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SUMMARY

In this study, a first attempt has been made to introduce mesh adaptivity into the ensemble Kalman fiter
(EnKF) method. The EnKF data assimilation system was established for an unstructured adaptive mesh
ocean model (Fluidity, Imperial College London). The mesh adaptivity involved using high resolution mesh
at the regions of large flow gradients and around the observation points in order to reduce the representa-
tiveness errors of the observations. The use of adaptive meshes unavoidably introduces difficulties in the
implementation of EnKF. The ensembles are defined at different meshes. To overcome the difficulties, a
supermesh technique is employed for generating a reference mesh. The ensembles are then interpolated
from their own mesh onto the reference mesh. The performance of the new EnKF data assimilation system
has been tested in the Munk gyre flow test case. The discussion of this paper will focus on (a) the develop-
ment of the EnKF data assimilation system within an adaptive mesh model and (b) the advantages of mesh
adaptivity in the ocean data assimilation model. Copyright © 2016 John Wiley & Sons, Ltd.
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1. INTRODUCTION

A grand challenge in ocean models is modelling the global circulation across the full range of rele-
vant spatial and temporal scales [1]. For ocean prediction, this means resolving both basin scale and
smaller scale features such as boundary currents, mixing, chemical interactions and transport, over-
flows and mesoscale eddies. These features often have spatial resolutions of 10 km or smaller and
evolve over thousands of years. Such simulations are beyond the capability of traditional ocean mod-
els. Over the last decade, an important contribution to improving the resolution of ocean models has
involved the introduction of unstructured meshes. Unstructured, dynamically adaptive mesh mod-
els can efficiently resolve global, basin, regional and small-scale flow structures. Newly developed
adaptive unstructured mesh models offer significant advantages over the traditional models because
they are the only techniques that can simultaneously resolve both small and large scale flows. The
use of adaptive unstructured meshes will also reduce computational cost and increase accuracy.
One of the most important tasks for unstructured mesh ocean modelling [2] is to develop
data assimilation methods along with reliable error norms. Data assimilation techniques in ocean
modelling provide a quantitative, objective method to infer the state of the ocean system from
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heterogeneous, irregularly distributed and temporally inconsistent observational data. Adaptive
meshing methods in combination with data assimilation are capable of producing a best estimate
model solution by refining a numerical simulation in the presence of the observational data over
both space and time [3]. This provides a better description of the model (ocean) state over time than
that provided by the raw observations, thus increasing our understanding of oceanic behaviour. The
increased understanding has, in turn, led to the development of improved numerical models.

Variational data assimilation techniques are widely used in operational modelling. This includes
the computationally economical 3D variational methods which exclude the flow dependent fore-
cast errors [4] and the computationally demanding but very powerful 4D variational methods which
require availability of an adjoint model [5]. An alternative method is ensemble Kalman filtering
(EnKF) introduced in 1994 [6], which is useful because it is easy to implement (no adjoint mod-
els are required), along with its potential for efficient use on parallel computers with large-scale
geophysical models [7, 8].

The EnKF is based on a Monte Carlo approach, using an ensemble of model representations to
build up the necessary statistics [9, 10]. A background error covariance is computed using an ensem-
ble of forecasts, with the current analysis ensemble serving as initial conditions. The EnKF then
updates the analysis ensemble from observations. The EnKF is easy to implement and handles strong
nonlinearities better than other known Kalman filter techniques for large-scale problems [11]. Sev-
eral types of ensemble-based Kalman filter algorithms have been developed using either stochastic
(perturbed observations) or deterministic (square root) filters. Some discussions of ensemble-based
data assimilation methods are discussed in [4, 12—14]. A wealth of examples of practical applications
could be found in [15-23].

In this work, the stochastic EnKF approach has been implemented for an adaptive mesh ocean
model (Fluidity) that can simultaneously resolve both small-scale and large-scale ocean flows while
smoothly varying mesh resolution and conforming to complex coastlines and bathymetry [2, 24-27].
What distinguishes the EnKF model developed here from other existing EnKF models is the inclu-
sion of an adaptive mesh capability. This represents the main challenge in the implementation of the
EnKF approach. For data assimilation in conjunction with adaptive mesh, the unstructured adaptive
mesh ocean models have the advantage of using high resolution around the observation points in
order to reduce the representativeness errors of observations. When adaptive meshes are employed,
the mesh resolution requirements may be spatially and temporally different, as the meshes are
adapted according to the flow features. This unavoidably introduces difficulties in the implementa-
tion of EnKF for an adaptive model. One of these challenges is that ensemble can be of different
lengths at different time levels. To overcome these difficulties, a standard reference fixed mesh is
adopted for EnKF. The ensembles are then interpolated from their own mesh onto the reference
fixed mesh.

However, this also introduces an interpolation error into ensembles and the EnKF system. The
interpolation error may destroy conservation of quantities important to the physical accuracy of the
simulation such as density, volume fractions or tracer concentrations [28]. To reduce the interpola-
tion error, a supermesh technique is employed, where globally conservative interpolation operators
between general unstructured meshes are used to construct an intermediate supermesh [29].

The application of supermesh to mesh adaptivity was first introduced by Farrell et al. [29, 30],
who also described a bounded variant of the Galerkin projection for piecewise linear fields. The
projection algorithm described is not the optimally accurate Galerkin projection and is specific to
piecewise linear fields. However, it is conservative and bounded.

The remainder of this paper is structured as follows: In Section 2, EnKF is briefly described. In
Section 3, the adaptive mesh model (Fluidity) is introduced. The mesh adaptivity and implemen-
tation of the EnKF model are discussed in detail in Section 4. In Section 5, the aforementioned
EnKF system is applied to and illustrated using a typical ocean case: Munk Gyre. Summary and
conclusions are drawn in the final section.

Copyright © 2016 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids (2016)
DOL: 10.1002/fld



ENSEMBLE DATA ASSIMILATION APPLIED TO AN ADAPTIVE MESH OCEAN MODEL

2. KALMAN FITER METHOD DATA ASSIMILATION

The EnKF algorithms used here are based on the work of Evensen [10] and the analysis scheme
from Burgers et al. [9].

The ensemble members are defined as ¥; € W"*(@ = 1,---, N), where N is the ensemble size
and n is the dimension of the model state. The ensemble matrix A can be constructed by the model
states of the ensemble as:

A= Y2, Yw) € RV M
The anomaly matrix is
A=A-—4 (2)
where A is the ensemble mean vector.
The observation vector is d € R"™. Suppose its uncertainty is €; (X = (€1, ,€en)). We can
have the perturbed observations of N random vectors:
di=d+e, j=1,-- N 3)

where d; conform to a N(d,R) Gaussian distribution. R is the observation error covariance matrix.
The ensemble of the innovation vectors is defined as the matrix

D'=D-HA “)

where D = (dy,--- ,dy) and H is the observation operator which interpolates the model state to
the observation space.
The forward integration for the model states can be written as

vl =) +ax )

where k is the time step and gy is a random model error sampled independently from a Gaussian
distribution. The operator g is a nonlinear function representing the model integration.
The analysis update equation is given in matrix form:

A=A+ P,HT (HP,HT + R)"' (D — HA) (6)

where P, is the background error covariance matrix of the ensembles.
The Kalman gain is

K=PHT (HP,HT + R)™ %)

The analysis update equation can be also written using only anomalies as
/ / —1
AC = A4+ AATHT (HA’A THT 4 EET) D’ 8)

where A’ is the anomaly matrix of the ensembles. X is the matrix of observation perturbations. D’
is the innovation matrix.

For the implementation of EnKF with adaptive mesh, the essential problem is that the ensembles
are defined on different meshes, which means that the dimensional size of the ensemble members
are different and the ensemble matrix A can’t be derived directly. Let the ensemble members be
¢ e W' (i =1,---,N),where N is the ensemble size and #; is the dimension of the i;; ensemble
member. By interpolating the ensembles ¢; to a fixed reference mesh, a set of ensemble members
with the same dimension could be derived. Then the standard EnKF scheme could be applied to the
ensembles as mentioned earlier. More details of the adaptive mesh EnKF scheme will be presented
in Section 4.

3. AN UNSTRUCTURED MESH FLUID MODEL

In this work, the EnKF method was implemented for an unstructured adaptive mesh fluid model
developed by Imperial College London, Fluidity) which is introduced later.
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3.1. Introduction to fluidity

Fluidity is a 3D non-hydrostatic fluid model which uses control volume finite element discretisation
methods on meshes which may be unstructured in all three dimensions and which may also adapt to
optimally resolve multiscale dynamics [24, 31].

There are significant potential advantages of an unstructured mesh fluid model [2]. For example,
there are issues relating to boundary conditions when bathymetry and coastlines are represented
by a ‘staircase’ regular structured mesh. The result can be an inadvertent application of no-slip
boundary conditions and consequent problems with the transport of dense fluids along slopes. This
process must be parameterised for staircase topography, for example, using enhanced diffusion in
the cells adjacent to the ocean floor. Having the mesh aligned with the bathymetry avoids many of
these problems [32] and allows the fluid to slide over bathymetry, as described by a frictional model
for example. Unstructured meshes also enable the use of greater mesh resolution in the direction
normal to the coastline than tangential to it where typically boundary layers develop (e.g. western
and frictional). Resolving developing flow features (e.g. fronts, eddies and overflows) whose posi-
tions are not necessarily known a priori requires the use of adaptive mesh resolution. Thus, ideally
mesh adaptivity techniques would be employed which can dynamically change model resolution to
optimally resolve such flows.

Adaptive meshes in 3D space and time make it possible that regions of steep topography, high
dynamical activity or specific interest can be modelled at a high horizontal and vertical resolution.
The mixed finite element pair is adopted which is a first order discontinuous finite element for
the velocity variable and a second order continuous finite element for the pressure, temperature
and other state variables [33, 34]. Nonlinear advection methods on unstructured meshes are also
exploited so that both accuracy and robustness may be combined.

3.2. Adaptive mesh techniques

A dynamically adapting anisotropic mesh in 3D is used here. Mesh adaptivity or optimisation relies
on the derivation of appropriate error measures, which dictate how the mesh is to be modified [1,
24]. A metric tensor is used to calculate the required edge lengths and orientation of the mesh
elements to control solution errors. It is constructed so that an ideal edge length is unity when
measured in metric space. Because the metric is dependent on both location and direction, it is able
to reflect locally anisotropic information within the solution. Thus, inhomogeneous and anisotropic
meshes result from this approach. By defining an objective functional which is based on the element
quality in this metric space, an optimisation technique is used to improve the overall quality of
the mesh. Local operations based on a series of mesh connectivity and node position searches are
performed on a 3D tetrahedral mesh and include: edge collapsing/splitting, face to edge and edge
to face swapping, edge to edge swapping and local node movement or mesh smoothing in a fashion
similar to [35] and [36]. Constraints are imposed on these operations so as to preserve the integrity
of nonplanar geometrical boundaries [24].

To reduce the interpolation error, high-order interpolation approaches are employed [37]. For each
node in the reference mesh, the element of the adapted mesh in which the node lies is identified.
Then, a local higher-order polynomial (e.g. quadratic or cubic) is fitted with a least squares approach
on a patch of nodes around this element. This polynomial is then evaluated at the location of the
node in the reference mesh to determine the interpolated value. This scheme is more accurate than
linear interpolation with a higher computational cost as a dense matrix must be inverted for each
element in the original mesh to compute the interpolated solution.

4. IMPLEMENTATION OF ENSEMBLE KALMAN FILTER IN FLUIDITY AND
SUPERMESH TECHNIQUES

4.1. Issue of implementation of ensemble Kalman filter in an adaptive mesh model
When adaptive meshes are employed, the mesh resolution requirements vary spatially and tempo-

rally, as the meshes are adapted according to the flow features through the whole simulation. The
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dimensional size of the variable vectors is different at each time level because the number of nodes
varies during the simulation. Ensembles can therefore be of different length at different time levels.
This unavoidably brings difficulties in the implementation of EnKF for an adaptive mesh model. To
overcome these difficulties, a standard reference fixed mesh is adopted for the EnKF model. The
solutions from the original model are interpolated from their own mesh onto the same reference fixed
mesh at each time level, and then stored in the ensembles. This allows the same length of ensembles
to be obtained at each time level. The resolution of the reference mesh and the interpolation errors
between the two meshes (the adaptive mesh and the fixed reference mesh) may affect the accuracy
of EnKF, and thus, the reference mesh must be chosen carefully so that it is at least as fine as the
finest adapted mesh at a given location. To reduce the interpolation error, high-order interpolation
approaches are employed. In this work, the reference mesh is obtained by the supermesh technique
described thereafter. The adaptive mesh EnKF data assimilation scheme was shown in Figure 1.

4.2. Supermesh technique

The use of adaptive meshes introduces the different length of ensembles. The ensemble variables
are defined on different meshes. To overcome the issue, a standard reference fixed mesh is adopted
for EnKF. The ensembles are then interpolated from their own meshes onto the reference fixed
mesh. However, the error caused by interpolating from the one mesh onto the reference fixed mesh
could destroy conservation of quantities important to the physical accuracy of the simulation such
as density, volume fractions or tracer concentrations. To avoid such problem, we employed here the
conservative interpolation operators between general unstructured meshes via the construction of an
intermediate supermesh.

The definition of a supermesh (Figure 2) has the following characteristics [30]. First, any node in
a parent mesh must be present in the supermesh. Secondy, for every element in the supermesh, the
intersection of that element with any element of a parent mesh must either be a set of measure zero
or the whole element. Note that a supermesh is not unique. To construct a supermesh satisfying the
aforementioned definition from two given input meshes, it is proven that the construction process
may be converted to that of a constrained meshing problem. To solve a constrained triangulation

Model spin-up
with adaptive mesh

Perturbation to surface wind stress

Ensemblen
Mesh n

Ensemble 2
Mesh 2

Ensemble 1
Mesh 1

EnKF data assimilation

with supermesh technique

Model running
with adaptive mesh

Analysis ensemble defined
on the same mesh

»
>

to where obs appears

Figure 1. The adaptive mesh ensemble Kalman filter (EnKF) data assimilation scheme.
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(b)

Figure 2. Supermesh construction, where (a) and (c) are two different meshes, and (b) is the supermesh
constructed based on mesh (a) and mesh (b).

problem, some widely available, robust algorithms for the problems of computational geometry
inherent in the conservative interpolation algorithms could be used.

The method of mesh to mesh interpolation [37] begins with a set of two meshes, one that repre-
sents an old mesh and the other that represents the new adapted one. It is expected that the new mesh
will contain regions with different resolution than that of the previous one. Furthermore, in almost
all cases, if the two meshes were to be superimposed onto each other, they would not overlap in a
consistent manner so that volumes and surfaces are not resolved by both meshes. This is illustrated
in Figure 2, which shows a cross section of the new mesh overlaid on top of the previous one. The
adapted mesh is clearly shown to be represented in more detail, and there are several instances where
previous mesh elements are only partially occupied by the new mesh. During the eigenvalue solv-
ing procedure, when a mesh is adapted the flux on the old mesh is required to be mapped onto the
new mesh in a consistent and conservative way. The mesh interpolation approach consists in using
a Galerkin projection of the geometries over a supermesh, which is generated by the overlapping of
the old and new meshes. An example of a supermesh is presented in Figure 2, and this shows how
new elements are formed from the intersections of all lines (and surfaces for 3D) of both meshes.
Although these elements are not of regular type associated with finite elements, they do have the
important property that they contain only a single volume. This supermesh therefore enables one
to map flux information between the two meshes because each of its elements (containing a single
volume) can be fully mapped onto a single element associated with either the old or new mesh. It is
therefore a simple task of correctly interpolating the old mesh information onto the new mesh.

4.3. Test case: 3D wind-driven ocean circulation case

The domain for the wind-driven ocean circulation model is 1500 km x 1500km in the horizontal
direction and 1 km in the vertical direction. Only ocean surface wind forcing boundary condition is
applied. The wind stress is given as the cosine function of the horizontal x coordinate. The Cori-
olis terms are taken into account with the beta-plane approximation. State variables to construct

Copyright © 2016 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids (2016)
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the ensemble matrix are velocity (u,v and w) and sea surface height (h). The surface 2D mesh is
composed with unstructured triangular elements, which are extruded to the domain bottom with
only one layer in the vertical direction. A high resolution model with an uniform element length of
5 km in the horizontal direction (experiment 1 in Table I) is setup as a reference result, from which
the sea surface height solutions at some given locations are derived as the observation information
for the EnKF data assimilation experiments. The designed observations were assimilated into the
same ocean model with a low resolution fixed mesh (20 km) and biassed wind forcing ocean model
(experiment 2 in Table I) after spinning up for two years. Another data assimilation experiment
(Experiment 3 in Table I) is similar to experiment 2 except that the mesh is adaptive w.r.t. the veloc-
ity variable with the element side length limited between Skm and 20km. Considering the mesh
refinement around the observation locations, the mesh is adaptive w.r.t. both the velocity variable
and the observation locations in experiment 4. Different observation errors are applied to the fixed
and adaptive mesh experiments. The detailed setup of the data assimilation experiments is shown
in Table I.

The observation locations are designed as the intersections of several tracks inside the domain
surface (Figure 3). There are 41 observation locations throughout the whole domain.

4.3.1. Ensemble Kalman fiter method experiments with unstructured fixed mesh. The construction
of the unstructured mesh EnKF data assimilation system starts with a low resolution (20 km) fixed
mesh ocean model. The setup of the low-resolution model is the same with the high-resolution
model except the horizontal mesh resolution and the surface wind forcing. The 20 km low reso-
Iution model (experiment 2) is forced by a biassed surface wind, which is necessary to generate a
relatively biassed model solution compared with the 5 km high-resolution model (experiment 1).
The observation information derived from the high-resolution model is then assimilated into the
biassed low-resolution model using the EnKF data assimilation method. The assimilation took place

Table I. Experiments setup.

Index Mesh Resolution ~ Wind stress  Observations DA period
Experiment 1  Fixed 5 km True N/A N/A
Experiment 2  Fixed 20 km Biassed 41 Locations ~ 730-1100 days

Experiment 3 ~ Adaptive w.r.t. velocity ~ Skm—20 km Biassed 41 Locations ~ 730-1100 days
Experiment 4  Adaptive w.r.t. velocity =~ 5Skm—-20 km Biassed 41 Locations ~ 730-1100 days
and obs. Locations
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Figure 4. Error in free surface height (unit: m), before (marked as ‘CTRL’) and after (marked as ‘analysis’)
ensemble Kalman fiter method data assimilation. RMSE, root mean square error.
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Figure 5. Error in the x-direction component of velocity (unit: m/s), before (marked as ‘CTRL’) and after
(marked as ‘analysis’) ensemble Kalman filter (EnKF) data assimilation.

every 10 days with the mesh fixed at all the time levels. Figure 4 shows that the root mean square
error (RMSE) of the free surface height before (marked as ‘CTRL’) and after (marked as ‘analysis’)
the EnKF data assimilation process. It can be seen that the EnKF data assimilation system has a
good impact on the model integration compared with the observations we generated using a high-
resolution twin experiment. Similar results are shown in Figure 5 for the velocity component in
the x-direction. Based on this, we can extend the construction of the unstructured mesh EnKF data
assimilation system to adaptive mesh ocean model.
The RMSE is defined as follows:

€ = NZ(’W—X?)Z ©)

i=1

where N denotes the number of observations, x; represents the model state and x; represents the
i-th observation.

4.3.2. Ensemble Kalman fiter method experiments with unstructured adaptive mesh. When we run
the ocean model using adaptive meshes, we got the ensembles defined on different meshes. The
EnKF data assimilation process with adaptive meshes involves the following key points.

Copyright © 2016 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids (2016)
DOL: 10.1002/fld



ENSEMBLE DATA ASSIMILATION APPLIED TO AN ADAPTIVE MESH OCEAN MODEL

First of all, the observation mesh (structured mesh, triangle format) was generated according to
the designed observation locations, and the unstructured surface mesh of the computation domain
was interpolated to the observation mesh. This step is essential to calculate the observation inno-
vation. Secondly, adaptive mesh was adopted for every initial ensemble and then interpolated to
one ‘optimal’ mesh when encountering an observation, where the supermesh technique is adopted.
Furthermore, the mesh around the observation locations could be refined adaptively to reduce the
representative error (Figure 6) and to improve the assimilation effect.

Figure 7 shows details of adaptive meshes of one ensemble member at different time steps. The
mesh is adapted every 10 days. The allowed maximum mesh element side length is 20 km, and the
allowed minimum is 5 km, which limited the adaptive mesh resolution between the low resolution
(20 km) of the fixed mesh data assimilation experiment as descried in the previous section and the
high resolution (5 km) of the reference model integration.
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Figure 6. Surface mesh adapted according to the observation locations.
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Figures 8 and 9 show the RMSE of the assimilated variables free surface height and the x-direction
component of velocity, respectively, before and after the EnKF data assimilation process with the
adaptive mesh. We can see that the model results with adaptive mesh (experiment 3) are already
better than that without adaptive mesh (experiment 2, Figure 4) compared with the observations
derived from the high-resolution ocean model (experiment 1) before the data assimilation process.
In the data assimilation process, the observation information was assimilated into the biassed low
resolution model every 10 days. The data assimilation experiments last for 1 year after the initial
ensembles were generated. From Figure 8, we can see that the RMSE were effectively reduced every
time the observation information was present during the data assimilation process. This proves that
the adaptive mesh EnKF data assimilation system has a positive impact on the numerical model with
the present of observations, which is the foundation of applying the adaptive mesh data assimilation
system to realistic ocean model with real observations, including both the conventional and satellite
observations. Similar conclusion could be derived from Figure 9 and also from the other assimilated
state variables.

In experiment 4, the unstructured mesh was adapted with respect to both the velocity variable
and the observation locations (Figure 6). The mesh resolution around the observation locations
was relatively high in order to reduce the representativeness errors of observations. The RMSE
before and after EnKF data assimilation for the free surface height and the x-direction component
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Figure 8. Error in free surface height (unit: m), before (marked as ‘CTRL’) and after (marked as ‘analysis’)
ensemble Kalman fiter method data assimilation. RMSE, root mean square error.
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Figure 9. Error in the x-direction component of velocity (unit: m/s), before (marked as ‘CTRL’) and after
(marked as ‘analysis’) ensemble Kalmandata assimilation.
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Figure 10. Error in free surface height (unit: m), , before (marked as ‘CTRL’) and after (marked as ‘analysis’)
ensemble Kalman filter data assimilation. RMSE, root mean square error.
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Figure 11. Error in the x-direction component of velocity (unit: m/s), before (marked as ‘CTRL’) and after
(marked as ‘analysis’) ensemble Kalman filter data assimilation. RMSE, root mean square error.

of velocity are shown in Figures 10 and 11, respectively. It could be seen that before the EnKF
data assimilation, the error between the numerical model and the observations was further reduced
compared with the result shown in Figures 8 and 9, respectively, with the improvement of increasing
the mesh resolution around the observation locations. After the EnKF data assimilation process, the
error was further reduced, which proves the effectiveness of the adaptive mesh data assimilation
system. Similar results were obtained for the other assimilated state variables.

5. CONCLUSIONS

Data assimilation with unstructured adaptive mesh ocean model is attractive due to two reasons.
First, unstructured adaptive mesh ocean models have the advantages of using high-resolution mesh
at the regions of large flow gradients or nonsmooth coastlines to better approximate the continu-
ous flow. Secondly, for data assimilation, the unstructured adaptive mesh ocean models have an
additional advantage of using high resolution around the observation points in order to reduce the
representativeness errors of observations. In this study, we illustrate the aforementioned ideas using
Fluidity/ICOM model in identical twin experiments, in which model simulated altimetry data are
assimilated by ensemble Kalman filter. Because one ensemble member could be defined at a differ-
ent mesh from another ensemble member, it is not straightforward to apply the ensemble Kalman
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filter to adaptive mesh models. A supermesh method is applied to overcome the technical prob-
lem. It is proven that the adaptive mesh EnKF data assimilation system has a positive impact on the
numerical model, which is the foundation of applying the adaptive mesh data assimilation system to
realistic ocean model with real observations, including both the conventional and satellite observa-
tions. The mesh adaptivity (increased mesh resolution) around the observation locations improved
the model results further by assimilating the observations, which could be applied to the ensem-
ble data assimilation of the realistic ocean modelling considering the importance of reducing the
representative error around the observation locations.
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