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Abstract

A novel parameterized non-intrusive reduced order model (P-NIROM) based on
proper orthogonal decomposition (POD) has been developed.This P-NIROM is a
generic and efficient approach for model reduction of parameterized partial differen-
tial equations (P-PDEs). Over existing parameterized reduced order models (P-ROM)
(most of them are based on the reduced basis method), it is non-intrusive and inde-
pendent on partial differential equations and computational codes. During the training
process, the Smolyak sparse grid method is used to select a set of parameters over a
specific parameterized space (Ωp ∈ RP). For each selected parameter, the reduced ba-
sis functions are generated from the snapshots derived froma run of the high fidelity
model. More generally, the snapshots and basis function sets for any parameters over
Ωp can be obtained using an interpolation method. The P-NIROM can then be con-
structed by using our recently developed technique [50, 53] where either the Smolyak
or radial basis function (RBF) methods are used to generate aset of hyper-surfaces
representing the underlying dynamical system over the reduced space.

The new P-NIROM technique has been applied to parameterizedNavier-Stokes
equations and implemented with an unstructured mesh finite element model. The ca-
pability of this P-NIROM has been illustrated numerically by two test cases: flow past
a cylinder and lock exchange case. The prediction capabilities of the P-NIROM have
been evaluated by varying the viscosity, initial and boundary conditions. The results
show that this P-NIROM has captured the quasi-totality of the details of the flow with
CPU speedup of three orders of magnitude. An error analysis for the P-NIROM has
been carried out.
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1. Introduction

Reduced order models (ROMs) are popular and powerful techniques for circum-
venting the intensive computational burden in large complex numerical simulations
in engineering and science, for example, ocean modelling, weather prediction, uncer-
tainty quantification, sensitive analysis, data assimilation, sensor placement optimiza-
tion, porous media, structural problem, convection diffusion reaction equations, molec-
ular dynamics simulation and optimal control [1, 15, 22, 24, 42, 45, 30, 16, 10, 26, 46,
11, 9, 2, 17, 21]. The basic idea of reduced order modelling is to find an approximate
solution by a linear combination of a set of basis functions.The weighting coefficients
of the basis functions are determined by error minimizationor the Galerkin projection
method [13].

One of challenges in reduced order modelling is to generate arobust ROM for
different parameters/inputs, which can represent the physical dynamics of parameter-
ized partial differential equations (P-PDEs) as the model parameters vary. Recently
reduced basis method in combination with projection-basedmethods has been in-
troduced and proven to be a very powerful means in model reduction of P-PDEs
[7, 27, 28, 40, 36, 18, 39, 13, 41]. The high dimensional parameterized PDEs can
be projected onto a low dimensional space which consists of anumber of reduced basis
functions. The construction of the reduced basis functionsis based on snapshots (solu-
tions of the original PDEs). These reduced basis functions can be constructed by either
global or local approaches [7]. The ’global’ reduced basis functions can be constructed
by global snapshot matrices over the parameter space while the ’local’ reduced basis
functions can be obtained by interpolating the local snapshot matrices associated with a
set of selected parameters over the parameter space. These reduced basis functions can
then be used for constructing a P-ROM. The original matricesin the discretised PDEs
and variables can be decomposed as a weighted linear combination of the reduced basis
functions. The weighting coefficients for the reduced basis functions are dependent on
time and model parameters.

Most of existing P-ROMs are intrusive and dependent on original PDEs and codes
(e.g. numerical schemes). In most cases, modifications are needed to generate the
intrusive P-ROM. These modifications are difficult or even impossible in commercial
software [29]. In addition, the intrusive ROM suffers from non-linear inefficiency and
instability issues [47, 43, 37]. The methods of improving the stability of the ROM can
be found in [32, 56, 48, 23, 24, 52]. The approaches of enhancing the non-linearity
efficiency have been developed in the work of [14, 4, 19, 20, 51, 12].

In order to tackle these issues in intrusive ROMs, a number ofnon-intrusive reduced
order models (NIROMs) have been developed recently [50, 53, 35, 34]. However, very
little work can be found addressing non-intrusive model reduction for parameterized
PDEs, where inputs (e.g. initial and boundary conditions) and parameters (e.g. vis-
cosity, material property) vary in space and time. Audouze et al. presented a proper
orthogonal decomposition (POD) non-intrusive reduced order model for part of non-
linear parameterized PDEs [13, 3]. The key idea underpinning the proposed method in
[13] is to split the reduced-order approximation into two terms. The first term was the
approximate solution of an auxiliary parabolic linear PDE,which enforces satisfaction
of the boundary and initial conditions whereas the second term is a linear combina-
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tion of a tensor product of adapted spatial and temporal basis functions obtained using
the POD method. A non-intrusive approach based on radial basis function (RBF) (in
contrast to Galerkin projection) was introduced to calculate the coefficients (weights)
at the second term. However it is noted that to approximate the solutions of the aux-
iliary parabolic linear PDE, the classical POD-Galerkin approach was used, which is
intrusive.

More recently, we have developed three types of NIROMs basedon Taylor series
expansion, Smolyak sparse grid and radial basis function (RBF) methods [50, 53]. The
NIROMs have been successfully applied to some realistic problems such as fluid and
solid interaction [55] and porous media multi-phase problems [54]. In this work, we
have further extended the NIROMs to parameterized physicalproblems (described by
PDE’s).

A generic parameterized NIROM (P-NIROM) technique has beendeveloped here
for parameterized time-dependent linear/nonlinear physical problems. The P-NIROM
developed here is independent of equations and easy to implement, and there is no need
for an auxiliary parabolic linear PDE in contrast to the method proposed by Audouze
et al.[13]. The whole procedure can be divided into the two steps: the offline process-
training and online process-constructing and solving P-NIROM. During the training
procedure, the parameter training points are first chosen using the Smolyak sparse grid
method. The parameter vectorµ ∈ RP is P-dimensional and each variable parameter
denotes one dimension. The Smolyak sparse grid is constructed from a tensor product
grid obtained over the parameter space. The solution snapshots on the parameter train-
ing points (sparse grids) are then obtained by running the original high fidelity model
and the basis functions are computed using singular value decomposition (SVD)/POD.
From these snapshots obtained on the parameterized training points, a set of POD basis
functions on each parameterized training point is generated in an optimal sense that
represents the fluid dynamics.

During the online computation procedure, a two-level RBF interpolation method is
used for constructing the P-NIROM. Firstly, for any given parameterµ ∈ RP, a set of
snapshots and POD bases can be obtained using the first level RBF interpolation. The
second level RBF interpolation is then used to construct a set of hyper-surfaces repre-
senting the dynamics of the original time-dependent PDEs. After the hyper-surfaces
are obtained, the solution of the ROM at the current time level can be obtained by
giving reduced solution at previous time level into the hyper-surface functions.

The above P-NIROM has been implemented under the framework of an unstruc-
tured mesh finite element model (Fluidity). The capabilities of this new NIROM have
been assessed for two test cases: a flow past a cylinder case and a 2-D lock exchange
case. Comparisons have been made between the high fidelity model and the P-NIROM
to investigate the accuracy of the P-NIROM methodology.

The structure of the paper is as follows: section2 presents the general reduced
order model for parameterized PDEs; section3 provides the details of calculation of
POD basis functions for any given parameter overRP; section4 describes the non-
intrusive methods for model reduction of parameterized PDEs; section5 illustrates the
P-NIROM method derived by means of two numerical examples: flow past a cylin-
der and lock exchange problem. Finally in section6, summary and conclusions are
presented, and error analysis is provided in appendix.
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2. General parameterized reduced order PDEs

In general, the parameterized space-time linear/nonlinear PDEs can be written as
follows:

F(u(x, t, µ), x, t, µ) = s(x, t, µ), (1)

whereu(·, t, µ) ∈ RD×N is the state variable vector (including, for example, velocity
components, pressure, temperature etc. hereN is the number of nodes in a scalar grid
used in the computational domain andD is the number of scalars),x is the spatial
coordinate system,s denotes source term,t is the time andµ ∈ RP is the parameter
vector (constructing aP dimensional parameter space).

In reduced order modelling, the state variableu can be expressed as an expansion of
the basis functionsΦ(x, µ) = (Φ1, . . . ,Φm, . . . ,ΦM) (m ∈ (1, . . . ,M), M is the number
of basis functions andM << N):

u(x, t, µ) = Φur , (2)

whereur (t, µ) ∈ RM is the reduced state variable vector (the superscriptr indicates
a variable or operator associated with the reduced order model). By using POD, the
basis functionsΦ of the variable are extracted and derived optimally from thesnapshots
sampled at time instants{t1, . . . , ti , . . . , tNt }:

Φm(x, µ) =
Nt
∑

i=1

u(x, ti, µ)Υm,i, m ∈ (1, · · · ,M), (3)

subject to
K
∑

m=1

| < Φm,Φm >L2 |2 = 1, (4)

where< ·, · >L2 is the canonical inner product inL2 norm, M is the number of basis
functions to be chosen (hereM < Nt << N), andΥm,i is obtained using singular value
decomposition (SVD):

BΥm = λmΥm, (5)

whereΥm = (Υm,1, . . . ,Υm,i, . . . ,Υm,Nt ) and the matrix B has the form of,

Bk,n =
1
Nt

∫

Ω

u(·, tk, ·)u(·, tn, ·)∗dx, k, n ∈ (1, . . . ,Nt). (6)

The singular valuesλ = (λ1, . . . , λm, . . . , λM) are listed in decreasing order. Projecting
(1) onto the reduced space, yields,

ΦTF(Φur(µ, x, t), x, t, µ) = ΦT s(x, t, µ). (7)

The parameterized reduced order model in (7) can be re-written:

Fr (ur (µ, x, t), x, t, µ) = sr (x, t, µ). (8)

As discussed above, the traditional method to implement theparameterized reduced
order model (8) is intrusive based on reduced basis methods. In this work, we propose
a non-intrusive method for constructing the parameterizedreduced order PDE model.
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3. Computation of basis functions over the parameter space

In this section, the details of calculating the basis functions over the parameter
space using Smolyak sparse grid and RBF interpolation methods are provided. Firstly,
a number of parameter training points can be chosen using theSmolyak sparse grid
method. The solution snapshots are then obtained for each training parameter by run-
ning the high fidelity model. The corresponding POD basis functions can be calculated
using SVD/POD. Finally the solution snapshots or basis functions can be obtained for
any given parameterµ ∈ RP using the RBF interpolation method.

3.1. Choice of the parameter interpolation points using theSmolyak sparse grid

The Smolyak sparse grid is a numerical technique to interpolate or integrate high
dimensional functions. It was developed by the Russian mathematician Smolyak, and
it was designed to tackle the problem of ’curse of dimensionality’ [ 44]. The key idea
of the Smolyak sparse grid is that it selects a relatively small number of nodes on the
full tensor-product grid in terms of potential importance of the nodes, thus resulting in
great computational efficiency. In this case, only a small number of Smolyak nodes are
involved in calculation rather than all the nodes on the fulltensor-product grid. There
is a approximation level, that controls how many nodes on thefull tensor-product grid
are selected. The higher the approximation level is chosen,the larger number of nodes
will be used and higher approximation quality will be obtained, for more details, see
[44, 31]. Smolyak presented a rule that selects nodes from tensor product grid. The
process of sampling the parameter interpolation points over the parameter spaceRP

can be summarized as follows:
Let Q1

l f be a quadrature rule on dimension 1 withNl parameter points, it assumes
the following form,

Q1
l f =

Nl
∑

i=1

f (µi
l).η

i
l , (9)

wherel denotes the approximation level of sparse grid andf is the function on the in-
terval [0,1] to be approximated. Theη denotes the weight corresponding the parameter
pointµi

l and i denotes theith points on the dimension.
In order to construct the sparse parameter interpolation points, a multi-indexI is

introduced and has the following form of,

I =
P
∑

i=1

l i . (10)

The multi-index I determines the number of points selected from the tensor product grid
and it satisfies the condition given in (14). Using the multi-index, the d-dimensional
sparse grid quadrature formulationQP

l f on the space [0, 1]P then can be defined as,

QP
l f =

∑

|l|≤l+P−1

(∆1
l1
⊗ · · · ⊗ ∆P

lP
) f , (11)
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Figure 1: The graph shows the 1-D Smolyak grid with level 0, level 1 and full tensor product grid (top to
bottom) respectively.

(a) 2-D tensor product (b) Smolyak grid, level=0

(c) Smolyak grid, level=1 (d) Smolyak grid, level=2

Figure 2: The figures displayed above shows the full tensor product grid and 2-D Smolyak sparse grid with
level 0, 1 and 2.

where△1
l is a difference quadrature rule, and is defined as,

△1
l = (Q1

l − Ql−1) f , (12)

with
Q1

0 f = 0, (13)

The Smolyak sparse grid satisfies the following condition:

P 6 i1 + i2 + · · · + iP 6 P+ l, (14)

which i1, i2 and iP are indices corresponding to dimension 1, 2 and d respectively,
and each one varies from 1 to the number of parameter points inone dimension. For
example, in one dimension case, if there are three parameterpoints on the dimension,
then i1 ⊂ 1, 2, 3. Examples of Smolyak sparse grids of approximation levels0, 1, 2
with dimension size 1 and 2 are illustrated in figures1 and9.

As can be seen in figures1 and 9, the Smolyak sparse grid has a considerably
decreased number of nodes. In one-dimensional cases, see figure 1, the full tensor
product has 5 nodes while the Smolyak sparse grid has only 1 or3 nodes depending
on the level zero or one. In two-dimensional cases, see figure9, the full tensor product
has 25 nodes (5× 5), while the Smolyak sparse grids with levels 0, 1 and 2 only
have 1, 9 and 13 nodes respectively. It is worth noting that the number of nodes ratio
for the full tensor product and Smolyak sparse grid increases as the dimension size
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increases. More details regarding the construction of Smolyak sparse grid can be found
in [25, 31]. In this work, each varying parameter constitutes one dimension in the
parameter space which can be a high dimension space.

3.2. Interpolation of basis function and snapshots over theparameter space

By running the original high fidelity model (1) for each parameter pointµp ∈ RP

(herep = (1, . . . ,P), P is the number of parameter interpolation points) sampled using
the Smolyak sparse grid method, one can obtain a set of snapshotsu(·, ·, µp) and basis
functionsΦ(·, µp). For any given parameterµ ∈ RP, the snapshotsu(·, ·, µ) can be given
using an interpolation functionI:

u(·, ·, µ) = I(u(·, ·, µ1), . . . , u(·, ·, µP)), (15)

There are a lot of interpolation methods to choose from. For ahigh dimensional
parameter space, we may choose the Smolyak sparse grid method described above.
Here we will introduce the RBF interpolation method. The RBFis a function that its
value depends on the distance from the origin or some other interpolation points. The
RBF interpolation method constructs an approximate function through a number of
random data points, here the parameter interpolation points chosen using the Smolyak
sparse grid method.

LetI(µ) denote the interpolation function representingu(·, ·, µ) andΦ(·, µ), and has
the form of,

I(µ) =
P
∑

p=1

wp φ(‖µ − µp‖), (16)

whereI(µ) denotes the approximating function, and is a sum of P radialbasis functions
φ, each RBF associated with a different centerµp, and weighted by a coefficientwp.
P is the number of training data points. The norm is usually chosen to be Euclidean
distance. The frequently used RBFs can be either multi-quadric, inverse quadratic,
Gaussian, plate spline or inverse multi-quadric. In this work, the Gaussian RBF is
chosen, which has a form ofφ(r) = e−(r/σ)2

(r being radius andσ being the shape
parameter). The weightsw = (w1, . . . ,wp, . . . ,wP)T can be obtained by solving the
linear equation (17),

Aw= b, (17)

where b is a vector containing real functional values on the training parameter points,

A =


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



φ
(∥

∥

∥µ1 − µ1

∥

∥

∥

)

φ
(∥

∥

∥µ1 − µ2

∥

∥

∥
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· · ·φ
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∥

∥
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φ
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∥

∥
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∥
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∥
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φ
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∥

∥

)
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∥
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)

· · ·φ
(∥

∥

∥µP − µP

∥

∥

∥

)






























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







. (18)

The process of constructing a set of snapshots over the parameter space is summa-
rized in algorithm1.
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Algorithm 1: Constructing a set of snapshots and basis functions over the pa-
rameter space

Offline procedure: Calculating the snapshots or basis functions over the
parameter interpolation points

(1) Construct a parameter spaceRP. That is, determine the dimensional sizeP of the
parameter space and the parameter range along each dimensional direction. The
varying parameters then constitute a tensor product grid;

(2) Generate a Smolyak sparse grid over the parameter space,µ1, . . . , µp, . . . , µP;

(3) Generate snapshotsu(·, ·, µp) for each parameter vectorµp (p ∈ (1, . . . ,P)) by
solving the high fidelity model over the simulation time period [0,T];

(4) Calculate POD basis functionsΦ(µp) for each node through a truncated SVD of
the snapshots matrix;

Online procedure: Construct the basis functions for any parameter µ over
the parameter space

(1) Calculate snapshotsu(·, t, µ) ∈ RN for a new arbitrary parameter pointµ within
the domain of the tensor product grid through the interpolation surface using the
following loop:

for j = 1 to N do

(i) Calculate the weightsw j = (w j,1, . . . ,w j,P)T by solving:

Aw j = b j , b j = (u( j, t, µ1), . . . , u( j, t, µP))T .

(ii) Obtain an interpolation function (u( j, t, µ) = I j(µ)) for calculating the
snapshots by substituting the weights into following equations,

I j(µ) =
P
∑

p=1

w j,p φ(‖µ − µp‖).

(iii) Obtain the snapshotsu(·, t, µk) for any given parameterµk ∈ RP using:

I j(µk) =
P
∑

p=1

w j,p φ j(
∥

∥

∥µk − µp

∥

∥

∥).

endfor

(2) Calculate the basis functionsΦ(x, µk) based on the snapshotsu(·, t, µk) using SVD
described (3) - (5) in section 2.
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4. Construction of P-NIROM for parameterized PDEs

In this section, we provide the details of constructing and solving the P-NIROM.
The basic idea is to construct a set of hyper-surfaces for representing the physical dy-
namics of the parameterized PDEs. The parameterized ROM in (8) can be re-written
at each time leveltn+1:

ur,n+1(x, µ) = f
(

ur,n
1 (x, µ), . . . , ur,n

m (x, µ), . . . , ur,n
M (x, µ)

)

, (19)

where the superscriptn represents the time level. In this work, the recently developed
non-intrusive ROM approach is used for constructing the P-NIROM of (19). Using the
RBF or Smolyak methods, the hyper-surface setsfm (m ∈ (1, . . . ,M)) are constructed
to represent the physical dynamics of the original PDEs overthe reduced space:

ur,n+1
m = fm

(

ur,n
1 , . . . , u

r,n
m , . . . , u

r,n
M

)

, m ∈ (1, . . . ,M), (20)

where fm ∈ RM+1 is a M + 1 dimensional surface. Using the RBF, a set of hyper-
surfacesfm for any parameter setµ over the parameter space can be expressed below:

fm(ur,n(µ)) =
Nt
∑

nt=1

wnt
m φ(‖ur,n(µ) − ur,nt (µ)‖), m ∈ (1, . . . ,M), (21)

where the weightswnt
m can be obtained by solving:









































φ
(∥

∥

∥ur,1 − ur,1
∥

∥

∥

2

)

φ
(∥

∥

∥ur,1 − ur,2
∥

∥

∥

2

)

· · ·φ
(∥

∥

∥ur,1 − ur,Nt
∥

∥

∥

2

)

φ
(∥

∥

∥ur,2 − ur,1
∥

∥

∥

2

)

φ
(∥

∥

∥ur,2 − ur,2
∥

∥

∥

2

)

· · ·φ
(∥

∥

∥ur,2 − ur,Nt
∥

∥

∥

2

)

...
...

...

φ
(∥

∥

∥ur,Nt − ur,1
∥

∥

∥

2

)

φ
(∥

∥

∥ur,Nt − ur,2
∥

∥

∥

2

)

· · ·φ
(∥

∥

∥ur,Nt − ur,Nt
∥

∥

∥

2

)











































































w1
m

w2
m
...

wNt
m



































=





































ur,1
m

ur,2
m
...

ur,Nt
m





































, (22)

whereur,nt (µ) =
(

ur,nt

1 (µ), . . . , ur,nt
M (µ)

)

(nt ∈ (1, . . . ,Nt) are the reduced numerical solu-

tion for any parameterµ ∈ RP, which can be obtained:

(1) Using algorithm1, we obtain a set of snapshots{unt (x, µ)} and basis function
Φ(x, µ);

(2) Projecting{unt (x, µ)} over the reduced space which is constituted byΦ(x, µ), the
reduced order solution,ur,nt (µ), is calculated.

The construction of P-NIROM is summarized in algorithm2, the procedure of solving
the P-NIROM is provided in algorithm3. By projecting the reduced solutionur,n+1 at
time leveln + 1, we can obtain the approximation of the high fidelity solution using
equation (2).
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Algorithm 2: Online procedure: constructing a P-NIROM for parameterized
PDEs

(1) Obtain the full solution snapshotsunt (nt = 1, . . . ,Nt) for any parameterµ ∈ RP by
interpolatingunt (µp) over the parameter training pointsµp (herep ∈ (1, . . . ,P));

(2) Calculate the reduced solutionur,nt (u) by projectingunt onto the reduced space;

(3) Obtain a set of hyper surfaces{ fm}, m ∈ (1, . . . ,M) for each basis function{Φm}
through the following loop:

for m= 1 to M do

(i) Calculate the weightswnt
m by solving (22);

(ii) Obtain a hyper-surfacefm for the basis functionΦm using the RBF:

endfor

(4) Construct the P-NIROM for calculating{ur,n+1
m }, (m∈ (1, . . . ,M)) at time level

n+ 1:

ur,n+1
m (µ) = fm

(

ur,n
1 (µ), . . . , ur,n

m (µ), . . . , ur,n
M (µ)

)
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Algorithm 3: Online procedure: solve the P-NIROM and obtain the approxima-
tion of the high fidelity solution

(1) Initialization.
for m= 1 to mdo
Initialize u0

m;
endfor

(2) Calculate reduced numerical solutions at the current time step (hereNT is the
number of time levels:
for n = 1 to NT do
for m= 1 to M do

(i) Assign a complete set of the reduced solutionur,n = (ur,n
1 , . . . , u

r,n
M ) at

previous time leveln into the hyper-surfacefm:

fm← (ur,n
1 , . . . , u

r,n
m , . . . , u

r,n
M )

(ii) Calculateur,n+1
m at the current time leveln+ 1 using:

ur,n+1
m (µ) = fm

(

ur,n
1 (µ), . . . , ur,n

m (µ), . . . , ur,n
M (µ)

)

(23)

endfor

Obtain the approximation of the high fidelity solution at thecurrent time
leveln+ 1 by projectingur,n+1(µ) onto the full space using:

un+1(x, t, µ) =
M
∑

m=1

un
mΦm

endfor
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5. Numerical Examples

Two examples are presented in this section to illustrate thecapabilities of the P-
NIROM in resolving flow problem governed by the Navier-Stokes equations. In the
first example a flow past a cylinder is solved. This is used to demonstrate the predictive
capabilities of the P-NIROM as the boundary condition (inlet velocity) and model pa-
rameter (viscosity) vary. In the second example a 2-D lock exchange problem is solved.
This example involves varying the initial conditions (initial temperature distribution).
Both examples were simulated under the framework of an advanced unstructured mesh
finite element model (Fluidity) [38].

5.1. Case 1: flow past a cylinder

In this example a two dimensional flow past a cylinder is numerically simulated.
The problem domain is presented in figure7 which shows a cylinder with a radius
of 0.12 at location (0.2, 0.2) embedded within a rectangle with a length of 2 and a
width of 0.4 (a non-dimensional unit). The fluid dynamics of the flow is driven by an
inlet velocity, which enters from the left boundary of the domain. The fluid is allowed
to flow past through the right boundary of the domain. No slip and zero outward
flow conditions are applied to the lower and upper edges and the Dirichlet boundary
conditions are applied to the cylinder’s wall. The simulation time period is [0, 6], and
the time step size is∆t = 0.01. 300 snapshots were sampled at an equal time interval
of ∆t = 0.02 during the time period [0, 6]. The computational domain consists of 3213
nodes.

5.1.1. Case 1a: One-dimensional parameter space (inlet velocity)
In this test case, the parameter to vary is the inlet velocity, i.e. µ = u|x = 0

(whereµ ∈ R, one-dimensional). The inlet velocity was ranged from 0.45to 0.55.
Three inlet velocities, 0.45, 0.5 and 0.55, were chosen as the training points within the
parameter spaceΩp ∈ [0.45, 0.55] using the Smolyak sparse grid with an approximate
level l = 1. The solution snapshots (u(·, nt, µp)) over the training points were obtained
by running the high fidelity model for each training inlet velocity. The P-NIROM was
then constructed from these solution snapshots over the training inlet velocity points.
To demonstrate the capability of the P-NIROM, a new (untrained) inlet velocity of 0.46,
was chosen. The snapshots for the new inlet velocity were computed by interpolating
u(·, nt, µp) using the RBF method, where the multiquadric basis function was used.
The POD basis functions were then obtained by POD-SVD. The P-NIROM for the
new inlet velocity was constructed by a set of hyper-surfaces (see algorithm3).

The singular values are presented in figure3. It can be seen that there is a sharp
drop in the first five singular values. The POD basis function associated with a larger
eigenvalue can capture the more energy in the original flow dynamical system. This
can be confirmed on inspection of the basis function graph4 which shows the first,
second and third basis functions capturing 50.1%, 14.2% and9.1% of the total energy
respectively, and the 16th, 35th and 36th basis functions capturing 0.44%, 0.019% and
0.017% of the total energy respectively. Figure3 provides us a clear indication how to
choose the number of basis functions to represent the original dynamic system.
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Figure 3: Case 1a: the figure shows the first 36 eigenvalues in adecreasing order.

In this example, 6, 12 and 36 basis functions are selected to construct the P-
NIROMs. Figure5 presents the velocity solution obtained from the high fidelity model
and P-NIROMs using 6, 12 and 36 basis functions at time levelst = 3 andt = 6. Whilst
there are visual differences between the high fidelity model and NIROM using 6 basis
functions, the P-NIROM has still captured the dominant flow structure. With increased
POD basis functions, the P-NIROM can capture the details of the flow very well in
comparison with the high fidelity model. This can be confirmedon inspection of fig-
ure6, which presents the error of solutions between the fidelity model and P-NIROMs
with 6, 12 and 36 basis functions. The error is evidently decreased when the number of
basis function is increased to 36. Figure7 provides a comparison of the velocity profile
from the high fidelity model with the P-NIROM using 6, 12 and 36basis functions at
a particular point (x = 0.89514,y = 0.32519). It shows that the P-NIROM solutions
with 36 basis functions are in close agreement with the high fidelity solutions although
there is a slight difference at the perturbation peaks.

The error analysis of NIROM has further carried out using theroot-mean-square
error (RMSE) and correlation coefficient of solutions between the high fidelity model
and P-NIROMs, which consider all the computational nodes onthe mesh and all the
simulation time levels. Figure8 shows the RMSE and correlation coefficient between
the high fidelity model and NIROMs with 6, 12 and 36 basis functions. Again we can
see that the P-NIROM with more basis functions exhibits higher prediction accuracy.
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(a) the first POD bases (b) the second POD bases

(c) the third POD bases (d) the sixteenth POD bases

(e) the 35th POD bases (f) the 36th POD bases

Figure 4: Case 1a: the figure shows the some of the first 36 POD bases functions of flow past a cylinder test
case.

(a) Full modelt = 3 (b) Full modelt = 6

(c) NIROM with 6 POD bases,t = 3 (d) NIROM with 6 POD bases,t = 6

(e) NIROM with 12 POD bases,t = 3 (f) NIROM with 12 POD bases,t = 6

(g) NIROM with 36 POD bases,t = 3 (h) NIROM with 36 POD bases,t = 6

Figure 5: Case 1a: the figure shows the velocity from full model and the NIROM with 6, 12 and 36 POD
bases at time instances 3 and 6.
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(a) t = 3, 6 POD basis (b) t = 6, 6 POD basis

(c) t = 3, 12 POD basis (d) t = 6, 12 POD basis

(e) t = 3, 36 POD basis (f) t = 6, 36 POD basis

Figure 6: Case 1a: the figure shows the velocity error betweenthe high fidelity model and P-NIROMs with
6, 12 and 36 POD basis at time instances 3 and 6.
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Figure 7: Case 1a: the figure shows the velocity profile at location (x = 0.89514,y = 0.32519) from the high
fidelity model and P-NIROM with 6, 12 and 36 basis functions.
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Figure 8: Case 1a: the figure shows the root mean squared error(RMSE) and correlation coefficient between
the high fidelity model and NIROMs with 6, 12 and 36 POD bases.
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5.1.2. Case 1b: two-dimensional parameter space (inlet velocity and viscosity)
To further test the predictive capability of the P-NIROM, two parameters have been

varied: the inlet velocity and viscosity, which construct atwo-dimensional parameter
space. Table1 lists a combination of varying parameters in the case of the flow past a
cylinder - labelled A1-A13 are the training parameter points, which are chosen using
the Smolyak grid method with an approximate level of 2. In table 1, µ1 andµ2 denote
the inlet velocity and viscosity respectively. Two new (untrained) parameter points (0.5,
0.833×10−4) and (0.525, 0.5×10−4) - labelled T1 and T2 are chosen to demonstrate the
capability of the P-NIROMs. The two parameters constitute a2-D Smolyak sparse
grid - as shown is figure9. In this figure, solid dotted points are training points (A1-
A13) and the circled points (T1 and T2) are untrained points used to demonstrate the
predictive capability of the P-NIROM.

Figure10 shows the velocity solution from the high fidelity model and P-NIROM
at the untrained point T1 at time levels 3 and 4.6. It can be seen that the P-NIROM
predicted the flow pattern well. Visually, there is little difference between the high
fidelity model and P-NIROM. In order to see the difference, the velocity solutions
obtained from the full model and NIROM at a particular point within the computational
domain (x = 0.32289, y = 0.34007) are compared in figure11. Again, there are slight
differences at time instances 0.4− 0.8 and 2.

The velocity solutions from the high fidelity model and P-NIROMs at the untrained
point T2 at time levels 3 and 4.6 are presented in figure12. Again, the visual difference
is not obvious. In order to see the little difference, figure13 compares the velocity
solutions between the high fidelity model and P-NIROM at a particular point in the
computational domain (x = 0.44274, y = 0.35188) for the untrained point T2. As
shown in this figure, the P-NIROM can predict the velocity solution at the untrained
point well.

Table 1: a list of combination of training parameters for theflow past a cylinder (parameter oneµ1: inlet
velocity; parameter twoµ2: viscosity)

Cases µ1 µ2 Reynolds cases µ1 µ2 Reynolds
A1 0.5000 0.667×10−4 1500 A8 0.450 0.333×10−4 2700
A2 0.4500 0.667×10−4 1350 A9 0.550 0.333×10−4 3300
A3 0.5500 0.667×10−4 1650 A10 0.450 1.000×10−4 900
A4 0.5000 0.333×10−4 3000 A11 0.550 1.000×10−4 1100
A5 0.5000 1.000×10−4 1000 A12 0.500 0.431×10−4 2320
A6 0.4646 0.667×10−4 1394 A13 0.500 0.902×10−4 1109
A7 0.5354 0.667×10−4 1606
T1 0.5000 0.833×10−4 1200 T2 0.525 0.5×10−4 2100
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Figure 9: Case 1b: two-dimensional parameter sparse grids,where solid dot: parameter training points;
circle: new (untrained) parameter points.

(a) t = 3, full model (b) t = 4.6, full model

(c) t = 3, NIROM, 30 POD basis (d) t = 4.6, NIROM, 30 POD basis

Figure 10: Case 1b: the figure shows the velocity solutions from high fidelity model and P-NIROMs at an
untrained point T1 at time instances 3 and 4.6.
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Figure 11: Case 1b: comparison of the velocity profile atx = 0.32289, y = 0.34007 at an untrained parameter
point T1.

(a) t = 3, full model (b) t = 4.6, full model

(c) t = 3, NIROM, 30 POD basis (d) t = 4.6, NIROM, 30 POD basis

Figure 12: Case 1b: the velocity solutions from high fidelitymodel and P-NIROMs at an untrained parameter
point T2 at time instances 3 and 4.6.
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Figure 13: Case 1b: comparison of the velocity profile atx = 0.44274, y = 0.35188 at an untrained point T2.
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5.2. Lock exchange

In this case, the P-NIROM is used for resolving a lock exchange problem which
involves two fluids of different temperature and density separated by a lock. When the
lock is removed, two currents propagate along the tank horizontally. This laboratory-
scale set up incorporates dynamics observed in gravity currents over a range of scales
[6]. The problem computational domain is presented in figure14 which consists of
a non-dimensional rectangle (0.8 × 0.1). The initial conditions for the velocities and
pressure areu0 = 0 andp0 = 0 respectively. The isotropic value of viscosity is 1×
10−10.

The problem was resolved using the mesh which consisted of 4242 nodes, and
120 snapshots were obtained at regularly spaced time intervals during the time period
[0 − 30] from the high fidelity solutions. In this test case, the parameter to vary is the
temperature. The parameterized initial temperature condition,µ = T0 ∈ R, was varied
from 0.45 to 0.55. It was set to be−T0 for the cold fluid at the left side of the lockT
for the hot fluid at the right side of the lock. Using the Smolyak sparse grid with one
approximational level, three training data points were selected:T0 = 0.45, 0.5 and 0.55.
The solution snapshots (u(·, nt, µp)) over the training points were obtained by running
the high fidelity model for each training initial temperature value. An untrained initial
temperature (T0 = 0.46) was chosen to show the capability of the P-NIROM, that is,
the initial temperature of the hot fluid was set to be−0.46 and 0.46 for the cold fluid.
For the given new initial temperatureT0 = 0.45, using the RBF interpolation method
(the multiquadric basis function was used here), the snapshots were from these solution
snapshots over the training temperature points. A set of hyper-surfaces using the RBF
was then generated for representing the flow dynamics of the ordinal PDEs.

Figure 15 presents the singular values of the problem in a decreasing order. In
this problem, the reduction in the first 10 singular values isvery fast, which means the
first 10 leading basis functions corresponding to these 10 singular values capture most
of the energy in the original dynamic system. Some of the first36 basis functions are
presented in figure16, which shows the first few basis functions capture the general ve-
locity pattern while the last few basis functions the minor details of velocity structures.
In this example 6, 12 and 36 basis functions are chosen to generate the P-NIROM.

Figure17presents the temperature solutions obtained from the high fidelity model
and P-NIROM with 6, 12 and 36 basis functions. In comparison to the solution from
the high fidelity model, the P-NIROMs appear to be minor visual differences between
all the temperature solutions. However, the temperature solutions predicted from P-
NIROM with 6 and 12 basis functions are shown to be diffusing a little bit slower than
NIROM with 36 basis functions at the time level (t = 30). Using a larger number of
basis functions results in higher accuracy of the P-NIROM. The P-NIROM with 36
basis functions is almost identical to the high fidelity model. This can be confirmed
by inspection of the error figure18, which shows the solution differences between the
high fidelity model and P-NIROM with 6, 12 and 36 basis functions. It is found that
the difference of solutions between the high fidelity model and P-NIROM with 36 basis
functions is too small to notice. The error of P-NIROM is further analyzed by RMSE
and correlation coefficients, which is presented in figure19. It can be seen that the
RMSE and correlation coefficient curves of P-NIROM with 36 basis functions are flat
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at this scale, and the RMSE of solutions is close to 0 and the correlation coefficient is
very close to 1. This means that in this case P-NIROM using 36 basis functions has
captured almost 99.99% energy of the original flow dynamicalsystem.

Figure 14: Lock exchange: the graph shows the computationaldomain of the 2-D lock exchange problem.
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Figure 15: Lock exchange: the graph shows the singular values of the 2-D lock exchange problem.
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(a) the first POD bases (b) the second POD bases

(c) the third POD bases (d) the fourth POD bases

(e) 12th POD bases (f) 18th POD bases

(g) the 31th POD bases (h) the 36th POD bases

Figure 16: Lock exchange: the figure shows some of the first 36 basis functions of the problem.
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(a) Full modelt = 15 (b) Full modelt = 30

(c) NIROM 6 POD bases,t = 15 (d) NIROM 6 POD bases,t = 30

(e) NIROM 12 POD bases,t = 15 (f) NIROM 12 POD bases,t = 30

(g) NIROM 36 POD bases,t = 15 (h) NIROM 36 POD bases,t = 30

Figure 17: Lock exchange: the figures displayed above shows the temperature from the high fidelity model
and the P-NIROM using 6, 12 and 36 POD basis functions at time instances 15 and 30.

(a) t = 15, 6 POD basis (b) t = 30, 6 POD basis

(c) t = 15, 12 POD basis (d) t = 30, 12 POD basis

(e) t = 15, 36 POD basis (f) t = 30, 36 POD basis

Figure 18: Lock exchange: the figures show the temperature error between high fidelity model and NIROM
with 6, 12 and 36 POD basis at time instances 15 and 30.
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Figure 19: Lock exchange: the figure shows the root mean squared error (RMSE) and correlation coefficient
between the high fidelity model and P-NIROMs with 6, 12 and 36 POD basis functions.
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5.3. Efficiency of the P-NIROM model

This section compares the online computational cost required by the high fidelity
model and NIROM. The specifications of the computer for simulations were: 4 cores
with a frequency of 2.00GHz (IntelRCoreT M i7-3537U CPU @ 2.00GHz 4); a 8GB
memory. One core was used when running the simulations sincethe test cases were
simulated in serial.

Table2 lists the online CPU cost required for simulating the flow past a cylinder and
lock exchange test cases using the full model and NIROM. The offline cost involving
constructing the basis functions is not listed in this table.

Table 2: Online dimensionless CPU cost required for simulating the two test cases using the full model and
NIROM during one time step.

Cases Model assembling and projection interpolation total
solving

Flow past Full model 0.5891 0 0 0.6002
a cylinder NIROM 0 0.0003 0.0001 0.0004

Lock Full model 0.9489 0 0 0.95003
exchange NIROM 0 0.0003 0.0001 0.0004

As shown in the table that the online CPU time required for theNIROM is substan-
tially less than that for high fidelity model. The reduction in CPU time is dependent on
the complexity of problem.

6. Conclusion

This article has presented a general P-NIROM technique for model reduction of pa-
rameterized time-dependent nonlinear PDEs. It is non-intrusive (independent of equa-
tions and numerical discretised schemes/codes) and easy to implement, especially for
complex dynamic codes (e.g. unstructured mesh models). Theprocedure of construct-
ing a P-NIROM can be split into the offline and online procedures. During the of-
fline (training) procedure, the parameter training points are selected using the Smolyak
sparse grid. The solution snapshots and POD basis functionscan then be obtained by
running the high fidelity model for the selected training parameter. During the online
computation, for any given (untrained) parameter, the snapshots and corresponding
POD basis functions can be computed using an interpolation approach (here the RBF
method). Finally we have extended our recently developed NIROM technique (see
[50]) to generate the P-NIROM, that is, by using the RBF approachto construct a set
of hyper-surfaces that represent fluid dynamics of the system. Over the existing non-
intrusive ROM for parameterized PDEs proposed in [13], there is no need to solve an
auxiliary parabolic linear PDE which is split from the original nonlinear PDE. The P-
NIROM technique has been used for model reduction of the parameter Navier-Stokes
equations and applied to an unstructured mesh finite elementfluid model.

Two numerical examples were chosen to demonstrate the capabilities of the P-
NIROM. In the first numerical example, flow past a cylinder wassolved, where the
P-NIROM was trained upon a small number of parameter points determined by the
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Smolyak sparse grid and then tested on an untrained parameter point (here, the two
dimensional parameter space was constructed by the inlet velocity and viscosity). It is
shown that the P-NIROM can retain much of the accuracy of the high fidelity model
while the computational time is reduced by three orders of magnitude. In the second ex-
ample, a lock exchange problem was solved. The prediction capabilities of the NIROM
have been evaluated by specifying a new (untrained) initialcondition. Again it shows
that the problem is well predicted with a significantly reduced computational cost. An
error analysis has been undertaken through the RMSE and correlation coefficient of
solutions between the high fidelity model and P-NIROM.

This P-NIROM is independent of the source code of the full system, therefore,
it is easy to extend to complex applications, such as multi-physics problems, model
uncertainty analysis, sensitive analysis, model parameter estimation and control (e.g.
shape optimisation control and closed-loop turbulence control [8]). The applications of
the P-NIROM is not limited to the fluid flow applications demonstrated in this paper.
In the future, we will apply our model to more complicated time-dependent non-linear
PDEs and explore the stability of long-term parameteric non-linear dynamical systems.
The generalised Lyapunovs direct method [43] can be used to guarantee the long-term
boundedness if there is a monotonically attracting trapping region. The concept of long-
term boundedness is linked to the stability analysis of parameteric nonlinear PDE sys-
tems with respect to the parameters e.g. initial and boundary values using the energy
method. By analysing the spectrum of eigenvalues and Lyapunov exponents, a suffi-
cient criterion for long-term boundedness of Galerkin systems can be used to exclude
infinite blow-ups of the system state solutions in finite or infinite periods of time [43].
In the near future we will explore solution boundedness and methodologies for inter-
polating the ROM basis functions over parameter ranges.
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Appendix

A1. Error Analysis for P-NIROM

This section provides a priori error analysis for P-NIROMs.Let u(µ, x, t) and
uP−NIROM(µ, x, t) denote the full and P-NIROM solutions for any given parameter µ
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respectively. The error norm is chosen to be Euclidean distance. The error between the
full and P-NIROM solution can be estimated by:

||u − uP−NIROM|| = ||(u −ΦΦTu) + (ΦΦTu − ΦΦTũ) + (ΦΦTũn − uP−NIROM||
≤ ||u − ΦΦTu|| + ||ΦΦTu − Φ̃Φ̃T ũ)|| + ||Φ̃Φ̃T ũ − uP−NIROM||

(24)

whereΦ = (φ1, φ2, . . . , φM) consists of the leading POD basis functions which are
obtained using POD-SVD and̃u(µ, x, t) = I(µ) is an optimal approximation ofu which
can be obtained by interpolating the solutions over the Smolyak grids (for details, see
algorithm 1) and the corresponding POD basis functionsΦ̃ are calculated using POD-
SVD based on snapshotsũ. We can see that the error,||u−uP−NIROM||, is split into three
parts: the POD truncation error, the error of solution snapshots and POD basis functions
due to the interpolation over the sparse grids, and the errorfrom the calculation of the
P-NIROM solutionur .

A1.1. Truncation error

ΦΦTu is an optimal approximation ofu and the error is bounded by
√
λM+1 if M

leading POD basis functions are chosen [33], that is,

||u −ΦΦTu|| ≤
√

λM+1, (25)

whereλM+1 is the M + 1th eigenvalue ofBTB (where, B is defined in (6)). In P-
NIROM, the snapshots and POD basis functions for any given parameterµ over the
parameter space are calculated by interpolating them over the parameter sparse grids
(see algorithm1), thus resulting in the interpolation error described below.

A1.2. Error in calculation of snapshots

The second term in (24) is caused by the interpolation error in calculation of snap-
shots, which is the interpolation method dependent.

||ΦΦTu − Φ̃Φ̃T ũ|| ≤ ||ΦΦTu − Φ̃Φ̃Tu|| + ||Φ̃Φ̃Tu − Φ̃Φ̃T ũ||
≤ ||ΦΦT − Φ̃Φ̃T || ||u|| + ||Φ̃Φ̃T || ||u − ũ||. (26)

(a) In the Smolyak sparse grid method, these errors in (26) are bounded by [5]:

||ΦΦT − Φ̃Φ̃T || ≤ Cd,km
−k(log(m))(k+1)(d−1)||ΦΦT ||,

||u − ũ|| ≤ Cd,km
−k(log(m))(k+1)(d−1)||u||, (27)

wherek is the degree of polynomials,d is the dimensional size of the variable space
(for parameter space,d = P) m = m(l + d, d) (l is the approximation level used in
the Smolyak grid) is the number of sparse grid used. Due to theorthonormality of,
ΦΦT = I andΦ̃Φ̃T = I .
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(b) In the radial basis function method, for a given positive constantρ, we define
Kρ = {µ ∈ RP | ||µ − µp|| ≤ ρ}. It is proven the existence of positive constants
kΦ, ku ∈ N andC1,C2 ∈ R, the local errors in (26) are estimated by [49]:

||ΦΦT − Φ̃Φ̃T || ≤ cΦ ·C1 · hkΦ
ρ ,

||u − ũ|| ≤ cu ·C2 · hku
ρ , (28)

wherecΦ andcu are constants dependent of the radial functionφ, as well asΦ andu
respectively, andhρ := maxµ∈Kρ min1≤p≤P ||µ − µp||.

A.1.3. Error in calculation of P-NIROM solution/coefficient
The third term in (24) is

||Φ̃Φ̃T ũ − uP−NIROM|| = ||Φ̃ũr,∗ − Φ̃ur,NIROM||
≤ ||Φ̃||2,2||ũr,∗ − Φ̃ur,NIROM||, (29)

where,ur,∗ = ΦT ũ is the POD solution by projecting the full model solution onto the
reduced space;ur,NIROM is the solution from the P-NIROM;||Φ||2,2 is defined below:

||Φ||2,2 = supx||Φx||/||x||. (30)

Taking into accountΦΦT = I (whereI is an identity matrix), thus||Φ||2,2 = 1.

(a) In the Smolyak sparse grid method, the error betweenur,∗ andur,NIROM is bounded
by [5]:

||ũr,∗ − Φ̃ur,NIROM|| ≤ Cr
d,km

r,−kr
(log(mr))(kr+1)(dr−1)||ũr,∗||, (31)

wherekr is the degree of polynomials,dr is the dimensional size of variable space,
themr = mr (lr + dr , dr ) (lr is the level used in the Smolyak grid) is the number of
sparse grid used.

(b) In the radial basis function method, for a given positive constantρur , we define
Kρur = {ur,NIROM ∈ RNT | ||ur,NIROM − ur,NIROM

Nt
|| ≤ ρur } (here{uNt } are training

points, NT is the number of the training points). It is proven the existence of
positive constantskur ∈ N andCur ∈ R, the local errors in (29) are estimated
by

||ũr,∗ − Φ̃ur,NIROM|| ≤ cur ·Cur · hkur
ρur , (32)

wherecur is constant dependent on the radial functionφ andu, andhρur := maxµ∈Kρur
min1≤p≤P ||µ−

µp||.
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