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Abstract

In this study, we implement the DEIM algorithm (Discrete Em-
pirical Interpolation Method), combined with POD (Proper Orthog-
onal Decomposition) to provide dimension reduction of a model de-
scribing the aggregative response of parasitoids to hosts in a coupled
multi-species system. The model is defined by five reaction-diffusion-
chemotaxis equations. We show DEIM improves the efficiency of the
POD approximation and achieves a complexity reduction of the non-
linear terms. Numerical results are presented.
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1 Introduction

Reduced order modeling refers to the development of low-dimensional mod-
els that represent the important characteristics of a high-dimensional dy-

∗dimitriu.gabriel@gmail.com ”Grigore T. Popa” University of Medicine and Phar-
macy, Department of Mathematics and Informatics, Iaşi 700115, Romania
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namical system. Typically, reduced models are constructed by projecting
the high-fidelity model onto a suitably chosen low-dimensional subspace [1].
While for linear models it is possible to produce input-independent high ac-
curate reduced models, in the case of general nonlinear systems, the transfer
function approach is not applicable and input-specified semi-empirical meth-
ods are usually employed. Most approaches for nonlinear problems construct
the reduced bases from a collection of simulations (method of snapshots
[19, 20, 21]).

Proper Orthogonal Decomposition (POD) – see [3, 5, 9, 10, 14] and the
references therein – is probably the mostly used and most successful model
reduction technique, where the basis functions contain information from the
solutions of the dynamical system at pre-specified time-instances, so-called
snapshots. Due to a possible linear dependence or almost linear dependence,
the snapshots themselves are not appropriate as a basis. Instead two meth-
ods can be employed, singular value decomposition (SVD) for the matrix of
snapshots or eigenvalues decomposition for the correlation matrix [22]. The
singular valued decomposition based POD basis construction is more compu-
tational efficient since it decomposes the snapshots matrix whose condition
number is the square root of the correlation matrix used in the eigenvalue
decomposition.

A considerable reduction in complexity is achieved by DEIM [7] – a
discrete variation of Empirical Interpolation Method (EIM), proposed by
Barrault, Maday, Nguyen and Patera in [4]. According to this method, the
evaluation of the approximate nonlinear term does not require a prolonga-
tion of the reduced state variables back to the original high dimensional
state approximation required to evaluate the nonlinearity in the POD ap-
proximation.

In this work, we perform an application of DEIM combined with POD
to obtain dimension reduction of a model describing the interactions of the
two hosts and two parasitoids in a one-dimensional domain in the presence
of a chemotaxis process. The model defined was introduced and analyzed
by Pearce et al. in [17, 18] with respect to the stability properties of the
steady-states. The behaviour of the parasitoids towards plant infochemicals
generated during host feeding are defined as a chemotactic response and the
plant infochemicals are viewed as chemoattractants. The model considers
a single chemoattractant produced in proportion to the total host density.
Both parasitoids play the role of biological control agents against the hosts.

The paper is organized as follows. Section 2 describes the equations
of parasitoid model under study. Section 3 describes the POD and DEIM
methods along with Galerkin projection. Results of illustrative numerical
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experiments are discussed in Section 4 while conclusions are drawn in Section
5.

2 The multi-species host-parasitoid model

We describe here the parameters and the model equations introduced by
Pearce et al. in [18]. The reaction kinetics describing the interactions be-
tween hosts and parasitoids are coupled with spatial motility and chemotaxis
terms giving rise to a system of reaction-diffusion-chemotaxis equations.

In the absence of parasitism, both host species are modelled by logistic,
density-dependent growth, with growth rates r1 and r2 and carrying capac-
ities K1 and K2, respectively. Parasitism by both parasitoids is modelled
by an Ivlev functional response. C. glomerata parasitises P. brassicae at
rate α1 and P. rapae at rate α2. C. rubecula parasitises P. rapae at rate α3.
The efficiency of parasitoid discovery of hosts is denoted by a1, a2 and a3.
Each parasitised host gives rise to e1, e2 and e3 next-generation parasitoids.
The parasitoids are subject to mortality rates d1 (C. glomerata) and d2 (C.
rubecula).

The motility coefficients D1, D2, D3 and D4 of the four species are
constants and determine the rate at which each species disperses randomly
throughout the domain. The chemoattractantK is generated proportionally
to the total host density (N + M) at the rate r3 and decays at the rate
d3. The motility coefficient of the chemoattractant, D5, is a constant and
defines the rate at which the chemoattractant diffuses through the domain.
The chemotactic response of both species of parasitoid is modelled as a
linear response and the strength of the response depends on the chemotaxis
coefficients χ1 and χ2. The model is defined by the equations ([18]):

∂N

∂t
=

random motility︷ ︸︸ ︷
D1∇2N +

logistic growth︷ ︸︸ ︷
r1N

(
1− N

K1

)
−

mortality due to parasitism︷ ︸︸ ︷
α1P (1− e−a1N ) ,

∂M

∂t
= D2∇2M + r2M

(
1− M

K2

)
− α2P (1− e−a2M )

−α3Q(1− e−a3M ) ,

∂P

∂t
= D3∇2P − χ1∇ · (P∇k) + e1α1P (1− e−a1N ) (1)

+e2α2P (1− e−a2M )− d1P ,

∂Q

∂t
= D4∇2Q︸ ︷︷ ︸

random motility

− χ2∇ · (Q∇k)︸ ︷︷ ︸
parasitoid chemotactic response
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+ e3α3Q(1− e−a3M )︸ ︷︷ ︸
growth to the parasitism

− d2Q︸︷︷︸
mortality

,

∂K

∂t
= D5∇2K + r3(N +M)︸ ︷︷ ︸

production

−d3K ,

where N and M are the density of hosts P. brassicae and P. rapae, respec-
tively, P and Q represent the density of parasitoids C. glomerata and C.
rubecula and K represents the concentration of the chemoattractant pro-
duced during feeding by the hosts. N = N(x, t) denotes local population
density (organisms per area) at time t and spatial coordinate x (and likewise
for M , P , and Q). k = k(x, t) denotes local chemoattractant concentration
at time t and spatial coordinate x.

Here we consider the system (2) in a bounded domain Ω with smooth
boundary ∂Ω and homogeneous Dirichlet boundary conditions (which cor-
respond to a hostile external habitat). The initial conditions given by
N(x, 0) = N0(x), M(x, 0) = M0(x) P (x, 0) = P0(x),Q(x, 0) = Q0(x) and
K(x, 0) = K0(x) will be specified in Section 4.

Using the non-dimensional variables: t′ = r1t, x
′ = x

L , N
′ = N

K1
, M ′ =

M
K2

, P ′ = P
K1

, Q′ = Q
K2

, K ′ = K
K0

, and dropping primes one obtains the
nondimensionalised system:

∂N

∂t
= DN∇2N +N (1−N)− s1P (1− e−ρ1N ) ,

∂M

∂t
= DM∇2M + γ1M (1−M)− s2P (1− e−ρ2M )

−s3Q(1− e−ρ3M ) ,

∂P

∂t
= DP∇2P − χP∇ · (P∇k) + c1P (1− e−ρ1N ) (2)

+c2P (1− e−ρ2M )− η1P ,

∂Q

∂t
= DQ∇2Q− χ2∇ · (Q∇k) + c3Q(1− e−ρ3M )− η2Q ,

∂K

∂t
= DK∇2K + γ2(N + γ3M)− η3K

where DN = D1
r1L2 , DM = D2

r1L2 , DP = D3
r1L2 , DQ = D4

r1L2 , DK = D5
r1L2 ,

χP = χ1k0
r1L2 , χQ = χ2k0

r1L2 , ρ1 = a1
K1

, ρ2 = a2
K2

, ρ3 = a3
K2

, γ1 = r1
r2
, γ2 = r3

K1
r1,

γ3 = K2
K1

, s1 = α1
r1
, s2 = α2K1

α1K2
, s3 = α3

r1
, c1 = e1α1

r1
, c2 = e2α2

r1
, c3 = e3α3

r1
,

η1 =
d1
r1
, η2 =

d2
r1

and η3 =
d3
r1
.
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3 The POD and POD-DEIM reduced order sys-
tems

In this section we briefly present some details for constructing the reduced-
order system of the full-order system (2) applying Proper Orthogonal De-
composition (POD) and Discrete Empirical Interpolation Method (DEIM).

POD is an efficient method for extracting orthonormal basis elements
that contain characteristics of the space of expected solutions which is de-
fined as the span of the snapshots ([9, 10]). In this framework, snapshots are
the sampled (numerical) solutions at particular time steps or at particular
parameter values. POD gives an optimal set of basis vectors minimizing
the mean square error of a reduced basis representation.

Our reduced order modeling description uses a discrete inner product
though continuous products may be employed too. Generally, an unsteady
model is usually governed by the following semi–discrete dynamical system

dy(t)

dt
= F(y, t), y(0) = y0 ∈ IRn, n ∈ IN, (3)

n being the number of space points discretizing the domain. From the
temporal-spatial flow y(t) ∈ IRn, we select an ensemble of Nt time instances
y1, ...,yNt ∈ IRn, where Nt ∈ IN, Nt > 0. If we denote by ȳ = 1

N

∑n
i=1 yi the

mean field correction, the method of POD consists in choosing a complete
orthonormal basis V = {vi}, i = 1, .., k; k > 0; vi ∈ IRn; V ∈ IRn×k such
that the mean square error between y(t) and POD expansion yPOD(t) =

ȳ + V ỹ(t), ỹ(t) ∈ IRk is minimized on average. Define I(m) =

∑m

i=1
λi∑n

i=1
λi

and k is chosen such that k = min{I(m) : I(m) ≥ γ} where 0 ≤ γ ≤ 1 is
larger then 99% of the total kinetic energy captured by the reduced space
span{v1,v2, ...,vk}.

By employing a Galerkin projection, the full model equations (3) is pro-
jected onto the space V spanned by the POD basis elements and the POD
reduced order model is obtained

dỹ(t)

dt
= V TF

(
ȳ + V ỹ(t), t

)
, ỹ(0) = V T

(
y(0)− ȳ

)
. (4)

The efficiency of the POD-Galerkin technique is limited to linear or
bilinear terms, since the projected nonlinear terms still depend on all the
variables of the full model. To mitigate this inefficiency the discrete empirical
interpolation method (DEIM) [6, 7, 8, 15] and the empirical interpolation
method (EIM) [4, 13, 16] approximate the nonlinear terms via effective affine
offline-online computational decompositions.
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The projected nonlinearity in the system (4) is approximated by DEIM
in the form that enables precomputation, so that evaluating the approximate
nonlinear terms using DEIM does not require a prolongation of the reduced
state variables back to the original high dimensional state approximation,
as it is required for nonlinearity evaluation in the original POD approxi-
mation. Only a few entries of the original nonlinear term, corresponding to
the specially selected interpolation indices from DEIM must be evaluated at
each time step ([4, 6, 7, 11, 22]). We give formally the DEIM approximation
in Definition 1, and the procedure for selecting DEIM indices is shown in
Algorithm DEIM. Each DEIM index is selected to limit growth of a global
error bound for nonlinear terms using a greedy technique ([7]).

Definition 1 Let {uℓ}mℓ=1 ⊂ IRn be a linearly independent set computed
from the snapshots of nonlinear term F in (3). The DEIM approximation
of order m for F in the space spanned by {uℓ}mℓ=1 is given by

F := U(PTU)−1PTF, (5)

where P = [eϱ1 , . . . , eϱm ] ∈ IRn×m with {ϱ1, . . . , ϱm} being the output of
Algorithm DEIM with the input basis {ui}mi=1.

Algorithm DEIM:

INPUT: {uℓ}mℓ=1 ⊂ IRn linearly independent

OUTPUT: ϱ⃗ = [ϱ1, . . . , ϱm]T ∈ IRm

1. [|ρ| ϱ1] = max{|u1|}

2. U = [u1], P = [eϱ1 ], ϱ⃗ = [ϱ1]

3. for ℓ = 2 to m do

4. Solve (PTU)c = PTuℓ for c

5. r = uℓ −Uc

6. [|ρ| ϱℓ] = max{|r|}

7. U← [U uℓ], P← [P eϱℓ ], ϱ⃗←
[

ϱ⃗
ϱℓ

]

8. end for
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In the Algorithm DEIM we denoted by “max” the built-in Matlab func-
tion max with the same significance. Thus, this function applied in step 6
by [|ρ| ϱℓ] = max{|r|} leads to |ρ| = |rϱℓ | = maxi=1,...,n{|ri|}, with the small-
est index taken when the values along |r| contain more than one maximal
element. Precisely, the index of the first one is returned. According to this
algorithm, the DEIM procedure generates a set of indices inductively on the
input basis in such a way that, at each iteration, the current selected index
captures the maximum variation of the input basis vectors. The vector r
can be viewed as the error between the input basis {uℓ}mℓ=1 and its approxi-
mation Uc from interpolating the basis {uℓ}m−1

ℓ=1 at the indices ϱ1, . . . , ϱm−1.
The linear independence of the input basis {uℓ}mℓ=1 guarantees that, at each
iteration, r is a nonzero vector and the output indices ϱ1, . . . , ϱm are not
repeating.

The POD and POD-DEIM reduced order models of system (2) were
developed by using a Galerkin projection and the techniques presented in
this section.

4 Numerical results

The system (2) was solved numerically using a finite difference discretization.
Let 0 = x0 < x1 < · · · < xn < xn+1 = 1 be equally spaced points on
the x-axis for generating the grid points on the dimensionless domain Ω =
[0, 1], and take time domain [0, T ] = [0, 1]. The corresponding spatial finite
difference discretized system of (2) becomes a system of nonlinear ODEs.
The semi-implicit Euler scheme was used to solve the discretized system of
full dimension and POD and POD-DEIM reduced order systems.

The parameters were set to the following values ([18]): DN = DM =
8.e-8, DP = DQ = 7.5e-7, DK = 1.25e-6, χP = 1.5e-5, χQ = 1.5e-5,
ρ1 = 2.5, ρ2 = 0.25, ρ3 = 2.5, γ1 = 0.8, γ2 = 0.01, γ3 = 1, s1 = 0.8,
s2 = 0.2, s3 = 0.8, c1 = 0.3, c2 = 0.004, c3 = 0.2, γ1 = 0.2, γ2 = 0.1 and
γ3 = 0.01. In our simulations we used the following initial conditions:

N0(x) = x(1− x)[0.75e−100(x−0.5)2 + 0.25e−100(x−0.15)2 ],

M0(x) = x(1− x)[0.15e−100(x−0.35)2 + 0.65e−100(x−0.5)2 ],

P0(x) = x(1− x)[0.075e−100(x−0.25)2 + 0.075e−125(x−0.75)2 ],

P0(x) = x(1− x)[0.075e−125(x−0.15)2 + 0.095e−175(x−0.65)2 ],

and K0(x) = 0. The number of spatial inner grid points on the x-axis
– which defines the dimension of the full-order system – was successively
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taken as 32, 64, 128, ..., 2048. For space configuration using 2048 points,
the solution components of the problem (2) are depicted in Figs. 1,2. Tables
1–3 and Figs. 3–5 show a significant improvement in computational time of
the POD-DEIM reduced system from both the POD reduced and the full-
order system. Precisely, POD-DEIM reduces the computational time by a
factor of O(102). The CPU time used in computing POD reduced system
clearly reflects the dependency on the dimension of the original full-order
system.

5 Conclusions

The model reduction technique combining POD with DEIM has been de-
monstrated to be efficient for capturing the spatio-temporal dynamics of
a multi-species host-parasitoid system with substantial reduction in both
dimension and computational time by a factor of O(102). The failure to
decrease complexity with the standard POD technique was clearly demon-
strated by the comparative computational times shown in Tables 1–4 and
Figs 3–5. DEIM was shown to be very effective in overcoming the deficien-
cies of POD with respect to the nonlinearities in the model under study. In
order to increase the efficiency of the POD-DEIM approximation, a possi-
ble extension is to incorporate the POD-DEIM approach with higher-order
FD schemes to improve the overall accuracy, especially due to the spatio-
temporal heterogeneity and chemotaxis driven instability.

We are also interested to compare the Discrete Empirical Interpolation
Method with Gappy POD and Missing Point Estimation methods in the
proper orthogonal decomposition framework applied to a higher order finite
difference parasitoid model. The gappy POD procedure uses a POD basis
to reconstruct missing, or ”gappy“ data and it was developed by [12]. The
Missing Point Estimation method [2] relies on gappy POD technique and
the reduced order model computes the Galerkin projections over a restricted
subset of the spatial domain.
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Table 1: CPU time of full-order system, POD and POD-DEIM reduced
systems.

Internal CPU Time CPU Time CPU Time
Nodes n Full Dim POD POD–DEIM

32 5.407969e+00 5.317957e+00 1.715911e-01
64 5.254361e+00 5.347111e+00 1.680101e-01
128 5.607438e+00 5.710571e+00 1.696068e-01
256 6.847215e+00 6.614301e+00 1.809442e-01
512 8.610269e+00 7.600184e+00 2.016218e-01
1024 1.337721e+01 9.417793e+00 1.835292e-01
2048 2.653383e+01 1.312482e+01 1.812312e-01

Table 2: POD and POD-DEIM average relative errors for the components
N and M – host species.

Internal Error rel Error rel Error rel Error rel

Nodes n POD – N POD–DEIM – N POD – M POD–DEIM – M

32 3.482843e-14 3.516461e-14 1.645643e-13 1.657210e-13
64 1.388416e-14 1.414009e-14 9.331344e-14 9.348847e-14
128 1.653464e-14 1.661955e-14 7.420785e-14 7.175778e-14
256 4.718024e-15 4.669319e-15 1.590888e-14 1.634144e-14
512 2.736167e-14 2.732722e-14 1.716102e-14 2.124873e-14
1024 2.993938e-14 3.012212e-14 1.859783e-14 3.643836e-14
2048 9.590961e-15 1.042055e-14 4.956752e-14 1.216911e-13

Table 3: POD and POD-DEIM average relative errors for the components
P and Q – parasitoid species.

Internal Error rel Error rel Error rel Error rel

Nodes n POD – P POD–DEIM – P POD – Q POD–DEIM – Q

32 2.460205e-14 2.459944e-14 1.961488e-14 1.961738e-14
64 6.814060e-14 6.817415e-14 3.010484e-14 2.997920e-14
128 8.805397e-15 8.808601e-15 2.347853e-14 2.483260e-14
256 8.218387e-15 8.221235e-15 3.326519e-14 3.230054e-14
512 6.303037e-15 6.304210e-15 4.516320e-15 4.445458e-15
1024 1.758562e-14 1.720852e-14 3.067915e-15 3.980249e-15
2048 5.855724e-15 9.105957e-15 1.085525e-14 1.340351e-14
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Table 4: POD and POD-DEIM average relative errors for the component
K – chemoattractant.

Internal Error rel Error rel

Nodes n POD – K POD–DEIM – K

32 5.987349e-14 6.004292e-14
64 3.937026e-14 3.981359e-14
128 3.118464e-14 3.054254e-14
256 1.440359e-14 1.604336e-14
512 3.286988e-14 3.330396e-14
1024 1.140597e-14 1.642880e-14
2048 2.154869e-14 4.431176e-14

Figure 1: Solution plots (N,M,P,Q) of the model from the full-order system
of dimension 2048.
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