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SUMMARY

The search for the temperature disturbance causing transition between regular and Mach reflections in the
dual solution domain is addressed in an optimization statement. The gradient of the discrepancy between
the current and target flow fields was calculated using adjoint equations. The control was determined by
gradient-based optimization. The flow field simulation is verified via a posteriori error estimates using the
solution of an additional adjoint problem. Copyright © 2012 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Both the numerical simulation of high speed flows with an interaction of shock waves and the control
of such flows are of significant current theoretical and practical interest. There are many techniques
for an aerodynamic flow control at high speeds based on different ways of energy deposition [1–3].
The flow parameter domains where the solution is not unique are of special interest from the view-
point of control efficiency. The coexistence of two stable flow modes under the same conditions
provides attractive prospects for controls because the support of selected mode past transition is not
necessary. We consider, herein, one of the well known bistable flow patterns. At the intersection of
two symmetric shock waves, there exists the range of Mach numbers and shock slopes where both
the regular and Mach reflections exist, for example, see References [4, 5]. Several works [6–10]
considered triggering in the dual solution domain using various disturbances of flow parameters.
The transition from the regular reflection to Mach mode was obtained in [6] and investigated from
the standpoint of minimal control energy. Shock waves caused by the energy deposition at the edge
surface were studied. The transition from the Mach to regular reflection was achieved in [7] by
the numerical simulation of the injection of cold gas jet that occupies total Mach stem zone. The
paper in [8] considered both experimentally and computationally the influence of impulse laser
heat deposition on the flow field near shock crossing. The influence of energy impulse was imi-
tated in computations by an initial temperature variation. The computations provided the transition
from Mach to regular modes, while the experiments demonstrated some reduction of Mach stem
height with its consequent recovery to the original magnitude. The similar results were reported by
Yan et al. [9]. The paper in [10] states the impossibility of transition from the Mach to regular mode
under any energy deposition control.
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The search for controls on a base of qualitative and intuitive assumptions is the common feature
of approaches described in [6–10]. It seems to be expedient to enrich these methods by some
quantitative technique. The present paper concerns the search for triggering disturbances using an
inverse problem in the optimization statement. We address the control of transition from the Mach
to regular mode and vice versa by an instant energy deposition. This deposition is imitated by the
spatially distributed temperature disturbance �T0.x,y/applied to the steady flow. The sensitivity
of the flow pattern to this disturbance is calculated using the adjoint problem. The controls are
computed using the gradient based optimization.

The approximation error affects significantly the transition from Mach to regular reflection
and causes qualitative differences in results of computation, compare References [5] and [10].
Herein, we estimate the time relaxation and approximation errors for pointwise density past shock
intersection using a posteriori approach based on adjoint problem according to References [11, 12].

2. SHOCK WAVE INTERSECTION SIMULATION

The interaction of the plain supersonic flows engendered by the couple of symmetric edges is
the main subject of the present consideration. The flow simulation is performed using 2D+1
Euler equations
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The latter variable (T0.x,y// may be disturbed if the follow control is applied.
Calculations are conducted in the domain � D .0 < x < Xmax, 0 < y < Ymax/ and time interval

.0 < t < tf /.
Here, U1 D U ,U2 D V are the velocity components, h0 D .U 2 C V 2/=2 C h, h D
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�
eC .1=2/.U 2C V 2/

�
are enthalpies and energies

(per unit volume), P D �RT is the state equation and � D 1.4 is the specific heat ratio.
At the left boundary .x D 0/ we accept the inflow conditions before and past two oblique shock

waves. On the lateral boundaries .y D 0,y D Ymax/ we impose inflow conditions past shocks at the
initial part .0 < x < Xraref/ and conditions imitating flow past an expansion fan on the remaining
boundary part .Xraref < x < Xmax/. The rarefaction part of flow causes the acceleration in ‘a liquid
Laval nozzle’ to reach supersonic velocities that provide the existence of considered flow pattern and
significantly facilitate the statement of outflow boundary condition at x D Xmax. The flow structure
for both considered modes is presented in Figures 1 and 2.

The Euler equations were solved by methods of the second and fourth orders of accuracy over the
space. The MUSCL (Monotone Upstream-centered Schemes for Conservation Laws) [13] method
with the numerical fluxes calculated via HLLC (Harten, Lax, van Leer, Einfeldt, with contact
correction) [14] or method by Sun and Katayama [15] were used as the second-order solver. The
fourth-order method by Yamamoto and Daiguji [16] was used in the main part of optimization tests.

At numerical tests the nonunique solution was searched for freestream Mach numbers 3.45–6 and
flow deflection angles ‚ 2 .19°, 30°/. Figure 3 presents the bifurcation diagram (theoretical and
numerical) on the plane .M ,‚/. Calculations conducted on different grids (100�100, 400�400) by
the methods of second and fourth orders of approximation are provided in this figure in compari-
son with the theoretical data from [5]. Numerical results for the transition from the regular shock
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Figure 1. Density isolines. Regular reflection.

Figure 2. Density isolines. Mach reflection.

reflection to Mach mode present good coincidence with the theory, while the transition from the
Mach mode to regular one is modeled with the significant error. Similar results were obtained in [5]
and attributed to the small height of Mach stem that is specific for this transition. The increasing
of approximation order seems to be more useful from the accuracy viewpoint in comparison with
the mesh refining (in the range of 100–400 nodes over one coordinate) when transition from Mach
to regular mode is simulated. On the other hand, the transition from the regular to Mach reflection
weakly depends on number of nodes and a bit more apparently on the order of approximation.

The influence of approximation error is reported in [5] as the reason for difficulties in the
simulation of both the shock interaction and the flow response to control disturbances. Herein, the
error of the density " D �est D

R
�
�.x/ı.x � xest/d� at a reference point past shock crossing was

used as an accuracy criterion. According [17] the variation of the density (considered as a goal
functional) in dependence on the local truncation error may be presented as follows:

ı"D ı�est D

“

�

�
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Figure 3. Hysteresis curve of transition between Mach and regular modes in dependence on freestream
Mach number and flow deflection angle. 1 – upper branch (RR ! MR, detachment criterion); 2 – upper
branch (second order, 100�100); 3 – upper branch (fourth order, 100�100); 4 – upper branch (second
order, 400�400); 5 – lower branch (MR! RR, von Neumann criterion); 6 – lower branch (second order,

100�100); 7 – lower branch (fourth order, 100�100); and 8 – lower branch (second order, 400�400).

Herein, the adjoint variables ‰�,‰U i ,‰e are taken from the solution of the following adjoint
problem [11, 17]:
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The algorithm [18] is used for this problem solving.
The expression
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is used as the discrete form of (5). The values ı�f In,k approximate the local truncation error and
are obtained by the action of the high (fourth) order finite difference stencil on the numerically
computed flow field. For example, for density component we use the expression
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�F�,n,kC2C 8F�,n,kC1 � 8F�,n,k�1CF�,n,k�2
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where F n
�Ik,n D .�U /nk and ‚n

�Ik,n D .�V /nk .
The comparison of the error density distribution‰�In,kı��In,kC‰U In,kı�U In,kC‰V In,kı�V In,kC

‰hIn,kı�hIn,k over the flow field for schemes of the second and fourth orders of accuracy is presented
in Figures 4 and 5. Despite the maximum amplitude of error density being greater for the fourth-
order method, the error itself (because of averaging over all flow fields (7)) is much smaller (0.0055
instead of 0.03). Although the effective order of approximation of both schemes (with nominal
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Figure 4. Error density distribution for scheme of the second-order of accuracy.

Figure 5. Error density distribution for scheme of the fourth-order of accuracy.

second and fourth orders) in the presence of shock waves is about (or less) than unit [19, 20], the
higher order approximation is more accurate.

For Mach configuration, the maximums of error density are located in the vicinity of triple points
(see Figures 4 and 5) and are much greater than the errors both at the oblique and normal shocks.
As far as the Mach stem height decreases, zones of significant errors approach each other, which
causes a rapid increase of average error in the vicinity of the Mach stem. This feature of error density
behavior may be the reason for the low accuracy of computations for short Mach stems (at lower
curve of Figure 3) as reported in [5] and observed in the present paper. In contrast to triple point,
the points of two oblique shocks’ crossing exhibit the moderate error growth (Figures 6 and 7).

The absolute value of the density error at the reference point (at the plane of symmetry on outflow
boundary) was not greater, 0.02 for the regular mode and 0.03 for Mach shock intersection. The
temporal relaxation error was also estimated a posteriori using the approach in [21]. For the same
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Figure 6. Error density distribution for scheme of the second-order of accuracy.

Figure 7. Error density distribution for scheme of the fourth-order of accuracy.

point this error was kept less than the spatial approximation error by several orders of magnitude
via the selection of long enough relaxation time tf .

3. OPTIMAL CONTROL PROBLEM

We consider the functional
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presenting the mismatch of computed fm.t , x,y/ and target f aim
m .x,y/ flow parameters (in tests

presented below only the density �aim.x,y/ is used for f aim
m .x,y/). The disturbance of temperature

�T0.x,y/ at the initial time is used as a control variable. The velocities and density are assumed
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to be not changed at this time. The latter penalty term ensures the search for controls of minimum
norm; however, it deteriorates the convergence. The regularization parameter ˛ should be chosen as
a compromise between the disturbance minimum and the convergence of iterations.

The gradient of functional (9) regarding the temperature disturbance may be expressed as

r"T0.x,y/ D‰e.0, x,y/C ˛�T0.x,y/. (10)

Herein, ‰e is obtained from the solution of the following adjoint system:
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This system differs from Equation (6) only by the source terms and is solved by the same
method [18].

The conjugate gradients method T nC10 .x,y/ D T n0 .x,y/ � �S.r"T0/ is used starting from the
undisturbed field T0.x,y/. Every iteration involves solving both the forward and adjoint problem.
The flow field variables fm.t , x,y/ are used in coefficients at the adjoint problem solving. A
certain number of the temporal slices (10–20) was saved to account for a time dependence of the
flow variables. The flow parameters at current time were determined via the linear interpolation
between the slices. Despite the close accuracy, the calculations by the second-order solver on the
grid 400�400 needed greater computational time by about two orders of magnitude if compared
with the fourth order. Therefore, the optimization was performed using fourth-order method on the
grid 100�100.

Numerical tests demonstrate the feasibility of transition from the regular to Mach mode under
a spatially distributed temperature disturbance for all tested Mach numbers and reverse transition
for small Mach numbers. Past 10–15 iterations, the discrepancy (9) has diminished from two to
four orders of magnitude. Calculations were performed in the range of Mach number M and flow
deflection ‚ angles belonging to the dual solution domain. The regularization parameter ˛ was
varied from zero to a certain maximum value, which did not prevent from a convergence. The total
time of computation for inverse problem solving is about 20–30 greater if compared with the single
flow field calculation.

Figures 8–10 present controls for freestream Mach number 3.45 (the temperature disturbance
is normed by the undisturbed freestream temperature). Figure 8 demonstrates the temperature
disturbance providing transition from the regular (Figure 1) to Mach (Figure 2) intersection
The regularization parameter ˛ equals zero and the relative norm of the disturbance
k�T0kL2.�/ = kT0kL2.�/ is equal to 0.6. Its sign is positive (heating) in the main part of the
field. For the regularization parameter ˛ D 10 (the higher acceptable value from the viewpoint
of convergence) the norm of disturbance equals 0.26 and its shape (Figure 9) is very close to one of
the solution without regularization (Figure 8).

Figure 10 presents the temperature disturbance that is sufficient for the transition from the Mach
to regular mode. The relative norm of disturbance is equal to 0.3 (no regularization). Its sign is
negative (cooling), which correlates with the results on feasibility to control this transition by the
cold gas injection [7].
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Figure 8. Temperature disturbance causing regular to Mach transition.

Figure 9. Temperature disturbance causing regular to Mach transition (regularized result).

Figure 10. Temperature disturbance causing Mach to regular transition.
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In presented results the goal functional was formed as the discrepancy of density in current and
target states. For other sets of flow parameters, which may be used in the functional (9), similar
results are obtained.

In general, the considered method enables finding a control disturbance for the transition from the
regular to Mach mode .RR!MR/ in the freestream Mach range 3.45–6. This control corresponds
to an energy deposition. The Mach to regular transition .MR! RR/ can be forced for M D 3.45
by cooling. The attempts to obtain Mach to regular transition for M > 3.5 failed. During iterations,
controls move to a negative absolute temperature. These results correlate with the form of the
low branch (von Neumann criterion) of the bifurcation diagram (Figure 3) if the Mach number
dependence on the temperature is accounted.

4. DISCUSSION

In general, the flow discontinuities (shocks, shift layers) may forbid the gradient optimization based
on adjoint equations. However, there are papers successfully dealing with the minimization of shock
action by a shape control (see, e.g., [12]). These results suggest that the shocks in flow field may
not cause discontinuities in a control variables space. Similarly, the above presented results on the
gradient-based optimization demonstrate the existence of smooth paths in the space of controls
(temperature disturbances) that connect two steady shock patterns. The failure of temperature
control for the transition from the Mach to regular reflection may be explained by the shape of
bifurcation curve and is not connected with flow field discontinuities.

However, the considered approach is limited by relatively small disturbances, which do not cause
a total alteration of the flow structure. It is not unlikely that nonlinear strong disturbances may
provide additional paths in the control variable space to implement the considered triggering.

The selection of �T0.x,y/ as the control variables confines the analysis to the set of relatively
powerful energy sources. The more general controls via time dependent heat sources Q.x,y, t /
belonging to the space of higher dimension may provide a more complicated behavior, and are
above the scope of the present paper.

The results on temperature control that are qualitatively consistent with the shape of the
bifurcation curve verify the considered approach and hold the promise for using it for other, less
transparent, physical actions (mass injection, dynamical effects, etc) [2, 22, 23]

It is difficult at present to offer the technique for the generation of the necessary temperature
disturbance. However, the development of different ways of energy deposition including above
laser heating, the glow charge and microwave heating [3, 24] offers the prospect of progress in
this direction.

5. CONCLUSION

A posteriori error estimation provides both the quantitative (pointwise error) and qualitative (error
density distribution) information on the results of numerical simulation.

According the numerical computations, the transition from the regular to Mach shock reflection
may be stimulated by the positive temperature disturbance. This result presents certain prospects for
controls of this transition by an energy deposition.

The transition from the Mach to regular shock reflection may be triggered by the negative
temperature disturbance for relatively small freestream Mach numbers (M < 3.5/. For M > 3.5
the numerical experiments fails to find any control. These results demonstrate the impossibility of
MR!RR transition by any energy deposition.

The adjoint-based gradient optimization enables the systematic search for the control of shock
wave interaction at the moderate increase of computing time if compared with a simple flow
field calculation.

The adjoint equations used for the inverse problem solving are practically identical to equations
used for a posteriori error estimation that promise a significant saving of efforts in coding
and debugging.
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