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Abstract

A novel parameterized non-intrusive reduced order modélIfROM) based on
proper orthogonal decomposition (POD) has been develofdils P-NIROM is a
generic and gicient approach for model reduction of parameterized gattiéeren-
tial equations (P-PDESs). Over existing parameterizedaedwrder models (P-ROM)
(most of them are based on the reduced basis method), it intraisive and inde-
pendent on partial fierential equations and computational codes. During theirig
process, the Smolyak sparse grid method is used to selettof g@rameters over a
specific parameterized spade,(e RF). For each selected parameter, the reduced ba-
sis functions are generated from the snapshots deriveddram of the high fidelity
model. More generally, the snapshots and basis functienfeetiny parameters over
Qp can be obtained using an interpolation method. The P-NIR@Mtben be con-
structed by using our recently developed technidi@ %3] where either the Smolyak
or radial basis function (RBF) methods are used to generatd af hyper-surfaces
representing the underlying dynamical system over theaedispace.

The new P-NIROM technique has been applied to parameteNastbr-Stokes
equations and implemented with an unstructured mesh fitdtaent model. The ca-
pability of this P-NIROM has been illustrated numericallytivo test cases: flow past
a cylinder and lock exchange case. The prediction capabilif the P-NIROM have
been evaluated by varying the viscosity, initial and boupaanditions. The results
show that this P-NIROM has captured the quasi-totality efdbtails of the flow with
CPU speedup of three orders of magnitude. An error analgsithe P-NIROM has
been carried out.
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1. Introduction

Reduced order models (ROMSs) are popular and powerful tgdesifor circum-
venting the intensive computational burden in large complemerical simulations
in engineering and science, for example, ocean modelliegther prediction, uncer-
tainty quantification, sensitive analysis, data assifoigtsensor placement optimiza-
tion, porous media, structural problem, convectidfugiion reaction equations, molec-
ular dynamics simulation and optimal contra| L5, 22, 24, 42, 45, 30, 16, 10, 26, 46,
11,9, 2, 17, 21]. The basic idea of reduced order modelling is to find an agprate
solution by a linear combination of a set of basis functidrige weighting cofficients
of the basis functions are determined by error minimizatiothe Galerkin projection
method [L3].

One of challenges in reduced order modelling is to generattast ROM for
different parametefisputs, which can represent the physical dynamics of paterme
ized partial dfferential equations (P-PDESs) as the model parameters vagerily
reduced basis method in combination with projection-basethods has been in-
troduced and proven to be a very powerful means in model teguof P-PDEs
[7, 27, 28, 40, 36, 18, 39, 13, 41]. The high dimensional parameterized PDEs can
be projected onto a low dimensional space which consistsiofigber of reduced basis
functions. The construction of the reduced basis functi®bssed on snapshots (solu-
tions of the original PDEs). These reduced basis functiande constructed by either
global or local approacheg][ The 'global’ reduced basis functions can be constructed
by global snapshot matrices over the parameter space wieildoical’ reduced basis
functions can be obtained by interpolating the local snapstatrices associated with a
set of selected parameters over the parameter space. Bdesed basis functions can
then be used for constructing a P-ROM. The original matriceke discretised PDEs
and variables can be decomposed as a weighted linear caiobinfthe reduced basis
functions. The weighting cdgcients for the reduced basis functions are dependent on
time and model parameters.

Most of existing P-ROMs are intrusive and dependent on waigPDEs and codes
(e.g. numerical schemes). In most cases, modificationseeded to generate the
intrusive P-ROM. These modifications ardfdtiult or even impossible in commercial
software P9]. In addition, the intrusive ROM dters from non-linear in@ciency and
instability issues47, 43, 37]. The methods of improving the stability of the ROM can
be found in B2, 56, 48, 23, 24, 52]. The approaches of enhancing the non-linearity
efficiency have been developed in the work 4[4, 19, 20, 51, 17].

In order to tackle these issues in intrusive ROMs, a numbieonfintrusive reduced
order models (NIROMs) have been developed receblyd3, 35, 34]. However, very
little work can be found addressing non-intrusive modeuibn for parameterized
PDEs, where inputs (e.g. initial and boundary conditioms) parameters (e.g. vis-
cosity, material property) vary in space and time. Audouzal.epresented a proper
orthogonal decomposition (POD) non-intrusive reduceaprdodel for part of non-
linear parameterized PDE%$3, 3]. The key idea underpinning the proposed method in
[13 is to split the reduced-order approximation into two termbe first term was the
approximate solution of an auxiliary parabolic linear PBjch enforces satisfaction
of the boundary and initial conditions whereas the second te a linear combina-



tion of a tensor product of adapted spatial and temporastiasctions obtained using
the POD method. A non-intrusive approach based on radi#d asction (RBF) (in
contrast to Galerkin projection) was introduced to caliuthe coéficients (weights)
at the second term. However it is noted that to approximaesthutions of the aux-
iliary parabolic linear PDE, the classical POD-Galerkipayach was used, which is
intrusive.

More recently, we have developed three types of NIROMs basethylor series
expansion, Smolyak sparse grid and radial basis functi@fjRnethods$0, 53]. The
NIROMs have been successfully applied to some realistiblpros such as fluid and
solid interaction $5] and porous media multi-phase problerbd][ In this work, we
have further extended the NIROMs to parameterized phypicdilems (described by
PDE's).

A generic parameterized NIROM (P-NIROM) technique has tareloped here
for parameterized time-dependent lin@anlinear physical problems. The P-NIROM
developed here is independent of equations and easy torirepteand there is no need
for an auxiliary parabolic linear PDE in contrast to the noetiproposed by Audouze
et al.[L3. The whole procedure can be divided into the two steps: fhime process-
training and online process-constructing and solving ROM. During the training
procedure, the parameter training points are first choseg tise Smolyak sparse grid
method. The parameter vectore R” is P-dimensional and each variable parameter
denotes one dimension. The Smolyak sparse grid is consttfrcim a tensor product
grid obtained over the parameter space. The solution sotgpsh the parameter train-
ing points (sparse grids) are then obtained by running tlggnad high fidelity model
and the basis functions are computed using singular valcendgosition (SVD)POD.
From these snapshots obtained on the parameterized ggioints, a set of POD basis
functions on each parameterized training point is genériat@n optimal sense that
represents the fluid dynamics.

During the online computation procedure, a two-level RBEripolation method is
used for constructing the P-NIROM. Firstly, for any givengraeter € R°, a set of
snapshots and POD bases can be obtained using the first B#ehRerpolation. The
second level RBF interpolation is then used to construct afdeyper-surfaces repre-
senting the dynamics of the original time-dependent PDEserAhe hyper-surfaces
are obtained, the solution of the ROM at the current timellea@ be obtained by
giving reduced solution at previous time level into the hyperface functions.

The above P-NIROM has been implemented under the framewaak anstruc-
tured mesh finite element model (Fluidity). The capabgiti this new NIROM have
been assessed for two test cases: a flow past a cylinder chsezab lock exchange
case. Comparisons have been made between the high fidelityl mnod the P-NIROM
to investigate the accuracy of the P-NIROM methodology.

The structure of the paper is as follows: sectipresents the general reduced
order model for parameterized PDEs; sectioprovides the details of calculation of
POD basis functions for any given parameter oR8y section4 describes the non-
intrusive methods for model reduction of parameterized ®BEctiorb illustrates the
P-NIROM method derived by means of two numerical examplesv fiast a cylin-
der and lock exchange problem. Finally in sect®rsummary and conclusions are
presented, and error analysis is provided in appendix.



2. General parameterized reduced order PDEs

In general, the parameterized space-time limearlinear PDEs can be written as
follows:

FUl.t ), X, t ) = s(X. t, ), (1)

whereu(-, t,u) € RPN is the state variable vector (including, for example, vijoc
components, pressure, temperature etc. Neiethe number of nodes in a scalar grid
used in the computational domain abdis the number of scalarsy, is the spatial
coordinate systens denotes source terrh,js the time andg: € RP is the parameter
vector (constructing 8 dimensional parameter space).

In reduced order modelling, the state variabtman be expressed as an expansion of
the basis function®(x, u) = (@1, ..., Pm,...,Pn) (Me (1,..., M), M is the number
of basis functions antfl << N):

u(x, t, u) = ou', )

whereu'(t, ) € RM is the reduced state variable vector (the superscriptiicates
a variable or operator associated with the reduced ordeetoBy using POD, the
basis function® of the variable are extracted and derived optimally fromsthapshots
sampled at time instants, ..., t;,..., I}

N;
Pr(X.0) = ) UGt ) Y, ME (Lo M), (3)
i=1
subject to
K
D<@ @2 P =1, (4)
m=1

where< -,- > is the canonical inner product ic? norm, M is the number of basis
functions to be chosen (hel < N; << N), andy,; is obtained using singular value
decomposition (SVD):

BYm = AmTm, (5)
whereYm = (Ym1, ..., Tmis- - -» Ymn,) and the matrix B has the form of,
1
Bkn = N f u(, t, JU(, th, ) dx, kne (4,...,Ny). (6)
t JQ

The singular valueg = (13,...,4m, ..., An) are listed in decreasing order. Projecting
(1) onto the reduced space, yields,

OTF (DU (1, X, 1), X, t, 1) = DT S(X, t, 12). (7)
The parameterized reduced order modelincan be re-written:
F'(u(u, x, 1), X, t, 1) = S (X, t, ). (8)

As discussed above, the traditional method to implemerddnameterized reduced
order model ) is intrusive based on reduced basis methods. In this waelpnepose
a non-intrusive method for constructing the parameternieddced order PDE model.



3. Computation of basisfunctionsover the parameter space

In this section, the details of calculating the basis fuorddi over the parameter
space using Smolyak sparse grid and RBF interpolation rdetace provided. Firstly,
a number of parameter training points can be chosen usin§riayak sparse grid
method. The solution snapshots are then obtained for eaicliny parameter by run-
ning the high fidelity model. The corresponding POD basisfioms can be calculated
using SVDPOD. Finally the solution snapshots or basis functions @aalained for
any given parameter € R” using the RBF interpolation method.

3.1. Choice of the parameter interpolation points using$neolyak sparse grid

The Smolyak sparse grid is a numerical technique to intatpair integrate high
dimensional functions. It was developed by the Russian emathician Smolyak, and
it was designed to tackle the problem of 'curse of dimendignf44]. The key idea
of the Smolyak sparse grid is that it selects a relativelylsmanber of nodes on the
full tensor-product grid in terms of potential importandete nodes, thus resulting in
great computationalfgciency. In this case, only a small number of Smolyak nodes are
involved in calculation rather than all the nodes on the tietisor-product grid. There
is a approximation level, that controls how many nodes oriuté¢ensor-product grid
are selected. The higher the approximation level is chdberiarger number of nodes
will be used and higher approximation quality will be obtdn for more details, see
[44, 31]. Smolyak presented a rule that selects nodes from tensalupt grid. The
process of sampling the parameter interpolation points thes parameter spac®
can be summarized as follows:

Let Qllf be a quadrature rule on dimension 1 wiNhparameter points, it assumes
the following form,

N
QHf =) f), 9)
i=1
wherel denotes the approximation level of sparse grid &mslthe function on the in-
terval [0,1] to be approximated. Thedenotes the weight corresponding the parameter
point, and i denotes thé" points on the dimension.
In order to construct the sparse parameter interpolatigmfaoa multi-indexl is
introduced and has the following form of,

| =ZP:“- (10)

The multi-index | determines the number of points seleateahthe tensor product grid
and it satisfies the condition given iti4). Using the multi-index, the d-dimensional
sparse grid quadrature formulatiQﬁf on the space [A]° then can be defined as,

Fr= > ALe---ea)f (11)

l<l+P-1
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Figure 1: The graph shows the 1-D Smolyak grid with level Ogelel and full tensor product grid (top to
bottom) respectively.

(a) 2-D tensor product  (b) Smolyak grid, levet0
®

&
(c) Smolyak grid, levetl  (d) Smolyak grid, levet2

Figure 2: The figures displayed above shows the full tensmdyst grid and 2-D Smolyak sparse grid with
level 0, 1 and 2.

WhereAIl is a diference quadrature rule, and is defined as,

A= (QF - Qof, (12)

with
Qf =0, (13)

The Smolyak sparse grid satisfies the following condition:
P<Lii+ic+---+ip< P+, (14)

which iy, i, andip are indices corresponding to dimension 1, 2 and d respégtive
and each one varies from 1 to the number of parameter poimisérdimension. For
example, in one dimension case, if there are three parapeiess on the dimension,
theni; c 1,2, 3. Examples of Smolyak sparse grids of approximation le@glk, 2
with dimension size 1 and 2 are illustrated in figuteend.

As can be seen in figurésand 9, the Smolyak sparse grid has a considerably
decreased number of nodes. In one-dimensional cases, see Xfighe full tensor
product has 5 nodes while the Smolyak sparse grid has only3lnodes depending
on the level zero or one. In two-dimensional cases, see fijuhe full tensor product
has 25 nodes (X 5), while the Smolyak sparse grids with levels 0, 1 and 2 only
have 1, 9 and 13 nodes respectively. It is worth noting thatntlimber of nodes ratio
for the full tensor product and Smolyak sparse grid increasethe dimension size



increases. More details regarding the construction of $akaparse grid can be found
in [25, 31]. In this work, each varying parameter constitutes one dsin in the
parameter space which can be a high dimension space.

3.2. Interpolation of basis function and snapshots ovepidwameter space

By running the original high fidelity modelLf for each parameter poipt, € R”
(herep = (4,..., P), Pis the number of parameter interpolation points) samplétus
the Smolyak sparse grid method, one can obtain a set of soi@pgh -, up) and basis
functions®(-, up). For any given parametare R”, the snapshots(-, -, ) can be given
using an interpolation functiof:

U(',',/,l) = I(U(',',,Ltl),...,U(',',/,lp)), (15)

There are a lot of interpolation methods to choose from. Hoigh dimensional
parameter space, we may choose the Smolyak sparse griddrgisoribed above.
Here we will introduce the RBF interpolation method. The RBFR function that its
value depends on the distance from the origin or some otkenpolation points. The
RBF interpolation method constructs an approximate fancthrough a number of
random data points, here the parameter interpolation pohndsen using the Smolyak
sparse grid method.

Let 7 (u) denote the interpolation function representifig-, u) and®(-, 1), and has
the form of,

P
I(w) = ) o é(ll — ppl), (16)
p=1

where’ (1) denotes the approximating function, and is a sum of P radisis functions
¢, each RBF associated with afféirent centef,, and weighted by a cdigcientwy.
P is the number of training data points. The norm is usualtyseh to be Euclidean
distance. The frequently used RBFs can be either multiHgeiaidverse quadratic,
Gaussian, plate spline or inverse multi-quadric. In thigkythe Gaussian RBF is
chosen, which has a form af(r) = e‘('/“)z(r being radius andr- being the shape
parameter). The weights = (Wi,...,W,,...,Wp)" can be obtained by solving the
linear equation17),

Aw = b, a7)

where b is a vector containing real functional values on thi@ing parameter points,

Ol =saaf) 6 (o= roll) -+ ([has = o

_ ¢(||ﬂz.—ﬂ1||) ¢(||ﬂ2.—l‘2||) ""P(”l‘.z—ﬂP“)_

A= (18)

¢(||IlP:_Il1”) ¢(”IIP:_112”) "‘¢(HII:P—I1P”)

The process of constructing a set of snapshots over the pteaspace is summa-
rized in algorithml.



Algorithm 1: Constructing a set of snapshots and basis functions oeepah
rameter space

Offline procedure: Calculating the snapshotsor basisfunctions over the
parameter interpolation points

(1) Construct a parameter spak®. That is, determine the dimensional sRef the
parameter space and the parameter range along each dimadrmsiection. The
varying parameters then constitute a tensor product grid;

(2) Generate a Smolyak sparse grid over the parameter gpace,, up, . . ., up;

(3) Generate snapshat§, -, up) for each parameter vectap (p € (1,..., P)) by
solving the high fidelity model over the simulation time pet0, T];

(4) Calculate POD basis functiod¥u,) for each node through a truncated SVD of
the snapshots matrix;

Online procedure: Construct the basisfunctionsfor any parameter u over
the parameter space

(1) Calculate snapshotg-, t, ) € RN for a new arbitrary parameter pojmwithin
the domain of the tensor product grid through the interpatesurface using the
following loop:

for j=1toNdo
(i) Calculate the weighte/j = (wj1,...,wjp)" by solving:
Aw; = bj, b= (u(j,t, ). .., u(j,t,up))".

(if) Obtain an interpolation functioru(j, t, i) = Z'j(u)) for calculating the
shapshots by substituting the weights into following eopures,

P
Ti() = > Wip (il = ppl).
p=1
(iii) Obtain the snapshots(-, t, u) for any given parameter € RP using:

P
Tj(ue) = Z Wi p ([l = -
p=1

L endfor

(2) Calculate the basis functiodgx, ux) based on the snapshai§, t, ux) using SVD
described (3) - (5) in section 2.




4, Construction of P-NIROM for parameterized PDEs

In this section, we provide the details of constructing aoldiag the P-NIROM.
The basic idea is to construct a set of hyper-surfaces faesepting the physical dy-
namics of the parameterized PDEs. The parameterized ROB) ta( be re-written
at each time levef™:

Ut ) = B (UM ), UM 1), U0 ) (19)

where the superscriptrepresents the time level. In this work, the recently dgvetb
non-intrusive ROM approach is used for constructing thelROM of (19). Using the

RBF or Smolyak methods, the hyper-surface $gtém € (1,..., M)) are constructed
to represent the physical dynamics of the original PDEs theereduced space:

ulml = fm(url’”,...,u{;]”,...,u;;ﬂ”), me (1,...,M), (20)

where f,, € RM*! is a M + 1 dimensional surface. Using the RBF, a set of hyper-
surfacesfy, for any parameter setover the parameter space can be expressed below:

Ne
fn(U"™()) = > Wit g(Iu™"() — u@I), me (L., M), (21)

n=1

where the weights/, can be obtained by solving:

ollurt-ul) ot -u) ot -
olloz-uf) olfrz-wl) -woflu-un)

ul:t
ul-2

= 7| @

- 25

3

ol =uril) o -l - -un )

whereu""(u) = (u’l’”‘(,u), e uk,l”‘(u)) (nc € (4, ..., N) are the reduced numerical solu-
tion for any parameter € R”, which can be obtained:

(1) Using algorithml, we obtain a set of snapshatis™(x, )} and basis function
D(X, w);

(2) Projecting{u™(x, 1)} over the reduced space which is constitutediigy, u), the
reduced order solution, " (u), is calculated.

The construction of P-NIROM is summarized in algoritBrihe procedure of solving
the P-NIROM is provided in algorithr. By projecting the reduced solutiai™?! at
time leveln + 1, we can obtain the approximation of the high fidelity sauaotusing
equation p).



Algorithm 2: Online procedure: constructing a P-NIROM for parametstiz
PDEs

(1) Obtain the full solution snapshai& (n, = 1, ..., N;) for any parameteus € RP by
interpolatingu™(u,) over the parameter training points (herep € (1, ..., P));

(2) Calculate the reduced solutiah™(u) by projectingu™ onto the reduced space;

(3) Obtain a set of hyper surfacgl,}, me (4,..., M) for each basis functiofi,,}
through the following loop:

for m=1to Mdo

(i) Calculate the weightefy, by solving @2);
(i) Obtain a hyper-surfacé,, for the basis functio®, using the RBF:

endfor

(4) Construct the P-NIROM for calculatifg’™'}, (me (1,..., M)) at time level
n+1:

U™ ) = fn (U@ U (), - U W)

10



Algorithm 3: Online procedure: solve the P-NIROM and obtain the appnaxi
tion of the high fidelity solution

(1) Initialization.
for m=1to mdo
Initialize ul,;
endfor
(2) Calculate reduced numerical solutions at the currem 8tep (her® T is the
number of time levels:
forn=1to NTdo
form=1to Mdo

(i) Assign a complete set of the reduced solutibh = (u}", ..., uy) at
previous time leveh into the hyper-surfacé,:
fn = (", g uy)

(i) Calculateul;™* at the current time leved + 1 using:

UG u) = i (U)oL U ), L U ()

L endfor

Obtain the approximation of the high fidelity solution at therent time
leveln + 1 by projectingu™"1(u) onto the full space using:

M
u™(x,t, u) = Z un dp,
m=1

L endfor

11
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5. Numerical Examples

Two examples are presented in this section to illustratectpabilities of the P-
NIROM in resolving flow problem governed by the Navier-Stelegjuations. In the
first example a flow past a cylinder is solved. This is used toalestrate the predictive
capabilities of the P-NIROM as the boundary condition (inkelocity) and model pa-
rameter (viscosity) vary. In the second example a 2-D lodkarge problem is solved.
This example involves varying the initial conditions (ialttemperature distribution).
Both examples were simulated under the framework of an ashdannstructured mesh
finite element model (Fluidity)38].

5.1. Case 1: flow past a cylinder

In this example a two dimensional flow past a cylinder is nuoadly simulated.
The problem domain is presented in figutevhich shows a cylinder with a radius
of 0.12 at location (0.2, 0.2) embedded within a rectangldn &ilength of 2 and a
width of 0.4 (a non-dimensional unit). The fluid dynamicsloé flow is driven by an
inlet velocity, which enters from the left boundary of thentiin. The fluid is allowed
to flow past through the right boundary of the domain. No sliyl aero outward
flow conditions are applied to the lower and upper edges amdttichlet boundary
conditions are applied to the cylinder’s wall. The simwdattime period is [06], and
the time step size iat = 0.01. 300 snapshots were sampled at an equal time interval
of At = 0.02 during the time period [®]. The computational domain consists of 3213
nodes.

5.1.1. Case la: One-dimensional parameter space (inlecitg)

In this test case, the parameter to vary is the inlet velpcigy u = ujx = 0
(whereu € R, one-dimensional). The inlet velocity was ranged from t@l®.55.
Three inlet velocities, 0.45, 0.5 and 0.55, were chosenagdming points within the
parameter spac®, € [0.45,0.55] using the Smolyak sparse grid with an approximate
levell = 1. The solution snapshots(, n, 1p)) over the training points were obtained
by running the high fidelity model for each training inlet@eity. The P-NIROM was
then constructed from these solution snapshots over thérigainlet velocity points.
To demonstrate the capability of the P-NIROM, a new (ungdjrinlet velocity of 0.46,
was chosen. The snapshots for the new inlet velocity werepoted by interpolating
u(-, n,, up) using the RBF method, where the multiquadric basis functias used.
The POD basis functions were then obtained by POD-SVD. ThdRBM for the
new inlet velocity was constructed by a set of hyper-sudgsee algorithn3).

The singular values are presented in fig8rdt can be seen that there is a sharp
drop in the first five singular values. The POD basis functissoaiated with a larger
eigenvalue can capture the more energy in the original flomadhical system. This
can be confirmed on inspection of the basis function grapich shows the first,
second and third basis functions capturing 50.1%, 14.2%@ati of the total energy
respectively, and the 635" and 38" basis functions capturing 0.44%, 0.019% and
0.017% of the total energy respectively. Fig@rprovides us a clear indication how to
choose the number of basis functions to represent the afigymamic system.

12



SINGULAR EIGENVALUES
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% 10 15 20 25 30 35 40

NUMBER OF POD BASES

Figure 3: Case 1la: the figure shows the first 36 eigenvaluesléti@asing order.

In this example, 6, 12 and 36 basis functions are selectedngtct the P-
NIROMs. Figures presents the velocity solution obtained from the high figletiodel
and P-NIROMs using 6, 12 and 36 basis functions at time lével8 andt = 6. Whilst
there are visual dlierences between the high fidelity model and NIROM using 6sbasi
functions, the P-NIROM has still captured the dominant flinucture. With increased
POD basis functions, the P-NIROM can capture the detailheffiow very well in
comparison with the high fidelity model. This can be confirmednspection of fig-
ure6, which presents the error of solutions between the fideliylehand P-NIROMs
with 6, 12 and 36 basis functions. The error is evidently dased when the number of
basis function is increased to 36. Figdarprovides a comparison of the velocity profile
from the high fidelity model with the P-NIROM using 6, 12 andi##sis functions at
a particular pointx = 0.89514,y = 0.32519). It shows that the P-NIROM solutions
with 36 basis functions are in close agreement with the higlify solutions although
there is a slight dference at the perturbation peaks.

The error analysis of NIROM has further carried out usingriat-mean-square
error (RMSE) and correlation cfizient of solutions between the high fidelity model
and P-NIROMs, which consider all the computational nodethenmesh and all the
simulation time levels. Figur8 shows the RMSE and correlation ¢beient between
the high fidelity model and NIROMs with 6, 12 and 36 basis fiord. Again we can
see that the P-NIROM with more basis functions exhibits érgirediction accuracy.
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Figure 4: Case 1la: the figure shows the some of the first 36 P@&sifanctions of flow past a cylinder test

case.
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Figure 5: Case la: the figure shows the velocity from full ni@del the NIROM with 6, 12 and 36 POD

bases at time instances 3 and 6.
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Figure 6: Case 1a: the figure shows the velocity error betwleehigh fidelity model and P-NIROMs with
6, 12 and 36 POD basis at time instances 3 and 6.
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Figure 7: Case 1a: the figure shows the velocity profile atioegx = 0.89514,y = 0.32519) from the high
fidelity model and P-NIROM with 6, 12 and 36 basis functions.
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the high fidelity model and NIROMs with 6, 12 and 36 POD bases.
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5.1.2. Case 1b: two-dimensional parameter space (inletoigl and viscosity)

To further test the predictive capability of the P-NIROMgtparameters have been
varied: the inlet velocity and viscosity, which construdte@-dimensional parameter
space. Tabld lists a combination of varying parameters in the case of the flast a
cylinder - labelled A1-A13 are the training parameter pginthich are chosen using
the Smolyak grid method with an approximate level of 2. Irdadh 11 andu, denote
the inlet velocity and viscosity respectively. Two new (amed) parameter points (0.5,
0.833<10™%) and (0.525, 0.510°%) - labelled T1 and T2 are chosen to demonstrate the
capability of the P-NIROMs. The two parameters constitu@ Smolyak sparse
grid - as shown is figur8. In this figure, solid dotted points are training points (Al-
A13) and the circled points (T1 and T2) are untrained poigtduto demonstrate the
predictive capability of the P-NIROM.

Figure10 shows the velocity solution from the high fidelity model antNFROM
at the untrained point T1 at time levels 3 ané.41t can be seen that the P-NIROM
predicted the flow pattern well. Visually, there is littlefférence between the high
fidelity model and P-NIROM. In order to see theffdrence, the velocity solutions
obtained from the full model and NIROM at a particular poiithin the computational
domain & = 0.32289y = 0.34007) are compared in figuld. Again, there are slight
differences at time instancesl6- 0.8 and 2.

The velocity solutions from the high fidelity model and P-KIRs at the untrained
point T2 at time levels 3 and@are presented in figufe. Again, the visual dference
is not obvious. In order to see the littlefidirence, figurel3 compares the velocity
solutions between the high fidelity model and P-NIROM at ipalar point in the
computational domainx(= 0.44274y = 0.35188) for the untrained point T2. As
shown in this figure, the P-NIROM can predict the velocityusioin at the untrained
point well.

Table 1: a list of combination of training parameters for tlogv past a cylinder (parameter opeg: inlet
velocity; parameter tway: viscosity)

Cases| 1 2 Reynolds| cases| u; U2 Reynolds
Al | 0.5000| 0.667107% 1500 A8 | 0.450| 0.333%10* 2700
A2 | 0.4500| 0.667x10™* 1350 A9 | 0.550| 0.333«10™* 3300
A3 | 0.5500| 0.667x107* 1650 A10 | 0.450| 1.000x10™* 900
A4 | 0.5000| 0.333<10°* 3000 A1l | 0.550| 1.000x107* 1100
A5 | 0.5000| 1.000<107* 1000 Al2 | 0.500| 0.431x10™* 2320
A6 | 0.4646| 0.66710™* 1394 A13 | 0.500| 0.902<10™* 1109
A7 | 0.5354| 0.667x10™* 1606
T1 | 0.5000| 0.833<10°% 1200 T2 | 0.525| 0.5x10°% 2100

17



Inlet Velocity

0.55 I : $

SNg@eC @ L L |

[ ] Viscocity
0.45 & & »—r
1.0e-4 0.667e-4  0.333e-4

Figure 9: Case 1b: two-dimensional parameter sparse gsidere solid dot: parameter training points;
circle: new (untrained) parameter points.
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Figure 10: Case 1b: the figure shows the velocity solutioomfhigh fidelity model and P-NIROMs at an
untrained point T1 at time instances 3 ané.4

18



B —— Exact solutions )
— — - Predicted solutions by NIRO|

Velocity

Time(s)

Figure 11: Case 1b: comparison of the velocity profilg at0.32289y = 0.34007 at an untrained parameter
point T1.
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Figure 12: Case 1b: the velocity solutions from high fidetitydel and P-NIROMSs at an untrained parameter
point T2 at time instances 3 and4

19



—— Exact solutions
— — - Predicted solutions by NIRO
\Y
fl
0.7 B
|
|
\
| \ Y \ ]
"? 1 |
(8]
S 0.6 7 |
[} 4 |
>
I
\
0.5+ i B
\
| \J/ " ]
0.4 L | L | L | /i | L | L
0 1 2 3 4 5 6
Time(s)

Figure 13: Case 1b: comparison of the velocity profil& at0.44274y = 0.35188 at an untrained point T2.
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5.2. Lock exchange

In this case, the P-NIROM is used for resolving a lock excleamgblem which
involves two fluids of diferent temperature and density separated by a lock. When the
lock is removed, two currents propagate along the tank botaly. This laboratory-
scale set up incorporates dynamics observed in gravitgotgiover a range of scales
[6]. The problem computational domain is presented in figil#t@vhich consists of
a non-dimensional rectangle.83x 0.1). The initial conditions for the velocities and
pressure ar@p = 0 andpg = O respectively. The isotropic value of viscosity i<1
10710,

The problem was resolved using the mesh which consisted 42 #2des, and
120 snapshots were obtained at regularly spaced time alseturing the time period
[0 — 30] from the high fidelity solutions. In this test case, thegmaeter to vary is the
temperature. The parameterized initial temperature tiomdy = T € R, was varied
from 0.45 to 0.55. It was set to b€l for the cold fluid at the left side of the lock
for the hot fluid at the right side of the lock. Using the Smdlgparse grid with one
approximationallevel, three training data points weresteld: To = 0.45, 0.5 and 055.
The solution snapshotsi(, n;, i) over the training points were obtained by running
the high fidelity model for each training initial temperatwalue. An untrained initial
temperature o = 0.46) was chosen to show the capability of the P-NIROM, that is,
the initial temperature of the hot fluid was set to-H@46 and 046 for the cold fluid.
For the given new initial temperatufie = 0.45, using the RBF interpolation method
(the multiquadric basis function was used here), the srpstere from these solution
snapshots over the training temperature points. A set ofhgprfaces using the RBF
was then generated for representing the flow dynamics ofrtiea PDEs.

Figure 15 presents the singular values of the problem in a decreasitgy.oln
this problem, the reduction in the first 10 singular valueseis/ fast, which means the
first 10 leading basis functions corresponding to theseddusar values capture most
of the energy in the original dynamic system. Some of the 36sbasis functions are
presented in figur&6, which shows the first few basis functions capture the gémera
locity pattern while the last few basis functions the minetails of velocity structures.
In this example 6, 12 and 36 basis functions are chosen taatertbe P-NIROM.

Figurel7 presents the temperature solutions obtained from the rdglitfi model
and P-NIROM with 6, 12 and 36 basis functions. In comparigotiné solution from
the high fidelity model, the P-NIROMs appear to be minor vigliierences between
all the temperature solutions. However, the temperatuigisos predicted from P-
NIROM with 6 and 12 basis functions are shown to béudiing a little bit slower than
NIROM with 36 basis functions at the time level£ 30). Using a larger number of
basis functions results in higher accuracy of the P-NIROKe P-NIROM with 36
basis functions is almost identical to the high fidelity mlodhis can be confirmed
by inspection of the error figurk8, which shows the solution filerences between the
high fidelity model and P-NIROM with 6, 12 and 36 basis funetio It is found that
the diference of solutions between the high fidelity model and PEOWRvith 36 basis
functions is too small to notice. The error of P-NIROM is het analyzed by RMSE
and correlation cd&cients, which is presented in figul®. It can be seen that the
RMSE and correlation cdicient curves of P-NIROM with 36 basis functions are flat
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at this scale, and the RMSE of solutions is close to 0 and thelation codficient is
very close to 1. This means that in this case P-NIROM usinga&#skfunctions has
captured almost 99.99% energy of the original flow dynansgatem.

Figure 14: Lock exchange: the graph shows the computataorakin of the 2-D lock exchange problem.
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Figure 15: Lock exchange: the graph shows the singular safithe 2-D lock exchange problem.
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Figure 16: Lock exchange: the figure shows some of the firse3&Hunctions of the problem.
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Figure 17: Lock exchange: the figures displayed above shusveemperature from the high fidelity model
and the P-NIROM using 6, 12 and 36 POD basis functions at tirseances 15 and 30.
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Figure 18: Lock exchange: the figures show the temperatuoe leetween high fidelity model and NIROM
with 6, 12 and 36 POD basis at time instances 15 and 30.
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Figure 19: Lock exchange: the figure shows the root mean eduaror (RMSE) and correlation diieient
between the high fidelity model and P-NIROMs with 6, 12 and @®masis functions.
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5.3. Hficiency of the P-NIROM model

This section compares the online computational cost reduy the high fidelity
model and NIROM. The specifications of the computer for satiahs were: 4 cores
with a frequency of 2.00GHZ1itelxCore™ i7-3537U CPU @ 2.00GHz 4); a 8GB
memory. One core was used when running the simulations #iectest cases were
simulated in serial.

Table2 lists the online CPU cost required for simulating the flowtasylinder and
lock exchange test cases using the full model and NIROM. Ti@® cost involving
constructing the basis functions is not listed in this table

Table 2: Online dimensionless CPU cost required for sinmgahe two test cases using the full model and
NIROM during one time step.

Cases Model assembling and projection | interpolation| total
solving
Flow past| Full model 0.5891 0 0 0.6002
acylinder| NIROM 0 0.0003 0.0001 0.0004
Lock Full model 0.9489 0 0 0.95003
exchange| NIROM 0 0.0003 0.0001 0.0004

As shown in the table that the online CPU time required folNHROM is substan-
tially less than that for high fidelity model. The reductionGPU time is dependent on
the complexity of problem.

6. Conclusion

This article has presented a general P-NIROM technique éataireduction of pa-
rameterized time-dependent nonlinear PDEs. It is nonsite (independent of equa-
tions and numerical discretised schefnedes) and easy to implement, especially for
complex dynamic codes (e.g. unstructured mesh models)pideedure of construct-
ing a P-NIROM can be split into thefftine and online procedures. During the of-
fline (training) procedure, the parameter training poinésselected using the Smolyak
sparse grid. The solution snapshots and POD basis funat@mthen be obtained by
running the high fidelity model for the selected traininggaeter. During the online
computation, for any given (untrained) parameter, the shajs and corresponding
POD basis functions can be computed using an interpolapiproach (here the RBF
method). Finally we have extended our recently developd®NM technique (see
[50Q) to generate the P-NIROM, that is, by using the RBF apprdaatonstruct a set
of hyper-surfaces that represent fluid dynamics of the systever the existing non-
intrusive ROM for parameterized PDEs proposedlif] [there is no need to solve an
auxiliary parabolic linear PDE which is split from the orgil nonlinear PDE. The P-
NIROM technique has been used for model reduction of thempeier Navier-Stokes
equations and applied to an unstructured mesh finite elefidghinodel.

Two numerical examples were chosen to demonstrate the ititipalof the P-
NIROM. In the first numerical example, flow past a cylinder vgatved, where the
P-NIROM was trained upon a small number of parameter poietsrthined by the
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Smolyak sparse grid and then tested on an untrained panapwté (here, the two
dimensional parameter space was constructed by the idtatityeand viscosity). It is
shown that the P-NIROM can retain much of the accuracy of tgk fidelity model
while the computational time is reduced by three orders @fmitade. In the second ex-
ample, alock exchange problem was solved. The predictipatibties of the NIROM
have been evaluated by specifying a new (untrained) irdbalition. Again it shows
that the problem is well predicted with a significantly reddcomputational cost. An
error analysis has been undertaken through the RMSE andlaiion codicient of
solutions between the high fidelity model and P-NIROM.

This P-NIROM is independent of the source code of the fulteys therefore,
it is easy to extend to complex applications, such as mulisjcs problems, model
uncertainty analysis, sensitive analysis, model paranestémation and controk(g.
shape optimisation control and closed-loop turbulencérobf8]). The applications of
the P-NIROM is not limited to the fluid flow applications denstnated in this paper.
In the future, we will apply our model to more complicatedehtependent non-linear
PDEs and explore the stability of long-term parametericlimgar dynamical systems.
The generalised Lyapunovs direct methdd]|[can be used to guarantee the long-term
boundednessiif there is a monotonically attracting tragppigion. The concept of long-
term boundedness is linked to the stability analysis of pataric nonlinear PDE sys-
tems with respect to the parameters e.g. initial and boyndgidues using the energy
method. By analysing the spectrum of eigenvalues and Lyaparponents, a st~
cient criterion for long-term boundedness of Galerkin egs can be used to exclude
infinite blow-ups of the system state solutions in finite dinitte periods of time 43].

In the near future we will explore solution boundedness apthodologies for inter-
polating the ROM basis functions over parameter ranges.
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Appendix

ALl. Error Analysis for P-NIROM

This section provides a priori error analysis for P-NIROMiset u(u, x,t) and
uP-NIROM(, . t) denote the full and P-NIROM solutions for any given parangt
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respectively. The error norm is chosen to be EuclideanmiistaThe error between the
full and P-NIROM solution can be estimated by:

[Ju— uPNIROMI = j(u - DT ) + (DU — DD + (DDTE" — uPNIROM
lu— O Ul + | @D U — PDTT)|| + (|BDT G — uP-NIROM
(24)

A

where® = (¢1,d2,...,¢n) consists of the leading POD basis functions which are
obtained using POD-SVD arniy, x, t) = 7 (u) is an optimal approximation af which

can be obtained by interpolating the solutions over the $akogirids (for details, see
algorithm 1) and the corresponding POD basis functibrase calculated using POD-
SVD based on snapshdtsWe can see that the errgi—uP~N'ROM|| is split into three
parts: the POD truncation error, the error of solution shafsand POD basis functions
due to the interpolation over the sparse grids, and the &oorthe calculation of the
P-NIROM solutionu".

Al.1. Truncation error

®d"u is an optimal approximation af and the error is bounded byy, 1 if M
leading POD basis functions are chosag [that is,

lu— @0 ull < Ams1, (25)

where Ay,1 is the M + 1™ eigenvalue ofBTB (where, B is defined in €)). In P-
NIROM, the snapshots and POD basis functions for any givearpeteru over the
parameter space are calculated by interpolating them beegparameter sparse grids
(see algorithni), thus resulting in the interpolation error described telo

Al.2. Error in calculation of snapshots

The second term ir2d) is caused by the interpolation error in calculation of snap
shots, which is the interpolation method dependent.

(|DD U — DD U|| + ||PD U — DD ||
ODT — DOT|| jull + IODT || lu — Tll. (26)

|0 U - DDTH| <
<

(a) In the Smolyak sparse grid methddese errors in26) are bounded byg]:

00T - ®DT|| < Cypm*(log(m)* D)0,
lu-all < Caxm*(log(m)*DEDjy, (27)

A A

wherek is the degree of polynomiald,is the dimensional size of the variable space
(for parameter spacd,= P) m= m(l + d, d) (I is the approximation level used in
the Smolyak grid) is the number of sparse grid used. Due torti@normality of,
QDT = | and®PT = I.
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(b) In the radial basis function methodor a given positive constant, we define
K, = {u e RP | Ilu — upll < p}. Itis proven the existence of positive constants
ko, ky, € N andC,, C; € R, the local errors inZ6) are estimated byiQ):

00T - dOT|| < cp-Cy-hfe,
lu-Tl < ci-Cz-hfe, (28)

IA

wherecg andcy are constants dependent of the radial functipas well asb andu
respectively, anth, := max,ck, MiNi<p<p Il — wpl|-

A.1.3. Error in calculation of P-NIROM solutigrogficient
The third term in 24) is
[BBTE — uP-NROM = B — HuNIROM|
[D]lp.olIT" — DurNROM) (29)

IA

where,u"* = ®'{i is the POD solution by projecting the full model solution @tie
reduced spacei"N'ROM js the solution from the P-NIROMI®||, is defined below:

1Dll2,2 = supdl@xX|/[IX]. (30)
Taking into accoun®®'’ = 7 (wheref is an identity matrix), thu§®|2» = 1.

(a) Inthe Smolyak sparse grid methdlde error between"* andu"N'ROM s pounded
by [5]: B
I = SurNROMY < Cf K (log(m)) < D@ Dy, (31)
wherek' is the degree of polynomiald! is the dimensional size of variable space,
them = mf(I" + d',d") (I" is the level used in the Smolyak grid) is the number of
sparse grid used.

(b) In the radial basis function methodbr a given positive constanpt,, we define
Koy = {u’v’\_"RO’VI e RV | |junNIROM - L{k‘[\”Ro'\."ll < pu} (herefuy,) are training
points, Nt is the number of the training points). It is proven the existe of

positive constant&, € N andCy € R, the local errors inZ9) are estimated
by

I = BuNROM| < ey - Cy -,

(32)

wherec,s is constant dependent on the radial funcgiandu, andh,,, = MaX.ek, , MiNg<p<p [lu—
Holl-
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