
SENSITIVITY ANALYSIS IN NONLINEAR VARIATIONAL DATA

ASSIMILATION: THEORETICAL ASPECTS AND APPLICATIONS

Dacian N. Daescu 1∗ and Ionel M. Navon†

∗Portland State University, Portland, Oregon, U.S.A.
†Florida State University, Tallahassee, Florida, U.S.A.

Abstract This chapter presents the mathematical framework to evaluate the sensitivity of a model fore-
cast aspect to the input parameters of a nonlinear four-dimensional variational data assimilation system
(4D-Var DAS): observations, prior state (background) estimate, and the error covariance specification. A
fundamental relationship is established between the forecast sensitivity with respect to the information
vector and the sensitivity with respect to the DAS representation of the information error covariance.
Adjoint modeling is used to obtain first- and second-order derivative information and a reduced-order
approach is formulated to alleviate the computational cost associated with the sensitivity estimation.
Numerical results from idealized 4D-Var experiments performed with a global shallow water model are
used to illustrate the theoretical concepts.

INTRODUCTION

Data assimilation techniques aim to produce an optimal estimate (analysis) of the state of the atmosphere
by combining information extracted from a model representation of the atmospheric dynamics, observational
data, and error statistics [1, 2, 3, 4]. In the recent years, the amount of data provided by global observatory
network has increased at a fast pace as a result of advanced measurement and data processing capabilities
such as the ability to infer atmospheric parameters from radiance measurements provided by the satellite
sounding instruments [5]. Suboptimal weighting of the information provided by models and measurements
poses a fundamental limitation on the performance of data assimilation systems (DAS) and it is unanimously
accepted that a major source of uncertainty in the analyses and forecasts is due to the practical difficulty
of providing accurate estimates to the error statistics [6]. A significant amount of research is focused on
modeling the observation and background error covariance matrices [7, 8, 9]. Data thinning, super-obbing,
and error variance inflation are the traditional procedures implemented at numerical weather prediction
(NWP) centers to address the information-redundancy and to alleviate the impact of observational error
correlations that are not represented in the DAS [10].

The development of efficient methodologies to quantify the contribution of each observing system compo-
nent to the analysis and forecast error reduction is a practical necessity and focus of research at atmospheric
research centers worldwide [11, 12, 13, 14, 15, 16]. Novel sensitivity techniques are needed to provide guid-
ance to error covariance tuning procedures and a priori estimates of the analysis and forecast impact due
to the variations in the specification of the input error statistics. These techniques should be feasible for
practical implementation and effective in identifying the DAS input components whose improved estimates
of the error statistics will render increased benefits to the forecasts.

A proper understanding of how uncertainties in the specification of the input error statistics will impact
the analysis and forecasts may be achieved by performing a sensitivity analysis with respect to an augmented
set of parameters in the DAS that include observations, background estimate, and the associated error
covariances. The present work provides a review of the mathematical aspects and recent developments in
the formulation of sensitivity analysis methods in four-dimensional variational (4D-Var) data assimilation.
Results from idealized data assimilation experiments are used to illustrate some of the theoretical concepts
and further research directions for practical applications are discussed.

1Correspondence Author: Dacian N. Daescu, Portland State University, P.O. Box 751 Portland, OR 97207, USA; E-mail:
daescu@pdx.edu
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4D-VAR DATA ASSIMILATION

The weak-constraint four-dimensional variational data assimilation (w4D-Var) provides an estimate (anal-
ysis) xa to the atmospheric state xt by solving a generalized nonlinear least-squares optimization problem
[1, 2, 17]

J = Jb + Jo + Jq (1)

=
1

2
(x0 − xb

0)TB−1(x0 − xb
0)

+
1

2

N∑
k=0

[hk(xk)− yk]TR−1k [hk(xk)− yk]

+
1

2

N∑
k=1

[xk −Mk−1,k(xk−1)]TQ−1k [xk −Mk−1,k(xk−1)]

with respect to the time-distributed (four dimensional) state vector xT = [xT
0 xT

1 . . . xT
N ] in the analysis

interval [t0, tN ]. The cost (1) incorporates information from a prior (background) estimate xb
0 ∈ Rn to

the true initial state xt
0, time-distributed observational data yk ∈ Rpk , k = 0 : N , and the atmospheric

model M . The analysis xa is closely determined by the specification of the weight matrices B,Rk, and
Qk that are representations in the DAS of the covariance matrices Bt,Rt

k, and Qt
k of the background

errors εb0 = xb
0 − xt

0, observational errors εok = yk − hk(xt
k), and model errors εqk = xt

k −Mk−1,k(xt
k−1),

respectively. In the formulation (1) it is assumed that the information errors εb0, ε
o
k, ε

q
k are uncorrelated and

additional simplifying assumptions are necessary to achieve a practical implementation (Rabier 2005). The
strong-constraint 4D-Var ignores the model errors and, by imposing the model equations

xk = Mk−1,k(xk−1), k = 1 : N (2)

as a strong constraint, the analysis state at the initial time t0 is obtained by solving an initial-condition
optimization problem with the cost functional defined as

J(x0) =
1

2
(x0 − xb

0)TB−1(x0 − xb
0) +

1

2
[h(x0)− y]

T
R−1 [h(x0)− y] (3)

xa
0 = Arg min J (4)

The operator h : Rn → Rp incorporates the nonlinear model to advance the initial state to the observation
time,

h(x0)− y =


h0(x0)− y0

h1(x1)− y1

...
hN (xN )− yN

 ∈ Rp (5)

where p = p0 + p1 + . . . pN denotes the dimension of the time-distributed observation vector y, and

R =


R0 0 . . . 0
0 R1 . . . 0
...

...
. . .

...
0 0 . . . RN

 ∈ Rp×p (6)

is the block diagonal observation error covariance matrix. In practice, an approximate solution to the
nonlinear optimization problem (3-4) is obtained using an iterative minimization algorithm.
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First-Order Derivative Information

The gradient of the cost functional is expressed as

∇x0
J = B−1(x0 − xb

0) + HTR−1 [h(x0)− y] (7)

where the operator H incorporates both the linearized observation operator

Hk =

[
∂hk

∂x

]
|x=xk

∈ Rpk×n, k = 0 : N (8)

and the tangent linear model (TLM) associated with the nonlinear forecast model equations (2)

M0,k = Mk−1,k . . .M1,2M0,1(x0) (9)

and is defined as

H =


H0

H1M0,1

...
HNM0,N

 ∈ Rp×n (10)

A computationally feasible approach to evaluate the gradient (7) may be implemented by developing the
adjoint MT of the tangent linear model. Backward integration of the adjoint equations

λN = HT
NR−1N [hN (xN )− yN ] (11)

λk = MT
k,k+1λk+1 + HT

k R−1k [hk(xk)− yk], k = N − 1 : −1 : 0 (12)

provides the gradient (7) as
∇x0J = B−1(x0 − xb

0) + λ0 (13)

Large-scale optimization algorithms that rely only on first-order derivative information such as the quasi-
Newton limited-memory BFGS method [19] may be used to provide an iterative solution to (3)-(4),

x
a,(i+1)
0 = x

a,(i)
0 + αid

(i), i = 0, 1, . . . (14)

where x
a,(0)
0 = xb

0 is the initial estimate, d(i) is a descent direction, and αi > 0 is a properly selected step
length [20, 21].

The Incremental Approach

The incremental 4D-Var introduced by Courtier et al. [22] relies on successive quadratic approximations
(outer-loop iteration) to the nonlinear problem (3) and provides a feasible approach for operational imple-
mentation of the 4D-Var scheme [18]. The outer-loop iteration is expressed as

x
a,(i+1)
0 = x

a,(i)
0 + δx

a,(i)
0 , i = 0, 1, . . . (15)

where x
a,(0)
0 = xb

0 is the prior estimate to the initial condition. The analysis increment δx
a,(i)
0 is obtained by

solving the quadratic optimization problem

J̃(δx
(i)
0 ) =

1

2

[
δx

(i)
0 −

(
xb
0 − x

a,(i)
0

)]T
B−1

[
δx

(i)
0 −

(
xb
0 − x

a,(i)
0

)]
+

1

2

[
Ha,(i)δx

(i)
0 −

(
y − h(xa,(i))

)]T
R−1

[
Ha,(i)δx

(i)
0 −

(
y − h(xa,(i))

)]
δx

a,(i)
0 = Arg min J̃ (16)
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where Ha,(i) denotes the linearized observational operator (10) evaluated at x
a,(i)
0 , Ha,(i) = H(x

a,(i)
0 ). The

optimal analysis increment (16) is expressed as

δx
a,(i)
0 = xb

0 − x
a,(i)
0 + Ka,(i)

[
y − h(xa,(i))−Ha,(i)

(
xb
0 − x

a,(i)
0

)]
(17)

where Ka,(i) denotes the optimal gain matrix (DAS operator) evaluated at x
a,(i)
0 ,

Ka,(i) = BHa,(i)T
[
Ha,(i)BHa,(i)T + R

]−1
=
[
B−1 + Ha,(i)TR−1Ha,(i)

]−1
Ha,(i)TR−1 (18)

By replacing (17) in (15), the outer-loop iteration is expressed as

x
a,(i+1)
0 = xb

0 + Ka,(i)
[
y − h(xa,(i))−Ha,(i)

(
xb
0 − x

a,(i)
0

)]
(19)

Evaluation of the right side term in (19) requires the solution to a linear system and is performed using
an iterative algorithm (inner-loop iteration) such as the conjugate gradient method. The implementation
of the incremental 4D-Var algorithm and issues related with the convergence of the outer loop iteration are
discussed in [23], [24], [25]. Often, for practical reasons, a single outer loop iteration is implemented and the
analysis state is obtained as

xa
0 = xb

0 + K
[
y − h(xb

0)
]

(20)

where the DAS operator K is defined as

K = BHbT
[
HbBHbT + R

]−1
=
[
B−1 + HbTR−1Hb

]−1
HbTR−1 (21)

SENSITIVITY ANALYSIS IN NONLINEAR 4D-VAR

Fundamental aspects of the mathematical theory and practical aspects of sensitivity analysis for nonlinear
dynamical systems are discussed in the books of Cacuci [26], Cacuci et al. [27], Marchuk et al. [28], and
Saltelli et al. [29]. A theoretical framework to sensitivity analysis in VDA is presented by Le Dimet et al.
[30]. For atmospheric data assimilation applications, the forecast score (quantity of interest) is typically
defined as a short-range forecast error measure

e(x0) = (xf − xv
f )TE(xf − xv

f ) (22)

where xf ∈ Rn is the model forecast at verification time tf initiated at t0 from x0, xf = M0,tf (x0), xv
f is

the verifying analysis at tf and serves as a proxy to the true state xt
f , and E is a diagonal matrix of weights

that gives (22) units of energy per unit mass.
The first-order variation in the functional e(xa

0) induced by an analysis variation δxa
0 is expressed as

δe = 〈∇x0e(x
a
0), δxa

0〉Rn (23)

where ∇x0e(x
a
0) denotes the forecast sensitivity (gradient) to the analysis and is obtained using a backward

adjoint model integration from tf to t0 along the analysis trajectory

∇x0
e(xa

0) =
[
Ma

0,tf

]T
E(xa

f − xv
f ) (24)

The forecast sensitivity to the DAS input parameters y,R,xb
0,B is formulated in the context of the 4D-

Var optimization problem (3-4), xa
0 = xa

0(y,R,xb
0,B). A first study was presented by Daescu [31] where the

4D-Var sensitivity equations were derived from the first order optimality condition to (3) using the implicit
function theorem and matrix differentiation calculus. In this section a derivation of the sensitivity equations
in nonlinear 4D-Var is provided using first-order perturbation theory. Computational aspects are addressed
including a reduced-order method to sensitivity estimation. The practical ability to perform error covariance
sensitivity analysis relies on the close relationships that may be established between the forecast sensitivity
to observations, background, and the associated error covariance models R and B, respectively.
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4D-Var Sensitivity Equations

For notational convenience and to provide a compact derivation of the 4D-Var sensitivity equations, let

w =

[
xb
0

y

]
∈ Rn+p (25)

denote the information vector,

Γ : Rn → Rn+p, Γ(x0) =

[
x0

h(x0)

]
(26)

denote the nonlinear operator that maps the initial state into the information space, and

W =

[
B 0n×p

0p×n R

]
∈ R(n+p)×(n+p) (27)

denote the DAS model of the information error covariance. With this notation, the 4D-Var cost functional
(3) is expressed as

J(x0) =
1

2
[Γ(x0)−w]

T
W−1 [Γ(x0)−w] (28)

An implicit relationship xa
0 = xa

0(w,W) between the analysis xa
0 and the DAS input parameters w and W

is established from the first-order optimality condition

∇x0J(xa
0) = 0⇔ ΓT

x0
(xa

0)W−1 [Γ(xa
0)−w] = 0 (29)

where

Γx0(xa
0) =

[
∂Γ

∂x0

]
|x0=xa

0

=

[
In×n
Ha

]
∈ R(n+p)×n (30)

denotes the Jacobian matrix of Γ evaluated at xa
0 . The forecast sensitivity to w and W is obtained by

relating the first-order variation δxa
0 with the parameter variations δw and δW, respectively. A relationship

is established from (29) as[
∇2

x0x0
J(xa

0)
]
δxa

0 − ΓT
x0

(xa
0)W−1δw − ΓT

x0
(xa

0)W−1[δW]W−1 [Γ(xa
0)−w] = 0 (31)

where

∇2
x0x0

J(xa
0) =

(
∂[∇x0

J ]

∂x0

)
|x0=xa

0

∈ Rn×n (32)

denotes the Hessian matrix of the 4D-Var cost functional evaluated at xa
0(w,W). The identity

δ[W−1] = −W−1[δW]W−1 (33)

was used to derive the last term in the left side of (31). By taking the inner product of (31) with an arbitrary
vector η ∈ Rn we obtain〈

η,
[
∇2

x0x0
J(xa

0)
]
δxa

0

〉
Rn =

〈
η,ΓT

x0
(xa

0)W−1δw
〉
Rn

+
〈
η,ΓT

x0
(xa

0)W−1[δW]W−1 [Γ(xa
0)−w]

〉
Rn

(34)

Taking into accont that the Hessian ∇2J and the covariance model W are symmetric matrices and with the
aid of a few linear algebra operations, (34) may be expressed as〈[
∇2

x0x0
J(xa

0)
]
η, δxa

0

〉
Rn =

〈
W−1Γx0(xa

0)η, δw
〉
Rn+p +

〈
W−1Γx0(xa

0)η, [δW]W−1 [Γ(xa
0)−w]

〉
Rn+p (35)

Therefore, by defining η as the solution to the linear system[
∇2

x0x0
J(xa

0)
]
η = ∇x0

e(xa
0) (36)
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from (23), (35), and (36) the first-order variation in the functional aspect is expressed as

δe =
〈
W−1Γx0

(xa
0)η, δw

〉
Rn+p +

〈
W−1Γx0

(xa
0)η, [δW]W−1 [Γ(xa

0)−w]
〉
Rn+p (37)

We recall that the Frobenius inner product of two matrices of the same order X and Y is defined as

〈X,Y〉 = Tr
[
XYT

]
(38)

where Tr denotes the matrix trace operator. The right side of (37) may be expressed as

δe =
〈
W−1Γx0(xa

0)η, δw
〉
Rn+p +

〈
W−1Γx0(xa

0)η [Γ(xa
0)−w]

T
W−1, δW

〉
R(n+p)×(n+p)

(39)

and equation (39) provides the explicit relationship between the first-order forecast variation δe and the
variations δw and δW in the DAS input parameters. The forecast sensitivity to the information vector w
is expressed as

∇we(x
a
0) = W−1Γx0

(xa
0)η ∈ Rn+p (40)

From the first-order optimality condition (29), it is noticed that for any forecast aspect the sensitivity to
information ∇we(x

a
0) and the analysis fit to information Γ(xa

0)−w are orthogonal vectors in Rn+p,

〈∇we(x
a
0),Γ(xa

0)−w〉Rn+p = ηTΓT
x0

(xa
0)W−1 [Γ(xa

0)−w] = 0 (41)

From (39), a fundamental relationship is established between the forecast sensitivity to the information
vector and the forecast sensitivity to the covariance model W that is expressed as the rank-one matrix

∂e(xa
0)

∂W
= ∇we(x

a
0) [Γ(xa

0)−w]
T

W−1 ∈ R(n+p)×(n+p) (42)

Taking into account the notational convenience (25-27) and (30), the equations of the forecast sensitivity to
the DAS input (y,R) and (xb

0,B) are as follows:

∇ye(x
a
0) = R−1Haη ∈ Rp (43)

∂e(xa
0)

∂R
= ∇ye(x

a
0)[R−1(h(xa

0)− y)]T ∈ Rp×p (44)

∇xb
0
e(xa

0) = B−1η ∈ Rn (45)

∂e(xa
0)

∂B
= ∇xb

0
e(xa

0)[B−1(xa
0 − xb

0)]T ∈ Rn×n (46)

From (44) and (46) it is noticed that evaluation and storage of only a few vectors is necessary to capture the
information content of the forecast R- and B-sensitivities. The first order optimality condition (29) provides
the relationship

B−1(xa
0 − xb

0) = HaTR−1[y − h(xa
0)] (47)

such that a mathematically equivalent formulation to the B-sensitivity equation (46) may be obtained as

∂e(xa
0)

∂B
= ∇xb

0
e(xa

0)
{

HaTR−1[y − h(xa
0)]
}T

(48)

Second-Order Derivative Information

The sensitivity analysis of a nonlinear 4D-Var DAS requires the solution to the linear system (36) that
involves the Hessian of the cost functional (3). Second-order derivative information may be obtained by
developing a second-order adjoint (SOA) model [32]. The product between the Hessian matrix of the cost
functional and a user-defined vector v ∈ Rn may be evaluated using a forward over reverse procedure that
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requires the linearization of the nonlinear model equations (2) and of the first-order adjoint equations (11)-
(13) with respect to the state and adjoint variables. Assuming, for simplicity, that the observation operator
hk is linear, hk(xk) = Hkxk, the SOA model equations are espressed as

µ0 = v (49)

µk = Mk−1,kµk−1, k = 1 : N (50)

ξN = HT
NR−1N HNµN (51)

ξk = MT
k,k+1ξk+1 + ∂xk

[
MT

k,k+1λ̄k+1

]
µk + HT

k R−1k Hkµk, k = N − 1 : −1 : 0 (52)

In the equation above, ∂xk

[
MT

k,k+1λ̄k+1

]
is a symmetric matrix that incorporates second-order xk-derivatives

of the model Mk,k+1(xk) and the notation λ̄k+1 indicates that the first order adjoint variables λk+1 are
treated as constants during this differentiation. The integration of the SOA model along the analysis trajec-
tory provides the Hessian/vector product as[

∇2
x0x0

J(xa
0)
]
v = B−1v + ξ0 (53)

The development of a SOA model is demanding task and requires significant efforts in the software develop-
ment as well as an increased number of floating point operations and memory storage. In practice, automatic
differentiation tools may be used to facilitate the implementation of the SOA model [33], [34]. The second-
order derivative information allows the implementation of Hessian-free truncated Newton (HFTN) methods
for large-scale optimization [35], [36] and of hybrid methods that aim to improve the convergence of the iter-
ative solution to (4) by dynamically interlacing inexpensive L-BFGS iterations with fast convergent HFTN
iterations [37], [38]. Having available the Hessian/vector products, the evaluation of the vector η may be
performed using an iterative solver such as the conjugate gradient (CG) method. Each iteration of the CG
solver requires an additional forward integration of the TLM equations (49-50) with storage of the state
trajectory xk, k = 1 : N and tangent variables µk, k = 1 : N , and followed by the backward integration
of the first order adjoint equations (11-12) and of the SOA equations (51-52) to obtain the Hessian/vector
product (53). The relative ratio r between the CPU required by a SOA model integration and the CPU of a
forward model integration (2) is typically in the range 7 ≤ r ≤ 10 and may increase due to additional costs
entailed by the implementation of checkpointing schemes and data manipulation [34].

To date, the increased computational burden has prevented the practical implementation of sensitivity
analysis in nonlinear 4D-Var. Sensitivity studies in atmospheric data assimilation have been mainly consid-
ered for a linear analysis scheme (20) and have been used to assess the forecast sensitivity to observations y
and, to a much smaller extent, to the specification of the background estimate xb

0. In the linear context, the
evaluation of the sensitivity of a forecast aspect e(xa

0) with respect to observations and to the background
estimate was considered by Baker and Daley [39] for applications to observation targeting in NWP. For the
analysis equation (20), the forecast sensitivity to observations is expressed as [39]

∇ye(x
a
0) = KT∇x0

e(xa
0) (54)

where

KT =
[
HbBHbT + R

]−1
HbB = R−1Hb

[
B−1 + HbTR−1Hb

]−1
(55)

is the adjoint (transpose) of the DAS operator K (21). It is noticed that the computational cost to evaluate
the observation sensitivity (54) is roughly equivalent with the computational cost to obtain the analysis (20).
First applications of the error-covariance sensitivity analysis in operational 3D-Var and 4D-Var DAS with a
single outer-loop iteration were presented by Daescu and Todling [40] and Daescu and Langland [41]. A study
on observation sensitivity and observation impact calculations in a variational DAS implementing multiple
outer loop iterations (19) is provided by Trémolet [42]. A computationally feasible approach to sensitivity
analysis in nonlinear 4D-Var may be obtained by formulating a reduced-order optimization problem by
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projection on a low-dimensional subspace. A reduced-order approach to sensitivity estimation and the
selection of a projection operator that incorporates in a consistent fashion information pertinent to the
4D-Var iteration and forecast sensitivity to the initial condition is presented in the next section.

Reduced-Order 4D-Var Sensitivity Estimation

The 4D-Var sensitivity equations (43-46) are derived from the optimality condition (29) whereas in the prac-
tical implementation the minimization to the cost functional (3) is terminated when the gradient satisfies a
specified convergence criteria or simply after a prescribed number of iterations. An estimate of the observa-
tion sensitivity that is consistent with the data assimilation process may be obtained by implementing the
adjoint of the minimization algorithm [43]. In this section a reduced-order approach to sensitivity estimation
is formulated using information gathered in the 4D-Var minimization of the cost functional (3) to identify
an appropriate low-order subspace.

In a general framework, the reduced-order 4D-Var is formulated by projecting the initial-condition incre-
ment δx0 = x0 − xb

0 into a low-order control space of dimension m� n [44, 45],

Πδx0 = Ψζ =

m∑
j=1

ζjψj (56)

where the matrix Ψ = [ψ1, . . . ,ψm] ∈ Rn×m incorporates the orthonormal vectors of the reduced-space
basis ψj , j = 1 : m, Π = ΨΨT denotes the projection operator from the full space onto the reduced-space,

and ζ = (ζ1, . . . ζm)T ∈ Rm denotes the coordinates vector in the reduced space

ζ = ΨTδx0 (57)

The reduced-order 4D-Var approach searches for the optimal coefficients ζa ∈ Rm by solving a low-dimensional
optimization problem with the cost functional defined as

Ĵ(ζ) = J(xb
0 + Ψζ) (58)

ζa = Arg min Ĵ (59)

and an approximation to the analysis (4) is obtained as

xa
0 ≈ xb

0 + Ψζa (60)

The gradient and the Hessian matrix of the cost functional (58) are expressed as [44]

∇ζ Ĵ = ΨT∇x0
J (61)

∇2
ζζ Ĵ = ΨT

[
∇2

x0x0
J
]
Ψ (62)

and in this fashion the large-scale (n-dimensional) linear system (36) is replaced by the low-order (m-
dimensional) linear system [

∇2
ζζ Ĵ(ζa)

]
η̂ = ΨT∇x0

e(xa
0) (63)

The reduced-order Hessian matrix ∇2
ζζ Ĵ is positive definite, provided that the full Hessian matrix ∇2

x0x0
J

is positive definite, and the reduced-order approach provides an estimate to the vector η (36) as

η ≈ Ψη̂ (64)

It is noticed that if the approximation (60) is exact then the reduced- order 4D-Var sensitivity estimation
relies on the reduced-rank approximation to the inverse Hessian matrix[

∇2
x0x0

J(xa
0)
]−1 ≈ Ψ

[
ΨT

[
∇2

x0x0
J(xa

0)
]
Ψ
]−1

ΨT (65)
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and Ψη̂ ∈ Rn is the solution to
Π
[
∇2

x0x0
J(xa

0)
]
Ψη̂ = Π∇x0

e(xa
0) (66)

Low-rank approximations based on the leading eigenvectors of the Hessian matrix and the BFGS method
are discussed in references [46, 47]. A computationally efficient approach for selecting a reduced-space that
is consistent with the 4D-Var minimization process is presented below.

Reduced-Order Subspace Selection

In practice, an approximate solution to the 4D-Var minimization problem (3)-(4) is obtained by performing

m-iterations (14) with the initial guess x
(0)
0 = xb

0 and the first-order optimality condition (29) is only
approximately satisfied. The analysis xa

0 is expressed as

xa
0 = xb

0 +

m−1∑
i=0

αid
(i) (67)

such that the analysis increment δxa
0 is an element of the vector space spanned by the descent directions

δxa
0 ∈ S = Span{d(0),d(1), . . . ,d(m−1)}. Denoting {ψ0,ψ1, . . . ,ψm−1} an orthonormal basis to S, the

reduced-space is thus consistent to the 4D-Var minimization process and the approximation (60) is exact.
It is noticed that if the conjugate gradient or the BFGS method is implemented and the cost functional
is quadratic (for instance, in the incremental 4D-Var formulation) then xa

0 is the minimizer of J over the
set {xb

0 + S}. In this particular case, the first-order optimality condition is satisfied in the reduced space

∇ζ Ĵ(ζa) = 0, although in general ∇x0J(xa
0) 6= 0.

The reduced basis may be enhanced by appending the vector ψm defined as

ψ = ∇x0
e(xa

0)−ΠS∇x0
e(xa

0), ψm = ψ/‖ψ‖ (68)

that is orthogonal to each of the basis vectors ψ0, . . . ,ψm−1, ψm ∈ {ψ0, . . . ,ψm−1}⊥. Therefore, ∇x0
e(xa

0) ∈
Span{ψ0, . . . ,ψm−1,ψm} and with this selection of the basis functions the reduced-space provides an exact
representation of the forecast sensitivity to analysis Π∇x0

e(xa
0) = ∇x0

e(xa
0). From (36) and (66) an error

estimate to the reduced-order approximation (64) may be obtained as

η −Ψη̂ =
(
AΠA−1 − In×n

)
Ψη̂ (69)

where A denotes the inverse of the full Hessian matrix (32) and In×n is the n× n identity matrix.

NUMERICAL RESULTS

Illustrative numerical results are presented with the finite volume global shallow-water (SW) model of Lin
and Rood [48] at a resolution of 2.5◦× 2.5◦ and with a time step ∆t = 600s. The state vector is x = (h, u, v)
where h is the geopotential height and u and v are the zonal and meridional wind velocities, respectively.
The first-order adjoint associated with the SW model was developed in the work of Akella and Navon [49],
whereas the second-order adjoint was developed by Daescu [31].

An idealized 4D-Var DAS is considered in the twin experiments framework: a reference initial state xt
0

(“the truth”) is taken from the European Centre for Medium-Range Weather Forecasts (ECMWF) ERA-40
500 hPa data valid at 0600 UTC 15 March 2002; the background estimate xb

0 to xt
0 is obtained from a 6-hour

integration of the SW model initialized at t0 − 6h with ECMWF ERA-40 500 hPa data valid at 0000 UTC
15 March 2002. At the verification time tv = t0 + 30h we consider the reference state xt

v =Mt0→tv (xt
0) and

the forecast xf
v =Mt0→tv (xa

0). The forecast error is displayed in Fig. 1 using a total energy norm to obtain
grid-point values (units of m2 s−2).

“Observational data” for the assimilation procedure is generated from a model trajectory initialized with
xt
0 and corrupted with random errors taken from a normal distribution N (0, σ2). The standard deviation

is chosen σh = 5 m for the height and σu = σv = 0.5 m s−1 for the velocities and the observation errors
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Figure 1. Forecast error (m2 s−2) at tv = t0 + 30 h and the configuration of the observing system in 4D-Var. The
selection of the verification domain at tv is indicated by the rectangular region.

are assumed to be uncorrelated. The errors in the prior estimate to the initial condition are assumed to be
uncorrelated and the standard deviations assigned to the background errors are σb

h = 10 m, σb
u = σb

v = 1
m s−1. Observational data sets are provided at a time increment of one hour over the data assimilation
interval [t0, t0 + 6h] at locations taken from the actual location of the radiosonde observations in a realistic
data assimilation system and projected to the nearest model grid point. The observation operator h is thus
a matrix with entries 0 and 1 only. The configuration of the observing system is displayed in Fig. 1. At each
observing time there are 572 observations for each of the state variables h, u, and v, whereas the discrete
state vector x is of order n ∼ 3× 104.

An increased forecast error is noticed over the region Dv = [50◦N, 65◦N ]× [60◦W, 30◦W ], as indicated in
Fig. 1. The ability to obtain 4D-Var sensitivity information is illustrated using a forecast error functional
defined as the forecast error over Dv measured in a total energy metric

e(x0) = (xf
v − xt

v)TPTEP(xf
v − xt

v) (70)

where P denotes the projection operator on Dv.

Forecast Sensitivity to 4D-Var Input Parameters

A key ingredient to the 4D-Var sensitivity analysis is the solution to the large-scale linear system (36). This
computation was performed in the full space using a SOA model to provide the Hessian-vector products
required in the CG iteration. The ability of a reduced-order approach to provide sensitivity information
is also investigated using a reduced space of dimension m = 100 based on the directions d(i) generated
during the limited-memory L-BFGS iteration to the minimization of the 4D-Var cost functional (3). The
reduced-order approach entailed significant computational savings and a reduction of as much as 75% in the
CPU time as compared with the full space sensitivity estimation.

The u- and v-components of the vector η and the corresponding reduced order approximation Ψη̂ are
displayed in Fig. 2. It is noticed that the reduced order approach is able to closely match the ”shape” of the
full space solution, however the amplitude of the u- and v-components of Ψη̂ is in general lower, as compared
with the u- and v-components of η. To further illustrate this aspect, in Fig. 3 it is shown the configuration
of the velocity components of the full state solution η and the reduced order solution Ψη̂ associated with
a forecast error measure defined over the global domain. We recall that in the experiments presented here
the background error covariance is specified as a diagonal matrix and σb

u = σb
v = 1 m. Therefore, from

(45) it follows that the u- and v-components of the vector η are identified respectively, with the u- and
v-components of the forecast sensitivity to the background state xb

0.
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Figure 2. The velocity components of the full state solution η and the corresponding reduced order approximation
Ψη̂. The forecast error measure is defined over the verification domain [50◦N, 65◦N ] × [60◦W, 30◦W ].
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Figure 3. The velocity components of the full state solution η and the corresponding reduced order approximation
Ψη̂ associated with a forecast error functional defined over the global domain.

The forecast sensitivity to observations and to the specification of the observation error variance are
evaluated according to (43) and (44), respectively. As a measure of the forecast sensitivity to observation
and error variance at each data location over the assimilation time interval we consider the time cumulative
magnitude of the sensitivities

∑N
i=0 |∇yi

e(xa
0)| and

∑N
i=0 |∇σ2

i
e(xa

0)|, respectively. For each of the u, v,
and h data components, the location of the observations and error variances of largest forecast sensitivity is
displayed in Fig. 4. The sensitivity analysis reveals that the selected forecast error aspect exhibits a large
sensitivity with respect to only a few of the observations in the DAS, located in the vicinity of the verification
domain. A distinct configuration and magnitude is noticed for each observation component, indicating that
observations and error variances whose specifications have a potentially large forecast impact are closely
determined by the data type.

A comparison between the observation sensitivity estimates in the full space and the reduced-order
estimates indicates that the reduced-order approach is able to properly identify the data locations of largest
sensitivity magnitude. Illustrative results are shown in Fig. 5 for the u-wind data at the end of the
assimilation window, tN = t0 + 6 h. These results also indicate that the observation sensitivity estimates in
the reduced-order approach have larger magnitudes, as compared to the full state estimates. The reduced-
order approach is thus able to properly identify the regions of high background sensitivity and the location

12



Figure 4. Location of observations with forecast sensitivity of largest magnitude. Time cumulative magnitudes of
the observation and error-variance sensitivities are displayed for the h, u, and v observation components.

Figure 5. Data locations of largest u-observation sensitivity magnitude at tN = t0+6 h. Results shown for sensitivity
estimates obtained in the full space (left graphic) and in the reduced space (right graphic).
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of observations of increased sensitivity; however, it underestimates the background sensitivity values and
overestimates the observation sensitivity values, as compared with the full state estimates.

CONCLUSIONS

The combined information derived from the adjoint of the forecast model and the adjoint of the data
assimilation system allows the estimation of the model forecast sensitivity with respect to each of the DAS
input components. Adjoint-DAS techniques have been mainly considered for a linear analysis scheme and
the increased computational burden associated with second-order derivative information is a limiting factor
to the implementation in a nonlinear context. This chapter provided a review of the sensitivity equations
of a nonlinear 4D-Var DAS and a practical approach to alleviate the computational cost associated with
the sensitivity estimation by projection into a low-order subspace. The simplicity of the shallow water
model allowed the implementation of a second-order adjoint model associated with the nonlinear 4D-Var
formulation and numerical estimation of the sensitivities in both full and reduced-order space. Idealized 4D-
Var experiments indicate that the reduced-order approach is able to properly identify those state components
and observation locations of increased forecast sensitivity while providing significant computational savings.

The methodologies presented here are general and may find applications to other areas where models
and measurements are used to provide improved predictions such as air quality forecasting, climate mod-
eling, oceanography, and fluid dynamics. A rich set of novel applications may be envisaged by performing
the sensitivity analysis to the specification of the covariance models used to represent the information error
statistics. The weak-constraint 4D-Var formulation allows to account for modeling errors in the analysis
scheme and an extension of the sensitivity analysis tools may be envisaged to incorporate the forecast sensi-
tivity and estimation of model error covariance parameters, xa = xa(y,R,xb

0,B,Q). Research in this area
is at an incipient stage and further developments are needed in both theoretical and implementation aspects
of sensitivity analysis, parameter estimation, forecast impact assessment, and uncertainty quantification in
nonlinear data assimilation.
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