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Abstract
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The current thesis manuscript studies the suitability of a recent data assimilation method, the Varia-
tional Ensemble Kalman Filter (VEnKF), to real-life fluid dynamic problems in hydrology. VEnKF
combines a variational formulation of the data assimilation problem based on minimizing an energy
functional with an Ensemble Kalman filter approximation to the Hessian matrix that also serves as
an approximation to the inverse of the error covariance matrix. One of the significant features of
VEnKF is the very frequent re-sampling of the ensemble: resampling is done at every observation
step. This unusual feature is further exacerbated by observation interpolation that is seen beneficial
for numerical stability. In this case the ensemble is resampled every time step of the numerical
model. VEnKF is implemented in several configurations to data from a real laboratory-scale dam
break problem modelled with the shallow water equations. It is also tried in a two-layer Quasi-
Geostrophic atmospheric flow problem. In both cases VEnKF proves to be an efficient and accurate
data assimilation method that renders the analysis more realistic than the numerical model alone. It
also proves to be robust against filter instability by its adaptive nature.

Keywords: Data Assimilation, Variational Ensemble Assimilation, VEnKF, transport models.

UDC 519.23 : 528.7/.8 : 630*5





Preface

Preface here.....

Lappeenranta, January 2015

Zubeda S. Mussa



CONTENTS

Abstract

Preface

Contents

List of the original articles and the author’s contribution

Abbreviations

Part I: Overview of the thesis 11

1 Introduction 13
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.2 The Scope of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.3 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.4 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.5 Author Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2 Literature Review and Motivation 17
2.1 Data Assimilation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2 Data Assimilation in Geophysical and Atmospheric Sciences . . . . . . . . . . . . 18
2.3 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3 Data Assimilation Techniques 21
3.1 Filtering Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.1.1 Kalman Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.1.2 Extended Kalman Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.1.3 Ensemble Kalman Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.1.4 Variational Kalman Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.1.5 Variational Ensemble Kalman filter . . . . . . . . . . . . . . . . . . . . . 29
3.1.6 Root Mean Square Error . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4 VEnKF analysis of hydrological flows 33
4.1 The Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.1.1 The 2D Shallow Water Equations (SWE) . . . . . . . . . . . . . . . . . . 33
4.1.2 Numerical Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.1.3 Stability Criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35



4.1.4 Initial and Boundary conditions . . . . . . . . . . . . . . . . . . . . . . . 36
4.1.5 Dam Break Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.2 Faithfulness of VEnKF analysis against measurements . . . . . . . . . . . . . . . 37
4.2.1 1D Set of observations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.2.2 Interpolation of observation . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.2.3 Shore boundary definition and VEnKF parameters . . . . . . . . . . . . . 39
4.2.4 VEnKF estimates with synthetic data of the dam break experiment . . . . . 41
4.2.5 Experimental and assimilation results for a 1-D set of real observations . . 41
4.2.6 Spread of ensemble forecast . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.3 Ability of VEnKF analysis to represent two dimensional flow . . . . . . . . . . . . 46
4.3.1 2D observation settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.3.2 Results with parallel setup of observations . . . . . . . . . . . . . . . . . . 49
4.3.3 Impact of observation Interpolation with VEnKF . . . . . . . . . . . . . . 49

4.4 Mass conservation of VEnKF analyses . . . . . . . . . . . . . . . . . . . . . . . . 53
4.5 The two layer Quasi-Geostrophic model . . . . . . . . . . . . . . . . . . . . . . . 55

4.5.1 Numerical approximation and VEnKF results . . . . . . . . . . . . . . . . 58

5 Discussion and Conclusions 61

Bibliography 63





LIST OF THE ORIGINAL ARTICLES AND THE AUTHOR’S CONTRIBUTION

This monograph thesis consists of an introductory part and two original refereed articles appeared or
submitted in scientific journals. The articles and the author’s contributions in them are summarized
below.

I Idrissa, A., Mussa, Z. S., A. Bibov and T. Kauranne, Using ensemble data assimilation
to forecast hydrological flumes, Non Linear Process in Geophysics, 20(6), 955-964, 2013.

II Mussa, Z. S., Idrissa, A., A. Bibov and T. Kauranne, Data assimilation of two-
dimensional Geophysical flows with a Variational Ensemble Kalman Filter, Non Linear
Process in Geophysics Discussion (NPGD)2014.

Zubeda Mussa is a co-author of Publication I, and a principal author of Publication II. In both pa-
pers, the author carried out experimentation and processed the results. In both articles, the author
has participated in the substantially writing of the articles.





ABBREVIATIONS

3D-Var 3 Dimension Variational Assimilation
4D-Var 4 Dimension Variation Assimilation
4D-EnVar Four dimensional ensemble-variational data assimilation
CFD Computational Fluid Dynamics
CFL Courant–Friedrichs–Lewy
EKF Extended Kalman Filter
EnKF Ensemble Kalman Filter
EnSRF Ensemble Square Root Filter
KF Kalman Filter
LBFGS Limited memory Broyden-Fletcher-Goldfarb-Shanno
NWP Numerical Weather Prediction
LEnKF Local Ensemble Kalman Filter
MLEF Maximum Likelihood Ensemble Filter
QG Quasi-Geostrophic model
RMSE Root Mean Square Error
SLF Statistical Linearization Filter
SWE Shallow Water Equations
UKF Unscented Kalman Filter
VKF Variational Kalman Filter
VEnKF Variational Ensemble Kalman Filter





PART I: OVERVIEW OF THE THESIS





CHAPTER I

Introduction

1.1 Background

In geophysics and atmospheric sciences, researchers have been using data assimilation to approxi-
mate the true state of a physical system. The analysis of these physical systems relies upon the fore-
cast model, observation data available, and initial and boundary conditions. Daley (1991) describes
this whole process in the case of meteorology. In order to predict the future state of the atmosphere,
the present state of the atmosphere must be well characterized, and the governing equations (the
model) which are used to predict the future state from the present state have to be well written. The
analysis of the physical system at the current time is used as the initial state of the forecast to the
next time point and this process, in which observations are combined with a dynamic model to pro-
duce the best estimate of the state of the system as accurately as possible, is called data assimilation
(Talagrand, 1997; Wang et al., 2000; Navon, 2009).

Modern data assimilation methods, such as the Ensemble Kalman filter (EnKF) (Evensen, 2003) and
Variational Kalman filtering (VKF) (Auvinen et al., 2010), have been developed for applications in
computational fluid dynamics (CFD) and in operational weather forecasting. In these fields, the
most critical task is to solve the corresponding equations of fluid dynamics, mostly shallow water
equations (SWE) and the Navier-Stokes equations in different forms. Data assimilation in CFD
therefore serves first and foremost the identification of the structure of the flow field. Yet in general
it is difficult to observe the flow field directly. Instead, observations are made of quantities that
flow along with the flow, such as tracers, or collective properties of the flow, such as pressure or
temperature.

Data assimilation is of such central importance to the quality of weather forecasts, that it is worth
a lot of development effort. A centerpiece of such efforts over the last thirty years has been the
introduction of variational principles to data assimilation (Awaji et al., 2003; Bélanger and Vincent,
2004; Courtier and Talagrand, 1990; Le Dimet and Talagrand, 1986). Furthermore, hybrid meth-
ods that combine ensemble assimilation techniques and variational assimilation methods have been
introduced. The goal of this research therefore is to apply a novel method for state estimation in
data assimilation, the Variational Ensemble Kalman filter (VEnKF) developed to a large extent at
the Department of Mathematics at Lappeenranta University of Technology by Solonen et al. (2012),
to environmental problems presented by different types of hydrological models.

13



14 1. Introduction

1.2 The Scope of the thesis

In this thesis we first introduce the benefit of data assimilation to hydrological modeling using wave
meter data of a river model that was first introduced by Martin and Gorelick (2005). In the research
work by Amour et al. (2013), we have shown how VEnKF is capable of producing better results
than pure simulation when applied to the shallow water model. In this first application, the analysis
is limited to a one dimensional set of observation whereby wave meter data of a measured laboratory
dam break experiment by Bellos et al. (1991) has been used.

Further studies have been conducted to see whether VEnKF is able to capture cross flow syntheti-
cally. To achieve this, the dam break experiment by Bellos et al. (1991) has been modified to have a
two dimensional setup of wave meters at the downstream end. VEnKF was then used to assimilate
observations of a known flow pattern. VEnKF was later also used to assimilate observations of
a two layer Quasi-Geostrophic (QG) model and its performance was compared with the classical
extended Kalman filter.

1.3 Objectives

• The main objective of this thesis is to study a novel hybrid data assimilation method, the
Variational Ensemble Kalman filter developed at Lappeenranta University of Technology, in
real time applications to estimate the state of the dynamic system.

• To apply VEnKF to non-linear models described by the shallow water equations and the
Quasi-Geostrophic model.

• To determine whether VEnKF can reproduce the turbulent behavior of the flow even when the
pure simulation was not able to achieve this.

To achieve these objectives, VEnKF is applied to a large state estimation problem with highly non-
linear model in hydrological modeling using a shallow water model and a QG model. The shallow
water model was used to propagate the state and covariance in time and observations from a real
dam break experiment were used to update the state.

1.4 Outline

This thesis is organized as follows. After the introduction, Chapter II gives some background of data
assimilation and its application to hydrological modeling. In Chapter III, a brief overview of both
sequential and variational data assimilation techniques is presented. The hybrid variational ensem-
ble Kalman filter is also presented. The shallow water model, QG model, numerical solutions and
the ability of VEnKF to represents these flows is are presented in Chapter IV. Chapter V concludes
the research work and suggestions for future research.

1.5 Author Contributions

The Author has done most of the writing and conducted almost all of the test runs of the experiments
for shallow water equations (SWE). She has also programmed most of the modifications needed to
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the original SWE code taken from literature and to the VEnKF library written by one of the co-
authors (A. Bibov).
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CHAPTER II

Literature Review and Motivation

2.1 Data Assimilation

Data assimilation is the process of combining observations of the current and past state, and the
dynamic system model (forecast) in order to produce the best estimate (analysis) of the current and
future state of the system (Daley, 1991; Talagrand, 1997; Kalnay, 2003; Wu et al., 2008; Navon,
2009; Blum et al., 2009; van Leeuwen, 2011). Data assimilation has widely been used in numerical
weather prediction (NWP) and other branches of geophysics. In weather forecasting, data assim-
ilation is used to generate the initial conditions for an ensuing forecast, but also to continuously
correct a forecast towards observations, whenever these observations are available in the course
of the forecast (Daley, 1991; Ghil and Malanotte-Rizzoli, 1991; Kalnay, 2003; Fisher et al., 2009;
Solonen and Järvinen, 2013). In oceanography, data assimilation has been used as a tool to describe
ocean circulation (Stammer et al., 2002; Awaji et al., 2003; Bertino et al., 2003). In general data as-
similation has been used for prediction of uncertainty (Moradkhani et al., 2005a), state estimation,
parameter estimation or both state and parameter estimation (Moradkhani et al., 2005b; Solonen,
2011; Järvinen et al., 2012; Laine et al., 2012; Mbalawata, 2014).

In data assimilation, the analysis and forecast can be described by means of a probability distribu-
tions whereby the analysis is the application of the Bayes theorem which states that, the posterior
probability distribution p(x|y) of the true state x given observation y, is given as

p(x|y) = p(y|x)p(x)
p(y)

, (2.1)

where p(y|x) is the likelihood function, p(x) is a prior probability which represents the prior knowl-
edge of the state vector, and p(y) is the normalization factor.

Definition 2.1.1 (Probabilistic state space model). A probabilistic state space model, which can be
linear or non-linear, consists of a sequence of conditional probability distributions given as

xk ∼ p(xk|xk−1),

yk ∼ p(yk|xk), (2.2)

for k = 1,2, ..., where xk ∈ Rn is the state of the system at time step k assumed to be a Markov
process whose initial distribution is p(x0), yk ∈Rm is the measurement at time step k, p(xk|xk−1) is

17
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18 2. Literature Review and Motivation

the dynamic model which describes the stochastic dynamics of the system. The dynamic model can
be a probability density, a counting measure or a combination of them depending on whether the
state xk is continuous, discrete or hybrid, p(yk|xk) is the measurement model which represent the
distribution of measurements given the state (Doucet et al., 2000; Särkkä, 2013).

Data assimilation finds the probability of the true state at time k conditioned on the measurements
and the optimal filtering equation is thus given in two steps.

Prediction step: This step involves the computation of prediction distributions of x by Chapman-
Kolmogorov equation given as,

p(xk|y1:k−1) =
∫

p(xk|xk−1)p(xk−1|y1:k−1)dxk−1 (2.3)

Update step: Given the measurement yk, the posterior distribution is given by the Bayes’ rule as,

p(xk|y1:k) =
p(yk|xk)p(xk|y1:k−1)∫
p(yk|xk)p(xk|y1:k−1)dxk

. (2.4)

Equations 2.3 and 2.4 can not be solved analytically for higher dimensional problems which are
complex in real time applications. Several data assimilation techniques are being used to ap-
proximate Equations 2.3 and 2.4. Examples of such techniques are Kalman filter (KF) (Kalman,
1960), extended Kalman filter (EKF), particle filtering techniques, Bayesian Optimal filter, statis-
tical linearization filter (SLF), unscented Kalman filter (UKF) (Julier and Uhlmann, 2004; Chow
et al., 2007; Kandepu et al., 2008), ensemble filtering techniques (Evensen, 1994; Houtekamer and
Mitchell, 1998; Evensen, 2003), variational Kalman filter (VKF) (Auvinen et al., 2010), 3D and 4D
variational assimilation techniques (Le Dimet and Talagrand, 1986; Courtier and Talagrand, 1990)
and hybrid variational - ensemble data assimilation techniques (Hamill and Snyder, 2000; Zupanski,
2005; Zupanski et al., 2008; Liu et al., 2008; Gustafsson et al., 2014).

2.2 Data Assimilation in Geophysical and Atmospheric Sciences

In the past years, computational methods have been an essential tool in geophysical and atmo-
spheric sciences. Modeling of geophysical problems is conducted using using computer simulation
and solve the underlying partial differential equations using numerical schemes, such as the finite
difference method (FDM), the finite element method (FEM) or the finite volume method (FVM)
(Ciarlet et al., 2009; Durran, 2010; Lynch, 2008). In order to reduce uncertainties in numerical
predictions, observations are combined with these numerical simulations to acquire more reliable
predictions.

In the field of geophysical and atmospheric sciences, especially in numerical weather prediction
(NWP), data assimilation has long been used to estimate the optimal state of a system by combining
the system dynamics defined by the numerical model and real time measurements. The choice
of the method to be used depends on the nature of the problem to be modeled and the available
observations. However, variational assimilation methods such as 3D-Var and 4D-Var (Le Dimet
and Talagrand, 1986; Fisher et al., 2009), have been commonly used in NWP although their use is
limited by the need of a tangent linear and an adjoint model for the evaluation of the gradient of
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the cost function which leads to a high computational cost (Le Dimet and Talagrand, 1986). The
main idea in the use of these methods is to solve the underlying maximum a posterior optimization
problem that measures the model to data misfit (Bertino et al., 2003). Navon (2009) gives a review
of these methods in application to NWP. See also the study by Courtier and Talagrand (1990).

Ensemble methods have been developed and used in geophysics application (Evensen, 1994). The
ensemble Kalman filter (EnKF) that begins with (Evensen, 1994) and later by Houtekamer and
Mitchell (1998); Doucet et al. (2000); Evensen (2003) uses a Monte Carlo approach such that the
error covariance matrices are replaced by the corresponding sample covariance matrices calculated
from the ensemble and the ensemble of states is propagated in time using the fully non-linear model
(Evensen, 1994; Reichle et al., 2002a; Bertino et al., 2003; Hoteit et al., 2007; McMillan et al.,
2013). Kalnay et al. (2007) and Gustafsson (2007) discuss the advantages and disadvantages of
4D-Var and EnKF in application to data assimilation.

Several formulations of ensemble methods include the ensemble square root filter (EnSRF) (Whitaker
and Hamill, 2002; Tippett et al., 2003) and the local ensemble Kalman filter (LEnKF) (Ott et al.,
2004). Whitaker and Hamill (2002) pointed out that EnSRF is an example of an ensemble filter that
does not require perturbed observations, it does not add sampling error as ENKF does and hence
is more accurate. However, Lawson and Hansen (2004) have shown that a stochastic filter such as
EnKF can handle non-linearity better than a deterministic filter such as EnSRF. On the other hand,
LEnKF divides the state into local regions and the analysis is performed in each local region to
obtain a local analysis mean and covariance and these are then used to construct the ensemble of
the global field that is to be propagated to the next analysis time. Other Monte Carlo approaches
include the use of a particle filter for higher dimension problem (van Leeuwen, 2010, 2011).

In recent years, other techniques that combines ensemble methods and variational assimilation have
been developed to form hybrid methods (Hamill and Snyder, 2000; Hunt et al., 2004; Liu et al.,
2008; Buehner et al., 2013; Gustafsson et al., 2014). These methods have been found to produce
comparable results with other assimilation techniques. In several studies different approaches have
been used to present the prior error covariance. Hamill and Snyder (2000) showed that, the prior
error covariance is obtained as a weighted sum of the sample covariance and the 3D-Var covariance
by introducing a tuning parameter. The main drawback of the method is that it works under per-
fect model assumption. Liu et al. (2008) extend the ensemble 3D-Var to ensemble based 4D-Var
(En4DVAR) and, using a shallow water model in a low dimension space, a test of its performance
is made and found to produce similar result as that of 4D-Var with less computational cost. On the
other hand, Buehner et al. (2013) made a comparison between 3D-Var, 4D-Var and a four dimen-
sional ensemble-variational data assimilation (4D-EnVar) in deterministic weather prediction. They
also used the same approach used by Hamill and Snyder (2000) to represent the prior error covari-
ance. It has been found that the computational cost of the 4D-EnVar is lower than that of 4D-Var
and 4D-EnVar analyses produce better forecasts than that of 3D-Var and similar or better forecasts
when compared with 4D-Var in the troposphere of the tropics and in the winter extra-tropical re-
gion and similar or worse analyses in the summer extra-tropical region. In general the 4D-EnVar
method proposed by Buehner et al. (2013) can be taken as the best alternative to 4D-Var in terms of
simplicity and computational efficiency.

In Zupanski (2005), a maximum likelihood ensemble filter (MLEF) is proposed. MLEF uses
Bayesian theory and combine maximum likelihood and ensemble data assimilation. The state esti-
mate is obtained as the state that maximizes the posterior probability density distribution (Zupanski,
2005). MLEF and other ensemble based variational algorithms (Hunt et al., 2004) use ensemble
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based prior error covariance. Unlike the variational ensemble Kalman Filter (VEnKF) by Solonen
et al. (2012) which will be discussed in Chapter III, Section 3.1.5, MLEF does not include model
error and it generates a single ensemble of forecasts at the beginning of the forecast and uses it for
the whole assimilation process (Amour et al., 2013).

In hydrological and coastal models, data assimilation has not been applied very often. Liu et al.
(2012) review some challenges in the application of data assimilation in hydrological forecasting.
High non-linearity of the hydrological processes, high dimensionality of the state vector, the need
to use large samples when using ensemble methods (Liu et al., 2012) and estimating the error co-
variance matrix for high dimensional state vectors (Kuznetsov et al., 2003; Blum et al., 2009) are
described as the main challenges to be considered before the application of data assimilation tech-
niques in hydrology. The main focus of hydrological modeling using data assimilation is to estimate
the state and uncertainty of the dynamic system by combining observations (water level measure-
ments, flow fields, soil moisture e.t.c) with the hydrological model, given the knowledge of the cur-
rent state of the system. Hydrological modeling includes flood forecasting of river flows (Bélanger
and Vincent, 2004; Madsen and Skotner, 2005) and soil moisture estimate (Reichle et al., 2002a).
Bélanger and Vincent (2004) used the 4D-var assimilation technique to forecast floods using a sim-
plified sediment model. In their study, 4D-var was found good in producing an optimal analysis,
however, it is computationally expensive in high dimensional problems and its application is hin-
dered by the need of an adjoint model required in the evaluation of the gradient of the cost function.
Furthermore, data assimilation was found useful in estimation of parameters of hydrological models
(Moradkhani et al., 2005b; Lü et al., 2011).

Forecasting may be short-range, medium-range or long-range (Stensrud et al., 1999; Wood et al.,
2002; Madsen and Skotner, 2005; Sene, 2010). In meteorology and hydrology forecasting is very
important and has the advantage of (1) setting of action plan for disaster management, for example
predicting flood and drought in advance, (2) Infrastructure development, (3) reducing damage and
loss of life in case of disasters, and (4) disseminate information to the community. Thus, for hydro-
logical modeling, the quality of forecast is of vital importance for decision making and immediate
action plan. This can only be achieved when using data assimilation with a good and a reliable
technique.

2.3 Motivation

The VEnKF method has been introduced and studied in Solonen et al. (2012) but only simple models
have been used to validate the method. The study by Solonen et al. (2012) leaves open question
whether VEnKF is a robust and valuable member in the family of approximate Kalman filters and
whether if it can be applied to a real data assimilation problems. The main focus of this research
therefore, is to study the behavior of VEnKF to a highly non-linear model where model error is
also present. The emphasis will be on how easily VEnKF can be used and improving accuracy
over other methods used in the past. VEnKF was applied to a real data assimilation problem using
a shallow water model in one-dimensional and two-dimensional observation setting. VEnKF was
further applied to a two-dimensional Quasi-Geostrophic model.



CHAPTER III

Data Assimilation Techniques

3.1 Filtering Techniques

Data assimilation techniques fall into two main categories namely, sequential assimilation methods
and variational assimilation methods (Talagrand, 1997). Starting from a prior estimate for the ini-
tial state x0, the dynamic model is evolved to time k where the first observation is available. The
predicted state of the system also known as the background state is denoted by xp

k . The difference
between the predicted observation vector given by the background state and the vector of measured
observations at this time is given by Kxp

k+1− yk+1. where, K is the observation operator. This
difference is used to make a correction to the background state vector so as to get the improved
state estimate xest

k known as the analysis state. The model is then evolved forward again from the
analysis state to the next time step where an observation is available and the process is repeated.
This describes the sequential assimilation methods whereby the state is updated every time when
observations become available (Nakamura et al., 2006). Examples of these methods include nudg-
ing, particle filter methods, the Kalman filter and its variants and the ensemble Kalman filter and its
variants.

On the other hand, variational assimilation methods, which are computationally more expensive
than the sequential assimilation methods, use a batch of data at a specific time interval. These
methods solve the underlying maximum a posteriori estimate (MAP) equivalent to minimizing the
optimization problem that measures the model to data misfit (Bertino et al., 2003) defined by the
cost function as presented in Section 3.1.4. However, their use is limited by the need of a tangent
linear and adjoint code for the propagation of the covariance (Auvinen et al., 2010). Examples
of these methods include optimal interpolation, three-dimensional and four-dimensional variational
data assimilation. In this chapter only the Kalman filter (KF), the extended Kalman filter (EKF), the
ensemble Kalman filter (EnKF), the variational Kalman filter (VKF) and the variational ensemble
Kalman filter (VEnKF) are reviewed.

3.1.1 Kalman Filter

Kalman filter (Kalman, 1960) is an optimal recursive data processing algorithm for estimation of
state of dynamic system from noisy measurements in linear Gaussian state space models (Grewal
and Andrews, 2001) subjected to additive Gaussian noises as given by Equations (3.1) and (3.2).

21
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KF operates by propagating mean and covariance of the state in time and the task is to estimate the
state xk ∈ Rn governed by dynamic process

xk = Mk−1xk−1 + qk−1, (3.1)

with a measurement yk ∈ Rm governed by the measurement model

yk = Kkxk + rk, (3.2)

where Mk−1 is the transition matrix of the dynamic model, qk−1 ∼ N(0,Qk−1) is the dynamic
process noise with process noise covariance Qk−1, Kk is the measurement model matrix and rk ∼
N(0,Rk) is the measurement noise with measurement noise covariance Rk. KF assumes that the
model and measurement noises are independent.

KF consists of two main steps: (i) the prediction (forecast) step, where the state of the system is
predicted based on the previous state and (ii) the update (analysis) step where the state is updated
based on the available measurement at that time. The mathematical equations of the KF provides
a recursive efficient computation of dynamic states from which the mean of the squared error is
minimized and this can be described by Algorithm 3.1.

Algorithm 3.1 Kalman filter
The prediction and update step equations for KF are:

i) Initialization: Select initial guess xest
0 and covariance Cest

0 and set k = 1.

ii) Prediction step:

(a) Move the state estimate and covariance in time

xp
k = Mk−1 xest

k−1,

Cp
k = Mk−1 Cest

k−1MT
k−1 +Qk−1.

iii) Update step:

(a) Compute the Kalman gain

Gk = Cp
k KT

k
(
KkCp

k KT
k +Rk

)−1
,

(b) Compute the state estimate

xest
k = xp

k +Gk
(
yk−Kkxp

k

)
,

(c) Compute the covariance estimate

Cest
k = Cp

k −GkKkCp
k .

iii) Set k→ k+1 and go to step (ii).

From Algorithm (3.1), xp
k is a prior state estimate, xest

k is a posterior state estimate, Cp
k is a prior

estimate error covariance, and Cest
k is a posterior estimate error covariance. The posterior estimate

is also Gaussian and therefore it can be estimated from its mean and covariance.
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One of the disadvantages of KF is that it is limited to linear dynamic models. Furthermore, KF as-
sumes that the state vector of the dynamic model has n unknowns and therefore the error covariance
matrix has n2 unknowns and thus, the propagation of the error covariance matrix leads to a cost of
2n model integrations. Thus, other methods are needed.

3.1.2 Extended Kalman Filter

The extended Kalman filter (EKF) is the extension of KF to non-linear optimal filtering problems
by forming a Gaussian approximation to the distribution of states and measurements using a Taylor
series expansion (Särkkä, 2013). Incorporating the Kalman filter with repeated linearizations of a
non-linear dynamical system leads to the EKF that can be used for non-linear models. The dynamic
process (Equation 3.1) and the measurement model (Equation 3.2) are now written, respectively, in
the form of:

xk = M (xk−1) + qk−1, (3.3)
yk = K (xk) + rk, (3.4)

where M denotes the non-linear model and K is the non-linear observation operator.

The filter uses the full non-linear evolution model Equation 3.3 to produce a prior estimate: xp
k =

M (xest
k ). Non-linear dynamical models require a linearization when deriving the error covariance

evolution equation and thus the measurement model and the dynamic model functions need to be
differentiable.

The covariance estimate is obtained by first linearizing the prediction model about xest
k−1:

Mk =
∂M (xest

k−1)

∂x
, (3.5)

so that the prior covariance estimate is given by

Cp
k = MkCest

k−1Mk +Qk. (3.6)

The measurement model is then linearized about the prior estimate xp
k using:

Kk =
∂K (xp

k )

∂x
. (3.7)

The full non-linear observation operator is then used to update the state so as to get the current state
estimate and the corresponding error covariance estimate:

xest
k = xp

k +Gk
(
yk−K (xp

k )
)
, (3.8)

Cest
k = Cp

k −GkKkCp
k . (3.9)

The algorithmic formulation of the EKF is shown in Algorithm 3.2.

EKF is effective in many practical cases, easy to use and computationally efficient. However, the
method fails to account for the fully non-linear dynamics in higher dimensional problems and hence
fails to represent the error probability density because, if n is the dimension of the state vector, and
if m is the size of the observation space then it requires storage and multiplication of n×n matrices
and the inversion of m×m matrices and so, the error covariance matrix has n2 unknowns and 2n
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Algorithm 3.2 Extended Kalman Filter
The prediction and update step for EKF with additive noise are

i) Initialization: Select initial guess xest
0 and covariance Cest

0 and set k = 1.

ii) Prediction step

(a) Compute prediction
xp

k = M (xest
k ),

(b) Propagate estimate covariance

Cp
k = MkCest

k−1Mk +Qk.

iii) Update step:

(a) Compute the Kalman gain

Gk = Cp
k KT

k
(
KkCp

k KT
k +Qk

)−1
,

(b) Compute the state estimate

xest
k = xp

k +Gk
(
yk−K (xp

k )
)
,

(c) Compute the covariance estimate

Cest
k = Cp

k −GkKkCp
k .

iv) Set k→ k+1 and go to step (ii).
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model integrations, (Auvinen et al., 2010; Evensen, 2009). So for models with n ∼ O(107) for
example in meteorology and oceanography, matrix storage and computation become prohibitively
expensive. This makes the basic formulation of KF and EKF impossible to implement in higher
dimension problems.

The linearization in Equation 3.5 and 3.7 requires the measurement and the dynamic model to be
differentiable and can be obtained by using finite differences approach which is computationally ex-
pensive for models in higher dimension (Särkkä, 2013). The linearization also may lead to poor error
covariance evolution which, in some models, lead to unstable error covariance growth, (Evensen,
2009; Blum et al., 2009).

EKF is restricted to Gaussian noise processes, thus models with discrete valued random variables
can not use this filtering method (Särkkä, 2013). These factors leads to introduction of other filters
to be discussed in the coming sections.

3.1.3 Ensemble Kalman Filter

The ensemble Kalman filter (EnKF) was proposed as a stochastic or Monte Carlo alternative to the
EKF. EnKF was first introduced by Evensen (1994) and it does not need the integration of the state
error covariance matrix (Houtekamer and Mitchell, 1998; Evensen, 2003; Reichle et al., 2002b),
instead, the uncertainty in the state is represented as N samples and thus, it solves the problems of
dimensionality and non-linearity suffered by EKF. Like KF, there are two steps in EnKF: prediction
step (forecast step) and update step (analysis step). In the prediction step, an ensemble of forecast
states is computed, and used to compute the error covariances and the sample mean which is used
to define the state estimate. The Kalman gain Gk is computed from these sample mean and error
covariances and it is used to assimilate the measurements to produce the analysis of ensemble states.
For a linear model, the EnKF converges exactly to the KF with increasing ensemble size.

There are various versions of EnKF that differ in the computation of update ensemble. The EnKF
can be a stochastic filter or a deterministic filter, depending on the added vectors (Kalnay et al.,
2007). In the stochastic case, the EnKF uses Kalman gain together with random perturbations while
in the deterministic case, the EnKF uses a non-random transformation on the forecast ensemble.
The perturbed observation filter is the EnKF where the measurement ensemble is created by adding
a random vector to the actual measurement (Whitaker and Hamill, 2002). EnKF scheme uses the
Kalman filter update equations whereby in the update step, the intuition is to use the Kalman gain
to combine the forecast ensembles, measurements and measurement noise.

Now, consider a bunch of N-dimensional random vectors sk,i ∼N (xest
k ,Cest

k ) which are Gaussian
distributed with mean xest

k and covariance Cest
k , where k ∈ N, i = 1, . . . ,N, and N is the ensemble

cardinality. Consider a matrix Xk depending on sk,i, which is defined by the following:

Xk =
((

sk,1− s̄k
)
, . . . ,

(
sk,N− s̄k

))
/
√

N−1. (3.10)

Here s̄k = 1
N ∑

N
i=1 sp

k,i denotes the mean of ensemble sk,i. A single EnKF data assimilation step
defines a procedure of propagating sk,i to s(k+1),i and the algorithmic formulation of EnKF is sum-
marized in Algorithm 3.3. The ensemble Kalman filter can be implemented directly on top of a
non-linear model as it does not require either tangent linear or adjoint code and is therefore easy
to program. However, the algorithm has numerous disadvantages, such as propagation ensemble
degradation as pointed out by Houtekamer and Mitchell (1998) and Zupanski (2005). EnKF also
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Algorithm 3.3 The ensemble Kalman filter

i) Select the initial guess xest
0 and covariance Cest

0 and set k = 1.

ii) Prediction step

(a) Propagate each ensemble member forward using a stochastic model

sp
k,i = M

(
sk−1,i

)
+qp

k,i, i = 1, . . . ,N.

(b) Compute sample mean and sample covariance

s̄k =
1
N

N

∑
i=1

sp
k,i

Cp
k = XkXT

k ,

iii) Update step

(a) Compute the Kalman gain

Gk = Cp
k KT

k
(
KkCp

k KT
k +Rk

)−1
.

(b) Update ensemble members

sest
k,i = sp

k,i +Gk

(
yk−Kksp

k,i + rk

)
(c) Calculate the next state estimate as the sample mean of the ensembles

xest
k = s̄(k),i.

(iv) Set k→ k+1 and go to step (ii).
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tends to suffer from slow convergence and therefore inaccurate analysis because ensemble size is
always small compared to the dimension of the state vector, and hence underestimates the analysis
error covariance.

3.1.4 Variational Kalman Filter

Variational data assimilation approaches are used to many numerical weather prediction problems
(Le Dimet and Talagrand, 1986; Courtier and Talagrand, 1990). A variational formulation of the
Kalman filter (VKF) can be used as an alternative to KF and EKF when the computational cost
increases and the classical Kalman filters are impractical to implement (Auvinen et al., 2009, 2010).
Recall that, the Bayesian estimate of the true state x, given the measurement y, is the value which
maximizes the posterior probability given by Equation (2.1). Since the probability of measurement
does not depend on the true state, the maximum of the posterior probability is attained when the
product p(y | x)p(x) is maximized and this is given by the minimum of the cost function defined as:

l(x | yk) =
1
2
(x−xp

k )
T (Cp

k )
−1(x−xp

k )+
1
2
(yk−K (x))T R−1

k (yk−K (x)). (3.11)

Here, Cp
k is the prior error covariance matrix and R−1

k is the covariance matrix of the measurement
noise rk and K is the observation operator that maps the model state onto observation space.

VKF described here, was first introduced by Auvinen et al. (2010) and its main idea is that given a
set of observations yk and a prior state vector xp

k , the state estimate or the analysis is the value of x
which minimizes the cost function given by Equation (3.11) and the covariance estimate is given by
the low memory approximation of the covariance given by the inverse Hessian. The minimization is
done using a limited memory BFGS algorithm (L-BFGS) (Jorge and Stephen, 1999), whereby the
inverse of the prior covariance Cp

k is also approximated using LBFGS given that

(Cp
k )
−1 = (MkCest

k−1MT
k +Qk)

−1. (3.12)

The linear VKF method is summarized in Algorithm 3.4.

For the non-linear VKF method, if the non-linear model Mk can be linearized to Mk then, the co-
variance information can be propagated from one observation time to the next. However, this is not
practical for problems in large dimension and instead, the tangent linear MTL

k and the corresponding
adjoint operator M∗k for the dynamic model M are used if available (Auvinen et al., 2010). The
non-linear variational Kalman filter is summarized in Algorithm 3.5.

Example 3.1.1. (Van der Pol Oscillator) (Gillijns et al., 2006): A first order Euler discretization of
the equations of motions of the Van der Pol oscillator yield

xk+1 = f (xk)

f (xk) =

[
x1,k +hx2,k
x2,k +h(α(1− x2

1,k)x2,k− x1,k)

]
, (3.13)

where xk = [x1,k x2,k]
T and h is the step size. We assume that the Van der Pol oscillator is driven by

wk, that is,
xk+1 = f (xk)+wk, (3.14)
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Algorithm 3.4 The variational Kalman filter

i) Select the initial guess xest
0 and covariance Cest

0 and set k = 1.

ii) Move the state estimate and covariance in time:

(a) Compute xp
k = Mkxest

k−1.

(b) Define Cp
k = MkCest

k−1MT
k + Qk and use LBFGS to approximate (Cp

k )
−1 =

(MkCest
k−1MT

k +Qk)
−1.

iii) Combine the prior with observations:

(a) Minimize l(x | yk) =
1
2(x−xp

k )
T (Cp

k )
−1(x−xp

k )+
1
2(yk−Kkx)T R−1

k (yk−Kkx) using
the LBFGS method.

(b) Store the results of the minimization as the state estimate xest
k and the inverse Hessian

approximation as the covariance estimate Cest
k .

(iv) Set k→ k+1 and go to step (ii).

Algorithm 3.5 Non-linear variational Kalman filter

i) Select the initial guess xest
0 and covariance Cest

0 and set k = 1.

ii) Move the state estimate and covariance in time:

(a) Compute xp
k = Mk(xest

k−1).

(b) Use LBFGS to approximate (Cp
k )
−1 = (MTL

k Cest
k−1M∗k +Qk)

−1 if the tangent linear
MTL

k and the corresponding adjoint code M∗k are available for the evolution model M .

iii) Combine the prior with observations:

(a) Minimize l(x|yk) =
1
2(x−xp

k )
T (Cp

k )
−1(x−xp

k )+
1
2(yk−KT L

k (x))T R−1
k (yk−KT L

k (x))
using LBFGS method.

(b) Store the results of the minimization as the state estimate xest
k and and the Hessian

approximation as Cest
k .

(iv) Set k→ and go to step (ii).
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where wk ∈ R2 is zero mean white Gaussian nose with covariance matrix Q ∈ R2×2. Assume that
for all k ≥ 0, measurements are available so that

yk =Cxk + vk, (3.15)

where vk ∈ R is zero mean white Gaussian nose with covariance matrix R > 0 and C selects x1,k
or x2,k. We can compare the performance of EKF and EnKF by estimating the state xest

k so that
the discrete time system is stable given that α = 1, h = 0.1 and the prior covariance estimate is
Cp

k = diag(6.3e−4,2.2e−4).

Figure 3.1 shows the state estimates when using EKF and EnKF. It can be observed that the perfor-
mance of EnKF improves with increase of ensemble size as can be observed in in state estimate of
variable x1 of Figure 3.1.
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Figure 3.1: State estimate xest
k of the Van der Pol oscillator

3.1.5 Variational Ensemble Kalman filter

In large scale state estimates in geosciences and in NWP, various ensemble based Kalman filter tech-
niques and variational assimilation methods have been used. Also, other techniques that combine
ensemble based assimilation methods and variational assimilation methods have been developed to
form hybrid methods. In the attempt to present these methods, theoretical formulation and test of
their performances like in Hamill and Snyder (2000); Liu et al. (2008); Gustafsson et al. (2014) and
Hunt et al. (2004) have been addressed.

We present another type of hybrid assimilation methods by Solonen et al. (2012) known as the
variational ensemble Kalman filter (VEnKF), that use a cloud of points to represent both the error
covariance matrix and the state estimates and which does not require the use of tangent linear and
adjoint code for the dynamic model. In VEnKF the state estimate (posterior estimate) is obtained
by solving an optimization problem given by Equation (3.11) and the error covariance estimate is
obtained as a limited memory approximation of the optimizer.

Thus, the formulation of the variational ensemble Kalman filter is based on the variational Kalman
filter as introduced by Auvinen et al. (2010) and the ensemble Kalman filter as introduced by
Evensen (2003). The state estimate in VEnKF is computed as a minimizer to the cost function (3.11)
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and the covariance estimate is the inverse Hessian of (3.11). The basic formulation of VEnKF can
be found in details in Solonen et al. (2012), however, here we present the main idea behind this
method.

Consider a bundle of N-dimensional random vectors, sk,i ∼ N
(
xest

k ,Cest
k

)
(here we assume that

model state vector as well as its covariance estimated at time instance k−1 are known). Therefore,
the prediction step now can be formulated as follows:

xp
k = M

(
xest

k−1
)
,

sp
k,i = M

(
sk−1,i

)
, i = 1, . . . ,N.

(3.16)

Define vector Xk as in section 3.1.3 but now instead of using the mean of the samples, we use the
predicted state xp

k evolved from the previous time as,

Xk =
((

sk,1−xp
k

)
, . . . ,

(
sk,N−xp

k

))
/
√

N, (3.17)

where N as previously denotes the cardinality of ensemble sk,i. Hence, the sampled approximation
for the prior covariance can be defined by leveraging the prior ensemble sp

k,i computed on prediction
step leading to the following,

Cp
k = XkXT

k +Q. (3.18)

This sampled approximation allows to programmatically implement the prior covariance Cp
k as a

low-memory subroutine since following (3.18), the computation of a matrix-vector product would
only require storage of Xk (as before, it is assumed that Q is diagonal or implemented as a low-
memory subroutine). Nevertheless, minimization of (3.11) makes use of

[
Cp

k

]−1, which can be
obtained by applying the Sherman Morrison-Woodbury (SMW) matrix identity defined as:[

Cp
k

]−1
= Q−1−Q−1Xk

(
I+XT

k Q−1Xk
)−1 XT

k Q−1. (3.19)

Here, it is assumed that covariance Q is assumed diagonal and therefore can be easily be inverted.
Moreover, since I+XT

k Q−1Xk is an N-by-N matrix and the ensemble size N is usually much smaller
compared to the problem dimension, the inversions in (3.19) are considered feasible.

Minimization of (3.11) is done by the L-BFGS unconstrained optimizer described in Jorge and
Stephen (1999). The L-BFGS is a Quasi-Newton method, which uses the history of its iterations
in order to approximate the inverse Hessian of the target cost function. Furthermore, the L-BFGS
usually converges to the optimal point having a qualified inverse Hessian approximation in much
smaller amount of iterations than the dimension of the problem. These characteristics of the method
can be leveraged to minimize (3.11) as well as to compute its inverse Hessian, wherein both tasks
are completed in a single pass. The same idea may be used instead of SMW matrix identity to obtain[
Cp

k

]−1 (see Solonen et al. (2012)). However, the L-BFGS only provides an approximation for the
inverse Hessian of the target cost function, so formula (3.19) is suggested as the one preferable
to use. Finally, putting together (3.16), (3.17), (3.18), (3.19) and the argumentation concerning
the L-BFGS, the algorithmic formulation of VEnKF is as shown in Algorithm 3.6. The attractive
feature in the presented algorithm is that the operating ensemble is regenerated at every assimilation
round, which allows us to avoid ensemble in-breeding inherent to EnKF. VEnKF was first tested
using Lorenz 95 model and a large dimension heat equation and later VEnKF was applied to a more
realistic hydrological model as it has been shown in the study by Amour et al. (2013).
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Algorithm 3.6 Variational Ensemble Kalman filter

i) Select the initial guess xest
0 and covariance Cest

0 and set k = 1.

ii) Prediction step.

(a) Compute prior model state and move the ensemble forward as defined in (3.16).

(b) Define the approximative prior covariance operator Cp
k in accordance with (3.18).

(c) Apply SMW matrix identity or L-BFGS in order to define a low-memory operator
representation of the inverse prior covariance

(
Cp

k

)−1.

iii) Correction step.

(a) Apply L-BFGS to minimize (3.11). Assign xest
k to the minimizing point and Cest

k to
the approximation of its inverse Hessian.

(b) Generate new ensemble sk,i ∼N
(
xest

k ,Cest
k

)
.

(iv) Set k→ k+1 and go to step (ii).

3.1.6 Root Mean Square Error

Results obtained on the use of data assimilation methods have been used to compare theoretical and
experimental test cases. The root mean square error (RMSE) in the state estimate is mostly used to
show how well an assimilation scheme is performing. If xt

k is the true solution and xest
k is the filter

estimate and N is the dimension of the state vector then the RMSE is defined as

RMSE =

√√√√ 1
N

N

∑
k=1

(xest
k −xt

k)
2 =

√
1
N

∥∥xest
k −xt

k

∥∥ (3.20)

The RMSE can only show how the filter can estimate the mean of the state and not the quality of
the uncertainty (Solonen et al., 2014). Table 3.1 shows the RMSE values obtained from example 1
when using EKF and EnKF. It can be observed that the values of RMSE of EnKF approaches that
of EKF when increasing the number of ensemble members.

Table 3.1: RMSE values
Case Method RMSE

1 EKF 0.3478
2 EnKF 5 members 0.7846
3 EnKF 10 members 0.3853
4 EnKF 30 members 0.3524
5 EnKF 40 members 0.3480
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CHAPTER IV

VEnKF analysis of hydrological flows

4.1 The Models

4.1.1 The 2D Shallow Water Equations (SWE)

The Shallow Water Equations (SWE) (Martin and Gorelick, 2005; Sarveram et al., 2012; Casulli
and Cheng, 1992) are a set of hyparbolic/parabolic Partial Differential Equations (PDE’s) govern-
ing fluid flows in oceans, channels, river and estuaries. SWE are derived from the Navier-Stokes
equations which are also derived from the law of conservation of mass and momentum. SWE are
only valid for problems for which the vertical dimension is much smaller than the horizontal scale
of the flow features (Tan, 1992), and they have long been used to model various natural and physical
phenomenon such as tsunami waves, floods, tidal currents etc (Bellos et al., 1991; Bellos, 2004;
Bélanger and Vincent, 2004; Chang et al., 2011). In data assimilation, SWE have also been used
in numerical weather prediction (Kalnay, 2003) and in hydrological forecasting (Tossavainen et al.,
2008)

The shallow water equations are governed by three equations namely the continuity equation, Equa-
tion (4.1), and the momentum equations, Equations (4.2) and (4.3). These equations result from
depth avaraging of the Navier Stockes Equations and thus they are called the depth avaraged shal-
low water equation.

∂η

∂ t
+

∂ (HU)

∂x
+

∂ (HV )

∂y
= 0, (4.1)

∂U
∂ t

+U
∂U
∂x

+V
∂U
∂y

=−g
∂η

∂x
+ ε

(
∂ 2U
∂x2 +

∂ 2U
∂y2

)
+ γT

(Ua−U)

H
−Sfx + fV, (4.2)

∂V
∂ t

+U
∂V
∂x

+V
∂V
∂y

=−g
∂η

∂y
+ ε

(
∂ 2V
∂x2 +

∂ 2V
∂y2

)
+ γT

(Va−V )

H
−Sfy− fU, (4.3)

where U = (1/H)
∫ η

−h udz and V = (1/H)
∫ η

−h vdz are the depth averaged horizontal velocities in the
x and y direction, respectively. Note that x and y here denote the Cartesian coordinates, η is the
free surface elevation, g is the gravitational constant, t is time, ε is the horizontal eddy viscosity,
f is the Coriolis parameter and H = h+ η is the total water depth, where h is the water depth
measured from the undisturbed water surface, γT is the wind stress coefficient, Ua and Va are wind

33

inavon
Sticky Note
Navon (1979),  Optimal Control of a Finite-Element Limited-Area Shallow-Water Equations Model. X. Chen and I.M. Navon. STUDIES IN INFORMATICS AND CONTROL. ,, Vol 18, No 1 , pp 41-62, (2009) NUMERICAL METHODS FOR THE SOLUTION OF THE SHALLOW-WATER EQUATIONS IN METEOROLOGYNavon, Ionel Michael. University of the Witwatersrand, Johannesburg (South Africa), ProQuest, UMI Dissertations Publishing,1979. 0533651.Abstract (

inavon
Highlight

inavon
Sticky Note
Navier Stokes



34 4. VEnKF analysis of hydrological flows

velocity components in the x and y direction respectively, Sfx and Sfy are the bottom friction terms
in x and y direction, respectively. FU and FV represent a semi-Lagrangian advection operator. The
relationship of H, h, and η are as shown in Figure 4.2. The shallow water model described here
was used to simulate a physical laboratory experiment of a dam break by Bellos et al. (1991).

V

U
i , j

i , j+1/ 2

i , j−1/ 2

i+1 /2, ji−1 /2, j

η

Figure 4.1: Variable location on a computational grid whereby U and V are defined at the face and
η is defined at the volume center.

h H

η

Figure 4.2: Variable definition on a computational grid whereby H = h+η .
The bottom friction terms are given as: Sfx = gU

√
U2+V 2

Cz2 and Sfy = gV
√

U2+V 2

Cz2 whereby the Chezy
Cz coefficient is defined by the Manning’s formula:

Cz =
1

Mn
H

1
6 , (4.4)

where Mn is the Manning’s roughness coefficient.
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4.1.2 Numerical Solution

To compute the numerical solution for the SWE, Equations (4.1), (4.2) and (4.3) are discretized
using a semi-implicit and semi Lagrangian method combined with a finite volume discretization.
These discretization methods have the advantage of providing a stable solution (Martin and Gore-
lick, 2005; Sarveram et al., 2012). The basic idea in semi-implicit discretization is that some terms
in a time dependent system are discretized implicitly, and explicit time stepping is used for the re-
maining terms (Fulton, 2004). In this study the free surface elevation in the momentum equations
and the velocity in the free surface equations are discretized implicitly whereas other terms like
the advective terms in the momentum equations, coriolis and horizontal viscosity are discretized
explicitly (Sarveram et al., 2012; Martin and Gorelick, 2005; Casulli and Cheng, 1992).

The discretization of Equations (4.1), (4.2) and (4.3) are respectively given as,

η
N+1
i, j =η

N
i, j−θ

∆t
∆x

(
HN

i+1/2, jU
N+1
i+1/2, j−HN

i−1/2, jU
N+1
i−1/2, j

)
−θ

∆t
∆x

(
HN

i, j+1/2V N+1
i, j+1/2−HN

i, j−1/2V N+1
i, j−1/2

)
− (1−θ)

∆t
∆x

(
HN

i+1/2, jU
N
i+1/2, j−HN

i−1/2, jU
N
i−1/2, j

)
− (1−θ)

∆t
∆x

(
HN

i, j+1/2V N
i, j+1/2−HN

i, j−1/2V N
i, j−1/2

)
(4.5)
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(4.7)

In the equations above, ∆x is the computational volume length in the x−direction, ∆y is the computa-
tional volume length in the y−direction and ∆t is the computational time step (Martin and Gorelick,
2005). The parameter θ dictates the degree of implicitness of the solution, and its value ranges
between 0.5 and 1, where θ = 0.5 means that the approximation is centered in time and θ = 1.0
means that the approximation is completely implicit (Casulli and Cheng, 1992). For this case θ is
set equal to 0.5.

4.1.3 Stability Criteria

For the semi-implicit, semi-Lagrangian used for the discretization of the SWE, the necessary condi-
tion for the convergence of the numerical approximations requires that the Courant-Fredrichs-Lewy
(CFL) criteria

C = |u ∆t
∆x
| ≤ 1,
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36 4. VEnKF analysis of hydrological flows

where u is the magnitude of the velocity component in the x-direction, ∆t is the time step and ∆x is
the cell dimension.

4.1.4 Initial and Boundary conditions

Initially, we assume that in the domain the motion of fluid begins from an initial state of rest whereby
U =V = 0 for t <= 0 and the initial total water depth H = H0 is given.

Suitable boundary conditions must be applied to Equations (4.1), (4.2) and (4.3) in order to define
the flow problem. Thus, different type of boundary conditions exist for these equations. For any
simulation domain, the boundary condition may be a closed boundary which does not allow water
to flow through the boundary, or an open boundary (inflow only, outflow only or both inflow and
outflow) (Agoshkov et al., 1994).

For the closed boundary, the normal velocity component, tangential velocity component and the
total water depth needs to be specified, For this case, on this boundary, the tangential and normal
velocity component are both treated as zero i.e. u = (U,V )T = 0 however, there is no condition for
the total water depth H (Agoshkov et al., 1994).

Furthermore, at the open boundary, no condition is imposed for the total water depth however, two
types of radiation boundary conditions have been set (Martin and Gorelick, 2005):

(i) Projection of velocity normal to the domain

∂U
∂ t

+Uupw
∂U
∂n

= 0, (4.8)

where Uupw is the upwinded normal direction velocity component, and n is the direction
normal to the domain boundary (Martin and Gorelick, 2005).

(ii) To limit wave reflections at open boundaries (Givoli and Neta, 2003; Navon et al., 2004), the
following condition is imposed

∂η

∂ t
+Cn

∂η

∂n
= 0, (4.9)

where Cn is the propagation velocity from grid points around the boundary (Martin and Gore-
lick, 2005).

4.1.5 Dam Break Experiment

Dam break can be defined as uncontrolled release of water due to catastrophic failure of a dam
resulting in a serious flooding at the down stream area (Biscarini et al., 2010; Chang et al., 2011).
Studies on dam break flow is very significant for the aim of risk assessment to property damage and
loss of lives, control of flood and emergence action plan. That is why for many years, dam break
study has been a basic tool for researchers. Laboratory test experiments on dam break have been
carried out to investigate the nature of flow especially in downstream areas (Bellos et al., 1991; Hu
and Sueyoshi, 2010) and these experiments are used for validation of numerical models.

Numerical models based on shallow water equations have been developed in the past to represent the
dam break flow given initial and boundary conditions (Morris, 2000; Chang et al., 2011; Biscarini
et al., 2010). These models were developed under deterministic settings, and do not account for
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4.2 Faithfulness of VEnKF analysis against measurements 37

the uncertainty in the system and thus unreliable prediction. By the use data assimilation, the
observations are being incorporated with these numerical models with the advantage of improving
prediction.

In this section, we present a dam break experiment of Bellos et al. (1991) and use data assimilation
techniques to study the flow behavior after the break of a dam. The dam break experiment consists
of a flume of length 21.1m and width 1.4m closed at the upstream end and open at the downstream
end. It also has a curved constriction beginning at 5.0m and ending at 16.5m from the closed end.
8 sensors used to measure the depth of water were located at an approximate flume mid line as
shown in Figure 4.4. A dam is located 8.5m from the closed end and this is the most narrow point
of the flume. Initial water height behind the dam was 0.15m and the downstream end is initially dry.
When the dam is broken instantly, flood waves sweep downstream and measurements from 7 out
of 8 measurement locations were recorded and the total duration of the laboratory experiment is 70
seconds (Martin and Gorelick, 2005).

Figure 4.3 shows the flume geometry (Bellos, 2004) and Figure 4.4 shows the plan view of the
geometric lay out of the experiment (Martin and Gorelick, 2005). Figure 4.5 is a snapshot showing
the initial water height behind the dam at time k = 0. For the discretization of the domain, ∆x =
0.125m and ∆y = 0.05m are the grid spacial step and the computational time step is ∆t = 0.103
with a total of 30×171 grid cells, while the Manning’s roughness coefficient is 0.010 (Martin and
Gorelick, 2005).

4.2 Faithfulness of VEnKF analysis against measurements

4.2.1 1D Set of observations

Prior to this study, VEnKF has been applied to a non-linear and chaotic synthetic model, the Lorenz
95 system and to a relative high dimensional heat equation and found to produce a better result than
the standard ensemble Kalman filter (Solonen et al., 2012). In this section we present the application
of VEnKF to a real data assimilation problem, by assimilating real data set published by Martin and
Gorelick (2005) in the study namely MODfreeSurf2D using a SWE with 1D.

4.2.2 Interpolation of observation

The data set published in Martin and Gorelick (2005) is very sparse both in time and in space. Data
were recorded at an approximate average rate of 1 observation per 1.4 second. More precisely, it
means that at a time instance only a small number of wave meters among those installed along the
flume were producing actual measurements. These time instances had no alignment with the model
integration time step. This sparsity hinders the application of data assimilation techniques since
the amount of data obtained from the measurements is usually not enough to expose bias in the
prediction model. Therefore simple interpolation technique in time and space has been applied in
order to reduce the negative impact due to data sparsity.

The interpolation in time has been done using a spline function and it was organized as follows.
The time axis was discretized with a discretization time step of 0.1s. Thereafter, every time instance
related to a measurement obtained from a wave-meter installed in the flume was aligned with the
time discretization grid by rounding the time instances to the closest grid point. Since the time
grid resolution is smaller than the rate of incoming measurements, some of the time grid points
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38 4. VEnKF analysis of hydrological flows

Figure 4.3: Schematic picture of the dam break flume (Bellos, 2004).

Figure 4.4: Geometrical layout of the dam break experiment (Plan view).
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Figure 4.5: Initial water height behind the dam.

were left with no related observation. These gaps were filled by piecewise cubic interpolation
defined by Hermite interpolating polynomials (Fritsch and Carlson, 1980). Figure 4.6 shows original
measurements and time interpolated measurements from sensor number 2.

In terms of space, the data were given in only 7 spatial locations, whereas the model state consists
of 5130 grid points. The data were much less for data assimilation method and therefore we use
this known data set to determine the unknown data of neighboring data points. Thus, for each
sensor the data obtained has to be extrapolated to a small neighborhoods of their spatial location.
The interpolation has been done by introducing observation values to a 5× 5 patch of the grid
by sampling from the distribution N (y∗,σ2), where y∗ is the observation value at the sensor and
σ2 = 0.001. These neighborhoods were specified with the value at the center aligned to the spatial
locations of the sensor. With these interpolations, the data are now observed at every time step and
on total of 468 grid points. Figure 4.7 shows a spatial interpolated data computed for the 2nd sensor
measurements.

4.2.3 Shore boundary definition and VEnKF parameters

The settings of the dam break experiment involves changing boundaries (a converging - diverging
flume). In the application of VEnKF to the shallow water model, it was not possible to include
information about the boundaries in the analysis. Since, in this study, we have a prior knowledge
about the shoreline and the places where there is no water, we have used a strategy that allow
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Figure 4.6: Time interpolated water depth at sensor number 2
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us to account for the evolving boundaries. We include the information about the boundary in the
model error covariance Q. The model error covariance is defined in such a way that the grids
which were located in the dry area (riverbank) have given a variance much smaller compared to the
variance assigned to other grid points in the domain. This strategy allows the shore boundaries to
be maintained by the VEnKF analysis.

The state vector for the dam break experiment is a vector of free surface elevation η , and horizontal
velocities u and v in the x and y direction, respectively. We ran VEnKF on the shallow water model
with 30×171 grid cells of the simulation domain, and thus the state vector has size approximately
equal to 16000. The model error covariance used is Q = 0.00112I and the observation error covari-
ance is R = 0.0012I. Initial state vector xest

0 equals to the initial water height in the flume and the
initial covariance estimate Cest

0 was set to identity matrix I. The assimilation was conducted using 75
ensemble members and 25 stored vectors for the LBFGS with 25 iterations. With the interpolation
done in Section 4.2.2, the number of data obtained is expected to give more reliable results with the
VEnKF assimilation scheme.

4.2.4 VEnKF estimates with synthetic data of the dam break experiment

The ability of VEnKF was first examined using synthetic data obtained from the solution obtained
by using direct model simulation by Martin and Gorelick (2005). To make the data more realistic,
we add normally distributed noise with mean zero and variance 0.05. We compare the results from
the 8 locations corresponding to the wave meter positions as given in Martin and Gorelick (2005).
Using 50 ensembles, 25 iterations and 25 stored vectors, we compare VEnKF estimates with the
data and the model simulation which we referred to here as the truth. VEnKF was used here as a
backtesting and not for forecasting but the aim is to see whether VEnKF can handle disasters such
as dam break especially in downstream locations. For this reason, the length of the forecast is just
one computational time step. Figure 4.8 and 4.9 shows that the estimate follows the observations
quite very well.

The root mean square error (RMSE) plot for this case shown in Figure 4.10 for the entire simulation
shows convergence of the VEnKF.

4.2.5 Experimental and assimilation results for a 1-D set of real observations

VEnKF was used to assimilate measurements of water depth for the dam break experiment pub-
lished in Martin and Gorelick (2005).

Figure 4.11 shows the snapshots of the water profile of the experiment when using VEnKF at time
steps t = 33, t = 77, t = 127 and t = 302.

Experimental data from 7 wave meters obtained on the dam break experiment by Bellos et al.
(1991) and the simulation results published in Martin and Gorelick (2005) will be compared with
the VEnKF assimilation results. Sensor number 7 had no measurements and therefore comparison
will be on simulated water depth and VEnKF results only. The initial condition applied is the given
initial water depth at the upstream end and initial velocities U = V = 0 and the downstream end is
dry as shown in Figure. 4.5. Boundary conditions are applied as explained in Section 4.1.4. The lo-
cation of water/land boundaries is described accordingly by Equations (4.10) and (4.11) respectively
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Figure 4.8: Comparison of VEnKF estimates, true water depth and the synthetic data of the dam
break experiment for the first four sensors at the upstream end.
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Figure 4.9: Comparison of VEnKF estimates, true water depth and the synthetic data of the dam
break experiment for the last four sensors at the downstream end.
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Figure 4.10: The RMSE plot for the entire time of assimilation

(Martin and Gorelick, 2005).

HN+1
1+1/2, j = max(0,h1+1/2, j+η

N+1
i, j ,h1+1/2, j+η

N+1
i+1, j), (4.10)

HN+1
i, j+1/2 = max(0,hi, j+1/2 +η

N+1
i, j ,hi, j+1/2 +η

N+1
i, j+1). (4.11)

Figures (4.12) and (4.13) show water depth of the 8 sensor locations for the comparison of VEnKF
assimilation results with the experimental data and simulated water depth. In Figure 4.13 (c), com-
parison is between the simulated water height and that of VEnKF as no measurement was not given
in this location.

It can be observed that at the upstream end the simulated water depth by Martin and Gorelick (2005)
matches well with the measured depth as it can be seen in Figure 4.12a-c. The turbulent behavior of
water at the downstream end shown by the experimental data can not be observed on the graphs for
the pure simulation. On the other hand, VEnKF results not only match with the measured depth but
they also model the turbulent structure of the flow at the downstream end which is characterized by
a super critical flow as it can be observed in Figure 4.13.

4.2.6 Spread of ensemble forecast

In several studies, the measure of forecast uncertainty has been done using ensemble spread of short
range ensemble forecasts (Moradkhani et al., 2005a). Estimates of uncertainty aim at measuring the
reliability of the model forecast at a given probability range. On the other hand, the ensemble spread
is used as a measure of goodness of fit and can be used to represent the estimate of uncertainty (Xie
and Zhang, 2010). Ensemble spread can be increased by adjusting parameters of the model as it has
been shown for example in hydrological data assimilation using a recursive ensemble Kalman filter
by McMillan et al. (2013) that, increasing the water table parameters also increases the spread.
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44 4. VEnKF analysis of hydrological flows

(a) t = 33 (b) t = 77

(c) t = 127 (d) t = 302
Figure 4.11: Water profile at different time steps of the assimilation.
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Figure 4.12: Water depth for the first four wave meters in the dam break flume at the upstream end.
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Figure 4.13: Water depth for the last four sensors in the dam break flume at the downstream end.
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In this study, we also checked the performance of the VEnKF by considering the spread of the
ensembles at the 95% confidence interval. As it can be observed in Figures 4.14 - 4.18, they illustrate
ensemble spread at different sensor locations, the VEnKF ensemble occasionally has a tendency to
diverge. In some locations and times, the ensemble divergence is seen as a spurious blow-up of
ensemble spread. In other times and sensor locations, the entire ensemble appears to drift away
from the trajectory that connects observations. The causes for this ensemble divergence are not
very clear, but one possible candidate is the stochastic spatial extension of the observations that may
cause local violations of the CFL condition in the area of observation extension. It is remarkable,
however, that in no case does the VEnKF filter diverge. The analysis always stays close to the
observations, even in cases when the entire ensemble diverts away from them.
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Figure 4.14: Ensemble spread at the 95% confidence interval of measurement location 1.

4.3 Ability of VEnKF analysis to represent two dimensional flow

4.3.1 2D observation settings

VEnKF was again tested with a 2D dam break problem. The same dam break experiment of Bellos
et al. (1991) is tested here with new modifications. The observation locations at the downstream
end were left unchanged as published in Martin and Gorelick (2005). We introduced parallel wave
meters at the downstream end along the flume mid-line. As we know that a river flow comprises
both cross flow and streamline flow, the aim of this setup is to examine whether VEnKF can be able
to predict cross flow which is not identifiable with only a single line of sensors positioned along
the flow mid-line. To accomplish this goal, the meters were placed in the same original position
in the y-direction but pushed left and right from the flume mid-line by 4∆x. This makes a total of
8 meters at the downstream end with the new position along the x-direction as x′ = x± 4∆x and
y′ = y along the y-direction. From this new setting of the wave meters, we first assume that there is
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Figure 4.15: Ensemble spread at the 95% confidence interval of measurement location 2.
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Figure 4.16: Ensemble spread at the 95% confidence interval of measurement location 4.
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Figure 4.17: Ensemble spread at the 95% confidence interval of measurement location 5.
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Figure 4.18: Ensemble spread at the 95% confidence interval of measurement location 6.
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a cross flow along the flume and then we superimpose a sinusoidal wave across the flow on the true
experimental observations. We have chosen the sine wave in such a way that the observations can
not drop to zero during the time of assimilation. We also add to the new observations random noise
which is normally distributed with mean 0 and standard deviation 0.001. Figure 4.19 shows this
new setting of wave meters whereby other dimensions remains the same as in the one dimensional
setting of observations.

Figure 4.19: Parallel setup of wave meters at the downstream end.
The new data set obtained in this new setting of wave meters was again interpolated in time and in
space as explained in section 4.2.2 using a square patch of 5×5.

4.3.2 Results with parallel setup of observations

Figures 4.20, 4.21, and 4.22 show the results of VEnKF when applied to the dam break problem
with two rows of observations at the downstream end. It can easily be observed that there is no
cross flow detected at the upstream end as shown by figure 4.20. Moreover, we can see a reasonable
balance between measurements and the VEnKF analysis. VEnKF has been able to capture cross
flow as can be observed by the presence of sinusoidal oscillations in the down stream end, as shown
by Figures 4.21 and 4.22.

4.3.3 Impact of observation Interpolation with VEnKF

As mentioned in Section 4.2.2, given the sparse observations in 7 observation locations as published
in Martin and Gorelick (2005), it was a challenge for data assimilation since the amount of data
received at the time of assimilation was not enough to expose bias in the prediction model. Hence
interpolation was necessary in terms of time and space. The aim here is to study the relationship
between the time interpolation distance of observations and the ensemble variance.

When observations are interpolated so as to be captured at every time step or less frequently, we ob-
serve that the VEnKF algorithm always stays numerically stable, however, with long time intervals
between observations, the analysis fails to capture the waves present in the solution. Let us examine
this behavior by considering the flow diagrams of sensor number 4 at different ensemble variances.

From Figure 4.23 we can observe that the analysis converges to the observed measurements with
ensemble variance σ2 = 4. However, reducing the ensemble variance causes the filter to diverge
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(a): Sensor No. 1
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(b): Sensor No. 2
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(c): Sensor No .3
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Figure 4.20: Upstream meters: no cross flows recorded by the VEnKF as was expected.
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(a): Sensor No. 4
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(b): Sensor No. 5
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(c): Sensor No. 6
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Figure 4.21: The VEnKF captures well the cross flows for the downstream locations.
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(b): Sensor No. 9
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(c): Sensor No. 10
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Figure 4.22: The VEnKF captures well the cross flows for the downstream locations.

SensorNo4, Sig = 2
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Figure 4.23: Results showing VEnKF converges to the true measurements with all observation
intervals if ensemble variance is sufficient (σ2 = 4). Note the aliasing of the sine wave to a lower
frequency wave when the observation interval exceeds the wave frequency at time step 5s and the
estimation problem violates the Nyquist limit. The filter then converges to the aliased solution.
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Figure 4.24: Border-line filter divergence with different observation intervals and border-line en-
semble variance σ2 = 1.

SensorNo4, Sig = 0.25
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Figure 4.25: Results showing VEnKF divergence at all observation intervals with excessively small
ensemble variance (σ2 = 0.625). The solutions remain numerically stable in all cases.
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slightly as in Figure 4.24 and when the ensemble variance is too small, the analysis diverges from
the true solution as shown in Figure 4.25. We also found that there is a relationship between the
time interpolation of observations and ensemble variances when studied at several range of values.
We used the difference in Euclidean norm between the analysis and the true solution at different
values of ∆t and ensemble variance σ . Figure 4.26 shows level curves of this relationship when ∆t
and σ are plotted in logarithmic scale. It can easily be observed that the level curves are almost
linear and if we study the slope of the level curves with respect to log(σ) and log(∆t) there is a
linear relationship between the ensemble spread and time interpolation distance. This relationship
is defined by a power law that guarantees the filter convergence of the form

∆t ≈ σ
6,

or
∆t ≈ var3,

where σ is the standard deviation of the ensemble and var = σ2 is the ensemble variance.
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Figure 4.26: Empirical level curves for the difference in Euclidean norm between the analysis and
true solution as a function of the logarithm of the observation interval ∆t and the logarithm of
ensemble standard deviation σ .

4.4 Mass conservation of VEnKF analyses

Different approaches have been used to solve the problem of mass conservation when using data
assimilation techniques to estimate the state of the system. In a recent study to improve the spacial
mean of a simulated soil moisture field by Li et al. (2012), the loss of water mass has been solved by
the use of a mass conservation scheme, the conservative ensemble Kalman filter. The scheme use a
correction term which guarantees that, the total water storage remains the same for each ensemble
member after the ensemble update.
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54 4. VEnKF analysis of hydrological flows

Data assimilation with VEnKF, where the ensemble is frequently re-sampled, suffers from lack
of mass and entropy conservation. The primary numerical methods used in CFD are normally
built to approximately conserve at least mass, but the least squares approximation implicit in data
assimilation is likely to reduce both mass and entropy. In Amour et al. (2013), the problem of mass
conservation can easily be observed by considering Figure 4.27 which shows the fraction of the
remaining mass after assimilation in comparison with that of pure simulation.
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Figure 4.27: Fraction of the remaining mass for the dam break experiment with VEnKF and with
the original simulation by Martin and Gorelick (2005).
When VEnKF was applied to the dam break experiment using Algorithm 3.6, the assimilated water
height may not have the same mean as the model estimates. This is due to the fact that in some cases
the updates generate negative water heights and if these values are replaced by zeros, they lead to
a problem in mass conservation. Thus, the decrease of the posterior total mass relative to the prior
total mass needs to be considered at the analysis stage. Table 4.1 shows the prior total mass relative
to the posterior total mass for the first 10 time steps and it can easily be observed that there is a
decrease of the prior total mass and hence underestimation of the posterior height fields.

The modified VEnKF uses a correction term at the analysis step. We begin by calculating the
standard deviation σ of all the original observations as measured by the wave meters. Define the
prior covariance matrix Cp

k as per Equation 3.18. Then forecast the prior and propagate the ensemble
forward as per step (ii) of the VEnKF algorithm and then calculate the prior total mass m. In the
analysis step, we apply LBFGS optimization to minimize the cost function (3.11) so as to get the
posterior water height as the minimizer of the of the cost function (3.11) and the error covariance
matrix Cest

k as the inverse of the Hessian of (3.11). We then calculate the posterior total mass m′

by integrating total water height over the whole domain. The correction term to be added to the
posterior water height is a value ε sampled from a normal distribution with mean d and standard
deviation σ , where d = (m−m′)/number o f grid points. Thus, the posterior water height is now
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Table 4.1: Prior total mass relative to the posterior total mass for the first 10 time steps
Time steps Prior total mass Posterior total mass

1 227.7522 224.0027
2 227.4255 218.7961
3 227.2985 210.5419
4 227.2594 204.6319
5 227.2625 201.0808
6 227.2753 198.5315
7 227.2577 196.7373
8 227.2705 195.3819
9 227.2931 194.4817

10 227.3066 194.2232

given by:
h∗ = xest

k + ε (4.12)

The modified version of the VEnKF for our dam break case is summarized in Algorithm 4.1.

With the new approach of using a correction term at the analysis step, the posterior water height
field h∗ have roughly the same mean and variance, respectively, as the prior height field and the true
flow, hopefully approximately conserving both mass and entropy. Since the correction is done very
frequently, the mean and standard deviation are likely to be small, but still positive, and not hopefully
cause numerical instability. Table 4.2 shows the prior total mass relative to the posterior total mass
for the first 10 time steps and it can easily be observed that there is a relative small difference of the
prior total to the posterior total mass. With the use of mass conservative VEnKF for the dam break

Table 4.2: Prior total mass relative to the posterior total mass for the first 10 time steps using the
mass conservative VEnKF

Time steps Prior total mass Posterior total mass
1 227.7522 227.6994
2 227.4255 227.5515
3 227.2985 227.3699
4 227.2594 227.3018
5 227.2625 227.2613
6 227.2753 227.3635
7 227.2577 227.3040
8 227.2705 227.3100
9 227.2931 227.2320
10 227.3066 227.2920

experiment we can show that mass is conserved by looking at Figure 4.28 which shows the fraction
of the remaining mass after assimilation in comparison with that of pure simulation.

4.5 The two layer Quasi-Geostrophic model

The Quasi-Gestrophic (QG) model (Ikeda, 1981; Pedlosky, 1987) is an example of chaotic dynamics
which can be run at a large scale setting with reasonable computational cost. Many research have
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Algorithm 4.1 The mass conservation VEnKF Algorithm

(i) Initialize the initial guess xp
0 , sp

0 and set k = 1.

(ii) Calculate the standard deviation σ of all the original observations by the wave meters from
the corresponding original model forecasts.

(iii) Forecast the prior with the numerical model one time step ahead:

(a) Calculate prior total mass by integrating water height h over the whole domain.

(iv) Conduct the assimilation step minimization to arrive at posterior water height xest
k .

(a) Apply LBFGS optimization to minimize Equation (3.11).

(b) Calculate the posterior total mass m′ by integrating water height equal to the mini-
mizer of the cost function (3.11) and find mean mass difference of the posterior to-
tal mass from prior total mass, dividing it by the number of grid points, d = (m−
m′)/number o f grid points.

(c) Sample a correction term ε at every grid point from the normal distribution ε ∼N (d,σ)
to arrive at the approximately mass and entropy conserving water height field h∗

(d) Add this normally distributed correction term ε to the posterior height h∗ = xest
k + ε

(e) Update the ensemble sest
k,i by sampling from sk,i ∼N (h∗,Cest

k ).

(v) Set k→ k+1 and go to step (iii).
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Figure 4.28: Fraction of the remaining mass for the dam break experiment with mass conservative
VEnKF and with the original simulation by Martin and Gorelick (2005).
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been done on oceanic wind circulation using the QG model (Ikeda, 1981; Pedlosky, 1987; Medjo,
2000). This model has also been used to simulate flat double-layered geostrophic (slow) wind
motion (Pedlosky, 1987).

The geometric layout of the 2-layer QG model is as shown in figure 4.29. The two atmospheric
layers are lying one at the top and the other at the bottom of a cylindrical surface. Ū1 and Ū2
indicate the mean zonal wind speeds in the top and bottom layer respectively.

Land

Bottom layer

Top layer

2

Figure 4.29: Geometric layout of the QG-model.
The formulation of the QG model is governed by the stream function and the potential vorticity.
The relationship between these two components is given by the following equations:

q1 = ∇
2
ψ1−F1 (ψ1−ψ2)+βy, (4.13)

q2 = ∇
2
ψ2−F2 (ψ2−ψ1)+βy+Rs, (4.14)

where q1 and q2 are the top and bottom layer potential vorticities respectively and ψi are the stream
functions.

The non-physical terms used to define the two layer QG model are described as follows:
Parameter Despciption Formula

Fi layer interaction parameters Fi =
f 2
0 L2

ǵDi

β north ward gradient of the coriolis parameter β = β0
L
U

Rs two-dimensional orography surface Rs =
S(x,y)
ηD2

g acceleration due to gravity g = ǵ∆θ

θ̄

Di undisturbed depth of the corresponding model layer
∆θ the temperature change across the layer interface
θ̄ the mean potential temperature
f0 the coriolis parameter
η the Rossby number η = Ū

f0L
S(x,y) the orography term
L and U the main length and velocity scale respectively

The stream function ψ is related to the geostrophic wind, the zonal wind ui and meridional wind vi
by the following dependency: (

ui,vi
)
=
(
− ∂ψi

∂y
,
∂ψi

∂x

)
. (4.15)
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The QG model is assumed to obey the law of potential vorticity conservation,

D1q1

Dt
=

D2q2

Dt
= 0 (4.16)

where Di·
Dt = ∂ ·

∂ t + ui
∂ ·
∂x + vi

∂ ·
∂y denotes the material derivative. Equations (4.13), (4.14), (4.15) and

(4.16) are the governing equations for the QG model.

4.5.1 Numerical approximation and VEnKF results

In our experiment, Equations (4.13)-(4.16) are integrated using a semi-Lagrangian approach (refer
for example to Staniforth and Côté (1991)) using a finite-difference scheme. This numerical method
is based on the core ideas of solving the QG-model equations explained by Fandry and Leslie (1984).

The test runs employ the VEnKF algorithm applied on top of the QG-model. More precisely, the
model is instantiated twice in a twin experiment, where the first case that we call the truth run
simulates the “nature” and is used to generate observations and the second case that we call the
biased run runs with different layer depths and is leveraged as a prediction model. Both model
instances were run at a dimension of 40-by-20 grid nodes in each layer thus having 1600 degrees
of freedom. The layer depths used in the truth run were 6000m for the top layer and 4000m for
the bottom layer with spatial discretization steps ∆x = ∆y = 300km and time discretization of 6min.
Thus, data were collected at every 6min. In the biased run the layer depths were set to 5500m and
4500m, respectively. The rest of parameters were the same in both runs. The observations extracted
from the truth run were perturbed by normally distributed zero-mean noise with standard deviation
equal to 0.1. In addition, prior to starting the actual data assimilation, the truth and the biased runs
were simulated for two weeks of the model time. This was done to establish divergence between
the initial estimate of the VEnKF and the first bundle of observations.

Other parameters include the observation error covariance R which was set to 0.1I whereby I is
800×800 identity matrix. The model error covariance is defined as

Q =

(
0.2I 0.5I
0.5I 0.2I

)
,

The experiment was run by varying ensemble size and 50 iterations for the LBFGS optimization
and the number of stored vectors was set to 50.

The dimension of the problem in the described numerical experiments was still small enough to
allows the use of the EKF. Therefore, we compare the performance of the VEnKF algorithm with
that of classical EKF in terms of the RMSE. Figure 4.30 shows the RMSE of EKF and that of
VEnKF estimates at different ensemble sizes. It can easily be observed that the RMSE converge
with 20 ensemble members, however, a larger ensemble size leads to more stable results.

Figure 4.31 contains the forecast skill curves for the VEnKF executed at different ensemble cardi-
nalities as well as for the EKF. The forecast skill shows that when the VEnKF stabilizes (i.e. starting
from 50 ensemble members) the effective forecast range stays at the same 7 days mark regardless
of ensemble size growth. Expectedly, the EKF performs best, providing about 1 day longer range
of effective forecast than VEnKF.
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Figure 4.30: Root mean square error of the estimates in the QG-model when using EKF and VEnKF
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Figure 4.31: Forecast skill of VEnKF at different ensemble sizes and that of EKF on the QG-model



CHAPTER V

Discussion and Conclusions

The use of data assimilation in hydrological forecasting is becoming very popular due to the avail-
ability of various measurement devices that provide measurements of a given system and hence-
forth, hydrological models are combined with these real time measurements to estimate the state of
a given systems. The main goals of data assimilation is the quantification of uncertainty in the es-
timates, with low computational cost. Thus, efforts have been made by researchers to find different
techniques in data assimilation that can be used in highly non-linear problems with high dimen-
sional state. In various studies in the literature, it has been shown that the use of data assimilation
techniques outperforms computer simulation using numerical schemes.

A new hybrid data assimilation method introduced by Solonen et al. (2012) called the variational
ensemble Kalman filter was found useful for highly non-linear problems and in large dimensional
applications. VEnKF combines an ensemble Kalman filter and variational data assimilation and it
is easy to apply as it only uses the forward model. VEnKF does not require the construction and
use of tangent linear and adjoint codes, as other variational methods like 3D-Var and 4D-Var do. In
the present work, VEnKF was applied to a real data assimilation problem, the dam break problem
in three different ways.

i. In the first case, VEnKF was applied to a dam break problem using a shallow water model con-
sisting of measurements from a laboratory experiment. In this application, a one-dimensional
set of observations which was sparse in terms of space and time was considered. This study
provides an effective way of dealing with these sparse observations so as to allow the ap-
plication of data assimilation. In terms of time, only a few sensors were able to produce
measurements and these time instances had no alignment with the model integration time
step. To address this, time interpolation was used. In terms of space, only a few data points
out of the total set of grid points were available. It has been found that, in assimilating obser-
vations of the dam break experiment, VEnKF updates well the depth of water and, it was able
to show the turbulent behavior of the flow, which could not be observed in pure simulation.
The results obtained from this application were found to outperform the results from pure
simulation.

ii. In the second application, VEnKF was applied to a modified laboratory dam break experiment
by considering observations in a two-dimensional setting at the downstream end. The aim of
this setup was to test whether VEnKF will predict the cross flow as well as stream flow. In
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this application, a study of convergence of VEnKF as a function of time interpolation distance
and ensemble variance has been carried out.

iii. The application of VEnKF to the dam break problem and in its general application suffers
from the problem of mass conservation due to frequent re-sampling of the ensemble and
generation of random noise may sometimes be physically unrealistic. Thus, a new VEnKF
algorithm referred to as the mass conserving VEnKF has been established.

iv. Lastly, VEnKF was applied in a two dimensional geophysical flow using a Quasi-Geostrophic
(QG) model. In this experiment, synthetic measurements were used and the results obtained
are comparable with the classical extended Kalman filter with increasing ensemble sizes.

The results obtained from all these applications indicate that VEnKF is a good candidate for data
assimilation problems and can be applied in high dimensional non-linear models.
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