi^{h,j}_f \alpha^h_i(t) \\
c(x, z, t) &\approx \hat{c}(x, z, t) = \sum_{i=1}^{M_c} \sum_{j=1}^{NN} N_j(x, z) \psi^{c,j}_f \alpha^c_i(t)
\end{align*}
\] (18)

The model states are decomposed into linear combinations of GFEM base functions, POD modes and time coefficients.

From Eqs (6) and (7), we define two residual functions,

\[
\begin{align*}
f_1(h_j, c, x, z, t) &= \frac{\partial}{\partial x} \left((1 + \eta c) K_{\parallel} \frac{\partial h_j}{\partial x} \right) + \frac{\partial}{\partial z} \left((1 + \eta c) K_{\parallel} \frac{\partial h_j}{\partial z} + \eta c \right) - S \frac{\partial h_j}{\partial t} - \theta \frac{\partial c}{\partial t} + \frac{D_{ss}^c}{\rho_0} q_{ss} \\
f_2(h_j, c, x, z, t) &= \frac{\partial}{\partial x} \left(D_{xx}^c \frac{\partial c}{\partial x} \right) + \frac{\partial}{\partial z} \left(D_{zz}^c \frac{\partial c}{\partial z} \right) + \frac{K_{\parallel}}{\theta} \frac{\partial h_j}{\partial x} \frac{\partial c}{\partial x} + \frac{K_{\parallel}}{\theta} \left(\frac{\partial h_j}{\partial z} + \eta c \right) \frac{\partial c}{\partial z} - \frac{q_{ss}}{\rho_0} (c - c_{ss}) - \frac{\partial c}{\partial t}
\end{align*}
\] (19)
The Galerkin method requires the residuals to be orthogonal with respect to the basis functions. Therefore, we need to project the original high-dimensional model onto a low-dimensional subspace generated by full model snapshots (Vermeulen et al., 2005).

Substituting (18) into (19) and integrating with respect to the POD bases according to Galerkin method gives:

\[
\begin{align*}
\langle f_1(\hat{h}, \hat{c}, x, z, t), N_k \rangle, \psi^{n,m} \rangle &= 0 \quad k = 1, \ldots, NN; \quad m = 1, \ldots, M_h \\
\langle f_2(\hat{c}, \hat{h}, x, z, t), N_k \rangle, \psi^{r,m} \rangle &= 0 \quad k = 1, \ldots, NN; \quad m = 1, \ldots, M_c
\end{align*}
\]

with the inner product

\[\langle f, g \rangle = \int_{\Omega} f g d\Omega \]

and \(L_2 \) norm

\[\|f\| = \langle f, f \rangle^{1/2} \]

In the reduced-order model, equations (6) and (7) are finally changed to:

\[
\begin{align*}
\int \left[\frac{\partial}{\partial x} \left((1 + \eta \hat{c}) K_{xx} \frac{\partial \hat{h}}{\partial x} \right) + \frac{\partial}{\partial z} \left((1 + \eta \hat{c}) K_{xz} \left(\frac{\partial \hat{h}}{\partial z} + \eta \hat{c} \right) \right) \right] N_k dx dz, \quad \Psi^x &= 0 \\
\int \left[-S_s \frac{\partial \hat{h}}{\partial t} - \theta \eta \frac{\partial \hat{c}}{\partial t} + \frac{\rho_{ss}}{\rho_0} q_{ss} \right] \right] N_k dx dz, \quad \Psi^t &= 0 \\
\int \left[\frac{\partial}{\partial x} \left(D_{xx} \frac{\partial \hat{c}}{\partial x} \right) + \frac{\partial}{\partial z} \left(D_{xz} \frac{\partial \hat{c}}{\partial z} \right) \right] \right] N_k dx dz, \quad \Psi^c &= 0
\end{align*}
\]
The key of generating a POD reduced-order model is to find the coupled ODEs of $\alpha^c(t)$ and $\alpha^h(t)$ according to Eq. (18)-(20). This key is also known as Galerkin Projection. The integrations in equation (21) and (22) are the same as those for the numerical full model. The trial solutions substituted into (19) are now equation (18) rather than equation (8). Finite-element basis function has a different expression for each element, so Eq. (19) must be calculated per element before making the summation of all the elements. It should be noted that the GFEM basis functions $N_j(x,z)$ are the only spatial functions related to the areal integration of each element. Since POD bases Ψ^h and Ψ^c, and time coefficients α^h and α^c are not spatial functions, they can be extracted out of the areal integrations (Chen et al., 2011).

The coupled system ODEs of $\alpha^c(t)$, $\alpha^h(t)$ are expressed as,

$$
\begin{aligned}
&\begin{bmatrix}
A_1 \alpha^h + (\alpha^c)^T A_2 \alpha^h + A_3 \alpha^c + A_4 \frac{d\alpha^h}{dt} + A_5 \frac{d\alpha^c}{dt} = F_1 \\
B_1 \alpha^c + (\alpha^h)^T B_2 \alpha^c + (\alpha^c)^T B_3 \alpha^c + B_4 \frac{d\alpha^c}{dt} = F_2
\end{bmatrix}
\end{aligned}
$$

(23)

along with the initial conditions:

$$
\begin{aligned}
&\begin{bmatrix}
\alpha^h_m(t_0) = (h(x,z,t_0),\Psi^{h,m})_m, & m = 1,...,m_h \\
\alpha^c_m(t_0) = (c(x,z,t_0),\Psi^{c,m})_m, & m = 1,...,m_c
\end{bmatrix}
\end{aligned}
$$

(24)

where

$$
\alpha^h(t)=\left(\alpha_1(t),...,\alpha_{m_h}(t)\right)^T; \quad \alpha^c(t)=\left(\alpha_1(t),...,\alpha_{m_c}(t)\right)^T
$$

(25)

with the matrix notation:
The detailed derivation of the GFEM-POD model for a VDFST system is presented in Li (2010). The dimensions of the matrices A_1-A_6 and B_1-B_4 in Eq. (23) are now determined by the number of POD bases (NB) instead of the number of nodes (NN), where $NB \ll NN$. Thus, the
dimension of the reduced-order model is much smaller than the dimension of the original full model, which will save a large amount of computational labor. The coupled ODEs, Eq. (23), still need to be solved according to the same implicit scheme stated in section 2.1. The estimated nodal values of h_j and c in the domain at a certain time can be reconstructed through Eq. (16).

3.3. Error analysis

In this subsection, the error estimates between numerical solutions of the original model and the reduced model based on POD bases are discussed.

Let $u^n_{NN} (n = 1,2,...,T)$ be vectors constructed with solutions of the full model, and $u^*_n (n = 1,2,...,T)$ be the vectors constituted with solutions of the reduced model. NN equals to the number of active nodes. T represents the number of time steps.

If $n \in \{1,2,...,T\}$, the error estimates are obtained as follows (Aquino et al., 2008; Di et al., 2011):

$$\|u^n_{NN} - u^*_n\|_2 \leq \sqrt{\lambda_{(M_u+1)}} \quad n \in \{1,2,...,T\} \quad (25)$$

where λ represents the set of the eigenvalues of the matrices RR^T or $R^T R$, R is the matrix of an ensemble of snapshots $\{u_{NN}^l\} (1 \leq l \leq L)$, M_u is the number of basis functions chosen in the reduced model.

Else, if $n \notin \{1,2,...,T\}$, when $t_l (1 \leq l \leq L)$ are uniformly chosen from $t_n (1 \leq n \leq N)$, and $\frac{\partial u_{NN}(\xi_1)}{\partial t}$ and $\frac{\partial u_{NN}(\xi_2)}{\partial t}$ are bounded (i.e., $\frac{\partial u_{NN}(\xi_1)}{\partial t} \leq \omega$ and $\frac{\partial u_{NN}(\xi_2)}{\partial t} \leq \omega$), the following error estimates exist (Di et al, 2011):

$$\|u^n_{NN} - u^*_n\|_2 \leq \sqrt{\lambda_{(M_u+1)}} + f(T, L, \Delta t, \omega) \quad n \notin \{1,2,...,T\} \quad (26)$$
Equation (25) indicates that the error can be controlled through optimal basis selection when the sampling time period of snapshots is the same as the simulation period (e.g. a reproduction test), but the error will be inevitably larger according to Eq. (26) when the sampling time period of snapshots is different from the simulation period (e.g. a prediction test). The error in prediction test is not bounded by the descending sorted eigenvalues because of the existence of an added error function $f(T, L, \Delta t, \omega)$.

4. Application Cases: Henry Problem And Elder Problem

4.1. Henry Problem

Henry problem (Henry, 1964), a classic variable-density flow and solute transport problem, is applied to test the proposed GFEM-POD model. The Henry problem has played a key role in understanding of seawater intrusion into coastal aquifers, and in benchmarking density dependent flow codes (Abarca et al., 2007). The problem has been studied for decades, its importance on parametric analysis of seawater intrusion is still attracting great attention (Sanz and Voss, 2006).

Numerical programs were compiled by Li (2010) to solve VDFST models using GFEM. To examine the accuracy of these numerical programs, we used the same model inputs as Simpson and Clement (2004) to simulate a standard Henry problem ($D_m = 1.62925 m^2/d$), except the time step is 1 minute and the convergence criteria is 10^{-6} kg/m^3 for the fluid concentration between consecutive iterations. The system reached a steady state after approximately 250 minutes. The concentration solutions from this numerical model are compared with the semi-analytical results (Simpson and Clement, 2004). The isochlors revealed an excellent correspondence, as revealed by the fact that both the shape and position of the isochlors matched very well (Li, 2010).
By halving the recharge rate of freshwater (Q_{in}), a modified Henry problem is simulated which served as the original full model. All the other model inputs are still same as the standard Henry problem. Meanwhile, the maximum grid Peclet number is reduced from 4.1 under the standard conditions to 2.8 for the modified conditions on this 41×21 grid (Simpson and Clement, 2004). Under the modified conditions, the isochlor distribution will be more diffuse, which can help alleviate potential oscillation near the top-right of the aquifer (Segol et al., 1975). The system required approximately 460 minutes when the change of fluid concentration is smaller than 10^{-3} kg/m3 between two successive time steps. The CPU time required to simulate 500 minutes in MATLAB with a time step of 1 minute is approximately 1500 seconds for the original full model.

4.2. Model Reduction of the Henry Problem

To demonstrate the application of model reduction, POD method discussed in section 3 is illustrated using the modified Henry problem in various cases with different combination of heterogeneity and anisotropy of the conductivity field in the aquifer. In the first case, a homogeneous and isotropic aquifer is considered for the modified Henry problem. The hydraulic conductivity K_f throughout the domain is 864 m/day. Following the same procedure, the original numerical model was used to generate snapshots.

For a prediction test, the snapshots were selected initially every 1 minute from the original model solutions of the first 100 minutes for both head and concentration. We have an ensemble of snapshots with a size of 100. Reduced model abstracted a certain number of bases from the 100 snapshots to predict the head and concentration distributions in a time period of 400 minutes, from $t = 101$ minute to $t = 500$ minutes and the predicted time step is 1 minute.
Number of bases (NB), snapshots selection, and the predicted time length are the most important factors in this study to determine the accuracy and efficiency of the reduced model. The influences of these three factors on prediction were investigated as follows according to the prediction test.

4.2.1 Basis selection

Previously discussed in section 3.1, in many cases, the first few eigenvalues comprise most of the total energy of a matrix. Under this condition, we need to choose an efficient size of bases to capture the most energy to predict the concentration with limited calculation. The relationship between the percentage of the total energy and the number of eigenvalues is illustrated in Figure 2. By retaining only the first 5 eigenvalues (NB = 5) of the ensemble of snapshots of head solutions, 99.99% of total energy is extracted. However, for concentration solutions, we need more than 12 eigenvalues of the same size of snapshots to reach the same level of percentage. Hence, concentration can be approximated and predicted from the reduced model using a number of bases more than 12 to obtain the accurate reproduction of original model.

To investigate the effect of NB on the solution accuracy, we vary the NB, but keep the size of the ensemble of snapshots to be 100 and the predicted time steps to be 400. The accuracy of the computed concentrations using model reduction with various NBs is presented in Figure 3. Two error criteria are employed to compare the predicted results between the reduced model and the original full model, by calculating root mean square error (RMSE) and correlation for each predicted time step over the domain. From Figure 3, the accuracy of the reduced model is positively correlated with the number of bases. The computation time of the reduced model with different NB is listed in Table 1. As NB increasing, the required computation time increases. An
optimal value of NB is important to increase the efficiency of reduce model without sacrifice the accuracy. Employing more bases during the reduction process will not efficiently increase the accuracy, but require more computation time. In Figure 3, the accuracy of the reduced model decreases gradually as the increase of prediction time steps. The accuracy of the reduced model is best at the time $t = 100$ minutes. The predicted results using 20 bases have a relatively lower accuracy at $t = 500$ minute (Figure 4 (b) and (d)) than at $t = 200$ minutes (Figure 4 (a) and (c)), although, there are still good matches between the reduced model and the full model. The simulation of reduced model only took the snapshots from the first 100 minutes. The coefficient $\alpha(t)$ is calculated in the reduced model as a function of time. Thus, calculation error accumulates as time increases. Normally, without additional information from new snapshots, the best prediction time period will be the same as that the snapshots cover. That is the reason we need to take more than 12 bases to maintain the accuracy, not dropping to a lower level (smaller than 99%) in the future. The computation time using the original full model to predict 400 time steps is about 1150 seconds, whereas it is only 5 seconds of CPU time were required for the reduced model with NB = 20 to conduct the same prediction, which runs at least 230 times faster. It runs nearly 1200 times faster when NB = 5.

4.2.2. Predicted Time Length

To overcome the problem of accuracy decrease with time, the best approach is to add updated information in the prediction period. Observations will add significant amount of information to POD modes through new snapshots. Assumed that we add only one new snapshot which is obtained from the observations at the time $t = 200$ minutes to the old snapshots. The number of snapshots now is 101. The prediction period is still the same, from $t = 101$ minutes to
t = 500 minutes. The updated results are shown in Figure 5. The NB used is still 20. Comparing to Figure 3, all predicted results were significantly improved. The reduced model can be calibrated with updated information from observations or new snapshots to significantly increase the accuracy. Addition of observation data will not only greatly increase the accuracy, but also leads to a better snapshots selection. It is worth mentioning that, the computational time is still the same, and it only changed slightly by increasing snapshots. The computational time is mainly determined by the NB used in reduced model.

4.2.3. Snapshot selection

The ability of a reduced model obtained from POD to accurately represent and, in practice, replace the full model is mainly based on the manner in which the full model snapshots are obtained (Siade et al., 2010), because both the number of snapshots and the time intervals of sampling will affect the accuracy of the reduced model. If the snapshots did not include enough amount of information, the reduced order model will not provide accurate results no matter how many bases are used. Therefore, as shown in Figure 1, to maximize the accuracy, it is important to optimize the snapshots by the interaction between the original full model and the reduced-order model. The number of snapshots is optimal when the addition of another snapshot does not add a significant amount of information to the reduced model (Siade et al., 2010).

The sampling time of snapshots from solutions of original model determines the number of snapshots. If we sampled 100 time steps from the first 100 minutes, we have 100 snapshots. 50 snapshots will be taken with a sampling time step of 2 minutes, and 25 snapshots will be taken with a sampling time step of 4 minutes. The results using different number of snapshots without changing NB are shown in Figure 6. The accuracy of the reduced model is slightly changed. The
correlation coefficients are still higher than 99.99%, which means all the three ensembles of snapshots captured the dominant characters of the model. A small set of snapshots is efficient for the reduced model to perform accurately.

In subsection 4.2.2, when the snapshot size was changed because of new information was included, selection of snapshots can be reevaluated. Figure 5 showed that the accuracy is further enhanced with a selection of 101 snapshots. The importance of this new snapshot is obvious. A large number of the old snapshots from the past 100 minutes will be not necessary. Adopting as many snapshots as possible in a certain time period does not equals to a high level of accuracy. It is predictable that the 100+1 snapshots can be reduced to 25+1 snapshots to produce the results without sacrificing the accuracy. The result indicates that a snapshot from a new time period contains much more information that a snapshot from an old period of time.

4.2.4. Heterogeneous Case

Hydraulic conductivity fields in natural media are commonly heterogeneous and anisotropic. Thus, it is required to test the application of POD method on a more “realistic” case with a variable conductivity field. The conductivity field will significantly affect the velocity field of the VDFST system, which controls solute advection and dispersion processes. In the case study, the variability of the conductivity field is represented by the pattern and parameter values of K_f in Eq. (6) and (7).

In this case study, all the other settings for both the full model and the reduced model are same as those in the homogeneous case. We proposed two common heterogeneous cases, a random field and a zonal field. From the homogeneous cases, we notice that the influences of snapshots, bases and predicted period length on prediction must be considered. Under various
field conditions, we will investigate whether the reduced model via POD can still carry out the results efficiently and accurately with heterogeneous porous medium.

The first case employed a hydraulic conductivity field generated by the geostatistical approach. Assume the K_f (hydraulic conductivity) field is heterogeneous and anisotropic, where K_f is assumed to satisfy a Gaussian distribution, $N(864,200)$. The anisotropic ratio K_{f_x}/K_{f_z} is 5 all over the domain. The distribution of K_f in x-coordinate direction, K_{f_x}, is displayed in Figure 7. The range of the parameter values is 200 m/day ~ 1400 m/day. Employing 20 bases from 100 snapshots for this case, the reduced model runs approximately 250 times faster than the full model. Comparing the predicted results (Figures 8 - 9), the accuracy of the reduced model is illustrated according to the continuous good fit of head and concentration distributions with time between the full and the reduced model respectively.

The second case employed a zonal heterogeneous medium. It is assumed that the K_f field is zonally distributed and anisotropic. The anisotropic ratio K_{f_x}/K_{f_z} is still 5 all over the domain. The distribution of K_{f_x} field is displayed in Figure 10. The confined aquifer is divided into four zones. There are two patterns adopted to present the hydraulic conductivities. In this confined aquifer whose depth is 1m, the hydraulic conductivities decrease from zone 1 to zone 4 by depth in case A, and increase by depth from zone 1 to zone 4 in case B (Figure 10).

No matter which pattern is chosen, the same procedure of model reduction is conducted. To run the reduced model efficiently while retaining calculation accuracy, 25 snapshots are sampled from the first 100 minutes, which is 1 snapshot every 4 minutes. 10 bases are then computed from SVD. The spatial and temporal distributions of head and concentration over a period of 400 minutes are then solved from the reduced model.
For case A, the computation time of the reduced model is nearly 950 times faster than the full model. Figure 11 shows the spatial distributions of hydraulic head and concentration at time \(t = 500 \) minutes, which are identical with the results from the full model.

For case B, the computation time of the reduced model is nearly 750 times faster than the full model. Figure 12 shows the spatial distributions of hydraulic head and concentration at time \(t = 500 \) minutes, which are almost perfectly matched with the results from the original full model.

4.3. Model Reduction of the Elder Problem

As a boundary controlled system, the modified Henry problem was used to study the accuracy and efficiency of the GFEM-POD reduced model in section 4.2. The GFEM-POD reduced model is applied to another classic VDFST problem, the Elder problem. The Elder problem (Elder, 1967a; 1967b; Voss and Souza, 1987) described a laminar fluid flow in a closed rectangular aquifer and is commonly used to verify variable-density groundwater codes (Simpson and Clement, 2003). Compared to Henry Problem, the Elder problem has the characteristic that the calculation results are only determined by correctly coupled governing equations, not by boundary forcing. As a result, the Elder problem will be influenced more by nonlinearity induced by variable-density condition.

For the Elder problem, we only consider advection and diffusion without dispersion. The coupled governing equations are still Eq. (6) and (7). In an attempt to show the significance of application of POD reduced-order model to the Elder problem, a modified Elder problem is taken where the molecular diffusion coefficient \((D_m) \) was doubled. For this modified Elder problem, the domain is regularly discretized using \(61 \times 31 = 1891 \) nodes and 3600 triangular elements. A uniform time interval of 5 days is used for a simulation period of 5 years. All the
other settings are still same as the standard Elder problem (Simpson and Clement, 2003). This modified Elder problem is used as the original full model. The five-year evolution of the dense fluid in this confined aquifer is shown in Figure 13. With symmetric system settings, the distribution of the plume lobes is also symmetric along the centerline of the aquifer.

The full MATLAB code solving standard or modified Elder problem was adjusted from the code for the Henry problems. The CPU time in MATLAB to simulate 5 years with a time step of 5 days is approximately 3 hours for the original full model.

In the previous section, the reduced model is applied only to predict the results for modified Henry problems. The performance of model reduction is verified through different patterns of space variation. The importance of snapshots selection and bases selection is discussed.

To further investigate the quality of the reduced model for Elder problem, two types of calculation are performed, reproduction and the prediction. For the reproduction calculation, the simulation period of the reduced model is the same as the time period used in the full model to generate snapshots. While for prediction calculation, the simulation period of the reduced model is beyond the time period for the full model to generate snapshots. Based on the error analysis in section 3.3, the errors of reproduction test are addressed by equation (25) and the errors of prediction test are expressed by equation (26). From the error analysis, the errors of reproduction test can be controlled through optimal snapshots selection and base selection, which determine the (M+1)th eigenvalue. The errors of prediction tests are not only determined by the eigenvalues, but also by selected time period length and a case-specific coefficient. It is much more difficult to control the errors for prediction tests. The accuracy will decrease gradually as the prediction time increases. Therefore, the accuracy and efficiency of the reduced model have to be discussed according to different objects of reduced modeling.
4.3.1. Reproduction Calculation

The reproduction test is the repeated calculation of the forward simulation of the full model. The original full model was operated to simulate a time period of five years (1825 days) with a uniform time interval of 5 days. 73 snapshots were chosen from the full model results for hydraulic heads and concentrations, respectively. These 73 snapshots were sampled regularly, one from every 25 days. From SVD process, 11 bases are selected for the reduced model, which will reproduce the same time period with a time interval of 5 days and thus using 365 time steps. The reduced model ran approximately 2500 time faster in MATLAB than the original full model. The comparison of the dense fluid distribution is shown in Figure 13 at the end of the first year, the third year and the fifth year, respectively.

The accuracy of the reduced model is satisfied according to Figure 13. The results of the reduced model were over 99.9% matched with the results from the full model. For reproduction test, the error can be very low because the important system information in this time period is all available through optimal selection of snapshots. As long as the snapshots cover most information, the reduced model can reproduce the head and concentration results at any time inside this time period very accurately. The reproduction tests confirmed that the reduced model can be used to replace the full numerical model for state estimation and inverse modeling which normally require repeated forward run of the full model.

4.3.2 Prediction Calculation

The snapshots for prediction tests were sampled from the full-model results of first year. For the first 365 days, we selected one snapshot from each 5 days. 11 bases were selected from the
73 snapshots. We used the information from the first year to predict the results in the next two years. The time interval used in the prediction test is 5 days. The correlation of predicted concentrations for the following two years between the reduced model and the full model is shown in Figure 14. The accuracy of the reduced model decreases rapidly with increase of prediction time. At the end of the second year ((number of time step = 146), the accuracy is nearly 99%. However, at the end of the third year (number of time step = 219), the accuracy is only 80%. Apparently, the reduced model cannot attain a satisfactory prediction in a time period longer than one year for this modified Elder problem, if the accuracy must be kept higher than 99% by a decision maker.

More snapshots were included and more basis functions were adopted trying to predict more accurate results. However, the precision of the predicted results at the end of the third year is still not satisfied. As mentioned previously, the errors generated in prediction calculation will increase inevitably as the increase of predicted time length. The errors cannot be reduced by choosing more POD bases produced from the unchanged ensemble of snapshots. Compared with the Henry problem, the POD reduced-order method encountered increased errors due to a stronger mathematical nonlinearity in the Elder problem.

In section 4.2.2, we proposed an appropriate approach to overcome the problem of accuracy decrease with time, adding updated information in the prediction period. The principle is very similar to the process of weather forecasting. The reduced model is kept running, but the snapshots used also need to be updated. Observations at a certain time in the prediction period will add significant amount of new information. Illustrated by Figure 5, new snapshots are obtained from observations and are added to the old ensemble of snapshots. The updated
snapshots are then applied in the reduced model to increase model prediction accuracy. This updating is continuously conducted to maintain the accuracy of the reduced model.

To investigate efficiency of this method, another case is designed. The concentration results of the reduced model from the previous prediction test are compared with the results of the full model (Figure 15, (a) and (b)) at the end of the 2nd year. The snapshots are all sampled from the first year. Although, the two contours display a good fitting with each other, the transport depths of the lobes at both sides do not match well, which is marked by the red dashed line in Figure 15. It is assumed that we obtained a small set of observation data at a certain time point early in the 2nd year which was imitated from the simulation of the original full model. A new snapshot is generated based on the observation data and is included it into the old snapshots. With updated snapshots, we reran the reduced model to predict results in the same time period. The simulation results are clearly improved (Figure 15, (c)).

The importance of updating snapshots indicates again that the accuracy of reduced model relies on the time period in which full-model snapshots are sampled as discussed in section 3.3. In practice, the observations need to be filtered and weighted before they are adopted in the reduced model (Siade et al., 2010).

5. Conclusion

In this study, we developed a POD approach to efficiently simulate a coupled nonlinear subsurface flow and transport process. An integrated methodology of model reduction was developed through combining POD with the GFEM, so it is referred to as GFEM-POD method. The GFEM-POD method can reduce the dimension of stiffness matrices and forcing vectors in
the full finite element numerical model to a very small size. The reduced dimension depends on the selected number of basis functions.

This method is efficient because the reduced-order model represents new states in terms of the dominant basis vectors generated by a subset of old states. The simulations of the reduced-order model must be performed in a low-dimensional space depending on the proper decomposition of model states (hydraulic head and solute concentration) in space and time.

We applied this procedure to two benchmark VDFST problems with various scenarios. These case studies results indicate that this GFEM-POD reduced-order model can reproduce and predict the full model results of spatial distributions for both hydraulic head and solute concentration very accurately. The computational time required for the reduced-order model is dramatically reduced compared to the time used in the full model simulation. The calculation accuracy depends strongly on the sampling and updating strategy of the full-model snapshots. The selected snapshots further determine how many basis functions should be applied to achieve satisfactory results in the reduced-order model. The optimal selection of snapshots and basis functions is crucial for the application of POD and should be carefully considered due to the model’s mathematical and parametric structures. We also observed that the POD approach is less robust for model prediction than for model reproduction. The reduced-order model will encounter significant calculation errors for long-term prediction. This phenomenon is more obvious when the study problem is highly mathematically nonlinear. An effective approach of relieving this issue is to update snapshots continuously to assimilate new information from observations or experiments.

According to our present study, future work will focus on the development of the adjoint model for optimal parameters estimations (e.g. the freshwater hydraulic conductivity tensor) with
reduced-order modeling and the application of GFEM-POD method to other coupled and nonlinear hydrogeological models.
References

Diersch, H. -J. G. and O. Kolditz (2002), Variable-density flow and transport in porous media:

Li, X. (2010), Model simulation and reduction of variable-density flow and solute transport using proper orthogonal decomposition, Ph.D. Thesis, Department of Earth, Ocean and Atmospheric Science, Florida State University, Tallahassee, Florida.

Vermeulen, P. T. M., C. B. M. te Stroet, and A. W. Heemink (2006b), Model inversion of

Table Captions

Table 1. Computation times of the reduced-order model for the homogeneous case with different NB to predict 400 time steps.
Figure Captions

Figure 1. Methodology for constructing a reduced-order model.

Figure 2. (Top) The percentage of total energy of head exacted as function of number of eigenvalues for the homogeneous case; (Bottom) The percentage of total energy of concentration exacted as function of number of eigenvalues for the homogeneous case.

Figure 3. RMSE (Top) and correlation (Bottom) of predicted concentrations between the reduced-order model and the original full model for the homogeneous case using different number of bases from 100 snapshots.

Figure 4. Comparison of results between the reduced-order model (red dash) and the original full model (blue dash) for the homogeneous case. (a) Predicted head distribution (m) at time t = 200 minutes; (b) Predicted head distribution (m) at time t = 500 minutes; (c) Predicted concentration distribution (kg/m³) at time t = 200 minutes; (d) Predicted concentration distribution (kg/m³) at time t = 500 minutes.

Figure 5. RMSE of predicted concentrations between the reduced-order model and the original full model for the homogeneous case with addition of a new snapshot at t = 200 minutes (red) comparing to the previous simulation without new snapshots (black).

Figure 6. RMSE of predicted concentrations between the reduced-order model and the original full model for the homogeneous case using different number of snapshots with the same NB =20.

Figure 7. Stochastic distributed hydraulic conductivity field used in the first heterogeneous case with a Gaussian distribution, N (864, 200).

Figure 8. Comparison of results between the reduced-order model (red dash) and original full model (blue dash) for the first heterogeneous case. (a) Predicted head distribution (m) at time t = 200 minutes; (b) Predicted head distribution (m) at time t = 500 minutes.

Figure 9. Comparison of results between the reduced-order model (red dash) and original full model (blue dash) for the first heterogeneous case. (Top) Predicted concentration distribution (kg/m³) at time t = 200 minutes; (Bottom) Predicted concentration distribution (kg/m³) at time t =
500 minutes.

Figure 10. Diagrams display, in cross-section view, the two zonal patterns and parameter values used in the second heterogeneous case. (A) Hydraulic conductivities decrease by depth; (B) Hydraulic conductivities increase by depth.

Figure 11. Comparison of results between the reduced-order model (red dash) and original full model (blue dash) for Case A using the zonal approach. (Top) Predicted head distribution (m) at time $t = 500$ minutes; (Bottom) Predicted concentration distribution (kg/m³) at time $t = 500$ minutes.

Figure 12. Comparison of results between the reduced-order model (red dash) and original full model (blue dash) for Case B using the zonal approach. (Top) Predicted head distribution (m) at time $t = 500$ minutes; (Bottom) Predicted concentration distribution (kg/m³) at time $t = 500$ minutes.

Figure 13. Comparison of dense fluid distribution between the reduced-order model (right) and original full model (left) in the reproduction test. The concentration contour interval is 28 kg/m³.

Figure 14. Correlation of predicted concentrations between the reduced-order model and the original full model in the prediction test for the next 2 years with 146 time steps.

Figure 15. Predicted dense fluid distribution of the reduced-order model (a), the original full model (b) and the updated reduced-order model (c) in the prediction test at the end of the 2nd year. The concentration contour interval is 28 kg/m³.
Table 1

<table>
<thead>
<tr>
<th>Computation Time (seconds)</th>
<th>Number of Bases (NB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.125</td>
<td>1</td>
</tr>
<tr>
<td>0.350</td>
<td>2</td>
</tr>
<tr>
<td>0.880</td>
<td>5</td>
</tr>
<tr>
<td>1.820</td>
<td>10</td>
</tr>
<tr>
<td>3.250</td>
<td>15</td>
</tr>
<tr>
<td>4.900</td>
<td>20</td>
</tr>
</tbody>
</table>
Figure 3

![Graph showing RMSE of Concentration and Correlation of Concentration for different NB values]

- **RMSE of Concentration**
 - NB = 5
 - NB = 10
 - NB = 15
 - NB = 20

- **Correlation of Concentration**
 - NB = 5
 - NB = 10
 - NB = 15
 - NB = 20

The graph illustrates how the RMSE of concentration and the correlation of concentration change as the number of predicted time steps increases for different NB values.
Figure 5

RMSE of Concentration

Number of Predicted Time Steps

- NB = 20
- NB = 20 with a new snapshot at t = 200 minutes
Figure 6

RMSE of Concentration

Number of Predicted Time Steps

100 snapshots
50 snapshots
25 snapshots
Figure 7
Figure 8

(a)

(b)
Figure 10

Zone 1: $K_{fr} = 864$ m/day, $K_{fz} = K_{fr}/5$

Zone 2: $K_{fr} = 864/2$ m/day, $K_{fz} = K_{fr}/5$

Zone 3: $K_{fr} = 864/5$ m/day, $K_{fz} = K_{fr}/5$

Zone 4: $K_{fr} = 864/10$ m/day, $K_{fz} = K_{fr}/5$