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SUMMARY 
 

The approximation of reduced linear evolution operator (propagator) via Dynamic Mode 
Decomposition is addressed for both linear and nonlinear events. The 2D unsteady supersonic 
underexpanded jet, impinging the flat plate in nonlinear oscillating mode, is used as the first test 
problem for both modes. Large memory savings for the propagator approximation are 
demonstrated. Corresponding prospects for the estimation of receptivity and singular vectors are 
discussed. The shallow water equations are used as the second large scale test problem. Excellent 
results are obtained for the proposed optimized DMD method of the shallow water equations when 
compared with recent POD/DEIM based model results in the literature. 
 
KEYWORDS: dynamic mode decomposition; propagator; unsteady Euler equations, shallow water 
equations. 

 
 

1. INTRODUCTION 
 
The Dynamic Mode Decomposition (DMD) is a recently devised method for the search of a 

small number of basis vectors (dynamic modes) able to describe the total fluid state [1-12]. It 
promises certain advance in the retrieval of flow structures which provide a low dimensional 
approximation of complex unsteady flowfields. DMD is based on an algorithm for numerical 
estimation of eigenvalues Λ  and right eigenvectors RΩ  of an operator A  determining the flow 
evolution (linear propagator). The set of flow snapshots is used as the input data.  

A powerful way of analyzing nonlinear flow dynamics using linear techniques is provided 
by the use of dynamic modes (see e.g. the work of Holmes et al. [7], Bagheri [8], Mezic [9]). 
Among several snapshot-based modal decomposition methods, dynamic mode decomposition 
(DMD) have been widely applied to study the physics of the dynamics of the flows in different 
applications.  

A theoretical framework is proposed by Tu et al. [10], in which DMD is defined as the 
eigendecomposition of an approximating linear operator. They demonstrate the utility of this 
approach by presenting novel sampling strategies that increase computational efficiency and 
mitigate the effects of noise. A new technique that allows dynamical information to be extracted 
from large datasets and data streams is proposed by Hemati et al. [11]. Their low-storage method 
for performing dynamic mode decomposition can be updated inexpensively as new data become 
available. The problem of modal decomposition of large and arbitrarily sampled systems is 
addressed by Guéniat et al. [4]. Their method essentially formulates the problem in an optimization 
setting and decouples the estimation of the temporal description from the spatial description.  

In a bold manner, the problem of systems governed by nonlinear evolution laws is addressed 
by Williams and his coworkers [12]. They demonstrate that the Koopman eigenfunctions and 
eigenvalues define a set of intrinsic coordinates, which serve as a natural framework for fusing 
measurements obtained from heterogeneous collections of sensors. 
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In the present paper we denote the operator A  as the Schmid operator (which acts on 
dynamic variables) in order to distinguish it from the Koopman operator [2, 13, 14] (which acts on 
observable variables). 

The DMD approach enables one to obtain also a set of left eigenvectors LΩ . This set 
provides the feasibility to approximate the Schmid operator as a product of the diagonal and two 
rectangular matrices R LA = Ω LΩ . In this form the Schmid operator A  may be efficiently stored and 
used implicitly.  

The matrix form of Schmid operator A  is interesting for several important classes of 
problems. For example, the adjoint propagator *A  is used in receptivity problems [15]. The actions 
of operator *A A  are used for the maximal eigenvalue estimation. The corresponding eigenvector 
provides the most rapidly growing perturbations at a finite time interval (singular vectors [16]) that 
are also of current interest.  

The evaluation of receptivity and the estimation of the singular vectors are both linear 
problems. If flow dynamics is nonlinear, the linear approximation may be based on a short time 
interval between snapshots. 

 DMD also may be applied to essentially nonlinear problems [2]. The physical meaning of 
the operator changes for longer time intervals (providing nonlinearity); at some limit the operator 
may become independent of the snapshots selection and may be considered as a form of the 
Koopman operator. 

The remainder of this article is organized as follows. In Section 2 we present one of the 
main version of DMD in accordance with [1] along with some of its properties especially useful for 
our purposes. Section 3 considers the construction of the Schmid operator as a product of 
rectangular matrices and the equivalence of DMD and Schmid operator. Section 4 analyses the 
relations between the Schmid operator and the propagator (flow evolution operator) in both linear 
and nonlinear modes. Further, in Section 5, the numerical test results of the Schmid operator 
estimation in linear and nonlinear modes are presented. A supersonic jet interaction with the flat 
surface is considered as one of the test problem. The second test problem concerns flows described 
by shallow water equations. Several problems, having prospects for the Schmid operator 
applications, are surveyed in Section 6. Conclusions are drawn and presented in the final Section 7.  

 
2. DMD VERSION FOR NON-NORMALIZED MODES 

 
There exist several approaches to DMD construction that include: normalized dynamic 

modes [1], non-normalized dynamic modes [2, 6] and optimization over eigenvalues [3, 4]. In the 
present paper, it is more convenient from our purposes to use normalized modes. So, herein, we 
consider the main features of DMD in accordance with [1]. Let’s consider a set of N  
snapshots 1 1( ... )N

NSn u u= , which are discrete approximations of the flow fields at consecutive time 
instances separated by an identical interval t∆ . Each snapshot iu  is a vector of the dimension Nt . 
The linear operator ( )A t∆  (an unknown matrix of dimension Nt Nt× ) is assumed to exist and 
provide the transformation 1i iu Au+ = . In this case the snapshots form a Krylov sequence 

2 1
1 1 1 1 1{ , , ,..., }N NSn u Au A u A u−= . 

For a long enough snapshot set, the eigenvalues and right eigenvectors j j jAv vλ=  may be 
calculated and the snapshots may be written as  

 ( )( 1)1 j ji k tk
k j j j j

j j
u a v a v e σ ωλ + − ∆−= =∑ ∑ , ( 1, )k N= . (1) 

Usually, the right eigenvectors jv C∈  are denoted as dynamic (Koopman) modes, the 

eigenvalues j Cλ ∈  are denoted as (Koopman) eigenvalues, and the  coefficients ia C∈  are 
denoted as amplitudes (Koopman eigenfunctions).  
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The estimation of Koopman modes, eigenvalues and amplitudes from the known set of 
snapshots 1

NSn  is the main computational problem from this viewpoint. The sets of shifted 

snapshots 1 2
1 1 1 1 1( ... ) ( ... )N N

NSn u u u A u− −
−= = , 1

2 2 1( ... )N N
NSn u u ASn −= =  are used, herein, according 

to [1]. The set 1
NSn  is assumed to capture the main physical features of a considered process more 

precisely as the number of snapshots increases. If a certain critical number of snapshots is exceeded, 
the following snapshots should become linearly dependent on the previous ones (similar to Krylov 
type iteration processes). In this limit, the last snapshot Nu  may be expressed via the previous 
snapshots with some error r : 

 1 1 2 2 1 1...N N Nu c u c u c u r− −= + + + + . (2) 

By substituting Nu  in 2
NSn  and using a companion matrix C , we obtain 1

2 1
N NSn Sn C r−= ⋅ + , where 

 

1

2

1

0
1 0

1 0
... ...

1 N

c
c

C

c −




=



 
 

. (3) 

The expression 1
2 1
N NSn Sn C−≈ ⋅  holds under the assumption of small r . Thus, it can be stated that: 

 1 1
1 2 1
N N NA Sn Sn Sn C− −⋅ = = ⋅ . (4) 

The set of snapshots may be presented using SVD [17] as follows: 
 1 *

1
NSn U V− = S . (5) 

Since the snapshot matrix is not invertible, the Moore-Penrose pseudoinverse matrix for 
1

1
NSn −   is used which can be written as *V U+Σ . We denote here 1 1

1( ,..., ,0,...0)rdiag σ σ+ − −Σ = . 

From the expression 1
2 1
N NSn Sn C−=  one may obtain via the pseudoinverse matrix:  

 *
2
NC V U Sn+= S .  (6) 

Let us change the companion matrix C  by the transformation: 

 
~

1( ) ( )C V C V+ − += ΣΣ  . (7) 
Under this transformation, eigenvalues do not change, while the eigenvectors are rotated: 

~
C Cy V y+= Σ , 

~
*C Cy V y= Σ .  

Further, the substitution of expression (6) into (7) yields: 

 
~

*
2
NC U Sn V += S . (8) 

From 1 1
1 1
N NA Sn Sn C− −⋅ = ⋅  one may obtain * *A U V U V C⋅ Σ = Σ ⋅ , * * 1( )A U U V C V −⋅ = Σ ⋅ ⋅ Σ  and 

~
A U U C⋅ = . Taking into account 

~
1C W W −= Λ  (

~
C
RW = W ) we obtain the expression 

 A UW UW⋅ = ⋅Λ . (9) 

One can see from (9) that the eigenvalues Λ  of the matrix 
~
C  coincide with the eigenvalues of A . 

The right eigenvector of A  assumes the form: 

 
~

A C
R RUW UW = = W . (10) 

Since the matrix C  is not symmetric, the right eigenvectors do not form an orthogonal basis 
and the set of left eigenvectors (biorthogonal to right) is necessary. They may be obtained from the 
expression 1 1

1 1
N NA Sn Sn C− −⋅ = ⋅  via SVD decomposition of the snapshot set * *A U V U V C⋅ Σ = Σ ⋅ . 

Further, the chain of transformations * *V U A U V C+Σ ⋅ ⋅ Σ =  * *V U A C V U+ +Σ ⋅ = ⋅ Σ  provides the 
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expression
~

* 1 * *( )U A V C V U CU+ − +⋅ = Σ ⋅ ⋅ Σ = . Taking into account the 
~
C  eigenvector  

decomposition, we get * 1 *U A W W U−⋅ = Λ  and obtain 1 * 1 *W U A W U− −⋅ = Λ  that determines the left 
eigenvector of A : 

 
~

1 * *A C
L LW U U−W = = W . (11) 

This enables an expansion in the series over the right eigenvectors ( 1 j ju a v= ). The 

coefficients ja  may be calculated via the biorthogonality relation ( il is the left eigenvector that 

belongs to A
LΩ  matrix) 

 *
k i ikv l δ=  (12) 

and has the form 
 *( )k ka l u= .  (13) 

 
 

3. THE REDUCED FORM OF THE SCHMID OPERATOR  
 
Thus, the eigenvalues and (right and left) eigenvectors of the Schmid operator A  may be 

estimated from the spectrum of matrix 
~

*
2
NC U Sn V += S . Then, the construction of the Schmid 

operator in the following reduced form is feasible: 
 A A

R LA = Ω LΩ , (14) 

where ,A A
R LΩ Ω  are rectangular matrices and Λ  is a diagonal one. 

The explicit form of propagator matrix A  requires very high memory of dimension 
about Nt Nt×  for CFD applications. Even for moderate grids (for example, about 100  nodes over a 
single spatial coordinate) 4~ 4 10Nt ×  in the 2D case and 6~ 5 10Nt ×  in 3D case. The 
decomposition of A  via a product of reduced matrices requires the storage of only 2Nt N N× +  
numbers. In the  2-D case for 4~ 4 10Nt ×  and ~ 40N  , the memory saving is about three orders of 
magnitude. The CPU time savings are close or more significant due to the nonlinear growth of the 
computer time necessary for the spectrum estimation as the matrix order increases. 

It should be stressed that calculations of snapshots by the reduced Schmid operator 
approximation R LA = Ω LΩ  and by DMD are equivalent: 

 1 1 1
1 1 1

1
( )( )... ( ) ( )

N
k k k

k R L R L R L R L R L i i i
i

u u u u a v λ− − −

=

= Ω LΩ Ω LΩ Ω L Ω = Ω LΩ = Ω L Ω =∑ . (15) 

Thus, the analysis of the Schmid operator properties is directly applicable to the DMD method. 
 
 

4. RELATIONS OF SCHMID OPERATOR AND PROPAGATOR   
 
Let the dynamics of a system be described by the equation 

 /du dt Bu= . (16) 
In the analysis we use M  steps of evolution between consecutive snapshots 1,k ku u +  with the 

step durationτ . Then the time interval between snapshots is M tt = ∆ .  
Consider an approximation of the solution propagator and its relations with the Schmid 

operator for both linear and nonlinear events. 
 
Linear case. If an operator B  does not depend on u , then the propagator approximation may 

be written as the product of the single time step τ  operators 
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 /
1 1 1 1 1( ) ( )B B t M B tL t u e u e u e u A t ut ∆ ∆∑ ∑∆ = = = = ∆ . (17) 

Thus, in the linear case, the Schmid operator is equivalent to the approximation of 
propagator ( ) ( )L t A t∆ = ∆ . 

 
Nonlinear case. In general, a nonlinear propagator assumes the form 

 ( )
1 1( ) kB uL t u e ut∑∆ = . (18) 

It essentially depends on the set of points between snapshots and, thus, is not invariant for 
different intervals and does not correspond to the Schmid operator properties.  

However, if for some reason the propagator does not depend on intermediate points 
* *
2 1, ... ,n M nu u u u +  between the snapshots nu  and 1nu + , for example, if there exists a mean operator  

 
_

*1 ( )k
M

B B u
M

= ∑  (19) 

and it is invariant for all intervals, then: 

 
_

( )kB u B t
n n n nLu e u e u Aut ∆∑= = =  (20) 

and the propagator approximation 
_
B tA e ∆=  may be considered as a Schmid operator. 

Hence, there are two cases: linear and nonlinear (“averaged”), when such linear operator A  
may exist, that corresponds to the propagator L  . 

In the linear event the operator jiA  is estimated in vicinity of a single point of the dynamic 
system trajectory and implies a “linearization in small”. 

For the nonlinear asymptotic, the operator jiA  is defined on a large part of the system 
trajectory and may be considered as a “linearization in the large” [14]. 

 
 

5. NUMERICAL TESTS 
 

Two large scale problems are used for the demonstration of abovementioned features of the 
reduced form of the Schmid operator approximation. The first problem concerns an unsteady flow 
of impinging jet described by the Euler equations. The second problem concerns flows described by 
the shallow water equations. Some numerical results are provided below. 

 
 

5.1.1  2D jet impingement simulation 
 

The subroutines DGESVD (LAPACK [21]) and SNAUPD, SNEUPD (ARPACK [22]) were 
used for SVD decomposition. 

Subroutine DGEEV (LAPACK) was used for the calculation of complex eigenvalues, right 
and left eigenvectors of the non-symmetric companion type matrices. 

The numerical tests were conducted both for the low dimensional problems with a-priori 
known matrix operator A  and for a large scale problem for the Schmid operator computed from N  
snapshots, obtained from the numerical solution of the  two dimensional Euler equations.  

The original operator A  was estimated from the set of its actions for low dimensional 
operators (from 5 5×  to10 10× ). Results of numerical tests confirmed the correct reconstruction of 
original operator A . 

For a large scale problem, the Schmid operator was reconstructed via the product of the 
rectangular matrices Nt N× , where 36000Nt =  and 10 50N = ÷ .  

At a normal impingement of supersonic underexpanded jet on a plate, the flow pattern 
depends on parameters such as the Mach number aM , pressure ratio 0 / an p p= , and distance from 
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nozzle exit by the surface / ax d . Within a rather narrow range of parameters, oscillating flow modes 
are known to occur. In this mode, the shock wave structure causes peripheral pressure maximums, 
which may lead to an unsteady separation. The results of computation of the oscillating flow seem 
to be appropriate as a test problem in order to test performance of DMD. Evidently, the influence of 
turbulence is neglected. However, the shock induced unsteady separation bubble may be 
successfully modeled by an inviscid numerical method providing a good agreement with the 
experimental data [18]. So, this model correctly represents a true nonlinear unsteady flow dynamics 
and is useful for DMD tests due to its low computational costs.  The following 2D+1 Euler 
equations are used. 

 0)(
=

∂
∂

+
∂
∂

k
k

x
U

t
ρρ

, (21) 

 
( ) ( )

0=
∂

+∂
+

∂
∂

k
ikiki

x
PUU

t
U δρρ

, (22) 

 0)()( 0 =
∂

∂
+

∂
∂

k
k

x
hU

t
E ρρ

. (23) 

Here ( , )iU U V=  are the velocity components, 2 2
0 ( ) / 2h U V h= + + , 

1
Ph eγ γ

γ ρ
= =

−
, 

1
RTe
γ

=
−

, 

( )2 2( ) / 2E e U V= + +  are enthalpies and energies (per unit volume) respectively, and P RTρ= is 

the state equation. 
The computations are performed in the spatial domain max max(0 ,0 )x X y YΩ = < < < <  

during the time interval (0 )ft t< <  with the flow snapshot recorded at equally spaced time 
subintervals t∆ . 

At the boundary ( 0)x = , we accept the supersonic inflow conditions, corresponding a nozzle 
exit section and the environment conditions (pressure, temperature, zero normal derivatives of 
velocities) on another part of the boundary. At the right boundary a no penetration condition is set. 
On the lateral boundaries max( 0, )y y Y= =  we impose the outflow conditions in the supersonic 
region and the environment conditions at the subsonic part of the boundary. 

The Euler equations were solved by a method of second order spatial accuracy [19] with the 
numerical fluxes calculated via the method by Sun and Katayama [20] and a second order time 
discretization. 

 
5.1.2. The gas dynamics features of the flow  

 
The periodic formation and disappearance of a separation bubble is specific for this mode. 

Figures 1 and 2 demonstrate the density fields for the maximal and minimal (developed separation 
bubble) pressure and corresponding streamlines. Figure 3 provides the surface pressure variation in 
time at the axis of symmetry for the transitional and following oscillation modes. The results 
correspond to the flow parameters aM =  4.0 , 1.4γ = , / 15ax d = , 4n = . 
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Figure 1. Density isolines and streamlines for 

the maximal pressure. 
Figure 2. Density isolines and streamlines for 

the minimal pressure. 
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Figure 3. The pressure at the axis of symmetry as a function of dimensionless time. 

 
 

5.1.3. DMD analysis for linear mode 
 
The existence of a linear mode is expected for a small interval t∆  between snapshots 

(several steps of the finite difference algorithm). The eigenvalues for linear problems, usually, are 
not located on the unit circle. Figure 4 presents the complex eigenvalues (dependence Re Im( )λ λ ) for 
the interval between snapshots of t∆ = 10 and 15 steps, selected on the oscillations phase of 
evolution. 

 



A.K. ALEKSEEV, D.A. BISTRIAN, A.E. BONDAREV AND I. M. NAVON 8 

-1,0

-0,8

-0,6

-0,4

-0,2

0,0

0,2

0,4

0,6

0,8

1,0

-1,5 -1 -0,5 0 0,5 1 1,5

Real

Imag

 
Figure 4. Eigenvalues Re Im( )λ λ . 
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Figure 5. Isolines of right real eigenvector ,1RΩ  

for 5k = . 
Figure 6.  Isolines of right real eigenvector 

,1RΩ  for 10k = . 
 
Figures 5 and 6 illustrate the right real eigenvectors ,1RΩ  (the component of density) for 

t k t∆ = ⋅ ( 5k =  and 10 steps of CFD algorithm). One may see a relatively small variation of 
eigenvector structure at the time shift. 

For t k t∆ = ⋅ ( 5k = , 10) Figures 7 and 8 depict amplitudes ,4( )RAmp Ω  (also density 

component) for one of the right complex eigenvectors ki
k kv Amp e φ= . 
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Figure 7. Isolines of right complex eigenvector 

amplitude ,4( )RAmp Ω  for 5k = . 
Figure 8. Isolines of right complex eigenvector 

amplitude ,4( )RAmp Ω  for 10k =  . 
 
The variation of some eigenvalues as a function of  the distance between the  snapshots 

(number of time steps k ) is provided in Figure 9. The eigenvalues are displayed for two real modes 
(lines 2 and 3). The phase shift 4α  is plotted for one of the complex modes (line 1). A linear 
dependence on k  may be observed. The spectrum structure for the linear event is found to be 
stable. 
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Figure 9.  The real eigenvalues and the phase shift 4α  as functions of the number of time 

steps k . 1 is the phase shift 4α , 2, 3- two real eigenvalues.  
 
A comparison of the numerical results presented in Figure 5 to Figure 8 demonstrates a 

relatively small variation of right eigenvectors RΩ  over k , a similar behavior is also specific for the 
left eigenvectors LΩ . Thus, in linear approach (at small distances t∆ ), the dynamics is determined 
by the variation of ( )tΛ ∆  at constant RΩ  and LΩ . The evolution of flow, in this event, is caused by 
the rotation of constant eigenvectors in the complex plane. 



A.K. ALEKSEEV, D.A. BISTRIAN, A.E. BONDAREV AND I. M. NAVON 10 

At small intervals between snapshots (about single computation step) some ripples are 
visible in RΩ  and LΩ . For 5k ≥  these ripples are practically invisible. 

 
5.1.4. DMD analysis for nonlinear mode 

 
Herein, only self-oscillating part of the flow history is used for tests due to its transparency. 

Figure 10 presents the dependence Re Im( )λ λ  for time interval t∆ = 500 steps which far deviates 
from the oscillation period ( 780oscT ≈  steps). In this test 40 snapshots are used. Eigenvalues are 
close to the unit circle that is common for nonlinear problems.  
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Figure 10.  Eigenvalues Re Im( )λ λ  for nonlinear mode.  

 
Figure 11 shows the dependence of the amplitude on the frequency for 10 (line 1) and 40 

(line 2) snapshots. The maximal amplitude correlates with the main frequency of oscillating mode 
( 2.3ω ≈ ). Thus, DMD in nonlinear mode enables the capture of the main features of flow with 
highly nonlinear (due to shock waves) oscillations. 
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Figure 11. Amplitudes as a function of the optimal frequency estimations.  

1 corresponds to 10 snapshots, 2 corresponds to 40 snapshots. 
 

The quality of snapshot reconstruction may be estimated from Figures 12 and 13. Figure 12 
represents one of snapshots (density field at separation stage, 800k = ) and Figure 13 represents the 
result of the reconstruction at 800k =  performed using the rotation of eigenvectors obtained from 
data at 760k = . 
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Figure 12. Density isolines for the snapshot that 

corresponds the separation stage. 
Figure 13. Reconstructed density isolines for 

the snapshot from Figure 14. 
 
It should be noted, that the DMD results significantly depend on the number of snapshots. 

Figure 14 reveals the dependence of error norm r  (Eq. (2)) on the number of snapshots N  in a 
logarithmic scale for nonlinear mode. A convergence with increasing number of snapshots N  is 
observable, however, when N exceeds some number, the convergence deteriorates, a fact which 
may be attributed to the accumulation of numerical errors. 
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Figure 14. The error norm r  (Eq. (2)) as function of the number of snapshots N  in logarithm scale. 

 
Table 1 presents the computer time (Intel Core2Duo CPU, 3.0 GHz, 4.0 Gb) for different 

numbers of snapshots.  The linear dependence is observable.  
 

Table 1. CPU time T function of the number of snapshots N 
 

N 10 20 30 40 50 
T [sec] 52.3 142.1 182.0 247.8 301.6 

 
However, the full scale problem ( N Nt=  , 4~ 4 10Nt ⋅ ) seems quite unsolvable both from 

memory (~100 Gb) and computer time (~3 months) considerations. In general, this result looks as 
very promising from the viewpoint of reduced order approximation. 

 
 

5.2. DMD analysis of 2D shallow water dynamics 
 

The shallow-water equations have been used for a wide variety of hydrological and 
geophysical fluid dynamics phenomena such as tide-currents [23], pollutant dispersion [24], storm-
surges or tsunami wave propagation [25]. Early work on numerical methods for solving the shallow 
water equations is described in Navon (1979) [26]. The test problem used in this paper is consisting 
of the nonlinear Shallow Water Equations (also called the Saint Venant equations [27]) in a channel 
on the rotating earth, associated with periodic boundary conditions in the x -direction and solid wall 
boundary condition in the y -direction: 
 0,t x y xu uu vu fvη+ + + − =  (24) 
 0,t x y yv uv vv fuη+ + + + =   (25) 

 ( ) ( ) 0,t x yu vη η η+ + =  (26) 

 ( ) ( ) ( ) ( )max max0, , , , , ,0, , , 0,u y t u L y t v x t v x D t= = =  (27) 
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where ( ), ,u x y t  and ( ), ,v x y t  are the velocity components in the x  and y  axis 

respectively, ( ) ( ), , , ,x y t gh x y th =  is the geopotential height, ( ), ,h x y t  represents the depth of the 
fluid, f  is the Coriolis factor and g  is the acceleration of gravity. Subscripts represent the 
derivatives with respect to time and the streamwise and spanwise coordinates. 

We consider that the reference computational configuration is the rectangular 2D domain 
[ ] [ ]max max0, 0,L DΩ = × . We consider the model (24-27) in a β -plane assumption [28,30], in which 

the effect of the Earth's sphericity is modeled by a linear variation in the Coriolis factor 

 ( )max
ˆ 2 ,

2
f f y Dβ
= + −  (28)  

where ˆ ,f β are constants, mmax ax,DL  are the dimensions of the rectangular domain of integration. 
The initial condition I1 introduced by Grammeltvedt [29] was adopted as the initial height field 
which propagates the energy in wave number one, in the streamwise direction: 

 ( ) 2max max
0 0 1 2

max max max

9( / 2 ) 2 9( / 2 ), tanh sin cosh .
2

D y x D yh x y H H H
D L D

π −    − −
= + +    

    
  (29) 

Using the geostrophic relationship, ( )/yu h g f= − , ( )/xv h g f=  , the initial velocity fields 
are derived as: 

 ( ) 21 max
0

max max

9 9 / 2 9, tanh 1
2 2

g H D yu x y
f D D

  −
= − − −    

 

 maxmax
2

3max max
max

max

2sin
18 9 / 2 9sinh ,

9 / 2 9cosh

x
Lg D yH

f D D yD
D

π 
 −  

  − 


 

 (30) 

 ( ) 2 max
0 2

max max max

2 9( / 2 ), 2 cos cosh .g x D yv x y H
fL L D

ππ −   −
=   

  
 (31) 

We have followed the approach used by Navon [28, 30], which implements a two-stage 
finite-element Numerov-Galerkin method for integrating the nonlinear shallow-water equations on a 
β -plane limited-area domain, for approximating the quadratic nonlinear terms that appear in the 
equations of hydrological dynamics. We have captured a number of 240 unsteady solutions of the 
two-dimensional shallow water equations model (24-27), with a time step of 600t s∆ = , while the 
dimensional constants used for the above model are 
 4 1 11 1 1 1ˆ 10 , 1.5 10 , 10 ,f s s m g msβ− − − − − −= = × =   (32) 
 max m x 0 1a 2D =4400km, L =6000 2000 ,k 220 , 1m 3 ., 3H m H m H m= = =  (33) 

In this section, the application of dynamic mode decomposition based on the reduced 
Schmid operator [1] is illustrated by comparing the evolution of the flow field along the integration 
time window in the cases of the full model and the reduced order model. The DMD spectra for the 
( )( ), , , ,u v h x y t fields are presented in Figure 15. The DMD technique presented herein is fully 
capable of determining the modal growth rates and the associated frequencies, which are illustrated 
in Figure 16, for geopotential height field h . Figure 17 presents the isolines of first right 
eigenvector and isolines of the first left eigenvector of the reduced Schmid operator, for the 
( )( ), , , ,u v h x y t  fields. We perform the reconstruction of the ( )( ), , , ,u v h x y t  fields after 200 steps, 
corresponding to time 33.16T h= , in Figure 18. 

The DMD algorithm based on the reduced Schmid operator leads to a number of 173 modes 
retained for the reconstruction of geopotential height field, 42 modes retained for the reconstruction 
of the streamwise velocity field and 40 modes retained for the reconstruction of the spanwise 
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velocity field. In the case of DMD algorithm [2, 6], the number of stored modes is 192, 180, 151, 
respectively, thus a significant reduction in computational storage is achieved. 
 

a. b.  

c.  
Figure 15. Spectrum of dynamic mode decomposition ( )Re Imλ λ for (a) geopotential height field h , 

(b) streamwise velocity field u  and (c) spanwise velocity field v , 600t s∆ = . 
 

 
Figure 16. Growth rates and associated frequencies ( ),σ ω  obtained by dynamic mode 

decomposition of the geopotential height field h .  
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a.  b.  

c.  d.  

e.  f.  
Figure 17. Isolines of the real right eigenvector (a, c, e) and isolines of the real left eigenvector (b, 

d, f) of the reduced Schmid operator, obtained by dynamic mode decomposition of the , ,h u v fields, 
respectively. 
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a.  b.  

c.  d.  

e.  f.  
Figure 18. Reconstruction of , ,h u v  fields, respectively, employing the DMD based on reduced 

Schmid operator, at time 33.16T h= , 600t s∆ = . 
 

Selection of dynamic modes and amplitudes used for the flow reconstruction constitutes the 
source of many discussions among modal decomposition practitioners ([3, 6 and 31]). The 
superposition of all dynamic modes, weighted by their amplitudes and complex frequencies, 
approximates the entire data sequence, but there are also modes that have a weak contribution. On 
the other hand, the non-orthogonality of dynamic modes may raise the projection error while 
increasing the order of the DMD basis. To avoid these difficulties, we introduce in the following a 
numerical procedure to optimize the selection of dynamic modes involved in developing of a 
reduced order model of the flow. Assuming that, for the problem investigated here, there are no 
modes that are very rapidly damped having very high amplitudes, we explore the selection of the 
modes based on sorting them in decreasing order of their amplitudes. Based on the method of 
reduced Schmid operator presented herein, we retain dynamic modes and associated frequencies in 
descending order of their amplitudes until a minimum relative error of reconstruction is achieved.  
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We define the relative error as the L2-norm of the difference between the variables of the full 
SWE model and approximate DMD solutions over the exact one, that is, 

 
( ) ( )

( )
2

2

, ,
,

,
DMD

DMD

w x y w x y
Er

w x y
−

=  (34) 

where ( ) ( )( ), , , v ,w x y h u x y≡  represent the full solution of the SWE model and 

( ) ( )( ), , , v ,DMD DMD DMD DMDw x y h u x y≡  represent the solution obtained by employing the optimized 
DMD based on the reduced Schmid operator. 

We defer to a future study the investigation of other different techniques for identification of 
an optimal truncated representation of the flow field in order to capture the most important dynamic 
structures. The amplitudes of the optimized DMD modes function of the estimated frequencies, for 

, ,h u v  fields, respectively, are illustrated in Figure 19, where diamonds represent the retained 
modes after DMD optimization, circles represent discarded modes. After the optimized DMD is 
applied, the representation of the flow field is achieved retaining 19 modes for geopotential height 
field h, 28 modes for streamwise velocity field u, and 33 modes for spanwise velocity field v. The 
relative error computed as the retained number of dynamic modes is depicted in Figure 20. A 
comparison of the retained number of dynamic modes, in the case of classical DMD, DMD based 
on the reduced Schmid operator proposed in this paper and the optimized number of retained modes 
is presented in Table 2. A significant reduction of a factor of ten is achieved for the representation 
of geopotential height field, while the representation of the velocity field is improved by a factor of 
one and a half in computational resources. 

The validity of the improved DMD approach introduced in this paper has been validated by 
comparing our results with those obtained by Stefanescu and Navon [32], when an alternating 
direction fully implicit (ADI) finite-difference scheme was used for discretization of 2-D shallow-
water equations on a β -plane and the proper orthogonal decomposition (POD) coupled with 
discrete empirical interpolation (DEIM) was employed for the model reduction. In [32], the 
dimensions of POD bases for each variable was taken to be 35, while in the optimized DMD in the 
present approach we involve a smaller number of dynamic modes (see Table 2). The flow 
reconstructions presented in Figure 20 are very close to those computed in [32]. The similarity 
between these characteristics of the flow field and those obtained in the previous investigation 
validates the method presented here and certifies that the improved DMD method can be applied 
successfully to model reduction of 2-D flows. The relative error obtained by employing the 
optimized DMD based on the reduced Schmid operator in reconstruction of the flow fields is 
presented also in Table 2. 

 
Table 2. The number of retained modes and relative error obtained by employing the optimized 

DMD based on the reduced Schmid operator. 
 

Flow 
field 

DMD method [2,6] DMD based on 
reduced Schmid 

operator [1] 

Optimized DMD 
based on reduced 
Schmid operator 

Relative error 
DMDEr  

( ),h x y  192 173 19 0.0002683 

( ),u x y  180 42 28 0.0016223 

( ),v x y  151 40 33 0.0120628 
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a. b.  

c.  
Figure 19. The amplitudes of the DMD modes as the estimated frequencies, for , ,h u v  fields, 

respectively, case of DMD based on the reduced Schmid operator. Diamonds represent the retained 
modes after DMD optimization, circles represent discarded modes. 
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a.  b.  

c.  
Figure 20. The relative error computed as the retained number of dynamic modes, in case of 

optimized DMD based on the reduced Schmid operator, for , ,h u v  fields, respectively. 
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a.  b  

c.  d.  

e.  f.  
Figure 21. Reconstruction of , ,h u v  fields, respectively, employing the optimized DMD based on 
reduced Schmid operator, at time 13T h= , 600t s∆ = . A significant reduction in retained number 

of dynamic modes is achieved. 
 

 
6. SOME FEASIBLE APPLICATIONS OF THE SCHMID OPERATOR 

  
The reduced form of the Schmid operator promises certain prospects in a set of additional 

applications. 
  

6.1. Singular vectors 
 

Disturbances, maximally growing for certain time interval, may be related to the 
eigenvectors of the operator composed of the product of forward and adjoint propagators [16]. 

The equation /du dt Bu=  in the linear approach may be resolved by the operator 



ON LINEAR AND NONLINEAR ASPECTS OF DYNAMIC MODE DECOMPOSITION 

 
 

21 

 1 1( ) B tu t e u Lu∆∆ = = . (35) 
The norm of the solution assumes the form 

 *
1 1 1 1( ) ( , ) ( , )u t Lu Lu u L Lu∆ = = . (36) 

The search for maximally growing linear perturbations 1( ) /u t u∆  at time interval t∆  

reduces to the search of eigenvectors * 2
max max max

EL Lη σ η=  with the maximum eigenvalue 2
maxσ . 

The problem may be resolved iteratively using the action of the operator *A A . 
Under small enough time interval between snapshots, the Schmid operator is linear one that 

provides an opportunity for the calculation of singular vectors.  
Figure 22 presents the singular vector for the impinging jet linear mode (the distance 

between snapshots (in steps) k=10, maxσ =1.82), Figure 23 present the similar vector for the 
nonlinear mode (k=500, maxσ =2.45). 
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Figure 22. Isolines of singular vector (density 

component) in linear mode. 
Figure 23. Isolines of singular vector (density 

component) in nonlinear mode. 
 
Both the magnitude of eigenvalues and the shape of the eigenvectors (singular vectors) are 

quite different in linear and nonlinear events. 
 

 
6.2 Receptivity 

 
Eigenvectors of forward ( )jiA t∆  and adjoint propagators *( )ijA t∆  ( RΩ  and LΩ , 

correspondently) are biorthogonal that is important for the estimation of the flow receptivity to 
perturbations. It is known [15], that an initial disturbance should correspond to k-th mode of adjoint 
problem ( LΩ ) in order to maximally excite the k-th mode of the forward problem. Thus, if right 
eigenvectors (dynamic modes) are useful at the search of main flow features, the left eigenvectors 
determine a receptivity of the flow to the external action. 

The availability of left eigenvectors LΩ  enables estimation of the flow receptivity to initial 
field disturbances without applying an especial adjoint solver, such as used in Refs. [15, 16]. 
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7. CONCLUSIONS 

 
In this paper we have proposed a new framework for dynamic mode decomposition (DMD). 

The key innovation resides in application of the reduced Schmid operator instead of the classic 
DMD approach. 

We proved that the Dynamic Mode Decomposition is equivalent to the Schmid operator 
approximation by a product of rectangular matrices of the right eigenvectors (dynamic modes), the 
left eigenvectors and the eigenvalue matrix. Instead of storing the total operator matrix, the 
proposed technique enables storing only  two rectangular matrices and one diagonal matrix, that 
ensures computer memory and computing time (CPU) savings of about several orders of magnitude. 

The main findings of our investigation are summarized in the following:  
• the Schmid operator, on the same solution, may have either linear or nonlinear forms, 

in dependence on the time interval between snapshots;  
• the Schmid operator in the linear limit may be of interest from the viewpoint of the 

estimation of receptivity and singular vectors. 

In order to assess the performances of the proposed method, we have considered two 
numerical experiments: the case of a 2D supersonic underexpanded jet on a plate and the problem 
of the 2D shallow water equations. We applied the proposed DMD algorithm based on the reduced 
Schmid operator for different snapshots obtained by sampling down the original solutions of the full 
model with different time steps. We compared the novel DMD approach with the classic one in 
both cases.  

Based on the DMD method introduced in [1], we proposed the optimization of DMD 
algorithm for reducing the number of dynamic modes retained for reconstructing the flow field. We 
arrange the modes in descending order of their amplitudes and we retain only the number of modes 
necessary for flow reconstruction with a minimum relative error. This procedure works well for 
models without modes that are very rapidly damped, having very high amplitudes. In these cases, 
different methods for retaining the modes shall be imposed and we defer this discussion to a future 
study. 

We emphasized the excellent behaviour of the proposed optimized DMD method compared 
with the POD based model recent results existing in the literature [32]. Moreover, the model 
reduction technique proposed in this paper leads to a significant reduction in the number of retained 
modes, in comparison with the existing techniques. Additionally, we presented a rigorous error 
analysis for the reduced order models and we compared the relative computational efficiency of the 
aforementioned DMD technique. 
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