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‘We compare the performance of several robust large-scale minimization algorithms for the unconstrained
minimization of an ill-posed inverse problem. The parabolized Navier—Stokes equation model was used
for adjoint parameter estimation.

The methods compared consist of three versions of nonlinear conjugate-gradient (CG) method, quasi-
Newton Broyden—Fletcher—Goldfarb—Shanno (BFGS), the limited-memory quasi-Newton (L-BFGS)
[D.C. Liu and J. Nocedal, On the limited memory BFGS method for large scale minimization, Math.
Program. 45 (1989), pp. 503-528], truncated Newton (T-N) method [S.G. Nash, Preconditioning of trun-
cated Newton methods, SIAM J. Sci. Stat. Comput. 6 (1985), pp. 599-616, S.G. Nash, Newton-type
minimization via the Lanczos method, SIAM J. Numer. Anal. 21 (1984), pp. 770-788] and a new hybrid
algorithm proposed by Morales and Nocedal [J.L. Morales and J. Nocedal, Enriched methods for large-scale
unconstrained optimization, Comput. Optim. Appl. 21 (2002), pp. 143-154].

For all the methods employed and tested, the gradient of the cost function is obtained via an adjoint
method. A detailed description of the algorithmic form of minimization algorithms employed in the
minimization comparison is provided.

For the inviscid case, the CG-descent method of Hager [W.W. Hager and H. Zhang, A new conjugate
gradient method with guaranteed descent and efficient line search, SIAM J. Optim. 16 (1) (2005), pp. 170—
192] performed the best followed closely by the hybrid method [J.L. Morales and J. Nocedal, Enriched
methods for large-scale unconstrained optimization, Comput. Optim. Appl. 21 (2002), pp. 143-154], while
in the viscous case, the hybrid method emerged as the best performed followed by CG [D.F. Shanno and
K.H. Phua, Remark on algorithm 500. Minimization of unconstrained multivariate functions, ACM Trans.
Math. Softw. 6 (1980), pp. 618—622] and CG-descent [W.W. Hager and H. Zhang, A new conjugate gradient
method with guaranteed descent and efficient line search, SIAM J. Optim. 16 (1) (2005), pp. 170-192].
This required an adequate choice of parameters in the CG-descent method as well as controlling the number
of L-BFGS and T-N iterations to be interlaced in the hybrid method.
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1. Introduction

The following specific issues characterize inverse computational fluid dynamics (CFD) problems
posed in the variational sense:

(1) high CPU time required for a single cost functional computation;

(2) the computation of the gradient of the cost functional is usually performed using the adjoint
model, which requires the same computational effort as the direct model;

(3) the instability (due to ill-posedness) prohibits the use of Newton-type algorithms without
prior explicit regularization due to the Hessian of the cost functional being indefinite.

The nonlinear conjugate-gradient (CG) method is widely used for ill-posed inverse problems
[3,4,20] because it provides regularization implicitly by neglecting nondominant Hessian eigen-
vectors. The large CPU time required for a single cost functional computation justifies the high
importance attached to choosing the most efficient large-scale unconstrained optimization method.
From this perspective, we will compare the performance of the nonlinear CG method along
with several quasi-Newton and truncated Newton (T-N) large-scale unconstrained minimization
methods [22,26-28] and a new hybrid method [23]. The problem is an ill-posed inverse CFD
parameter identification of entrance boundary parameters from measurements taken in down-
stream flow-field sections. A similar study addressing computational experience with several
limited-memory quasi-Newton and TN methods for data assimilation with the shallow water
equation model using the 1990s state-of-the-art optimization methods is described in [35].

The paper is organized as follows. In Section 2, the ill-posed parameter estimation test problem
is presented along with the adjoint derivation required for obtaining the gradient of the cost
function with respect to the control parameters. Section 3 consists of a detailed description of the
algorithmic form of the large-scale unconstrained minimization methods tested. The numerical
tests and their results comparing performance of the above-mentioned minimization methods are
presented in Section 4. Finally, discussion and conclusion are presented in Section 5.

2. The test problem

We consider the identification of unknown parameters foo(Y) = (o(Y), U(Y), V(Y), T (Y)) (see
definitions below) at the entrance boundary (Figure 1) from measurements taken in a flow-
field section f**P(X,,, Y,,) as a test inverse CFD problem. The direct measurement of flow-field
parameters in zones of interest may be either difficult or impossible to carry out due to different
reasons: alack of access, high heat flux or pressures, etc. For example, measurements of parameters
in arocket engine chamber may be very difficult, if not impossible, due to the extreme environment
there. For the same case, measurements taken in the jet past the nozzle may be carried out
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Figure 1. Flow sketch. A — entrance boundary; C — section of measurements (outflow boundary).
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without difficulties. Thus, the estimation of inflow parameters from downflow measurements is
a realistic test problem. This problem may be formulated as a minimization of a cost functional
(measuring discrepancy between measured and calculated parameters) with respect to a set of
inflow parameters.

The algorithm consists of the flow-field calculation (direct model) the discrepancy gradient
(gradient of the cost functional) computation using both forward and adjoint models and an
unconstrained optimization method.

The problem has all the features of an ill-posed inverse CFD problem but can be solved relatively
quickly when using the two-dimensional parabolized Navier—Stokes equation approximation.

2.1 The direct problem

The two-dimensional parabolized Navier—Stokes equations are used here in a form similar to that
presented in [2,3]. The flow (Figure 1) is laminar and supersonic along the X-coordinate. These
equations describe an under-expanded jet in supersonic flow.

e
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where P = pRT,e =C,T =R/(y — DT and (X, Y) e Q=0< X < Xinax; 0 <Y < 1).
The entrance boundary (A, (X = 0), Figure 1) conditions follow:

e(0,Y) =ex(Y); p(0,Y) = poo(Y); U, Y) =Ux(Y); V(0,Y)=Vu(Y). (5

The outflow boundary conditions df/dy = 0 areusedon Band D (Y =0,Y = 1).

The flow parameters at some set of flow-field points f*P(X,,, Y,,) are available. The values
fo(¥Y) = (p(Y),U(Y), V(Y), e(Y)) onthe boundary A are unknown and must be determined. For
this purpose, we minimize the discrepancy between computed and measured values f*P(X, Y)
for a set of measurement points.

M
e(foo(Y)) = Z/Q(feXP(X, Y) = f(X,Y))’8(X — X,))8(Y — Y,,) dX dY. (6)
m=1

Notation

C, specific volume heat capacity
e specific energy, C, T

f flow parameters (p, U, V, €)
h enthalpy

ho total enthalpy

hy, hy spatial steps along X and Y
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M Mach number

N; number of time steps

N, number of spatial nodes along X

N number of spatial nodes along Y

L Lagrangian

P pressure

Pr Prandtl number (Pr = uC,/A)

R gas constant

Re PooT oo Tmax Yoo Yimax — Reynolds number
Moo

T temperature

U velocity component along X

Vv velocity component along Y

X,Y coordinates

y specific heat ratio

8 Dirac’s delta function

e cost functional

A thermal conductivity

I viscosity

0 density

T temporal step

v,, Yy, the adjoint variables

\IlV > \Ije

Q domain of calculation

Subscripts

o0 entrance boundary parameters

corr corrected error

est estimated point

exact exact solution

k number of spatial mesh node along Y

n number of steps along X

sup bound of inherent error

t component of truncation error connected with Taylor expansion in time

by component of truncation error connected with Taylor expansion in coordinate X

We consider the initial boundary problem for parabolized Navier—Stokes equations (1-5),
describing supersonic viscous flow evolving along X from X = 0. However, we have our exper-
imental information at the downflow points. We may consider the inverse problem as the one
having initial conditions at the outflow section X,,x and transferring it to the inflow section. Let
us consider its properties.

By substituting dp/dX = —(p/U)(AU/dX + F from Equation (1) and de/0X =
—((y — 1)e/U)(@U/0X) + F; from Equation (4) to (2), we get

aUu 1 9°U

L W—yRT)U)= — 2~ | F.
ox U VRT/U) = g oy T2

Here F, F| and F, are the remaining terms. This equation is similar to the heat conduction
equation. For supersonic flow, the calculation starts from X, and the viscosity becomes negative.
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Instead of attenuation (at positive viscosity), we have amplification of small disturbances. Hence,
the problem is unstable and it is equivalent to the inverse heat problem that is well known to be
an ill-posed problem.

To show this in more detail, let us consider the evolution of harmonic disturbances of the
following form:

Ap Apo
AU AUy )
AV AVy '
Ae Aeg
Equations (1-5), assume the form
dAU dAU 2AU
A;j L+ By L +D;; L+b, =0, i=1,...,4,
0x dy 7 9y?
where
U o 0 0
A= |y —Delp U 0 (r—»b
- 0 0 U 0 ’
0 (y—De 0 U
Vv 0 0 0
B — 0 Vv 0 0
(y —De/p 0O 14 (y—1b
0 0 (y—De \%4
The resulting characteristic matrix is
iUw—ikV ipw —ikp
i(y —De/pw iUw—ikV +k*/(pRe) 0
—i(y — Dek/p 0 iUw—ikV + 4k*/(3p Re)
0 ity — Dew —ik(y — De
0
i(y — Do
—i(y — Dk

iUw—iVk+yk?/(pRe Pr)
From the condition det(C) = 0, one may find a relationship for the frequency v = w (k).
The determinant may be recast in the form
Uw—kV —ik? Uw—kV — idk? Uw—Vk —iyk?
pRe 3pRe o RePr

det(C) = (Uw — kV) (

Uw—kV —ik*\ (Uw —kV —i4k?
— U —kv) (22 : @ ) @ - 1%
pRe 3pRe
Uw —kV — 4ik?
+ (Uw —kV)(y — D2ew? [ 5
3pRe
) Uw— Vk — 4ik? Uw—Vk —iyk?
—w (y — e
3pRe o RePr
Uw— Vk — ik? Uw— Vk —iyk®
e 1) i - e 1) iy
pRe o RePr

=0.
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With the tolerance of O (1/Re), we may find one of the solutions asiUw; — ikV + 4k? /(BpRe) =
0 (this solution is exact for the case y/ Pr = 4/3).

By substituting w; = Vk/U +i4k*>/3Re pU into ' @*~%)  we obtain a multiplier
exp(—(4k?/3Re pU)x), meaning that there is attenuation of small disturbances when x increases
and the disturbances are amplified when x decreases. Therefore, the problem is ill-posed.

2.2 The adjoint problem

A fast calculation of the gradient is crucial for implementing the optimization methods tested
herein due to the high CPU time computational cost of the discrepancy calculation as well as
due to the relatively large number of control variables. The solution of the adjoint problem is
the fastest way to calculate the discrepancy gradient when the number of control parameters is
relatively large. The adjoint problem corresponding to Equations (1-6) follows [3]:
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—e(X,Y)5(X - X,)8(Y —Y,) =0. (10)

\-Ife) +2UPX,Y)-UX, Y)S(X —X,)8(Y —Y,) =0, ®)

The boundary conditions on C (X = Xy ) are W | ¥=Xmx = 0.
The following boundary condition is used at Band D (Y = 0; Y = 1):

Vs

oy =0 (11)

The discrepancy gradient is determined by the flow parameters and the adjoint variables:

de
=y, U — Yy,
de(Y) + (- DYy
0 A— 1Y
€ —\IJU+( ) ve

oY) o
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de

— = Y,yU + p¥ —1)W,e, 12

3 l) vU+p¥,+(y —DW.e (12)
ade

— =Y, U.

Voo (Y)

The flow-field (forward problem, (1-4)) is computed using a finite difference method [2,3]
marching along X. The method is of first-order accuracy in X and second-order accuracy in the
Y variable. The pressure gradient for supersonic flow is computed from the energy and density.
The same algorithm (and the same grid) is used for solving the adjoint problem; however, the
integration is performed in the reverse direction (beginning at X = X,,«). The grid is rectangular
and consists of 50-100 nodes along the Y direction and 50-200 nodes along the X direction
(see [3] for more information regarding the discretization strategy). The flow parameters on the
entrance boundary fo,(Yi) = f;(i = 1, ..., N)serveas the set of control variables. The input data
Jexp(Xm, Y1) =1, ..., N) are obtained at the outflow section from a preliminary computation.
The flow parameters are the external flow Mach number, M = 5 (the Mach number of the jet is
about 3) and the Reynolds number Re in the range of 10> — 10*. Several tests were performed for
an ‘inviscid’ flow (Re = 10®).

For a systematic analysis of the convergence rate for numerical solution techniques that require
the gradient of discrete cost function, see [17].

3. Description of the minimization algorithms

The spatial distribution of parameters on the entrance boundary (A) is determined by applying
and comparing the following large-scale optimization methods:

(1) conjugate gradients [18,30,31,33] (non-linear CG version);

(2) quasi-Newton (Broyden—Fletcher—Goldfarb—Shanno (BFGS)), [8-11,30];

(3) limited-memory quasi-Newton (L-BFGS) [12];

(4) T-N method [26,27];

(5) a new hybrid algorithm proposed by Morales and Nocedal [23] that consists of a class of
optimization methods that interlace iterations of the L-BFGS method and a T-N method in
such a way that the information collected by one type of iteration improves the performance
of the other. For algorithmic details about the hybrid method, in particular, the efficient
preconditioning of the GC method, see also [24,25]. This new algorithm was studied and
tested in [6,7] and was demonstrated to be the best performing algorithm.

In this work, we test implementations of the L-BFGS version VA15 of [22] in the Harwell library,
the T-N method described by Nash [26,27] and the hybrid method of Morales and Nocedal [23].
A brief description of the major components of each algorithm is given below. The nonlinear CG
algorithm CONMIN used in this study is described as well [26]. The code of Shanno and Phua
[33] allows also for the implementation of the quasi-Newton BFGS method.

The subroutine CONMIN incorporates two nonlinear optimization methods, a nonlinear CG
algorithm and a variable metric (Newton method) algorithm, with the choice of method left to the
user. The nonlinear GC algorithm is the Beale restarted GC strategy [1,5]. This method requires
approximately 7n double precision words of working storage to be provided by the user. The
variable metric method is the BFGS algorithm with initial scaling documented in Shanno and
Phua [33], and requires approximately n?/2 + 111/2 double precision words of working storage.

For a function of n variables, we use the following notations: f; = f(x;) denotes a generic
cost function where x; is the n component vector at the ith iteration, V f; is the gradient vector
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of size n evaluated at x; and H; = V2 fx 1s the n x n symmetric Hessian matrix of the second
partial derivatives of f with respect to the coordinates evaluated at x;. In all the algorithms, the
new iterate is calculated from

Xit1 = Xi + 0xPg Xk, (13)

where p, is the descent direction vector and o the step length. Iterations are terminated when
IV fill < 107° max(1, [[x ). (14)

The necessary changes in the programs were made to ensure that all three algorithms use the
same termination criterion. In addition, the three methods use the same line search that is based
on cubic interpolation and is subject to the so-called strong Wolfe conditions [12,14].

F&x) — F&k +aupy) = —poup Vi, [V f &+ oup) "ol < 0V £ pyl (15)

where 0 < u < < 1.
The values of the parameters w and n used were 10~ and 0.1, respectively.

3.1 The nonlinear CG algorithm

CG uses derivatives of f, defined by V f;. A step along the current negative gradient vector is
taken in the first iteration; successive directions are constructed so that they form a set of mutually
conjugate vectors with respect to the Hessian. At each step, the new iterate is calculated from
Equation (13) and the search directions are expressed recursively as

P = Vi + BiPr_i- (16)

Calculation of f; with the algorithm incorporated in CONMIN used for nonlinear CG is
described in [32].

CONMIN has important advantages such as automatic restart along a carefully chosen direc-
tion [31] and global convergence properties [13]. The Hessian vector products in the nonlinear CG
code were done via finite differencing of gradients. As will be shown in Section 3.5, the Hessian
vector product is accurate to the order of ,/z,,, where &,, is the machine accuracy (27> for this
double precision application).

If one considers the memoryless BFGS formula,

Skyy sy Skt
IhH=(—i&>O—ﬁi>+ii (a7

T T T
Y Sk Y Sk Yi Sk

where sy = X1 — X¢ = oxprandy;, = V fi11 — V fi. Inconjunction with an exact line search for
which V fi'p, = Oforallk, then we obtainp,; = —H,,, V fis1 = =V fis1 + (VLY /Y PPy
which is the Hestenes—Stiefel CG Method, and when V fkT +1P; = 0, the Hestenes—Stiefel formula
reduces to the Polak—Ribiere formula:
PR __ kaT(kaJrl _ka)p (18)
. IV fill? v
As shown in [30], CONMIN is related to the BFGS variable metric method and increased
storage requirements for CONMIN results in fewer function evaluations. Indeed in terms of
requiring the fewest number of function evaluations, CONMIN is on top for the examples tested
in [30]. Automatic restarting is used to preserve a linear convergence rate. For restart iterations,
the step length o = 1 is used. On the other hand, for no restart iterations,

aV fIpe
kaT—lpk—l

Cpp1 = 19)
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3.2 The CG-descent method

Hager and Zhang [18] developed a new nonlinear CG algorithm for unconstrained optimization
problems.
The CG iterates assume the form

X1 = X + agdy, (20)

where the stepsize oy is positive and where the directions d; are generated by the rule dy4; =
~V fur1 + Bl di. do = =V fo, while B = 1/dTy, (v, — 2d¢ ¥ 1/dTy)"V fiir.

Here || - || is the Euclidean norm, and y, = V fi+1 — V fi.. If f is a quadratic and oy is chosen
to achieve the exact minimum of f in the direction dg, then dZV Jfr+1 = 0, and the formula for
,8,?’ reduces to the familiar Hestenes—Stiefel scheme.

The advantages of the new CG scheme are described in [18].

A judicious choice of parameters is required to obtain optimal results, in particular, for problems
that are associated with PDE-constrained optimization, see the user manual that comes with the
free code distribution. A program searching the parameter space for the CG-descent method for
a given optimization problem was developed by one of the authors.

3.3 BFGS quasi-newton method

The evaluation of the Hessian matrix is impractical or costly for large-scale minimization. A
central idea underlying quasi-Newton methods is to use an approximation of the inverse Hessian.
The form of the approximation differs among methods. In quasi-Newton methods, instead of the
true Hessian H, an initial matrix Hy is chosen (usually H, = I), which is subsequently updated
by an update formula. The approximate Hessian Hy is then used in place of the true Hessian.

Given displacement s; and change of gradients y,, the secant equation requires that the sym-
metric and positive-definite matrix ﬁk+1 maps s into y,. This is possible only if s, and y, satisfy
the curvature condition

siy; > 0. 21

To determine Hy, uniquely, the additional condition is imposed that among all symmetric
matrices satisfying the secant equation, Hy; is in a sense closest to the current matrix Hy, i.e.
we solve the problem

min HH —H, ” 22)

subject to H= ﬁT and Hs; = y, and H, is positive-definite.

Using a weighted Frobenius norm, the unique solution of Equation (22), as shown in [31], is
the Davidon—Fletcher—Powell (DFP) updating formula originally proposed by Davidon [8] and
popularized by Fletcher and Powell [11].

Hi = 0 — nysp)H A — visiy)) + nyiys (23)

with y, = l/stk.
Instead of imposing conditions on the Hessian approximations H, we impose similar conditions
on their inverses B;. The updated approximation B, ; must be symmetric and positive definite,
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and must satisfy the secant equation now written as
Bii1yr = sk (24)

The condition of closeness to By is now specified by

min Hf; —B, H (25)
B

using a weighted Frobenius norm, subject to B = ]§T, Equation (24), and B being positive definite.
The unique solution By ; to Equation (25) is given by

Biri = (L— oisiyOBe(L — oryiS) + pisis (26)

where pr = 1/y]si.

The quasi-Newton methods that build up an approximation of the inverse Hessian are often
regarded as the most sophisticated optimization methods for solving unconstrained problems. It
can be shown [see [31] for motivation] that as long as ﬁk exists at the true minimum x*, the
initial guess xq is ‘sufficiently’ near x*, and the curvature condition holds, the BFGS methods
will converge. Indeed, if the remainder r; = ﬁkpk + V fi can be bounded in relation to V f
between 0 and 1, that is, if ||rg|| < n ||V fi|l for some n; < n € [0, 1) where 7 is a constant, any
quasi-Newton method is guaranteed to converge. If lim;_, o, 7 = 0, the rate of convergence will
be superlinear, and if B, is Lipschitz continuous for x; near x*and n; = O(||V f¢|), the rate of
convergence will be quadratic [31].

The BFGS formula (26) is straightforward to apply as the BFGS update formula can be used
exactly like the DFP formula. Numerical experiments have shown that the performance of the
BFGS formula is superior to the DFP formula. Hence, BFGS is often preferred over DFP. As
Nocedal and Wright [31] note, the DFP and BFGS updating formulae are dual of each other, one
being obtained from the other via interchanges s <> y and B < H.

Both the DFP and BFGS updates are symmetric rank 2 corrections that are constructed from
the vectors s; and y,. Weighted combinations of these formulae will therefore also have the same
properties. This observation leads to a whole collection of updates known as the Broyden family.

3.4 Limited-memory BFGS algorithm

The L-BFGS method is an adaptation of the BEGS method to large problems, achieved by chang-
ing the Hessianﬂupdate of the latter. Thus, in the BFGS [9,10], Equation (24) is used with an
approximation B, to the inverse Hessian, which is updated by

ﬁk+1 = Vzﬁka + ,OkSkSE, 27)

where V, =1-— ,okyksz, Sk =Xi+1 — Xk, Yy = Vfir1 — Vi and o = 1/(stk). The search
direction is given by

Peit = —Brrige (28)

In the L-BFGS method, instead of forming the matrices By explicitly (which would require a
large memory for a large problem), one only stores the vectors s; and y, obtained in the last m
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iterations which define B, implicitly; a cyclical procedure is used to retain the latest vectors and
discard the oldest ones. Thus, after the first m iterations, Equation (18) becomes

~ ~0
Bt = (Vi Vis,)Bio i Vicw -+ Vi) + peem (Vi Vi DSkt Vet -+ Vi)
+ Pk—m—1 (Vz te Vr]f_m.t,.z)sk—m-‘rlsz_m.;_] (Vz_m.i,-z o Vk) s Pksksz (29)

. C . . . ~0 . .
with the initial approximation B, ; the diagonal matrix

T
50 Yir1Sk+l

B, = L (30)

T
Yiet1Yi+1

It should be noted that this is only one of the possible ways to choose the initial approximation;
other choices are possible as well to try to improve the L-BFGS approximation (in fact, this is
exactly what is done in the implementation of the hybrid algorithm below). Many previous studies
have shown that 3 < m < 7 is sufficient and m > 7 usually does not improve the performance of
the L-BFGS algorithm. Here we used a value of m = 5.

3.5 The T-N algorithm

In the T-N method, also known as the Hessian-free Newton (HFN) method, a search direction is
computed by finding an approximate solution to the Newton equations,

Hp, = -V fi. 31)

The use of an approximate search direction p, is justified because an exact solution of the
Newton equation at a point far from the minimum is unnecessary and computationally wasteful
in the framework of a basic descent method. Thus, for each outer iteration (13), there is an inner
iteration making use of the CG method that computes this approximate direction, p,. The CG
inner algorithm is preconditioned by a scaled two-step L-BFGS method, with Powell’s restarting
strategy used to reset the preconditioner periodically. A detailed description of the preconditioner
may be found in [26]. The Hessian vector product H;v for a given v required by the inner CG
algorithm is obtained by a finite difference approximation,

V) = V(0

HkV A

(32)

A major issue is how to adequately choose & [34]; in this work, we use & = &'/2(1 + |Ix|)),
where ¢ is the machine precision and || - | denotes the Euclidean norm. Using this approxi-
mation, the Hessian will be accurate up to O(h) [34]. The inner algorithm is terminated using
the quadratic truncation test, which monitors a sufficient decrease of the quadratic model g, =

T T .
P Hip /2 +p V fi:
1 —qgi~! C
— G (33)
qi l
where i is the counter for the inner iteration and ¢, is a constant, 0 < ¢, < 1. The inner algorithm
is also terminated if an imposed upper limit on the number of inner iterations, M, is reached,

or when a loss of positive-definiteness is detected in the Hessian (i.e. when vIH;v < 10712).
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T-N methods can be extended to more general non-convex problems in much the same way as
Newton’s method [27].

3.6 The hybrid method

The hybrid method consists of interlacing in a dynamical way the L-BFGS method with the T-N
method discussed above. The limited-memory matrix H,, plays a dual role of preconditioning the
inner CG iteration in the T-N method as well as providing the initial approximation of the inverse
of the Hessian matrix in the L-BFGS iteration. In this way, information gathered by each method
improves the performance of the other without increasing the computational cost.

The hybrid method alleviates the shortcomings of both L-BFGS and HFN/T-N. One notes
that the strengths and weaknesses of the HFN and L-BFGS methods are complementary. The
HFN method requires much fewer iterations to approach the solution, but the computational
effort invested in one iteration can be very high while curvature information gathered in the
process is lost once the iteration is completed. The L-BFGS method, on the other hand, performs
inexpensive iterations, but the quality of the curvature information it collects may be poor, and
as a consequence it can be slow on ill-conditioned problems. The enriched algorithm aims to
combine the best features of both methods in a dynamic manner [25].

Algorithmically, implementation of the hybrid-enriched method includes an advanced precon-
ditioning of the CG iteration, a dynamic strategy to determine the lengths of the L-BFGS and
T-N cycles, as well as a standard stopping test for the inner CG iteration. In the enriched method
that will be tested below, k1 steps of the L-BFGS method are alternated with k2 steps of the T-N
method, where the choice of k1 and k2 will be discussed below. We illustrate this as

[k1 % (L — BEGS) — k2 % (T — N(PCG)) — B(m), repeat], (34)

where B(m) is again a limited-memory matrix that approximates the inverse of the Hessian
matrix (20), and m denotes the number of correction pairs stored. The L-BFGS cycle starts from
the initial unit or a weighted unit matrix, B(m) is updated using the most recent m pairs and the
matrix obtained at the last L-BFGS cycle is used to precondition the first of the k2 T-N iterations.
In the remaining k2 — 1 iterations, the limited-memory matrix B(m) is updated using information
generated by the inner preconditioned CG (PCG) iteration to precondition the next T-N iteration.
At the end of the T-N steps, the most current ﬁ(m) matrix is used as the initial matrix in a new
cycle of L-BFGS steps.

A more detailed description of this algorithm is provided by Morales and Nocedal [25] and
in [6,7].

4. Numerical tests

The computations have the following algorithmic structure: the forward problem (1-5) is solved for
parameters f(Yoo) and the flow-field values of p(X, Y), U(X,Y), V(X,Y), T(X, Y) are stored.
The discrepancy (cost functional) " ( f) is calculated, the adjoint problem (7-10) is solved and the
gradient of the cost Ve” is calculated from Equation (12). Then, the new control parameters are
calculated using the chosen optimizer. The optimization algorithm uses the following prescribed
termination criterion: ||Ve|| < 1070 max(1, || fxl)-

Figures 25 represent the solution of this problem by different minimization methods compared
with the exact data.

Figure 2 presents the result of inflow temperature estimation from the outflow data. Figure 3
presents the inflow density illustrating the development of the instability (the constant density
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Figure 2. Inflow temperature calculation.
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Figure 3. Inflow density calculation.

being equal to unity at the exact solution). Figure 4 provides the total density distribution in the
flow-field for the exact solution and the result of the calculation. Figure 5 illustrates the adjoint
density field.

Figure 6 presents the Hessian of the cost spectrum for this problem near the exact solution
(1) and the spectrum of the uniform flow (2). The horizontal axis presents the number of the
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Figure 5. Adjoint density field.

eigenvalues in decreasing order of their magnitude while the vertical axis presents their magnitude
normalized with respect to that of the largest eigenvalue. Most eigenvalues are very close to zero,
thus prohibiting the use of the standard Newton method for this problem.

Figures 7 and 8 present a comparison of different minimization methods applied to a viscous
flow (Re = 10%). The history of optimization is presented as the dependence of the logarithm
of the discrepancy vs. the number of direct + adjoint problem calls (proportional to CPU time).
Figure 7 presents the results demonstrated by CG ([33] and [18] options), BFGS, L-BFGS and
T-N. The T-N and L-BFGS are implemented here in the framework of the hybrid algorithm (by
choosing either L-BFGS calls k1 = 0 or T-N calls k2 = 0, respectively). BFGS exhibits the best
convergence rate during the first few iterations but then stops converging quickly. Another problem
with this method is its lack of robustness: very often a suitable (determined by trial and error) initial
guess should be chosen in order for this method to perform adequately. The hybrid method was
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Optimization results — 1 (viscous case)
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Figure 7. History of the optimization (logarithm of discrepancy) versus the number of forward + adjoint problem calls,
CG [33], CG [18], BFGS, L-BFGS and T-N for viscous case.

tested also on this problem by selecting a combination of L-BFGS calls (k1) and T-N calls (k2).
A simplistic trial-and-error search of the parameter space showed that the optional combination
was k1 = 5 and k2 = 20 for this problem. The hybrid method performances (for different k1 and
k2) compared with those of T-N and L-BFGS are presented in Figure 8.
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Optimization results — 2 (viscous case)
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Figure 8. History the optimization (logarithm of discrepancy) versus the number of forward + adjoint problem calls,
T-N, L-BFGS and hybrid (k1 = 5, k2 = 20) for the viscous case.

Figures 9-12 present results of another test (for inviscid flow, Reynolds number of 108).
Figure 9 represents the history of minimization iterations for the CG, BFGS, L-BFGS and T-N
unconstrained minimization methods.

Optimization results — 1 (inviscid case)
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Figure 9. The comparison of T-N, L-BFGS, CG and BFGS (discrepancy versus direct + adjoint calls) for the inviscid
case.
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Optimization results — 2 (inviscid case)
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Figure 10. The comparison of T-N, L-BFGS, hybrid (k1 = 5, k2 = 20) and CG [18] (discrepancy versus direct +
adjoint calls) for the inviscid case.

Figure 10 shows a comparison between T-N, L-BFGS and the hybrid algorithms for the inviscid
case where we also have plotted the cost functional versus the number of direct 4 adjoint calls.
The comparison of Figures 9 and 10 shows that the CG-descent method achieves the best results
from the viewpoint of both quality and speed followed immediately by the hybrid method.

Figures 11 and 12 present a comparison of results obtained for the considered minimization
methods versus the exact result.

The calculation time in terms of the number of direct and adjoint problem calls and the con-
sumed CPU time is presented in Tables 1 and 2, respectively. The CPU time corresponds to
the Celeron (800 MHz) processor and the Windows-98 operational system. The specifics of the
present tests are the high computational burden of direct and adjoint problems in comparison
with other operations (Hessian generation and inversion, linear search, etc.) that consume only
about 2% of total computational time. This is connected with the relatively low dimensionality
of control parameters (400) and high expense of solving the direct and adjoint problems. Solving
the adjoint problem call is less time consuming than solving the direct one due to the linearization
of the forward problem during the adjoint process.

Table 3 displays the norm of solution error as the sum of square discrepancies of optimal and
exact solutions for the quasi-Newton methods.

4.1 Quality of the adjoint model

The adjoint of the parabolized Navier—Stokes equations was derived from a differentiate-then-
discretize (continuous adjoint) approach.
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Table 1. Direct solver performance.

Method Direct calls Adjoint calls % Direct CPU time % Adjoint CPU time % Other ops

LBFGS 93 93 59.5 379 2.6
T-N 182 180 59.9 38.0 2.1
Hybrid 250 250 59.7 38.1 22
CG [33] 176 175 59.5 38.1 2.4
CG [18] 161 318 33.1 66.9 0.4
BFGS 120 116 59.5 38.5 2.0

Table 2. Adjoint solver performance.

Number of inner Direct CPU Adjoint CPU

Method Direct calls Adjoint calls CG iterations time (s) time (s) Total time (s)
LBFGS 93 93 - 82.11 52.30 138.01
T-N 182 180 46 160.89 102.06 268.60
Hybrid 250 250 48 221.49 141.35 371.0
CG [33] 176 175 - 158.7 101.6 266.7
CG[18] 161 318 - 87.2 272.9 360.1
BFGS 120 116 - 105.9 68.6 177.9

Table 3. Norm of final solution error.

Method LBFGS Hybrid BFGS TN CG [33] CG [18]

Norm of solution error 2.5186 2.5237 2.4618 2.5154 2.5106 2.5129

A verification of the quality of the gradient of the cost functional with respect to the control
variables yields around two digits of accuracy.

A more significant test is the alpha test [29]. The alpha test verification of the correctness of
the gradient is described below.

Let J (x + ah) = J(x) + «hTVJ(x) 4+ O(«?) be a Taylor expansion of the cost function J = ¢
around X. The term « is a small scalar, and h is a vector of unit length (suchash = VJ/ ||V J])).
Rewriting the above formulas, a function of « can be defined as

J(x+ah) —J(X) 1+ 0@
oh'VJ(X) ’

p(a) =

For values of « that are small but not too close to the machine zero, one should expect to obtain
a value for ¢ () that is close to 1.

The values of ¢(«) are shown in Figures 13 and 14 as a function of « . It is clear that, for a
value of o between 1072 and 1078, a near unit value of ¢(«) is obtained for both inviscid and
viscous cases.

This validates the quality of the adjoint model for use in obtaining the gradient of the cost
function with respect to the control variables for both the inviscid and viscid cases, respectively. It
is anticipated that these conclusions will hold with a higher accuracy for a discrete gradient as well.
An upcoming paper with the same authors describes and compares the use of the differentiate-
then-discretize (used in this study) versus a discretize-then-differentiate gradient obtained from
an automatic differentiator [15,16].
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Comparison of method versus solution
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4.2 Issues of ill-posedness and multiple minima

As the problem we are addressing is an ill-posed inverse parameter estimation, the issue of
uniqueness of the local minima attained has to be placed in the context of the accuracy the different
minimizers attain. Moreover the CG methods used in the comparison have a self-regularization
property [20].

Additional tests conducted show that while the minimum of the cost function attained by the
various methods is not identical, the solutions they attain are equal within a range of 5 x 1073,

Figure 15 shows all of the viscous case solutions of the various minimization methods
employed in this research. As is evident from the figure, the solutions obtained are within the
aforementioned range.

As seen in Figure 15, it becomes evident that further research along these lines would benefit
from the use of non-smooth optimization techniques. Breaking the interval into sub-domains may
improve the final error norm of these solutions.

4.3 Sensitivity to initial guess

Several tests (not shown) were run to determine the sensitivity of various methods to the choice of
the initial guess. Perturbations of order ranging from 107> to 10° were added to the initial guess
(which was determined from engineering experience and intuition).

The results show that perturbations up to the order 10~2 converge to minima of the same order
as the unperturbed problem. Perturbations of the order of 10! still converge to minima of lower



84 A.K. Alekseev et al.

Solution vs initial condition

2.2 T T T

1.8

IS <]

Temperature, scaled
o

0.8

| 1 | | 1 1 1 1 1
0 10 20 30 40 50 60 70 80 90 100
Grid point (Y, at A — see fig. 1)

Figure 16. The quality of solution as a function of the disturbance magnitude (inviscid flow).

order of accuracy while perturbations of 10° yield solutions which are not Lipschitz continuous,
i.e. physically invalid.

While all methods displayed reasonable robustness to these perturbations, the method of Hager
and Zhang [18] emerged as the most robust when the debug parameter was set to ‘true’.

5. Discussion and conclusions

The problem of inflow parameter estimation from the outflow measurements is an ill-posed one.
A study of the spectrum of the Hessian of the discrepancy (cost) with respect to the control
variables (Figure 6) confirms the problem’s ill-posedness. The Newton method is expected to be
largely unstable due to large number of Hessian eigenvalues that are close to zero. This is related
to the irreversible loss of information (entropy increasing) under dissipation and shock formation;
see for example Figure 16, where we see the impact of disturbance magnitude (pressure ratio) on
the quality of inflow parameter estimation.

According to the theory of ill-posed problems, these processes should engender instability.
Some oscillations are indeed detectable in the numerical calculations (see Figures 3 and 12).
Nevertheless, they are of lesser size than expected. The possible reason may lie in the numerical
viscosity of the forward and adjoint solvers. As a result, the approximation of the highly oscillating
gradient is violated and the optimization breaks down before the significant instability develops.

Another source of stability may be caused by the general properties of gradient-based methods.
The steepest descent and CG methods are known to possess regularization properties [4,20].
These properties are connected with a search in the subspace of the dominant Hessian eigenvectors
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(corresponding to maximal eigenvalues). The discrepancy gradient may be presented as the action
of the Hessian by the distance to the exact solution.

Ve(x") = —HAX". (35)

Here the superscript n denotes the minimization iteration count.

For example, the steepest descent method has a form x"*! — x" = —tVe(x"). It may be recast
in the form (x* being the exact solution): X"*! — x" — x* = —7Ve(x") — x*; x"*! —x* = x" —
xX* — Ve(x"); —AX"T! = —AX" — tVe (X") = —AX" + THAX" = — (I — tH) AX";

And finally

AX"T = (I — tH) AX". (36)

If the initial guess Ax? is expanded over Hessian eigenvectors (HU, = 1, U,, where Uy, A,
are the eigenvectors and eigenvalues), Ax? = ) ; C;Uj, the components that are connected with
maximum eigenvalues (dominant or leading vectors) will be represented in the gradient with
maximum weights. These components of the initial guess will be maximally reduced during
iterations and will be absent from the final solution.

b
m, 0<b<l1. (37)

max

A)CHZZCJ'U]'(I—T)\.}‘)", T~
J

On the other hand, the components of the initial guess Ax” connected with small eigenvalues
do not participate in the iterations. Thus, the search along the gradient (or some combination of
gradients under different iterations) means the search is conducted in the subspace of the Hessian
dominant eigenvectors. The subspace of eigenvectors with the small eigenvalues is implicitly
neglected, thus providing for the regularization effect. In practice, the convergence is fast during
the first iterations and then slows down after a relatively small number of iterations, whose number
is possibly close to the number of Hessian dominant eigenvectors.

For the present problem, the minimization methods under consideration (L-BFGS, TN and
hybrid) are found to provide a much faster convergence rate in comparison with the usual nonlinear
CG method (excluding the new CG descent algorithm) and a similar stability. This may be caused
by the same mechanism of self-regularization as for the gradient-based methods. Thus, the methods
considered in this research display applicability for the inverse problem solution using iterative
regularization.

The robust large-scale unconstrained minimization methods considered (T-N, L-BFGS and
hybrid) were found to be applicable for the inverse problem solution without requiring any special
regularization. From this viewpoint, these methods exhibit a similarity to the method of nonlinear
CGs while exhibiting better performance. The BFGS method may be effectively used if a small
range of convergence is required. The L-BFGS method provided both fast convergence and a
good quality of results for our case. The TN method provided a good final quality of optimization
while exhibiting a relatively slower rate of convergence. The version of CG of Hager [18,19]
demonstrated excellent results for both viscous flow and inviscid flow when one follows closely
the instructions in the user manual. Private communications with Prof. Hager helped us with
this task.

Figure 8 shows also the impact of tuning the k1 and k2 parameters in the hybrid algorithm [23].
A suitable tuning, which is obviously case dependent, permits the hybrid method to achieve in our
case the second best performance among large-scale unconstrained optimization methods tested
for the inviscid case, the best performance being exhibited by CG-descent of Hager [18]. The
hybrid algorithm achieves the best results for the viscous case followed closely by the CG-descent
algorithm of Hager.
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Therefore, the numerical results obtained for our test case demonstrate that the new hybrid
method (also referred to as the enriched method [23]) and the new CG-descent method [18], once
suitably tuned, should be considered serious alternatives to both the T-N and L-BFGS methods,
especially since it is known (see e.g. [28]) that Newton-type methods are more effective than the
limited-memory quasi-Newton L-BFGS method on ill-conditioned problems.

Another implication of this research is the possibility of reusing existing minimization tech-
niques for the minimization of noisy functions as the minimization methods here proved to be
robust in the presence of noise, especially the method of Hager [18], see Kelley [21] for more on
noisy function minimization.

Acknowledgements

The authors acknowledge the support from the School of Computational Science, Florida State University.

The expert comments of two anonymous reviewers and the suggestions of Dr William Hager sizably improved the
presentation and content of the paper and are gratefully acknowledged.

Professor Navon acknowledges the support from NSF grants number ATM-0201808, managed by Dr Linda Pang, and
CCF-0635162, managed by Dr Eun K. Park.

References

[1] L.M. Adams and J.L. Nazareth, Linear and nonlinear conjugate gradient-related methods, Proceedings of the
AMS-IMS-SIAM Summer Research Conference held at the University of Washington, July 1995, SIAM, 1996.
[2] A.K. Alekseev, On estimation of entrance boundary parameters from downstream measurements using adjoint
approach, Int. J. Numer. Methods Fluids 36 (2001), pp. 971-982.
[3] A.K. Alekseev and .M. Navon, The analysis of an ill-posed problem using multiscale resolution and second order
adjoint techniques, Comput. Methods Appl. Mech. Eng. 190(15-17) (2001), pp. 1937-1953.
[4] O.M. Alifanov, E.A. Artyukhin, and S.V. Rumyantsev, Extreme Methods for Solving Ill-posed Problems with
Applications to Inverse Heat Transfer Problems, Begell House Inc. Publishers, New York, NY, 1996.
[5] E.M.L. Beale, A derivation of conjugate gradients, in Numerical Methods for Nonlinear Optimization, F.A. Lootsma,
ed., Academic Press, London, 1972.
[6] D.N. Daescu and .M. Navon, An analysis of a hybrid optimization method for variational data assimilation, Int. J.
Comput. Fluid Dyn. 17(4) (2003), pp. 299-306.
[7] B.Das, H. Meirovitch, and .M. Navon, Performance of enriched methods for large scale unconstrained optimization
as applied to models of proteins, J. Comput. Chem. 24(10) (2003), pp. 1222-1231.
[8] W.C. Davidon, Variable metric method for minimization, SIAM J. Optim. 1 (1991), pp. 1-17.
[9] J.E. Dennis, Jr and J.J. More, Quasi-Newton methods, motivation and theory, SIAM Rev. 19 (1977), pp. 46-89.
[10] J.E. Dennis, Jr and R.B. Schnabel, Numerical Methods for Unconstrained Optimization and Nonlinear Equations,
Prentice-Hall, Englewood Cliffs, NJ, 1983, 378pp.
[11] R. Fletcher and M.J.D. Powell, A rapidly convergent descent method for minimization, Comput. J. 6 (1963),
pp. 163-168.
[12] J.C. Gilbert, On the realization of the Wolfe conditions in reduced quasi-Newton methods for equality constrained
optimization, SIAM J. Optim. 7(3) (1997), pp 780-813.
[13] J.C. Gilbert and J. Nocedal, Global convergence properties of conjugate gradient methods, SIAM J. Optim. 2 (1992),
pp. 21-42.
[14] PE. Gill and W. Murray, Report SOL 79-15, Department of Operation Research, Stanford University, Stanford, CA,
1979.
[15] M.D. Gunzburger, Adjoint equation-based methods for control problems in viscous, incompressible flows, Flow
Turbul. Comb. 65 (2000), pp. 249-272.
[16] M.D. Gunzburger, Perspectives in Flow Control and Optimization (Advances in Design and Control), SIAM, 2003.
[17] W.W. Hager, Runge—Kutta methods in optimal control and the transformed adjoint system, Numerische Mathematik
87(2) (2000), pp. 247-282.
[18] W.W. Hager and H. Zhang, A new conjugate gradient method with guaranteed descent and efficient line search,
SIAM J. Optim. 16(1) (2005), pp. 170-192.
, Algorithm 851: CG DESCENT, A conjugate gradient method with guaranteed descent, ACM Trans. Math.
Softw. 32 (2006), pp. 113-137.
[20] P.C. Hansen, Rank Deficient and Discrete Ill-posed Problems, SIAM, Philadelphia, 1998, 247pp.
[21] C.T. Kelley, Iterative Methods for Optimization, SIAM, Philadelphia, 1999, xvi + 180pp.
[22] D.C. Liu and J. Nocedal, On the limited memory BFGS method for large scale minimization, Math. Program. 45
(1989), pp. 503-528.

[19]



Optimization Methods & Software 87

[23] J.L. Morales and J. Nocedal, Enriched methods for large-scale unconstrained optimization, Comput. Optim. Appl.
21 (2002), pp. 143-154.

, Automatic preconditioning by limited memory quasi-Newton updating, SIAM J. Optim. 10(4) (2000),

pp.1079-1096.

,Algorithm PREQN: FORTRAN subroutines for preconditioning the conjugate gradient method, ACM Trans.
Math. Softw. 27 (2001), pp. 83-91.

[26] S.G. Nash, Preconditioning of truncated Newton methods, SIAM J. Sci. Stat. Comput. 6 (1985), pp. 599-616.

[27] , Newton-type minimization via the Lanczos method, STAM J. Numer. Anal. 21 (1984), pp. 770-788.

[28] S.G. Nash and J. Nocedal, A numerical study of the limited memory BFGS method and the truncated-Newton method
for large-scale optimization, SIAM J. Optim. 1 (1991), pp. 358-372.

[29] .M. Navon, X. Zou, J. Derber, and J. Sela, Variational data assimilation with an adiabatic version of the NMC
spectral model, Monthly Weather Rev. 120(7) (1992), pp. 1433-1446.

[30] J. Nocedal, Theory of algorithms for unconstrained minimization, Acta Numerica 1 (1992), pp. 199-242.

[31] J. Nocedal and S.J. Wright, Numerical Optimization, Springer Verlag, 1999, 656pp.

[32] D.E. Shanno, Conjugate gradient methods with inexact searches, Math. Oper. Res. 3 (1978), pp. 244-256.

[33] D.F. Shanno and K.H. Phua, Remark on algorithm 500. Minimization of unconstrained multivariate functions, ACM
Trans. Math. Softw. 6 (1980), pp. 618—622.

[34] Z. Wang, .M. Navon, X. Zou, and FX. LeDimet, A truncated-newton optimization algorithm in meteorology
applications with analytic Hessian/vector products, Comput. Opt. Appl. 4 (1995), pp. 241-262.

[35] X.Zou, .M. Navon, M. Berger, K.H. Phua, T.Schlick, and E.X. Le Dimet, Numerical experience with limited memory
quasi-Newton and truncated Newton methods, SIAM J. Optim. 3(3) (1993), pp. 582-608.

[24]

[25]






