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ABSTRACT
The purpose of this paper is the identification of a reduced order model (ROM) from numerical code
output by non-intrusive techniques (i.e. not requiring projecting of the governing equations onto
the reduced basis modes). In this paper, we perform a comparison between two methods of model
order reduction based on dynamic mode decomposition (DMD). The first method is a determinis-
tic (classic) DMD technique endowed with a dynamic filtering criterion of selection of modes used
in the ROM model. The second method is an adaptive randomised DMD algorithm (ARDMD) based
on a randomised singular value decomposition. This produced an accelerating algorithm, which is
endowed with a few additional advantages. In addition, the reduced order model is guaranteed
to satisfy the boundary conditions of the full model, which is crucial for surrogate modelling. For
numerical illustration, we use the shallow water equations model.
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1. Introduction

Identification of a reduced order model (ROM) from
numerical or experimental data is a challenging topic
in fluid dynamics. Many efforts were directed towards
non-intrusive techniques, that do not require the projec-
tion of the governing equations onto the reduced basis
modes, assuming that these governing equations or their
numerical code are not known. The challenge among
practitioners is a reliable approximation of the complex
flow dynamics by models of low complexity, i.e. ROMs.

In the last decade, we have seen great advances of
model order reduction techniques, like proper orthog-
onal decomposition (POD) (Du et al. 2013; Dim-
itriu, Stefanescu, and Navon 2015; Xiao et al. 2015;
Stefanescu, Sandu, and Navon 2015; Towne, Schmidt,
and Colonius 2018) and a promising technique rooted
in Koopman mode theory (Koopman 1931), Koopman
mode decomposition (KMD).

Koopman mode theory (Koopman 1931) introduced
by the French-born American mathematician B. O.
Koopman, provides a theoretical background for global
modes analysis, hydrodynamic stability or triple decom-
position in problems describing oscillating phenomena.
TheCroatianmathematicianMezic (2005)was the first to
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discover that normal modes of linear oscillations (which
Mezic called shape modes) have their natural analogues –
Koopman modes – in the context of non-linear dynam-
ics. Koopman modes represent spatial flow structures
which are associated with a single frequency. The time
evolution of a mode is influenced by the multiplica-
tion of the complex eigenvalue of the Koopman oper-
ator weighted by the amplitude. Mezic (2005) was the
first to apply the Koopman theory for the purposes of
reduced order modelling. The advantage of the shape
modes introduced by Mezic (2005) compared to POD
modes is that each shape mode is associated with a pul-
sation, a growth rate and each mode has a single dis-
tinct frequency. Informative on the spectral properties of
the Koopman operator are also the following references
(Rowley et al. 2009, 2010; Chen, Tu, and Rowley 2012;
Bagheri 2013; Mezic 2013).

A numerical algorithm to compute this type of
modal decomposition was introduced by Schmid and
Sesterhenn (2008) in 2008 and was called dynamic mode
decomposition (DMD). This algorithm is classified as an
Arnoldi-type method (Golub and Van Loan 1996) and is
based on the theory of Krylov subspaces (Golub and Van
Loan 1996).
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Rowley et al. (2009) presented a technique for describ-
ing the global behaviour of complex non-linear flows.
They have shown that the linearity assumption of the
Koopman operator is not necessary.

Variants of DMD algorithm were used on a vari-
ety of examples ranging from fluid mechanics (Rowley
et al. 2009; Frederich and Luchtenburg 2011; Schmid,
Violato, and Scarano 2012; Balajewicz, Dowell, and
Noack 2013), to non-linear dynamical systems and com-
plex systems (Kutz et al. 2016), bifurcation analysis
(Sayadi, Schmid, and Richecoeur 2015) and also to
the niche fields like human–robot interaction (Berger
et al. 2014) and neuroscience (Brunton et al. 2016).

So far we have noticed two directions in KMD tech-
nique, underlined in the three seminal papers on the
topic, respectively,Mezic (2005), Rowley et al. (2009) and
Schmid (2010). The straightforward approach is seeking
a companion matrix employed to construct in the least
squares sense the final data vector as a linear combina-
tion of all previous data vectors (Fiedler 2003; Rowley
et al. 2009, 2010). Schmid (2010) explored the similarities
between POD andDMD and recommended amore well-
conditioned algorithm for DMD. In DMD the modes are
not orthogonal, but one advantage of DMD compared to
POD is that each DMD mode is associated with a pulsa-
tion, a growth rate and each mode has a single distinct
frequency.

A considerable amount of work has focused on
understanding and improving the method of DMD
and several DMD procedures have been released: opti-
mised DMD (Chen, Tu, and Rowley 2012), exact DMD
(Tu et al. 2014), sparsity promoting DMD (Jovanovic,
Schmid, andNichols 2012), multi-resolutionDMD (Kutz
et al. 2015; Kutz, Fu, and Brunton 2016), extended
DMD (Williams, Kevrekidis, and Rowley 2015), recur-
sive DMD (Noack et al. 2015, 2016), DMD with control
(Proctor, Brunton, and Kutz 2016), randomised DMD
(Bistrian and Navon 2017b).

A comparative analysis of POD and DMD has
been performed in the literature, to identify which of
these decomposition techniques is more efficient for
model order reduction (Muld, Efraimsson, andHenning-
son 2012; Semeraro, Bellani, and Lundell 2012; Towne,
Schmidt, and Colonius 2018). These studies performed
in various fields have demonstrated that POD and DMD
are complementary methods contributing to the identifi-
cation of the coherent structures.

A comparison of DMD vs. POD for model reduc-
tion was illustrated in our previous paper (Bistrian and
Navon 2015), for the study of shallow water equations
model. There are several major differences between these
two decomposition methods. The spatial basis func-
tions for DMD and POD respectively, offer an insight

of the coherent structures in the flow field. The dif-
ferences between POD and DMD occur due to the
principles of their respective decomposition methods.
The time evolution of a DMD mode is influenced by
the multiplication of the complex eigenvalue of the
Koopman operator weighted by the amplitude, while
the time evolution of POD modes is described by the
temporal coefficients. The POD modes are orthonor-
mal in space with the energy inner product. In DMD,
each mode oscillates at a single frequency, hence the
expression that the DMD modes are orthogonal in
time.

Selection of Koopman modes and amplitudes used
for the flow reconstruction constitutes also the source of
many discussions among modal decomposition practi-
tioners (Tissot et al. 2014). For instance, a low-rankDMD
algorithm was introduced in Jovanovic, Schmid, and
Nichols (2012) to identify an a-priori specified number of
modes that provide an optimal approximation of experi-
mental or numerical snapshots at a certain time interval.
Consequently, the modes and frequencies that have the
strongest influence on the quality of approximation have
been selected. Chen, Tu, and Rowley (2012) introduced
an optimised DMD, which tailors the decomposition to
a desired number of modes. This method minimises
the total residual over all data vectors and uses simu-
lated annealing and quasi-Newtonminimisation iterative
methods for selecting the frequencies. Several procedures
for selecting the most influential modes in DMD can be
found in our previous papers (Bistrian and Navon 2015;
Alekseev et al. 2016; Bistrian andNavon 2017a) which we
will discuss later.

The flow dynamics may be unpredictable. Neither the
selection of the modes based on their amplitude, nor the
selection based on the frequency, are certain to lead to
the finding of the dominant modes, as was reported in
Noack, Morzynski, and Tadmor (2011).

In the present work, we propose a comparison
between two DMD algorithms. The first consists of a
deterministic DMD method endowed with a vector fil-
tering criterion to select the most influential modes. The
second algorithm utilises an adaptive randomised DMD
(ARDMD) to obtain a reduced basis in the offline stage,
that does not require an additional selection algorithm of
the DMDmodes.

The remainder of the article is organised as follows.
In Section 2 we recall the principles governing the DMD
and we provide the description of the DMD algorithms
employed for decomposition of numerical data. Sec-
tions 3 and 4 illustrate the impact of the above meth-
ods on the reduction of the shallow water equations
model. Summary and conclusions are drawn in the final
section.
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2. Reduced order modelling based on DMD

2.1. The key steps of DMD

DMD is a data processing tool which is applied to numer-
ical or experimental data, in order to identify the coher-
ent structures of dynamics or for the purpose of surrogate
modelling. In the present paper, we apply the method
of DMD for an efficiently reduced-order modelling of
numerical data. We outline in the following the key steps
of DMD.

We proceed by collecting data vi(t, x) = v(ti, x), ti =
i�t, i = 0, . . . ,N, at a constant sampling time �t, x
representing the spatial coordinates whether Cartesian
or cylindrical. The two integer parameters N and M
involved in the process of data acquisition have the fol-
lowing meanings:

N + 1 = total number of snapshots taken in time,
M = number of spatialmeasurements per time snapshot.

We form a data matrix whose columns represent the
individual data samples, called the snapshot matrix

V = [v0 v1 · · · vN] ∈ R
M×(N+1). (1)

Each column vi is a vector with M components, rep-
resenting the numerical measurements. For simplicity of
description, we consider here real data vi ∈ RM .

The Koopman decomposition assumed that a prop-
agator matrix A exists, that maps every vector column
onto the next one

{v0, v1 = Av0, v2 = Av1 = A2v0, . . . ,

vN = AvN−1 = ANv0}. (2)

The DMD algorithm constructs the best approxima-
tion of the propagator matrixA. The next computational
step consists in forming two datamatrices from the snap-
shot sequence. A matrix VN−1

0 is formed with the first N
columns and the matrix VN

1 contains the last N columns
of V :

VN−1
0 = [v0 v1 · · · vN−1] ∈ R

M×N ,

VN
1 = [v1 v2 · · · vN] ∈ R

M×N . (3)

For a sufficiently long sequence of the snapshots, we
suppose that the last snapshot vN can be written as a
linear combination of previous N vectors, such that

vN = c0v0 + c1v1 + · · · + cN−1vN−1 +R, (4)

in which ci ∈ R, i = 0, . . . ,N − 1 and R is the residual
vector. We assemble the following relations:

{v1, v2, . . . , vN} = A{v0, v1, . . . , vN−1}
= {v1, v2, . . . ,VN−1

0 c} +R, (5)

where c = (c0 c1 · · · cN−1)T is the unknown column
vector.

In matrix notation form, Equation (5) reads

AVN−1
0 = VN−1

0 S +R, S =

⎛
⎜⎜⎜⎝
0 · · · 0 c0
1 0 c1
...

...
...

...
0 . . . 1 cN−1

⎞
⎟⎟⎟⎠ ,

(6)
where S is the companion matrix.

Relation (6) is true when the residual

R = vN − VN−1
0 c (7)

is minimised when c is chosen such thatR is orthogonal
to span{v0, . . . , vN−1}.

The goal of DMD algorithm is to solve the eigenvalue
problem of the companion matrix S

VN
1 = AVN−1

0 = VN−1
0 S +R, (8)

where S approximates the eigenvalues of A when
‖R‖2→ 0.

The objective at this step is to solve the minimisation
problem

Minimise
S

R = ‖VN
1 − VN−1

0 S‖2. (9)

An estimate can be computed by multiplying VN
1 by

the Moore–Penrose pseudoinverse of VN−1
0 :

S = (VN−1
0 )

+VN
1 , (10)

where (VN−1
0 )

+ is computed according to Moore–
Penrose pseudoinverse definition (Golub and Van Loan
1996).

The Moore–Penrose pseudoinverse approach might
not be feasible when dealing with high dimensional non-
intrusive data, as we previously pointed out in Bistrian
and Navon (2015).

Following Schmid (2010), we developed an alternate
algorithm based on singular value decomposition (SVD)
of snapshot matrix VN−1

0 . This approach is helpful when
the matrix VN−1

0 is rank deficient (M>N). The minimi-
sation problem (9) has the following solution. We first
identify a SVD of VN−1

0 :

VN−1
0 = U�WH , (11)

whereU contains the proper orthogonal modes ofVN−1
0 ,

� is a square diagonal matrix containing the singular
values of VN−1

0 andWH is the conjugate transpose ofW.

navon
Highlight
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Relations AVN−1
0 = VN

1 = VN−1
0 S+R, ‖R‖2→ 0

and VN−1
0 = U�WH yield

AU�WH = VN
1 = U�WHS

⇒ UHAU�WH = UHU�WHS

⇒ S = UHAU. (12)

From AU�WH = VN
1 it follows that AU = VN

1 W
�−1 and hence

S = UH(VN
1 W�−1). (13)

A direct consequence of solving the minimisation
problem (9) is that decreasing the residual increases over-
all convergence and therefore the eigenvalues λj and the
eigenvectors φj, j = 1, . . . ,N of S will converge toward
the eigenvalues and the eigenvectors of the Koopman
operator A, respectively. More specifically, every col-
umn vector vi, i = 1, . . . ,N can be written as a linear
combination of its predecessor:

vi = Avi−1 = · · · = Ai−1v1, i = 1, . . . ,N. (14)

The eigenvectors of S form a basis for the span of A,
therefore, we can write every column vector as a linear
combination of the eigenvectors

v1 =
N∑
j=1

ajφj,

vi =
N∑
j=1

Ai−1ajφj, i = 1, . . . ,N,

vi =
N∑
j=1

ajλi−1j φj, i = 1, . . . ,N. (15)

A straightforward interpretation of relations (15)
brings the data snapshots at every time step {t1, . . . ,tN}
as a linear combination of DMDmodes according to

v(ti, x) =
N∑
j=1

ajφj(x)λi−1j , i ∈ {1, . . . ,N},

ti ∈ {t1, . . . , tN}, (16)

or in matrix formulation:

VN
1 = [v1 v2 · · · vN]

= [φ1 φ2 · · · φN]

⎛
⎜⎜⎜⎝
a1

a2
...

aN

⎞
⎟⎟⎟⎠

×

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 λ11 λ21 . . . λN−11

1 λ12 λ22 . . . λN−12

1
...

...
...

...
...

...
...

...
...

1 λ1N λ2N . . . λN−1N

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
, (17)

where the right eigenvectors of S , φj ∈ C are dynamic
shape (or Koopman) modes, the eigenvalues of S , λj are
called Ritz values (Chopra 2000) and coefficients aj ∈ C

are denoted as amplitudes or Koopman eigenfunctions.
Each Ritz value λj = e(σj+iωj)�t is associated with the
growth rate σj = log(|λj|)/�t and the frequency ωj =
arg(|λj|)/�t.

The modes’ selection plays a central role in model
reduction. The superposition of all Koopman modes,
weighted by their amplitudes and complex frequencies,
approximates the entire data sequence, but there are also
modes that have a weak contribution. Our goal is to
produce a ROM of the data involving only the most sig-
nificant modes, having a strong contribution to the data
representation, which we are calling leading modes.

Thus, the data snapshots at every time step {t1, . . . ,tN}
will be represented as a linear combination of the leading
DMDmodes according to

vDMD (ti, x) =
k∑

j=1
ajφj (x) λi−1j , i ∈ {1, . . . ,N} ,

ti ∈ {t1, . . . , tN} , (18)

where k represents the number of DMD modes involved
in reconstruction of data snapshots, or in matrix formu-
lation

VN
1 = [v1 v2 · · · vN]

= [φ1 φ2 · · · φk]

⎛
⎜⎜⎜⎝
a1

a2
...

ak

⎞
⎟⎟⎟⎠

×

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 λ11 λ21 . . . λN−11

1 λ12 λ22 . . . λN−12

1
...

...
...

...
...

...
...

...
...

1 λ1k λ2k . . . λN−1k

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
. (19)

Here we point out that the k leadingmodes involved in
ROM representation of data (19) are not the first kmodes
from representation (17). The leading modes represent a
subset of DMDmodes that will be selected from all com-
puted DMDmodes via several criteria, which will be the
subject of discussion in the next section.
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It can be seen that the SVD plays a central role in
computing the DMD. In the present work, we propose
a comparison between two DMD algorithms based on
SVD. The first consists of a deterministic DMD method
endowed with a vector filtering criterion to select the
most influential modes. The second algorithm utilises an
ARDMD to obtain the leading modes in the offline stage,
that does not require an additional selection algorithm of
theDMDmodes. The two algorithms are presented in the
following subsections.

2.2. Deterministic DMDwithmodes selection
criterion (CrDMD)

We recently investigated different techniques of modes
selection in DMD. Bistrian and Navon (2015) aimed to
present a preliminary survey on DMD modes selection.
We proposed a framework for modal decomposition of
2D flows, when numerical data are captured with large
time steps. Key innovations for the DMD-based ROM
introduced in Bistrian and Navon (2015) are the use of
the Moore–Penrose pseudoinverse in the DMD com-
putation that produced an accurate result and a novel
selection method for the DMD modes. We eliminate
the modes that contribute weakly to the data sequence
based on the conservation of quadratic integral invari-
ants (Navon and DeVilliers 1986) by the reduced order
flow.

In Alekseev et al. (2016) we proposed a new frame-
work for DMD based on the reduced Schmid operator.
We investigated a variant of DMD algorithm and we
explored the selection of the modes based on sorting
them in decreasing order of their amplitudes. This proce-
dure works well for models without modes that are very
rapidly damped, having very high amplitudes. Therefore
the selection of modes based on their amplitude is effec-
tive only in certain situations, as reported also by Noack,
Morzynski, and Tadmor (2011).

In Bistrian and Navon (2017a) we focused on the
effects of modes selection in DMD. We proposed a new
vector filtering criterion for dynamic modes selection
that is able to extract dynamically relevant flow features
of time-resolved numerical data. The algorithm related
in Bistrian and Navon (2017a) proposed a dynamic fil-
tering criterion for which the amplitude of any mode
is weighted by its growth rate. This method proved to
be perfectly adapted to the flow dynamics, resulting in
the identification of the most influential modes for the
swirling flow investigated problems.

The first DMD algorithm we address in this survey
is a deterministic (or classic) DMD based on the proce-
dure introduced in Rowley et al. (2009). We apply this
algorithm together with a vector filtering criterion for

selection of DMD modes involved in the ROM. This
dynamic filtering criterion was proved to be perfectly
adapted to the flow dynamics (Bistrian andNavon 2017a)
and selects the modes which are dominant in both situa-
tions described above.

We define the amplification of any DMDmode as

Aj = 1
T

∫ T

0
aj

(
λ
t/�t
j + λ

−t/�t
j

)
dt

= aj
σjT

(
eσjT + e−σjT − 2

)
, j = 1, . . . ,N,

T = (N − 1)�t, (20)

where λj are the Ritz values, aj ∈ C are the modal ampli-
tudes and σj = log(|λj|)/�t represent the growth rates.

We define the relative error of the low-rank model
as the L2-norm of the difference between the flow vari-
ables and approximateDMDsolutions over the exact one,
that is,

ErDMD = ‖v (x)− vDMD (x)‖2
‖v (x)‖2

, (21)

where v(x) represent the numerical data and vDMD(x)
represent the low-rank DMD approximation.

We retain dynamic modes and associated frequen-
cies in descending order of their amplification defined
by (20) until a minimum relative error of reconstruction
is achieved. To produce the ROM amounts to finding the
solution to the following minimisation problem:

Findk∈N,k≥2 vDMD (ti, x) =
k∑

j=1
ajφj (x) λi−1j ,

i ∈ {1, . . . ,N} , ti ∈ {t1, . . . , tN} ,
Subject to argmin

k
{A1 > A2 > · · · > Ak,

ErDMD ≤ ε} , ε = 10−5. (22)

Consequently, the modes and frequencies that have
the strongest influence on the quality of approximation
are selected to be included in the ROM. The CrDMD
algorithm is presented below.

Consequently, the modes and frequencies that have
the strongest influence on the quality of approximation
are selected to be included in the ROM.

2.3. Adaptive randomised DMD

The SVD plays a central role in computing the DMD.
Therefore, the Moore–Penrose pseudoinverse approach
we previously employed in Bistrian and Navon (2015)
might not be feasible when dealing with high dimen-
sional non-intrusive data. It is more desirable to reduce
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Algorithm 1 (CrDMD): Deterministic DMD algorithm
with modes selection criterion
Initial data: VN−1

0 ∈ RM×N , VN
1 ∈ RM×N .

1. Produce the economy-size SVD: [U,�,W] =
SVD(VN−1

0 ), where U contains the proper
orthogonalmodes ofVN−1

0 and� contains the
singular values.

2. Solve the minimisation problem (9): S =
UH(VN

1 W�−1).
3. Compute dynamic modes solving the eigen-

value problem SX = X	 and obtain dynamic
modes as 
 = UX. The diagonal entries of 	

represent the eigenvalues λ.
4. Project dynamicmodes onto the first snapshot

to calculate the vector containing dynamic
modes amplitudes Ampl = (aj)

rank(	)
j=1 .

5. Solve the minimisation problem (22) and
obtain the rank k. Retain dynamic modes and
associated frequencies in descending order of
their amplification defined by (20).

6. The reconstructed data at every time step
{t1, . . . , tN} involving the selected DMD
modes is given by the product

VDMD = 
 · diag (
Ampl

) · Van =

= [
φ1 φ2 · · · φk

]
⎛
⎜⎜⎜⎝
a1

a2
...

ak

⎞
⎟⎟⎟⎠

×

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 λ11 λ21 . . . λN−11

1 λ12 λ22 . . . λN−12

1
...

...
...

...
...

...
...

...
...

1 λ1k λ2k . . . λN−1k

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(23)

Output: k, VDMD.

the problem dimension to avoid a computationally
expensive SVD. We have introduced in Bistrian and
Navon (2017b) the procedure of randomisation of data
prior to SVD.Thus, we endow theDMDalgorithmwith a
randomised SVD function adapted after Halko, Martins-
son, and Tropp (2011), aiming to improve the accuracy
of the reduced order linear model and to reduce the CPU
time.

We developed a randomised DMD as a fast and accu-
rate option in model order reduction of non-intrusive

data. To the best of our knowledge, Bistrian and
Navon (2017b) was the first to introduce the randomised
DMD algorithm with application to fluid dynamics, after
the randomised SVD algorithm recently introduced in
Erichson and Donovan (2016) for processing of high-
resolution videos.

The rank of the reduced DMD model is given such
that the relative error of data reconstruction becomes
sufficiently small. We recall this procedure as ARDMD.
Determination of the optimal rank k of the reducedDMD
model then amounts to finding the solution to the follow-
ing optimisation problem:

Find
k∈N,k≥2

vDMD (ti, x) =
k∑

j=1
ajφj (x) λi−1j ,

i ∈ {1, . . . ,N} , ti ∈ {t1, . . . , tN} ,
Subject to k = argmin {ErDMD ≤ ε} , (24)

where ErDMD is the relative error of the low-rank model
defined by Equation (21), ε = 10−5 represents a constant
that sets the admissible limit for the relative error of data
reconstruction. The accuracy of the numerical procedure
can be adjusted according to the value chosen for this
parameter.

The ARDMD algorithm (Algorithm 2) is presented
below.

The first major advantage of the ARDMD proposed in
this paper is represented by the fact that ARDMD pro-
duces a reduced order subspace of Ritz values, having the
same dimension as the rank of RSVD function. As a con-
sequence, after solving the optimisation problem (24), an
additional selection criterion of the Ritz values associated
with their DMD modes is no longer needed. We employ
in the flow reconstruction the most significant DMD
modes associated with their amplitudes and Ritz values,
respectively, leading to theminimum error of flow recon-
struction, due to the adaptive feature of the proposed
algorithm.

The second major improvement offered by the pro-
posed randomised DMD can be found in the signifi-
cant reduction of CPU time for computation of massive
numerical data, as we will detail in the section dedicated
to numerical results.

3. Numerical results

In the following we present numerical results demon-
strating the computational performance of the two algo-
rithms: CrDMD and ARDMD, respectively. The test
problem used in this paper consists of the non-linear
Saint-Venant equations (also called the shallow water
equations Saint-Venant and Barré 1871) in a channel on
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Algorithm 2 (ARDMD): Adaptive randomised DMD algorithm
Initial data: VN−1

0 ∈ RM×N , VN
1 ∈ RM×N ,M ≥ N, integer target rank k ≥ 2 and k < N.

1. For k = 2 to N − 1.
2. Produce the randomised SVD:

[U,�,W] = RSVD
(
VN−1
0 , k

)
,

where U contains the proper orthogonal modes of VN−1
0 and � contains the singular values. The RSVD

function is described in continuation of this algorithm.
3. Solve the minimisation problem (9): S = UH(VN

1 W�−1).
4. Solving the eigenvalue problem [X,	] = eig(S), obtain dynamicmodes as
 = UX. The diagonal entries

of 	 represent the eigenvalues λ.
5. Project dynamic modes onto the first snapshot to calculate the vector containing dynamic modes

amplitudes Ampl = (aj)
rank(	)
j=1 .

6. The DMDmodel of rank k is given by the product

VDMD = 
 · diag (
Ampl

) · Van == [
φ1 φ2 · · · φk

]
⎛
⎜⎜⎜⎝
a1

a2
...

ak

⎞
⎟⎟⎟⎠×

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 λ11 λ21 . . . λN−11

1 λ12 λ22 . . . λN−12

1
...

...
...

...
...

...
...

...
...

1 λ1k λ2k . . . λN−1k

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(25)

7. Solve the optimisation problem (24) and obtain the lowest rank k and the k leading DMDmodes.
8. Finalise the ROM at every time step {t1, . . . , tN}, involving the leading k DMD modes, with the product

given by Equation (25).
Output: k, VDMD.

Randomised SVD function (RSVD):
Initial data: VN−1

0 ∈ RM×N ,M ≥ N, integer target rank k ≥ 2 and k < N.

1. Generate random test matrixM = rand(N, r), r = min(N, 2k).
2. Compute the sampling matrix by multiplication of snapshot matrix with random matrix Q = VN−1

0 M.
3. Orthonormalisation of sampling matrix via Gram–Schmidt orthonormal method Q←

GramSchmidt(Q).
4. Projection of snapshot matrix to smaller space V = QHVN−1

0 , whereH denotes the conjugate transpose.
5. Produce the economy-size SVD of low-dimensional snapshot matrix [Q1,�,W] = SVD(V).
6. Compute the right singular vectors U = QQ1.

Output: Procedure returns U ∈ RM×k, � ∈ Rk×k,W ∈ RN×k.

the rotating earth:

∂
(
ũh̃

)
∂t
+

∂
(
ũ2h̃+ gh̃2/2

)
∂x

+
∂

(
ũṽh̃

)
∂y

= h̃
(
f ṽ − g

∂H
∂x

)
, (26)

∂
(
ṽh̃

)
∂t
+

∂
(
ũṽh̃

)
∂x

+
∂

(
ṽ2h̃+ gh̃2/2

)
∂y

= h̃
(
−f ũ− g

∂H
∂y

)
, (27)

∂ h̃
∂t
+

∂
(
ũh̃

)
∂x

+
∂

(
ṽh̃

)
∂y

= 0, (28)
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where ũ and ṽ are the velocity components in the x̃ and ỹ
axis directions respectively, h̃ represents the depth of the
fluid,H(x, y) is the orography field, f̃ is the Coriolis factor
and g is the acceleration of gravity.

The Saint-Venant equations, named after the French
mathematician Adhémar Jean Claude Barré de Saint-
Venant (1797–1886), represent a system of conservation
laws that describe the flow below a pressure surface in
a fluid. A description of the Saint-Venant system as a
result of depth-integration of the Navier–Stokes equa-
tions is posed by Saint-Venant and Barré (1871). Details
can be found in Navon (1979), Vreugdenhil (1994) and
Galdi (1994).

We consider that the reference computational config-
uration is the rectangular 2D domain � = [0, Lmax]×
[0,Dmax]. Subscripts represent the derivatives with
respect to time and the streamwise and spanwise coor-
dinates.

In this model, the Coriolis parameter is modelled as
varying linearly in the spanwise direction, such that

f̃ = f0 + β(ỹ− Dmax), (29)

where f0,β are constants, Lmax,Dmax are the dimensions
of the rectangular domain of integration. The height of
the orography is given by the fixed two-dimensional field

H
(
x, y

) = αey
2−x2 . (30)

The model (26)–(28) is associated with periodic
boundary conditions in the x̃-direction and solid wall
boundary condition in the ỹ-direction:

ũ
(
0, ỹ, t̃

) = ũ
(
Lmax, ỹ, t̃

)
, ṽ

(
x̃, 0, t̃

)
= ṽ

(
x̃,Dmax, t̃

) = 0, (31)

and also with the initial condition of Grammeltvedt
(1969) as the initial height field, which propagates the
energy in wave number one, in the streamwise direction:

h0
(
x̃, ỹ

) = H0 + H1 tanh
(
9(Dmax/2− ỹ)

2Dmax

)
+H2 sin

×
(
2π x̃
Lmax

)
cosh−2

(
9(Dmax/2− ỹ)

Dmax

)
.

(32)

Using the geostrophic relationship ũ = −h̃ỹ(g/f̃ ), ṽ =
h̃x̃(g/f̃ ), the initial velocity fields are derived as

u0
(
x̃, ỹ

) = −g
f̃

9H1

2Dmax

(
tanh2

(
9Dmax/2− 9ỹ

2Dmax

)
− 1

)

− 18g
f̃

H2 sinh
(
9Dmax/2− 9ỹ

Dmax

)

×
sin

(
2π x̃
Lmax

)

Dmaxcosh3
(
9Dmax/2−9ỹ

Dmax

) , (33)

v0
(
x̃, ỹ

) = 2πH2
g

f̃ Lmax
cos

(
2π x̃
Lmax

)
cosh−2

×
(
9(Dmax/2− ỹ)

Dmax

)
. (34)

The constants used for the test model are

f0 = 10−4 s−1,α = 4000,

β = 1.5× 10−11 s−1 m−1, g = 9.81s−1 m s−1,

Dmax = 50× 103 m, Lmax = 254× 103m,

H0 = 10× 103 m, H1 = −400m, H2 = −300m.

We set the error of the numerical algorithms to be less
than ε = 10−5. To measure the accuracy of the reduced
shallow water model, we undertake a non-dimensional
analysis of the shallow water model. Following Baren-
blatt (1996), reference quantities of the dependent and
independent variables in the shallow water model are
considered, i.e. the length scale Lref = Lmax and the ref-
erence units for the height and velocities, respectively,
are given by the initial conditions href = h0, uref = u0.
A typical time scale is also considered, assuming the
form tref = Lref/uref . In order to make the system of
Equations (26)–(28) non-dimensional, we define the
non-dimensional variables

(
t, x, y

) = (
t̃/tref , x̃/Lref , ỹ/Lref

)
,

(h, u, v) =
(
h̃/href , ũ/uref , ṽ/uref

)
.

The numerical results are obtained employing a Lax–
Wendroff finite difference discretisation scheme and used
in further numerical experiments in dimensionless form.

We will evaluate the behaviour of the two algo-
rithms by conducting two numerical experiments. In
the first numerical experiment, the training data com-
prises a number of 145 unsteady solutions of the two-
dimensional shallow water equations model (26)–(28), at
regularly spaced time intervals of �t = 3600 s for each
solution variable.

To perform the comparison between the DMD algo-
rithms presented herein, we illustrate in Figures 1–3 the
spectra of DMDs of geopotential height field h, stream-
wise field u and spanwise field v, respectively, in case
of DMD with modes selection criterion (Algorithm 1-
CrDMD) and adaptive randomised DMD (Algorithm 2-
ARDMD). The figures highlight the effect of the pre-
sented algorithms to select different modes, having the
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Figure 1. The spectrum of DMD of height field h in case of: (a) DMD with modes selection criterion – CrDMD: 144 modes (lighter dots),
137 modes selected for ROM (darker dots), (b) adaptive randomised DMD – ARDMD: 30 modes selected for ROM.

Figure 2. The spectrum of DMD of streamwise field u in case of: (a) DMD with modes selection criterion – CrDMD: 144 modes (lighter
dots), 137 modes selected for ROM (darker dots), (b) adaptive randomised DMD – ARDMD: 30 modes selected for ROM.

Figure 3. The spectrumof DMDof spanwise field v in case of: (a) DMDwithmodes selection criterion – CrDMD: 144modes (lighter dots),
137 modes selected for ROM (darker dots), (b) adaptive randomised DMD – ARDMD: 30 modes selected for ROM.
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Table 1. Comparison of the efficiency of the two algorithms,
�t = 3600 s, 145 data snapshots have been processed.

Algorithm
Computed
DMDmodes The ROM rank The relative error

CrDMDa 144 k= 137 ErhDMD = 2.8362× 10−6
ARDMDb 30 k= 30 ErhDMD = 2.7189× 10−6
a DMD with modes selection criterion.
b Adaptive randomised dynamic mode decomposition.

strongest impact on the reconstruction of the flow
dynamics.

Table 1 presents the number of DMD modes com-
puted and involved in the ROM, provided by the two
algorithms, respectively and the relative error ErDMD of
reconstruction of the flow field.

Obviously, when the classic DMD algorithm is
applied, the practitioner has to address a modes’ selec-
tion method. In the case of a deterministic algorithm
CrDMD, we solved the constrained optimisation prob-
lems described by Equation (22) employing the sequen-
tial quadratic programming (SQP) (Nocedal and Wright
2006). The number of selected modes for representa-
tion of h,u,v fields by the reduced DMD model are pre-
sented in Table 1 and illustrated in Figures 1(a)–3(a),
where lighter circles represent total computed modes
(144 modes), while darker circles represent the retained

Figure 4. (a) Full solution of height field after T = 50 h; (b) ROM
solution of height field obtained with CrDMD algorithm (k= 137
modes); (c) ROM solution of height field obtained with ARDMD
algorithm (k= 30 modes). The relative error is of orderO(10−6)
in both cases.

modes after DMD optimisation (137 modes). In case of
application of dynamic vector filtering criterion (22), the
dominant modes are included in a smaller subspace, pre-
serving a very good approximation of the full solution
by the ROM model. The benefit of the proposed filter-
ing criterion consists in eliminating theDMDmodes that
contribute weakly to the data sequence. It provides an
automatic selection of the most representative modes,
even when they exhibit rapid growth with lower ampli-
tudes or they consist of high amplitudes fast damped
modes.

Compared to the CrDMD algorithm, the randomised
DMD algorithm ARDMD produces a significantly
reduced size spectrum which elegantly incorporates the
most influential modes. The first major advantage of
the adaptive randomised algorithm ARDMD consists
in producing a reduced order subspace of Ritz values,
which has the same dimension as the rank of randomised
SVD function, where the most significant modes live.
As a consequence, this procedure omits a further selec-
tion criterion of the Ritz values. The optimal rank of
the ROM model is the unique solution to the opti-
misation problem (24). We have tested several global
optimisation methods such as genetic algorithm com-
binedwith sequential quadratic programming (GA-SQP)
(Nocedal and Wright 2006) and simulated annealing

Figure 5. (a) Vorticity field after T = 50 h; (b) ROM solution of
vorticity field obtained with CrDMD algorithm (k= 137 modes);
(c) ROMsolution of vorticity field obtainedwithARDMDalgorithm
(k= 30 modes). The relative error is of order O(10−6) in both
cases.
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Figure 6. The relative errors computed with respect to the ROM rank, in case of application of: (a) deterministic DMD with modes
selection criterionCrDMD and (b) adaptive randomisedDMDalgorithmARDMD,�t = 3600 s, 145 data snapshots have beenprocessed.

(SA) (Navon, Brown, and Robertson 1990; Yang 2010),
to solve the optimisation problem (24), with similar com-
putational difficulties. In this work, a collaborative opti-
misation technique involving hybrid simulated annealing
and sequential quadratic programming (SA-SQP-CO)
(Cao et al. 2015) is chosen because it ensures the exis-
tence of the solution to the optimisation problem (24).
The SA-SQP-CO method and its convergence efficiency
are fully detailed in Cao et al. (2015).

Another benefit of the randomised DMD is that the
low order solution (18) is guaranteed to satisfy the
boundary conditions (31) of the full model, because
the DMD modes provided by the ARDMD algorithm
satisfy the relations

φu
j

(
0, y

) = φu
j

(
Lmax, y

)
, j = 1, . . . , k, (35)

φv
j (x, 0) = φv

j (x,Dmax) = 0, j = 1, . . . , k, (36)

where φu
j , φv

j are dynamic modes of the u and v fields,
respectively, and k represents the number of the retained
modes in the ROM.

The representation of the height field, based on the
selected modes in case of algorithms CrDMD and
ARDMD is displayed, respectively, in Figure 4. The vor-
ticity field is illustrated in Figure 5, computed with the
two algorithms. The ROM exhibits a relative error of
orderO(10−6) in both cases.

As seen so far, both algorithms produce ROMs with
a preset desired error, but they have different ranks. The
relative error of the ROMmodel with respect to the rank
is illustrated in Figure 6 in the case of application of the
two algorithms.

Data presented in Figure 6 confirms the efficiency
of the ARDMD algorithm. Although the previous tech-
niques detailed in Bistrian and Navon (2015), Alekseev
et al. (2016), and Bistrian and Navon (2017a) lead to
a reduced number of retained modes, there are still

missing modes that would contribute to data approx-
imation. Hence the relative error of flow reconstruc-
tion by the ROM is the best in the case of randomised
DMD.The great advantage of adaptive randomisedDMD
algorithm ARDMD is that it avoids the computational
efforts required for implementing an additional criterion
of influential modes’selection, since they are automati-
cally selected.

Thus a significant reduction in computational time is
also achieved compared with deterministic DMD associ-
ated with different modes of selection criteria. The CPU
time required in the offline stage is presented in Figure 7.
By employing the randomised DMD algorithmARDMD
in comparison with deterministic DMD associated with
the energetic criterion for modes selection CrDMD, the
computational complexity of the low order model is sig-
nificantly reduced from the very beginning, as illustrated
in Figure 7. Figures 8 and 9 present some examples of
DMDmodes involved in the ROM, in case of application
of the two aforementioned algorithms.

Figure 7. The CPU time required in the offline stage by applying
adaptive randomised DMD ARDMD and deterministic DMD asso-
ciated with the energetic criterion for modes selection CrDMD,
�t = 3600 s, 145 data snapshots have been processed.
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Figure 8. Examples of DMD modes computed with CrDMD
algorithm, which are involved in the ROMmodel.

Figure 9. Examples of DMD modes computed with ARDMD
algorithm, which are involved in the ROMmodel.

In the second numerical experiment, we consider
that a larger amount of data is processed with the two
algorithms. The training data comprises now a number
of 289 unsteady solutions of the two-dimensional shal-
low water equations model (26)–(28), at regularly spaced
time intervals of �t = 1800 s for each solution variable.

The relative error of the ROMmodel with respect to its
rank is illustrated in Figure 10 in the case of application
of the two algorithms.

Table 2. Comparison of the efficiency of the two algorithms,
�t = 1800 s, 289 data snapshots have been processed.

Algorithm
Computed
DMDmodes The ROM rank The relative error

CrDMDa 288 k= 255 ErhDMD = 3.7314× 10−6
ARDMDb 32 k= 32 ErhDMD = 2.9743× 10−6
a DMD with modes selection criterion.
b Adaptive randomised dynamic mode decomposition.

Table 2 presents the number of DMD modes com-
puted and involved in the ROM, provided by the two
algorithms, respectively and the relative error ErDMD of
reconstruction of the flow field, when 289 snapshots data
are processed.

The number of selected modes for representation of
h,u,v fields by the reduced DMD model in the case of
deterministic algorithm CrDMD is k=255, while the
randomised algorithm ARDMD selects a number of
k=32 leading modes for ROM. Through an efficient
selection of the important modes, we have achieved a
nine times smaller model compared to the total number
of data snapshots.

The vorticity field after T = 35 h is illustrated in
Figure 11, computed with the two algorithms, employ-
ing k=255 modes with CrDMD algorithm, and k=32
modes with ARDMD algorithm. The ROM exhibits a
relative error of orderO(10−6) in both cases.

The efficiency of the adaptive randomised DMD
algorithm is illustrated also by the CPU time, depicted
in Figure 12. In case of processing a large amount of data
(289 data snapshots have been processed in the second
numerical experiment), the ARDMD which requires no
selection criteria is highly more efficient than the deter-
ministic CrDMD with the energetic criterion for modes
selection.

After the DMD modes involved in the ROM have
been calculated, the coefficients of the ROM of state
solutions can be estimated for the entire time window

Figure 10. The relative errors computed with respect to the ROM rank, in case of application of: (a) deterministic DMD with modes
selection criterionCrDMD and (b) adaptive randomisedDMDalgorithmARDMD,�t = 1800 s, 289 data snapshots have beenprocessed.
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Figure 11. (a) Vorticity field after T = 35 h, �t = 1800 s; (b)
ROM solution of vorticity field obtained with CrDMD algorithm
(k= 255 modes); (c) ROM solution of vorticity field obtained with
ARDMD algorithm (k= 32 modes). The relative error is of order
O(10−6) in both cases.

Figure 12. The CPU time required in the offline stage by applying
adaptive randomised DMD ARDMD and deterministic DMD asso-
ciated with the energetic criterion for modes selection CrDMD,
�t = 1800 s.

by interpolating the DMD computed coefficients using
radial basis functions (RBF) discussed in Bistrian and
Navon (2015, 2017a) or kriging techniques (Krige 1951;
Wahba 1990).

4. Summary and conclusions

The present investigation has focused on a subject of
great interest in fluid dynamics: identification of a ROM
from numerical code output by non-intrusive techniques
(i.e. not requiring projecting of the governing equations

onto the reduced basis modes, assuming that these
governing equations or their numerical code are not
available).

We performed a comparison between two methods of
model order reduction based on DMD. The first method
is a deterministic (classic) DMD technique endowedwith
a dynamic filtering criterion of selection of modes used
in the ROMmodel (CrDMD). The second method is an
adaptive randomised DMD algorithm (ARDMD) based
on a randomised SVD.

In order to compare the performances of the proposed
algorithms, we performed the model order reduction
of non-intrusive data originating from the Saint-Venant
model (or shallow water equations).

Unlike the classic selection based on modes ampli-
tude, dynamic vector filtering criterion CrDMD offers
two major advantages: it provides an automatic selection
of themost representativemodes, even when they exhibit
rapid growth with lower amplitudes or they are high
amplitudes fast damped modes. The CrDMD algorithm
proved its efficiency in application to shallowwater equa-
tionsmodel, preserving a very good approximation of the
full solution by the ROMmodel.

To overcome the inconveniences of developing and
implementing a mode selection criterion associated
with DMD, we developed a novel technique based on
randomised DMD as a fast and accurate option in
model order reduction. The adaptive randomised DMD
algorithm (ARDMD) is endowed with an RSVD func-
tion. The rank of the ROM is given as the unique solution
of an optimisation problem whose constraints consist of
a sufficiently small relative error of data reconstruction
and a sufficiently high correlation coefficient between
the numerical data and the DMD solution. Solving the
optimisation problem (24) using a collaborative optimi-
sation technique involving hybrid simulated annealing
and sequential quadratic programming (SA-SQP-CO)
(Cao et al. 2015) we gain a fast and accurate adaptive
randomised DMD algorithm, with a significantly lower
rank for the new ROM, compared to the case of the
deterministic CrDMD algorithm with modes selection
criterion.

The major advantages of the adaptive randomised
DMD (ARDMD) are:

• This method provides an efficient tool in devel-
oping the linear model of a complex flow field
described by non-linear models or non-intrusive
data.

• This method does not require an additional selec-
tion algorithm of the DMD modes. ARDMD pro-
duces a reduced order subspace of Ritz values, hav-
ing the same dimension as the rank of randomised
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SVD function, where the most significant DMD
modes live.

• The low order solution (18) is guaranteed to satisfy
the boundary conditions (31) of the full model.

• We gain a significant reduction of the offline CPU
time in the computation of the ROM compared
with the classic DMD associated with different
modes of selection criteria.

In the first numerical experiment, we consider 145
data snapshots at regularly spaced time intervals of
�t = 3600 s for each solution variable. The numerical
results presented in Table 1 show that both aforemen-
tioned algorithms provide an accurate ROM, the rela-
tive error being of order O(10−6) in both cases. But
the rank of the ROM produced by the adaptive ran-
domised ARDMD algorithm is four and a half times
smaller than in the case of the deterministic algorithm
with a selection criterion CrDMD. Hence the con-
clusion that the adaptive randomised DMD method
is much more effective in the selection of significant
DMD modes which are involved in the ROM and it
has computational advantages over previously suggested
deterministic DMD.

The efficiency of the adaptive randomised DMD
method is especially evident in the case of large amount
of snapshots data. In the second numerical experi-
ment, we double the amount of data and we consider
289 data snapshots at regularly spaced time intervals
of �t = 1800 s. The rank of the ROM produced by
the adaptive randomised ARDMD algorithm is eight
times smaller than in the case of the deterministic
algorithm with a selection criterion CrDMD and nine
times smaller compared to the total number of data
snapshots.

Randomised algorithms quickly prove their util-
ity in reduced-order modelling. Recently, Pendergrass
et al. (2016) introduced a GPU accelerated implemen-
tation of SVD and DMD and Erichson et al. (2017)
proposed a randomised algorithm for computing the
low-rank DMD for large-scale data.

Application of the adaptive randomised DMD algo-
rithm to shallow water equations model offers the
main advantage of deriving a ROM capable to provide
a variety of information describing the behaviour of
the flow field. However, the results are model depen-
dent. A future extension of this research will address
randomised algorithms for modal decomposition of
swirling flows, where a large amount of data will
be processed. A rigorous algorithm efficiency analy-
sis will be also performed based on the convergence
rates of the Kolmogorov n-widths (Cacuci, Navon, and
Ionescu–Bujor 2014).
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