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Multiphase flow problems are often extremely complex due to their strong nonlinearity. To study mul-
tiphase flow, it is important to simulate or measure key parameters accurately, such as pressure drops
and flow rates. Therefore, it is essential to place the sensors at the locations with high impact, and to
avoid locations with low impact, where impact is determined by a function such as one of the key
variables like pressure drop or flow rate. In this paper, an ensemble method is used to optimise sensor
locations for falling film problems based on an importance map. The importance map can identify the
important regions according to a target function. The sensor locations are selected based on the impor-
tance map, the variation of the variables, and the costs of performing the measurements. We demonstrate
the approach by applying data assimilation and show that the optimised sensor locations can signifi-
cantly improve the data assimilation results. Through sensitivity analysis, sensor optimisation, and data
assimilation, this study, for the first time, provides a systematic linkage between the experiments and the
models for falling film problems. It also presents a new goal or target based method for sensor placement.
This method can be extended to other complex multiphase flow problems.

� 2014 Elsevier Ltd. All rights reserved.
1. Introduction

Multiphase flows are characterised by their complexity due to
the presence of interfaces and the interaction between different
phases. There are many instabilities (Gouesbet and Berlemont,
1993) producing phenomena which have attracted the attention
of scientists, engineers, and artists. In numerical simulations and
experimental measurements, due to the complexity of the multi-
phase systems, it is challenging to simulate or measure all the
features. With limited resources of simulations and experiments,
the problems are often simplified and only the most important fea-
tures involved in the phenomena are considered. For example,
when a liquid slug is moving along a pipe (Hewitt, 1978), many
phenomena may occur, such as slug initiation, gas entrainment,
and slug propagation. Therefore, researchers often use correlations
and closure equations to simplify the problem. Another example is
a falling liquid film, which is a common phenomenon not only in
industry but also in nature. Researchers have built many low-
dimensional models to simplify the falling film problem, e.g., two
dimensional models only considering the film evolution along
the streamwise direction (Shkadov, 1967), three dimensional
models considering the film evolution along the streamwise and
the spanwise directions (Scheid et al., 2006). Even after the afore-
mentioned simplification, large volumes of data are often gener-
ated in experiments and in simulations. For example, when high
speed photography (Thoroddsen et al., 2008) is used to record fast
evolving phenomena such as droplet breakup, coalescence, and
impact, several gigabytes of data are generated in less than one
second. Despite this, researchers are always trying to pursue higher
speeds and better resolution of high speed photography in
multiphase phenomena.

For complex multiphase problems, it is important that limited
resources are used efficiently to capture the most important fea-
tures. Therefore, it is necessary to define these features, or even
better, to develop a method to help researchers determine the
most critical features to simulate or to measure. Then it is possible
to use these limited resources to accurately resolve the critical
parts and try to eliminate costs due to unnecessary parts which
have negligible effect. Once the important features are determined,
researchers can speed up simulation by focusing only on the nec-
essary features, and reduce experimental costs by measuring only
the important information.
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Fig. 1. Schematic diagram of a falling liquid film flowing down an incline. hðx; tÞ and
qðx; tÞ are the local transient film thickness and the local transient flow rate,
respectively.
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Whether a feature or a parameter is important depends on the
information we are interested in, or the target. In this paper, we
use an ensemble method to determine the important region for
target functions in a falling film problem. Then the important
region is used to optimise the sensor locations in a pseudo or
‘duel-twin’ experiment (Bengtsson et al., 1981). Data assimilation
(Kalnay, 2003; Evensen, 2003, 2009; Navon, 2009) is then
performed to incorporate the experimental results into the
simulation.

The falling film problem is used investigate the use of ensemble
methods for sensitivity analysis, sensor optimisation, and data
assimilation. Flow of a falling liquid film is a phenomenon
endowed with rich dynamic features (Chang, 1994; Chang and
Demekhin, 2002; Craster and Matar, 2009; Kalliadasis et al.,
2011). It is characterised by strong nonlinearity, which makes it
difficult to simulate flow qualitatively over long periods. Even
though the flow of falling films has been widely studied in the lit-
erature, it still remains a popular research topic and attracts the
attention of mathematicians, physicists, and engineers. Numerical
simulations using the full physics (Gao et al., 2003) or low-dimen-
sional modelling (Scheid et al., 2006) have been reported. Various
aspects of falling films have been measured experimentally, such
as film thickness (Zhou et al., 2009) and velocity distribution
(Adomeit and Renz, 2000). Effects of different influencing factors
in falling films have been studied, such as the effects of thermocap-
illarity (Frank and Kabov, 2006), electric fields (Tseluiko and
Papageorgiou, 2006), centrifugal forces (Matar et al., 2005), and
surfactants (Strobel and Whitaker, 1969; Ji and Setterwall, 1994).
Different processes that may be involved in the phenomena have
been studied, such as heat transfer (Scheid et al., 2008), mass trans-
fer (Yang and Wood, 1992), chemical reactions (Dabir et al., 1996),
and phase change (Palen et al., 1994).

The methods to calculate the sensitivity can be categorised into
deterministic methods and statistical methods (Cacuci, 2003;
Cacuci et al., 2005). The deterministic methods (Ionescu-Bujor
and Cacuci, 2004), such as direct method, FSAP (Forward Sensitiv-
ity Analysis Procedure) and ASAP (Adjoint Sensitivity Analysis
Procedure), involve differentiation of the system under investiga-
tion and exactly computing the sensitivities; while the statistical
methods, such as sampling based methods, variance based meth-
ods, and FAST (Fourier Amplitude Sensitivity Test), rely on multiple
simulations to obtain statistically reliable results (Cacuci and
Ionescu-Bujor, 2004). By operating backward in time to describe
the propagation of information, adjoint models can be used for
sensitivity analysis and adaptive observations (Errico, 1997;
Palmer et al., 1998; Baker and Daley, 2000; Daescu and Navon,
2004; Alekseev and Navon, 2010; Godinez and Daescu, 2011). In
our previous study, we presented an ensemble method to study
the sensitivity (Che et al., 2013), which is simple to implement,
and can be used for different target functions for various purposes.
In this paper, the method is used to study the sensitivity of a falling
liquid film, and then to perform data assimilation based on the
optimised sensor locations.

This paper attempts to build a systematic linkage between
experimental measurements and numerical simulations through
sensitivity analysis, sensor optimisation, and data assimilation.
The method presented in this paper can be used not only in fall-
ing film problems, but also in a wide range of other applications
in multiphase flow. The paper is organised as follows. The meth-
ods for the falling film propagation, for sensitivity analysis, and
for data assimilation are introduced in Section 2. The dynamic
behaviour of falling films, importance maps, optimised sensor
locations, as well as comparison among different methods of
sensor placement, are discussed in Section 3. In Section 4,
conclusions are made and possible extension of this study is
discussed.
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2. Method

2.1. Numerical simulation of a falling film

A liquid film flowing down a plane is considered, as shown in
Fig. 1, the coordinate x is defined along the streamwise direction.
The liquid is assumed to be an incompressible Newtonian fluid
with constant properties, such as surface tension r, viscosity l,
and density q. A model for the falling film in dimensionless form
is (Shkadov, 1967; Chang and Demekhin, 2002; Craster and
Matar, 2009)

@h
@t
þ @q
@x
¼ 0; ð1Þ

@q
@t
þ 6

5
@

@x
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where h and q are, respectively, the dimensionless local film thick-
ness and the dimensionless local flow rate, d ¼ ðqH11

c g4=rÞ1=3
=45m2,

and Hc is the film thickness in the absence of waves. It uses a
semiparabolic velocity profile and satisfies the no-slip boundary
condition at the wall and zero stress boundary condition at the
gas–liquid interface. The boundary conditions at the inlet and at
the outlet are

h ¼ 1; q ¼ 1 at x ¼ 0; ð3Þ

@h
@x
¼ 0;

@q
@x
¼ 0 at x ¼ L; ð4Þ

where L ¼ 400 is the length of the domain used for the simulation. L
is selected to be long enough for the development of different types
of waves. The initial condition of the falling film is obtained by
propagating a uniform liquid film (h ¼ 1 and q ¼ 1) until the waves
in the domain are fully developed.

The falling film equations are discretised using the finite
difference method. The transient terms in the falling film equations
are integrated using the third order Runge–Kutta method (RK3)
(Osher and Fedkiw, 2003). The convective terms are discretised
using the total variation diminishing (TVD) scheme (Versteeg and
Malalasekera, 2007). The grid size is Dx ¼ 0:5 and the time step
is Dt ¼ 0:005.
optimisation applied to falling liquid films. Int. J. Multiphase Flow (2014),
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To introduce waves into the problem, noise is added to h at the
inlet of the domain to substitute the boundary condition for h in
Eq. (3):

hðtÞ ¼ 1þ rðtÞ at x ¼ 0; ð5Þ

where rðtÞ is a random number uniformly distributed between
�5� 10�4 and 5� 10�4. Tests show that the amplitude of the white
noise does not have a significant effect on the overall behaviours of
the waves because the noise with resonant wave frequencies will
grow exponentially, while other wave frequencies will rapidly be
damped.

2.2. Ensemble method for sensitivity analysis

To analyse the sensitivity of the system, a target function F
needs to be defined first. The target function can be defined as a
scalar considering any variable in the system in the space–time
domain, such as the film thickness, the flow rate, the velocity, or
the kinetic energy. It should include the information that the
researcher is interested in. To quantitatively describe the propaga-
tion of information in the system and to identify the important
regions in the space–time domain that affect the target function
F, here, the sensitivity is defined as the dependence of the variation
of the target function F on the variation of the system state W. In a
discrete form, the system state W is defined as a column vector
containing all the variables for the falling film problem at all nodes,
i.e.,

W ¼ ðhðx1Þ; hðx2Þ;hðx3Þ; . . . ; hðxNÞ; qðx1Þ; qðx2Þ; qðx3Þ; . . . ; hðxNÞÞT ;
ð6Þ

where N is the number of nodes used for the simulation, and the
superscript T indicates the transpose.

For the dynamic system of a falling film, when the controlling
variables deviate from mexact, the system states deviate from
Wexact, and correspondingly the target function deviates from
Fexact. The deviation of the target function F can be approximated
using a first order Taylor series expansion:

DF � F � Fexact ¼
@F
@m
ðm�mexactÞ �

@F
@m

Dm: ð7Þ

Similarly, the deviation of the system state W can be approximated
as:

DW � W�Wexact ¼
@W
@m
ðm�mexactÞ �

@W
@m

Dm: ð8Þ

If the system state deviates significantly from the true state Wexact,
the error introduced by the Taylor series approximation in
Eqs. (7) and (8) might be significant, especially for strongly nonlin-
ear problems.

If we define

M � @W
@m

; ð9Þ

and invert Eq. (8):

Dm ¼M�1DW � KDW; ð10Þ

with K �M�1. Substituting Eq. (10) into Eq. (7) yields

DF ¼ @F
@m

KDW � gDW; ð11Þ

with

g � @F
@m

K: ð12Þ

Since g represents the variation of the target function F with the
variation of the system state W (as in Eq. (11)), it is referred to as
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the sensitivity. A large magnitude of sensitivity component gi

indicates that a small change in Wi will result in a significant
variation in F.

Solving Eq. (12) directly is impractical for complex multiphase
problems, because the degree of the problem is the number of
nodes times the number of variables. The sensitivity, g, can be
solved using an ensemble method (Che et al., 2013). An ensemble
can be generated by adding perturbations to the system.

The ensemble counterpart of M is not square and does not pos-
sess regular inverse. By introducing the Moore–Penrose pseudoin-
verse (Moore, 1920) to replace the direct inverse in Eq. (12)

K � ðcMTcMÞ�1cM: ð13Þ

Eq. (12) can be rewritten in an ensemble form

ĝ �
d@F
@ms
ðcMs

T cMsÞ
�1 cMs

T ; ð14Þ

where

@F
@ms

�
d@F
@ms

¼ ðF1 � F; F2 � F; F3 � F; . . . ; FE � FÞ; ð15Þ

Ms ¼
@W
@ms

� cMs ¼ ðW1 �W; W2 �W; W3 �W; . . . ; WE �WÞ; ð16Þ

in which E is the number of ensemble members in the sensitivity
analysis. The overbars indicate the ensemble average, and the hats
indicate the ensemble counterpart of the matrices.

2.3. EnKF method for data assimilation

Data assimilation was performed using the ensemble Kalman
filter (EnKF) method (Evensen, 2003), and its implementation is
described briefly here. In the EnKF method, the ensemble is gener-
ated by perturbing the inlet boundary condition. The true state of
the system is assumed to be known as Wtrue, and it is used to
generate the pseudo experimental data and to validate the assim-
ilation results.

The initial state of the ensemble is stored in matrix A as

A ¼ ðW1;W2;W3; . . . ;WNÞ; ð17Þ

where N is the number of ensemble members for data assimilation.
The ensemble mean �A is defined as

�A ¼ 1
N

XN

i¼1

Wi: ð18Þ

Then the ensemble perturbation matrix is

A0 ¼ A� �A: ð19Þ

The ensemble covariance matrix Pe is

Pe ¼
A0ðA0ÞT

N � 1
; ð20Þ

which indicates the uncertainty of the initial condition.
A vector of measurements d can be perturbed to generate N vec-

tors of observations as

dj ¼ dþ �j; ð21Þ

where j ¼ 1; . . . ;N, and the observation vectors form the observa-
tion matrix D

D ¼ ðd1;d2;d3; . . . ;dNÞ: ð22Þ

The perturbation matrix for observation c is

c ¼ ð�1;�2;�3; . . . ;�NÞ: ð23Þ
optimisation applied to falling liquid films. Int. J. Multiphase Flow (2014),
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(a)

(b)

(c)

Fig. 3. Time evolution of h at three points along the streamwise direction of the
falling film: (a) x ¼ 50, (b) x ¼ 200, (c) x ¼ 350.
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Then the measurement error covariance matrix Re is

Re ¼
cðcÞT

N � 1
: ð24Þ

The data assimilation procedure minimises the estimated error
of the system states based on the initial data A, measurement data
D, and their covariances Pe and Re, respectively. The analysis equa-
tion is

Aa ¼ Aþ PeHT HPeHT þ Re

� ��1
D�HAð Þ; ð25Þ

where H is the measurement operator, which projects the system
state from the model space into the observation space with mea-
surement errors �:

d ¼ HWþ �: ð26Þ

Eq. (25) allows us to update the system state not only at the point of
measurement, but also all the variable in the whole domain. It gives
a Bayesian estimation of the system state from the experimental
data and the numerical data. The details of the EnKF method can
be found in Ref. (Evensen, 2003). After the data assimilation step,
the analysis results Aa are optimised by minimising the covariances.
Then the ensemble mean of Aa is used as the updated system state
with the uncertainty indicated by the covariance of Aa. The simula-
tion is continued until further experimental data become available
for another cycle of data assimilation.

In the data assimilation of falling films, we used a dimensionless
interval of data assimilation of Dt ¼ 1.

3. Results and discussion

3.1. Chaotic behaviour of falling films

The initial profile of the falling film thickness in Fig. 2a is used
as the true state, and the corresponding profile at t ¼ 50 is shown
in Fig. 2b. The time evolution of h at three typical points, namely
x ¼ 50; x ¼ 200, and x ¼ 350, is plotted in Fig. 3, which indicates
the chaotic feature of the falling film. At x ¼ 50, the wave ampli-
tude is so small that it is almost invisible; at x ¼ 200, ripples are
formed; and at x ¼ 350, solitary waves are formed.

3.2. Importance map

An importance map for the falling film problem was generated
using the method described in Section 2.2, as shown in Fig. 4. The
importance map is a plot of the sensitivity in the time–space
domain. It can provide information about the domain of depen-
dence for the target function and about the propagation of
information in the time–space domain. The importance map
depends on the target function. Here the target function F is
Fig. 2. The true states of the film thickness htrue. (a) Initial true profile of th
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defined to capture the solitary wave in the downstream of the
domain at t ¼ 50, as shown in Fig. 2b. A Gaussian function GðxÞ is
used to extract the wave from the whole curve,

GðxÞ ¼ 1
r
ffiffiffiffiffiffiffi
2p
p e�

1
2

x�l
rð Þ2 ; ð27Þ

F ¼
Z L

0
hðxÞGðxÞdx; ð28Þ

where l ¼ 0:9L and r ¼ 0:05L. From the importance map, it can be
seen that information propagates from upstream to downstream
with time.

3.3. Variation of variables

A measurement is useful only if the variation of the measured
value at that point DWðxÞ is larger than the sensitivity of the sen-
sors. Even if a small variation at one point may have significant
influence on the target, there is no use in allocating a sensor at that
point if the sensor could not detect the variation. Here the statistic
variation of h and q are plotted in Fig. 5 based on the long-time
running of the falling film model,

1h ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
nt

Xnt

j¼1
hj � Hc
� �2

s
; ð29Þ

1q ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
nt

Xnt

j¼1
qj � Q c

� �2

s
; ð30Þ
e film thickness at t ¼ 0. (b) True profile of the film thickness at t ¼ 50.

optimisation applied to falling liquid films. Int. J. Multiphase Flow (2014),
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Fig. 4. Importance map gðx; tÞ for the falling film with the definition of the target function for the solitary wave near the outlet of the domain in Fig. 2b. (a) Sensitivity of the
film thickness h. (b) Sensitivity of the film flow rate q. The target function F is defined in Eqs. (27) and (28) with l ¼ 0:9L and r ¼ 0:05L.

Fig. 5. Variation of the film thickness and the flow rate along the streamwise
direction of the falling film. (a) Variation of the local film thickness 1h defined in Eq.
(29), (b) variation of the local flow rate 1q defined in Eq. (30).
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where hj and qj are the transient local film thickness and the tran-
sient local flow rate, Hc ¼ 1 and Qc ¼ 1 are the film thickness and
the flow rate without any wave, j is the index for time step, and
nt is the total number of time steps considered, which should be
sufficiently large so that 1h and 1q do not significantly change when
increasing nt .

Since there is no variation in the upstream of the falling film, as
shown in Fig. 5, there is no need to place any sensor in that region.
In the downstream, the variation is much larger than that in the
upstream, therefore, the probability of observing measurable
perturbations to get measurable results is much higher.
3.4. Other considerations

In designing experiments, there may be other considerations of
sensor placement, e.g., the costs to measure a specific variable at a
specific point. The costs can be in terms of money or time.
Researchers tend to obtain accurate experimental results while
keeping the costs low. A function cðx;WÞ for the cost of measure-
ment at x for variable W can be defined. Here, for simplicity, it is
assumed the cost of measuring the local flow rate of the falling film
q is much larger than that of measuring the film thickness h, and
the cost of measuring h is the same at different points along the
Please cite this article in press as: Che, Z., et al. An ensemble method for sensor
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streamwise direction. Other types of costs can be defined and ana-
lysed in a similar way.

The sensitivity, gðx;WÞ, as described in Section 3.2, the variation
of the variables, 1ðx;WÞ, as described in Section 3.3, and the
measurement cost, cðx;WÞ, can be considered together by using a
combined parameter,

vðx;WÞ ¼ jgðx;WÞj1ðx;WÞ
cðx;WÞ : ð31Þ

Then sensor optimisation can be performed simply by finding the
area with the largest magnitude of vðx;WÞ. Since the sensitivity, g,
varies with time, the optimised sensor locations can be adapted
correspondingly if sensors are allowed to move. If the strategy of
adaptive sensors is challenging to implement in experiments,
sensors can be placed considering all time steps, which will result
in a strategy with optimised fixed sensors. These strategies are com-
pared in the next section.

3.5. Data assimilation results

Experimental data are necessary to perform data assimilation.
The ‘dual-twin’ experiment is used to generate the synthetic exper-
imental data (Bengtsson et al., 1981): the synthetic experimental
data were generated by adding random numbers on the true values
[Fig. 2], and the random numbers has a Gaussian distribution with
a standard deviation depending on the accuracy of sensors.

To form the ensemble for data assimilation using EnKF method,
extra noise of smaller covariance than the primary noise was
added to the true values. The number of ensemble members N is
200 for data assimilation. For the ith member of the ensemble,

hiðtÞ ¼ 1þ rðtÞ þ riðtÞ at x ¼ 0; ð32Þ

where riðtÞ is a random number uniformly distributed
�10�4 < ri < 10�4. The film thicknesses of the ensemble members
have a value close to unity at the inlet, and the noise grows expo-
nentially. As shown in Fig. 6a, the ensemble members are com-
pletely segregated at the downstream end of the falling film (e.g.,
x > 200) due to the strong nonlinearity of the falling film problem
and the exponential growth of perturbations along the streamwise
direction. The deviation of the ensemble from the true state can be
quantified by

fðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN

i¼1
hiðxÞ � htrueðxÞð Þ2

r
: ð33Þ

The distribution of f for the ensemble at the initial state is plotted in
Fig. 6b.
optimisation applied to falling liquid films. Int. J. Multiphase Flow (2014),
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(a)

(b)

Fig. 6. (a) Ensemble used for data assimilation (black) and the corresponding true
state (red) at t ¼ 0. (b) The deviation of the ensemble from the true state defined in
Eq. (33). (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)

Fig. 7. Results of data assimilation with different methods of sensor placement. (a) No ex
domain, (c) optimised fixed sensors, and (d) optimised adaptive sensors. The figures on t
figures on the right show the standard deviations from the true states defined in Eq. (3
indicate the location of the sensors. In (d), the symbols ‘o’ indicate the initial location of
adaptive sensors at t ¼ 50. 340 < x < 380 is shaded to highlight the region for the
interpretation of the references to colour in this figure legend, the reader is referred to
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Three strategies of sensor placement are considered, which are,
respectively: (1) uniformly distributed sensors in the whole
domain, (2) optimised fixed sensors, and (3) optimised adaptive
sensors. Data assimilation is performed using synthetic experi-
mental results based on the three strategies of sensor placement,
and the results are compared to those without experimental data
for data assimilation, as shown in Fig. 7. The comparison shows
that the ensemble without data assimilation, due to the strong
nonlinearity of the falling film problem, has a very large variance
in most of the domain except near the inlet, as shown in Fig. 7a.
The relatively small variance in the upstream is due to the small
perturbation, and the large variation in the downstream is due to
the exponential growth of the perturbation. The large variation
indicates a large uncertainty of the numerical simulation.

The simulation with uniformly distributed sensors can improve
the simulation results in the whole domain (Fig. 7b), but the
improvement in the region defined for the target function
x ¼ 0:9L ¼ 360 is less than the one with the optimised fixed sen-
sors, as shown in Fig. 7c. In addition, if one were to consider the
whole domain, the result with optimised adaptive sensors does
not look better than that with optimised fixed sensors. However,
perimental data for data assimilation, (b) uniformly distributed sensors in the whole
he left show the profiles of the ensemble (black) and the true state (red), while the
3). Eight sensors are used. In (b) and (c), the symbols ‘o’ along the horizontal axes
the adaptive sensors at t ¼ 0, while the symbols ‘⁄’ indicate the finial location of the
target function defined in Eqs. (27) and (28) with l ¼ 0:9L and r ¼ 0:05L. (For
the web version of this article.)

optimisation applied to falling liquid films. Int. J. Multiphase Flow (2014),
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Fig. 8. Deviation of the target function of the ensemble from the true target

function,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

PN
i¼1 Fi � Ftrueð Þ2

q
, for data assimilation with different numbers of

sensors. Due to the statistical nature of the method, the data assimilation processes
were repeated 30 times and the standard deviations are also plotted. The results are
improved by increasing the number of sensors. The comparison between the
different methods of sensor placement shows the improvement over uniformly
distributed sensors. It also shows that the adaptive sensors perform better than the
fixed optimised sensors.
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if one were to compare the results in the region for the solitary
wave x ¼ 0:9L ¼ 360, the result with optimised adaptive sensors
shows significant improvement in comparison with optimised
fixed sensors, as shown in Fig. 7d. The ensemble with optimised
adaptive sensors can provide the smallest variance in the region
defined for the target function, which indicates a small uncertainty
of the simulation. The profile of the solitary wave has been well
recovered. However, the adaptive sensing strategy requires that
the sensors change their locations with time, which might prove
to be difficult to achieve for some experiments. The variance in
the central region of the domain is larger than that of uniform sen-
sor locations. This is because all the measurements have been allo-
cated to capture the information of the defined target and there is
no measurement to capture the overall profile of the falling film.
When researchers are interested in the overall profile of the falling
film, the target function should be defined across the whole
domain.
Fig. 9. Importance map gðx; tÞ for the falling film with the definition of the target functi
flow rate q. The target function F is defined as Eqs. (27) and (28) with l ¼ 0:5L and r ¼
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3.6. How many sensors are necessary?

In experiments, researchers are not only interested in optimal
sensor locations but also in how many sensors are necessary. The
number of sensors should be kept low to reduce the costs in instal-
lation and maintenance. Here, the effect of number of sensors for
the falling film problem is studied by increasing the number of sen-
sors from 1 to 20. The target function is the same as that defined in
Section 3.5. Three strategies to place sensors are considered and
compared: uniformly distributed sensors in the whole domain,
optimised fixed sensors, and optimised adaptive sensors. Data
assimilations are performed based on these sensor placement
strategies and the results are compared with those obtained with-
out experimental data for assimilation. For a specific application,
the required number of sensors depends on the required accuracy.
A higher accuracy requires more measurements, and vice versa. For
a specific sensor placement strategy, more sensors mean more
experimental information can be collected. Therefore, with
increasing the number of sensors, the uncertainty of the simulation
can be reduced. The improvement becomes insignificant when the
number of sensors exceeds a certain value, e.g. 10 optimised adap-
tive sensors or 15 optimised fixed sensors for the experiments, as
shown in Fig. 8. Further improvement must be made by other
methods, such as using alternative sensors with higher precision.

3.7. A target function for ripples

The optimised sensor locations of measurement are different for
different target functions. To capture the ripples in the upstream of
the solitary waves, a target function is defined using Eqs. (27)-(28)
with l ¼ 0:5L and r ¼ 0:05L. The corresponding importance map is
generated, as shown in Fig. 9. The importance map shows that the
target function for the ripples is mainly sensitive to the region
0 < x < 200. However, as shown in Fig. 5, the variation of variables
near the inlet is too small to be detected. Therefore, the variation
must be considered in sensor placement. Even the upstream has
a high sensitivity regarding the target function, the inlet region
should be avoided because any measurement in that region could
not detect useful information of the falling film. The results of data
assimilation with and without considering the variation are shown
in Fig. 10. The result without considering the variation is obtained
by replacing Eq. (31) with vðx;WÞ ¼ jgðx;WÞjcðx;WÞ . The comparison
confirms that the result can be improved when the variation of
variables is considered.
on for the ripples in Fig. 2b. (a) Sensitivity of film thickness h. (b) Sensitivity of film
0:05L.
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Fig. 10. Results of data assimilation for a target function of ripples. The target function F is defined as Eqs. (27) and (28) with l ¼ 0:5L and r ¼ 0:05L. (a) Optimised fixed
sensors without considering the variation of variables, i.e., replacing Eq. (31) with vðx;WÞ ¼ jgðx;WÞjcðx;WÞ . The deviation from the true target function is 1.36. (b) Optimised fixed
sensors with considering the variation of variables. The deviation from the true target function is 1.16. The figures on the left show the profiles of the ensemble (black) and the
true state (red), while the figures on the right show the standard deviation from the true states defined in Eq. (33). Four sensors are used. The symbols ‘o’ along the horizontal
axes indicate the location of the sensors. 180 < x < 220 is shaded to highlight the region for the target function. The comparison of sensor locations with that in Fig. 7 shows
the dependency of the sensor location on the target function. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of
this article.)

8 Z. Che et al. / International Journal of Multiphase Flow xxx (2014) xxx–xxx
4. Conclusions

In this paper, an ensemble method is, for the first time, pre-
sented to study the sensitivity of a falling film problem, and the
sensitivity is used to optimise the sensor locations. In addition,
the new target based sensor placement method is applied with
the target of re-producing the film thickness in a region of the
domain. The data assimilation study showed that assimilating data
from optimised sensor locations can significantly reduce model
uncertainty and more accurately reproduce the true system. The
data assimilation study also showed that the required number of
sensors can be significantly reduced by using optimised sensors.

The sensitivity analysis can identify important parameters and
important regions which depend on the target function. The
importance map can show the sensitivity of different parameters
in the time–space domain. It is not only the importance map to
be considered to optimised sensor locations, but also the variation
of variables and the costs of performing the measurement at differ-
ent locations. Through the sensitivity analysis, sensor optimisation,
and data assimilation, this paper provides a systematic linkage
between the experiments and the models for falling film problems.
This method can be extended to different complex multiphase
problems. Through sensitivity studies, the limited resources in
experiments and simulations can be focused on regions of high
importance to improve the analysis of complex multiphase
problems.
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