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a b s t r a c t

A new nonlinear Petrov–Galerkin approach has been developed for proper orthogonal decomposition
(POD) reduced order modelling (ROM) of the Navier–Stokes equations. The new method is based on
the use of the cosine rule between the advection direction in Cartesian space–time and the direction
of the gradient of the solution. A finite element pair, P1DGP2, which has good balance preserving properties
is used here, consisting of a mix of discontinuous (for velocity components) and continuous (for pressure)
basis functions. The contribution of the present paper lies in applying this new non-linear Petrov–Galer-
kin method to the reduced order Navier–Stokes equations, and thus improving the stability of ROM
results without tuning parameters. The results of numerical tests are presented for a wind driven 2D gyre
and the flow past a cylinder, which are simulated using the unstructured mesh finite element CFD model
in order to illustrate the numerical performance of the method. The numerical results obtained show that
the newly proposed POD Petrov–Galerkin method can provide more accurate and stable results than the
POD Bubnov–Galerkin method.

� 2012 Elsevier B.V. All rights reserved.
1. Introduction

The proper orthogonal decomposition (POD)/Galerkin method
has been used extensively for reduced order models (ROMs).
The POD method optimally extracts the few most energetic
modes/bases from the numerical/experimental solutions that can
accurately represent the system dynamics. The POD approach
was introduced in 1901, referred then as Principal Component
Analysis (PCA) by Pearson [1]. Later work includes [2,3] in statis-
tics, or empirical orthogonal functions (EOF) in oceanography, [4]
and meteorology [5]. The POD methods, in combination with the
Galerkin projection procedure, have also provided an efficient
means for generating reduced-order models [6–8]. In POD reduced
order modelling, the Galerkin method is used to project the
original equations onto a finite number of POD bases and yields a
set of ordinary differential equations in time. POD has been used
successfully in several fields, such as fluid dynamics [9–11], signal
processing and pattern recognition [3], inverse problems [12,13]
and ocean modelling and four-dimensional variational (4D-Var)
data assimilation [14–17].

However, the POD/Galerkin finite element model (FEM) lacks
stability and spurious oscillations can degrade the reduced
order solution for flows with high Reynolds numbers [18]. The
instabilities commonly observed in the POD method are due to
oscillations forming in the solutions as a result of applying a
standard Bubnov–Galerkin projection of the equations onto the
reduced order space. This is very similar to the oscillations that
form in FEM solutions when the standard Bubnov–Galerkin meth-
od is applied. These oscillations feed into the non-linear terms at
moderate to high Reynolds numbers resulting in unstable simula-
tions. In this paper, stable results are obtained by using a suitable
Petrov–Galerkin projection with ROM. Various methods have been
developed to overcome the POD stability problem. Iollo et al. [10]
succeeded in stabilising the POD/Galerkin approximation of the
Navier–Stokes equations by employing numerical dissipation.
The numerical stability of the ROM is also related to the choice
of the inner product used to define the Galerkin projection. A stable
symmetrical inner product that guarantees certain stability bounds
for the linearised compressible Euler equations was proposed by
Kalashnikova and Barone [19]. Angelo et al. [20,21] proposed two
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stabilization methods for POD/ROM: one that relies on the explicit
addition of an artificial dissipation term whose construction is sim-
ilar to that of the Lax–Wendroff scheme; another one that consists
in constructing the POD for both function and gradient values (POD
in H1) (calibration). Another type of regularization is found to
improve the stability of the POD/Galerkin models of strongly-stiff
systems [22]. The method replaces the POD eigenmodes of the
non-linear terms by their Helmholtz filtered counterparts, while
the other terms remain unchanged.

Another difficulty that arises in applying the POD/Galerkin
method to nonlinear fluid problems involves the efficient compu-
tation of the projection of the nonlinear terms that are present in
the equations. Recently, several approaches have been proposed
for retaining the intended efficiency of O(M) (where M is the num-
ber of reduced basis modes) of the ROM, instead of O(N) (where N
is the number of grid-points in the full high-fidelity simulation).
Chaturantabut and Sorensen [23] proposed a non-linear model
reduction via the discrete empirical interpolation method (DEIM)
[25,26], which is the discrete version of the empirical interpolation
method (EIM) [24]. This method was applied by these authors in
conjunction with POD to treat the reduction of non-linear miscible
viscous fingering in porous media [27], and derived state space er-
ror bounds for the solutions of POD/DEIM [28]. Another similar
technique for non-linear treatments is the best points interpolation
method (BPIM) [29]. Nguyen and Peraire [30] also addressed the
issue for the reduction of the non-linear elliptic equation and
highly non-linear time-dependent convection–diffusion equations
through the reduced basis approximation (RBA) technique. For
such classes of FEM PDEs, the reduced-order modelling provided
by the standard Galerkin projection is no longer efficient. This is
because the evaluation of the integrals involving the non-affine
and non-linear terms is computationally expensive and cannot be
pre-computed [30]. The RBA technique does vary from the stan-
dard POD method but does use the EIM in its formulation. A com-
parison of a number of POD formulations including the greedy
reduced order approximation (ROA), the reduced-basis approach
(RBA) of [24,31] and the standard Galerkin projection approach
has been provided in [30].

Recently, Carlberg et al. introduced the Petrov–Galerkin method
to control the stability of reduced order modelling of a 1D nonlin-
ear static problem [32,33]. This method offers a natural and easy
way to introduce a diffusion term into ROM without requiring
tuning/optimising and provides appropriate modelling and stabili-
sation for the POD numerical solution. More recently, a new
Petrov–Galerkin method for reduced order modelling has been
proposed for nonlinearly discontinuous Galerkin modelling in or-
der to control numerical oscillations, and applied to nonlinear
hyperbolic problems [34]. The approach is based on the use of
the cosine rule between the advection direction in Cartesian
space–time and the solution gradient direction.

In the present work, the new Petrov–Galerkin method [34] is
used for the stabilisation of reduced order modelling of a nonlinear
hybrid unstructured mesh model which is applied to the
Navier–Stokes equations. A mixed P1DGP2 finite element pair [35]
which remains Ladyzanskya Babuska Brezzi (LBB) stable and has
good balance preserving properties, is introduced here to further
stabilise the numerical oscillation. It consists of discontinuous lin-
ear elements for velocity and continuous quadratic elements for
pressure in the Navier–Stokes equations [36,38]. To efficiently
treat the non-linear components of the equation, we have used
the method proposed in [39], which assumes that the system of
discrete equations are quadratic. This is an approximation but is
motivated by the observation that the continuous PDE (the
Navier–Stokes equations) has a quadratic non-linearity and thus
can be discretized using a quadratic discrete system of equations.
The CPU cost of this is OðM3Þ per time step, and since the
magnitude of M is relatively small the method is highly efficient.

The remainder of the paper is organised as follows. Section 2
introduces the governing equations used in this work. Section 3
presents the derivation of the new Petrov–Galerkin approach for
a single scalar time dependent transport equation, and this is
then extended to a set of coupled time dependent equations in
Section 4. Section 5 provides the derivation of reduced order
modelling of Navier–Stokes equations using the newly proposed
Petrov–Galerkin approach. In Section 6, the novel reduced order
nonlinear hybrid unstructured mesh model is applied to two test
cases, namely, a wind driven 2D Gyre and flow past a cylinder.
Finally, the summary and conclusions of this article are pre-
sented in Section 7.

2. Governing equations

The underlying model equations used here consist of the 3-D
non-hydrostatic Navier–Stokes equations:
r � u ¼ 0; ð1Þ

@u
@t
þ u � ruþ f k� u ¼ �rpþr � s; ð2Þ

where u � ðu;v;wÞT � ðu1;u2;u3ÞT is the velocity vector, p is the
perturbation pressure (p :¼ p=q0; q0 is the constant reference den-
sity), f represents the Coriolis inertial force, and k is an unit vector
along the vertical direction. The stress tensor s in the diffusion term
is used to represent the viscous terms and is defined in terms of the
deformation rate tensor S as

sij ¼ 2lijSij; Sij ¼
1
2

@ui

@xj
þ @uj

@xi

� �
� 1

3

X3

k¼1

@uk

@xk
; 1 6 i; j 6 3; ð3Þ

where, l is the kinematic viscosity. In the previous definition, we
assume no summation over repeated indices. In this paper, the hor-
izontal kinematic viscosities (l11; l22) and vertical kinematic vis-
cosity (l33) take constant values with the off-diagonal
components of s defined by lij ¼ ðliiljjÞ

1=2. For barotropic flow,
the pressure p consists of hydrostatic phðzÞ and non-hydrostatic
pnhðx; y; z; tÞ components. The hydrostatic component of pressure
balances exactly the constant buoyancy force and both terms are
therefore neglected at this stage.

The momentum equation discretised in space can be rewritten
in a matrix form:

At
@u
@t
þ AxðuÞ

@u
@x
þ AyðuÞ

@u
@y
þ AzðuÞ

@u
@z
þ f k� uþrp�r � s ¼ 0; ð4Þ

where

At ¼
1 0 0
0 1 0
0 0 1

0
B@

1
CA; ð5Þ

Ax ¼
u 0 0
0 u 0
0 0 u

0
B@

1
CA; Ay ¼

v 0 0
0 v 0
0 0 v

0
B@

1
CA; Az ¼

w 0 0
0 w 0
0 0 w

0
B@

1
CA:
ð6Þ
3. A scalar Petrov–Galerkin transport equation

In order to derive the newly proposed Petrov–Galerkin
approach, the outline for a scalar time dependent transport equa-
tion is derived first. The scalar time dependent transport equation
used is:

axt � rxtwþ rw ¼ s; ð7Þ
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where w represents field states (e.g. temperature, pollutants) and s
is the source term; for 1D: axt ¼ ð at ax ÞT , for 2D: axt ¼
ð at ax ay ÞT and for 3D: axt ¼ ð at ax ay az ÞT and in 2D with
time dependence this equation assumes the form:

at
@w
@t
þ ax

@w
@x
þ ay

@w
@y
þ rw� s ¼ 0: ð8Þ

Using the cosine rule between the two vectors axt and rxtw, in
which ha is the angle between the two vectors, then:

cosha ¼
axt � rxtw
j axt j j rxtw j

ð9Þ

and the projection of axt onto rxtw may be written as
a�xt ¼j axt j nacosðhaÞ (with na ¼ rxtw

jrxtwj) or in the detailed form:

a�xt ¼
ðaxt � rxtwÞrxtw

jj rxtwk2 : ð10Þ

Thus

a�xt � rxtw ¼ axt � rxtw ð11Þ

or

ðaxt � rxtwÞrxtw

krxtwk2

 !
� rxtw ¼ axt � rxtw: ð12Þ

A Petrov–Galerkin approach is used that modifies the governing
equation by its weighting with a stabilisation term. This is given by
the equation,

ð1�rxt � a�xtp
�
xtÞðaxt � rxtwþ rw� sÞ ¼ 0; ð13Þ

where the scalar p�xt is a function of a�xt and the size and shape of the
elements (to be later defined in (16)–(18)). Eq. (13) is a consistent
formulation which stabilizes the solution by adding artificial diffu-
sion in the direction of its gradient. This effectively smooths out the
unphysical oscillations that form in extreme regimes, such as in
high Reynolds numbers. This technique is now a commonly used
method for stabilising finite element solution and its origins date
back to the work in [40–43]. Multiplying Eq. (13) by a space–time
basis function Nxti and integrating over a single element VE with
boundary CE and applying integration by parts results in:Z

VE

Nxt irdVE �
Z

CE

Nxt iðnxt � axtÞðw�wbcÞ dCE þ
Z

VE

ðrxtNxt iÞ � a�xtp
�
xtr dVE

þ
Z

CE

Nxt inxt � a�xtp
�
xtr dCE ¼ 0: ð14Þ

In this formulation the term r is the residual, which is expressed as
r ¼ a � rxtwþ rw� s, and the term nxt is the unit vector that is nor-
mal to the element in space–time. In this work the boundary infor-
mation wbc is treated in an upwind fashion. That is, if nxt � axt is
negative then wbc takes on the values of the neighbouring elements.
Alternatively if nxt � axt is positive then the values within the ele-
ment are used. The approximation of w will now be assumed to
be expressed as a finite element expansion, w ¼

PN
j¼1Nxtjwj. Finally,

the surface integral involving the residual is assumed to be zero,
and this results in the following formulation,Z

VE

Nxt irdVE �
Z

CE

ðnxt � axtÞNxtiðw� wbcÞdCE

þ
Z

VE

ðrxtN xt iÞ � a�xtp
�
xtrdV E ¼ 0: ð15Þ

The scalar p�xt which a function of a�xt and the size and shape of
the elements, is given, for example, by the following expression:

p�xt ¼
1
4
ðj a�xt � rxtN xt i j Þ�1

: ð16Þ
This expression is obtained from the Riemann finite element meth-
od, for details see [44]. This will choose the shape function which is
aligned with the direction of a�xt , for example, in the case for ele-
ments with equal sized edges.

Alternatively one can produce a p�xt that is independent of i
using:

p�xt ¼ mink
1
4
ðj a�xt � rxtNxtk j Þ�1

� �
: ð17Þ

Notice that this expression uses the length scale of the element in
the direction of a�xt .

Using the L2-norm and the finite element space–time Jacobian
matrix Jxt (see Eq. (40)), an alternative expression to (17) has the
following form:

p�xt ¼
1
4
ðkJ�1

xt a�xtk2Þ
�1
: ð18Þ

The value of p�xt can be adjusted in order to ensure that the resulting
value of p�xt is not so large that it results in having more transport
backward than forward in the resulting discrete system of equa-
tions by using:

p�xt ¼ min
1

rþ � ;
1
4
ðkJ�1

xt a�xtk2Þ
�1

� �
; ð19Þ

in which rþ � > 0 and � is a small positive number that ensures we
avoid dividing by zero r ¼ 0 e.g. � ¼ 1� 10�10.

Continuous Petrov–Galerkin formulations use a factor of 1
2 in-

stead of 1
4 as used in the previous equations. This correctly centres

the equation residual at the centre of mass of the basis function, for
continuous finite element representations. In the present work,
where discontinuous finite elements are used to formulate the
space–time discretisation, the centre of mass of the basis function
is centred at a distance of Dx

4 from the upwind boundary of the ele-
ment. In the traditional Petrov–Galerkin method a�xt ¼ axt in the
aforementioned expression and pxt replaces p�xt .

We can work with the stabilization in a diffusion form by using:Z
VE

Nxt irdVE �
Z

CE

Nxt iðnxt � axtÞðw� wbcÞdCE

þ
Z

VE

ðrxtNxt iÞTmrxtwdVE ¼ 0; ð20Þ

in which the scalar diffusion coefficient is:

m ¼ ðaxt � rxtwÞp�xtr

krxtwk2 : ð21Þ

Alternatively, we can work only on the residual. That is, replacing
axt � rxtw with the residual r in (21), yields:

m ¼ rp�xtr

krxtwk2 : ð22Þ

The diffusion coefficient m is always non-negative since p�xt is non-
negative. Eq. (22) for the diffusivity can be derived by re-defining
the term a�xt in Eq. (10) to be:

a�xt ¼
rrxtw

krxtwk2 : ð23Þ

Then a�xt � rxtw ¼ rrxtw

krxtwk2 � rxtw ¼ r.

3.1. Simplified scalar equation

Discretising the time dependent term using the two level
h-method, the residual becomes:

r ¼ at
wnþ1 � wn

Dt
þ a � rwnþh þ rwnþh � snþh; ð24Þ
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with a ¼ ð ax ay az ÞT and wnþh ¼ hwnþ1 þ ð1� hÞwn also defining

rxtw ¼
wnþ1 � wn

Dt
; ðrwnþhÞT

 !T

: ð25Þ

Using this definition (Eq. (25)) enables the formalism of space–time
discretisation to be applied, for example:

a�xt ¼ ða�t ; a�TÞT ¼ ðaxt � rxtwÞrxtw

krxtwk2
2

ð26Þ

and

p�xt ¼ min
1

rþ � ;
1
4
ðkJ�1a�k2Þ

�1
� �

; ð27Þ

in which J is the block part of the matrix Jxt that is associated with
Cartesian space. The stabilized discrete equations in a diffusion
form can be expressed by only using the diffusion in Cartesian
space:Z

VE

NirdV �
Z

CE

Niðn � aÞðwnþh � wnþh
bc ÞdCþ

Z
VE

ðrNiÞTmrwnþ1dV ¼ 0

ð28Þ

or in a form where we apply integration by parts of the transport
terms once:

Z
VE

Ni at
wnþ1�wn

Dt

 !
þrwnþh�snþh

 !
dVE�

Z
VE

r�ðNiaÞwnþhdV ð29Þ

þ
Z

CE

Niðn �aÞðwnþh
bc ÞdCEþ

Z
VE

ðrNiÞTmrwnþ1dVE¼0: ð30Þ
4. Nonlinear time dependent equations

4.1. The Petrov–Galerkin Navier–Stokes equations

The Petrov–Galerkin method discussed above is further applied
to the Navier–Stokes equation (2), which can be rewritten as:

Axt � rxtu ¼ s; ð31Þ

in which Axt ¼ ðAt Ax Ay Az ÞT and s ¼ �f k� u�rpþr � s.
The projection of Axt onto rxtu can be written as:

A�xt ¼ VðAxt � rxtuÞVðkrxtuk2
2Þ
�1rxtu: ð32Þ

Thus

A�xt � rxtu ¼ Axt � rxtu ð33Þ

or

VðAxt � rxtuÞVðkrxtuk2
2Þ
�1rxtu

� �
� rxtu ¼ Axt � rxtu; ð34Þ

in which VðAxt � rxtuÞ is a diagonal matrix containing Axt � rxtu, and
the vector krxtuk2

2 is such that the lth entry is krxtuk2
2l ¼

ðrxtulÞ � ðrxtulÞ.
The Petrov–Galerkin method’s modified form of the differential

equation is [34]:

ðI� ðrxt � A�xtÞ
T P�xtÞðAxt � rxtuÞ � s ¼ 0; ð35Þ

where P�xt is a function of A�xt and the size and shape of the elements
(see Eqs. (38) and (39)). Multiplying Eq. (35) by a diagonal matrix of
space–time basis function Nxt i (this has the basis function Nxti along
its main diagonal), integrating over a single element VE and apply-
ing integration by parts results in:
Z
VE

Nxt ir dVE �
Z

CE

Nxt iðnxt � AxtÞðW�WbcÞ dCE

þ
Z

VE

ððrxtNxt iÞ � A�xtÞ
T P�xtrdV þ

Z
CE

Nxt inxt � A�xtP
�
xtr dCE ¼ 0; ð36Þ

with a finite element expansion u ¼
PN

j¼1Nxt juj (where uj is the
velocity vector at node j) and r ¼ Axt � rxtu� s. In this work, only
the incoming information is taken into account, that is, if nxt � Axt

is negative, then Wbc is calculated from the neighbour element
(otherwise, it is calculated from the current elements). Applying a
zero boundary condition for the residual r ¼ 0, yields:Z

VE

Nxt irdVE þ
Z

VE

ðrxtNxt iÞ � A�xtÞ
T P�xtrdVE ¼ 0: ð37Þ

P�xt is a function of A�xt and the size and shape of the elements, for
example:

P�xt ¼
1
4
ðj A�xt � rxtNxt i j Þ�1 ð38Þ

or using the 2 matrix norm and the space–time Jacobian matrix Jxt:

P�xt ¼
1
4
ðkJ�1

xt A�xtk2Þ
�1
: ð39Þ

Since the matrices A�t ; A�x; A�y; A�z that contribute to building

A�xt ¼ ðA
�T
t ;A

�T
x ;A

�T
y ;A

�T
z Þ

T are diagonal, the matrix P�xt is also diagonal.
In the traditional Petrov–Galerkin method A�xt ¼ Axt in the afore-
mentioned expression and Pxt replaces P�xt . The finite element
space–time Jacobian matrix for 3D time dependent problems as-
sumes the form:

Jxt ¼

I 1
2 Dt 0 0 0

I @y
@t0 0 I @x

@x0 I @y
@x0 I @z

@x0

0 I @x
@y0 I @y

@y0 I @z
@y0

0 I @x
@z0 I @y

@z0 I @z
@z0

0
BBBB@

1
CCCCA; ð40Þ

where the variables with 0 are the local variables and where I is the
M�M identity matrix in whichM is the number of solution vari-
ables at each DG node, and Dt is a time step size.

In a similar way to the scalar equation, the value of P�xt can be
adjusted to ensure that the resulting value of P�xt is not so large
to allow more transport backwards than forward in the resulting
discrete system of equations using:

P�xt ¼ min E�1;
1
4
ðkJ�1

xt A�xtk2Þ
�1

� �
: ð41Þ

In this equation the diagonal entries of the matrix E are positive and
E contains small positive numbers to avoid dividing by zero or near
zero when one or more of the diagonals of E is zero or very small
e.g. 1� 10�10.

We can work with the stabilization in diffusion form using the
following equations:Z

VE

Nxt irdVE �
Z

CE

Nxt iðnxt � AxtÞðW�WbcÞdCE

þ
Z

VE

ðrxtNxt iÞT KrxtudVE ¼ 0 ð42Þ

or in a form where we apply integration by parts of the transport
terms once:Z

VE

Nxt ið�sÞdV �
Z

VE

ðrxt � ðNxt iAxtÞÞW dVE

þ
Z

CE

Nxt iðnxt � AxtÞWbc dCE þ
Z

VE

ðrxtNxt iÞT KrxtW dVE ¼ 0; ð43Þ

in which theM�M diagonal matrix containing the diffusion coef-
ficients is:

K ¼ VðAxt � rxtuÞP�xtVðkrxtuk2
2Þ
�1VðrÞ: ð44Þ
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The resulting diagonal matrix K can be modified to ensure a non-
negative diffusion by setting any of its negative entries to zero or
by switching to their absolute values. Alternatively one can work
with the residual only, by replacing Axt � rxtu with the residual r,
which results in:

K ¼ VðrÞT P�xtVðkrxtuk2
2Þ
�1VðrÞ; ð45Þ

which is always positive since P�xt is positive semi-definite (as well
as diagonal) and in which VðrÞ is the diagonal matrix containing the
residual of the governing equations on its diagonal. Eq. (45) for the
diffusivity can be derived by re-defining A�xt in Eq. (32) to:

A�xt ¼ VðrÞVðkrxtuk2
2Þ
�1rxtu: ð46Þ
4.2. The simplified Petrov–Galerkin Navier–Stokes equations

Assuming the two time level h-method is used for the discreti-
sation of time:

r ¼ At
unþ1 � un

Dt
þ A � runþh � snþh; ð47Þ

with Ax ¼ ðAx Ay Az ÞT , snþh ¼ �f k� unþh �rpnþh þr � snþh,
unþh ¼ Hunþ1 þ ðI�HÞun, pnþh ¼ Hpnþ1 þ ðI�HÞpn, and snþh ¼
Hsnþ1 þ ðI�HÞsn, in which H is a diagonal matrix containing the
time stepping parameters, and snþh ¼ �f k� unþh �rpnþhþ
r � snþh. Defining

rxtu ¼
unþ1 � un

Dt
; ðrunþhÞT

� �T

; ð48Þ

enables the application of the formalism of space–time discretisa-
tion developed here, for example:

A�xt ¼ ðA
�
t

T
; A�x

TÞT ¼ VðAxt � rxtuÞVðkrxtuk2
2Þ
�1rxtu ð49Þ

and

P�xt ¼ min E�1;
1
4
ðkJ�1A�xk2Þ

�1
� �

; ð50Þ

in which J is the block part of the matrix Jxt that is associated with
Cartesian space. By applying the diffusion only in Cartesian space
the stabilized discrete equations in a diffusion form can be written:Z

VE

NirdV �
Z

CE

Niðn � AÞ Wnþh �Wnþh
bc

� �
dCE

þ
Z

VE

ðrNiÞT Krunþ1dV ¼ 0 ð51Þ

or in a form where we apply integration by parts:Z
VE

Ni At
Wnþ1 �Wn

Dt
� snþh

 !
dVE �

Z
VE

r � ðNiAÞWnþhdV

þ
Z

CE

Niðn � AÞWnþh
bc þ

Z
CE

Niðn � AÞWnþh dCE

þ
Z

VE

ðrNiÞT KrWnþ1 dVE ¼ 0: ð52Þ
5. Petrov–Galerkin reduced order modelling

The Petrov–Galerkin method described above is used to form a
stable POD reduced order model for nonlinear hybrid problems.

For simplicity, we assume the discretisation of the original Eqs.
(1) and (2) at a given time step has the following form:

AW ¼ b; ð53Þ

where W ¼ ðU;V;W;PÞT ; U ¼ ðu1; . . . ;ui; . . . ;uN Þ, V ¼ ðv1; . . . ;vi;

. . . ;vN Þ; W ¼ ðw1; . . . ;wi; . . . ;wN Þ and P ¼ ðp1; . . . ;pi; . . . ;pN Þ (N is
the number of nodes in the computational domain). The modified
system of Eq. (53) can then be written:

CT F�1AW ¼ CT F�1b; ð54Þ

in which for the least squares (LS) methods, C ¼ A. Notice that the
solution of this Eq. (54) is the same as that of Eq. (53), however crit-
ically it is not the same when the reduced order modelling is ap-
plied. The weighting matrix F can be chosen in order to render
the system of equations dimensionally consistent (and thus may
contain characteristic dimensions such as the time step size Dt
and a length scale) and also contain the mass matrix of the system.
The LS methods have dissipative properties, unlike Galerkin meth-
ods, but are not generally conservative for coupled systems of equa-
tions. However the (LS) methods may be applied at each equation
level to render them conservative, in which case C may contain just
parts of the matrix A.

However, theabovemechanicscanalsobeappliedtoformconser-
vativestabilizationmethodsforROMswhichfornon-linearproblems
haveatendencytodivergeduetoinadequatesub-grid-scalemodelling
(ifGalerkinmethodsareappliede.g.thePODmethod).Acommonsolu-
tiontothedivergenceofROMsolutionsistoadddiffusiontermstothe
equationsandtunethesediffusiontermstobestmatchthefullforward
solution.Thus, it seems natural to explore the Petrov–Galerkin meth-
odology in order to introduce diffusion into ROMs and avoid this
tuning.

The matrix equation (53) can now be converted into a reduced
order system that is spanned by a set of m POD basis functions
denoted by fU1; . . . ;UMg. Each POD function is represented by a
vector of size N that represents the functions over the finite
element space. The POD functions are grouped together into a
matrix MPOD which is of size N �M and given by MPOD ¼
½U1; . . . ;UM �. Using this matrix, the reduced order system can
now be generated by operating directly on the discretised linear
system given in Eq. (53). That is, a standard Galerkin approach
is applied, whereby the full system is pre and post multiplied
by MPODT

and MPOD, respectively. The resulting reduced order
system results,

MPODT
AMPODWPOD ¼MPODTðb� A �WÞ; ð55Þ

where WPOD are the reduced order solution coefficients, �W is the
mean of the variables W over the time, and the relationship
between the pod variables and full solutions is given by,

W ¼MPODTðWPOD þ �WÞ: ð56Þ

For LS methods, Eq. (55) is:

MPODT
CT F�1AMPODWPOD ¼ MPODT

CT F�1ðb� A �WÞ ð57Þ

and using the non-linear Petrov–Galerkin methods described
above:

MPODTðIþ CT F�1ÞAMPODWPOD ¼MPODTðIþ CT F�1Þðb� A �WÞ ð58Þ

or in a diffusion form (analogous to (42)–(44)):

MPODT
AMPOD þ D

� �
WPOD ¼MPODTðb� A �WÞ: ð59Þ

In Eq. (59) we have also introduced a diffusion matrix D, which has
the following form (where the surface integral is neglected since it
has little effect on results):

D ¼

Du 0 0 0
0 Dv 0 0
0 0 Dw 0
0 0 0 Dp

0
BBB@

1
CCCA; ð60Þ



Fig. 1. A mixed finite element P1DGP2 pair for velocity and pressure (white one for u
nodes, black one for p nodes).
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Dumk ¼
Z

V
rNPOD

xtm
lPOD

u rNPOD
xtk

dV ; ð61Þ

Dvmk ¼
Z

V
rNPOD

xtm
lPOD

v rNPOD
xtk

dV ; ð62Þ

Dwmk ¼
Z

V
rNPOD

xtm
lPOD

w rNPOD
xtk

dV ; ð63Þ

Dpmk ¼
Z

V
rNPOD

xtm
lPOD

p rNPOD
xtk

dV ; ð64Þ

where the NPOD
xtk

basis functions are interpolated using the finite ele-
ment basis functions. the diffusion coefficient in D can be calculated
using (analogous to (22)):

lPOD
u lPOD

v lPOD
w lPOD

p

� �T
¼ rPODp�POD

xt rPOD

rxtw
POD

�� ��2

2

; ð65Þ

in the present work, the diffusion terms are only applied to the
momentum equations, so that pPOD ¼ 0, p�POD

xt is calculated:

p�POD
xt ¼ mink

1
4
ðj a�xt � rxtNxt k j Þ�1

� �
ð66Þ

or using the POD basis function:

p�POD
xt ¼ mink

1
4
ðj a�xt � rxtN

POD
xtk j Þ

�1
� �

: ð67Þ

The residual vector can be determined from:

rPOD ¼ EPOD�1 MPODT
AMPOD

� �
WPOD �MPODTðb� A �WÞ

� �
ð68Þ

or since the absolute value of the residual may not matter:

rPOD ¼ EPOD�1
MPODT j AMPODWPOD � ðb� A �WÞ j; ð69Þ

where EPOD
i j ¼

R
V WPOD

i WPOD
j dV . Taking into account the ROM basis

functions are orthonormal, so that EPOD ¼ I.

6. Application cases and numerical results

The Petrov–Galerkin method has been applied into a finite ele-
ment fluids model (Fluidity, developed by the Applied Modelling
and Computation Group at Imperial College London) to explore
the stability and accuracy of reduced order modelling in the two
test cases: a gyre case and the flow past a cylinder case. In order
to compare the results obtained by either the Galerkin or the
Petrov–Galerkin method, Reynolds numbers are set with 2000
and 3600 for a flow past a cylinder and 10,000 for a Gyre.

This paper presents results using both a mixed finite element
pair P1DGP2 and a P1P1 formulation. The P1P1 element type has
been included in the analysis due to it being a popular element
choice, however it can in many instances cause solutions to be-
come unstable as it is a LBB unstable element. In this work, the
P1P1 element is stabilised by explicitly adding a fourth order
stabilization term in pressure into the continuity equation, as
described in Pain et al. [37].

Fig. 1 shows the two dimensional P1DGP2 element which has
three local nodes associated with velocity and six associated
with pressure. The velocity variation is discontinuous between
elements and the pressure variable is continuous. The advantage
of this particular element choice is that the mass matrix for
velocity is a block diagonal matrix so that it can be trivially in-
verted; also it allows the order of the pressure to be increased to
quadratic whilst maintaining LBB stability [38]. This element also
has the ability represent very accurately the balance between
the pressure or free surface gradients and the Coriolis force as
well as buoyancy forces.

The root mean square error (RMSE) and correlation coefficient
of results between the POD and full model at the time level n are
used to estimate the divergence of POD projection results:

RMSEn ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN
i¼1

wn
i � wn

o;i

� �2

N

vuuuut
; ð70Þ

where, wn
i and wn

o;i are the vectors containing the POD and full model
results at the node i respectively. N represents number of nodes.
The correlation coefficient of results between the POD and full mod-
els at the time level n with expected values lwn and lwn

o
and stan-

dard deviations rwn and rwn
o

is defined as:

corrðwn;wn
oÞ

n ¼ covðwn;wn
oÞ

rwnrwn
o

¼
Eðwn � rwnÞðwn

o � rwn
o
Þ

rwnrwn
o

: ð71Þ
6.1. Case 1: flow past a cylinder

The non-dimensional 2D case is composed of a cylinder with a
radius of 3 in the computational domain (50 long and 10 wide). An
inlet boundary with a velocity of 1 (non-dimensional) flows paral-
lel to the domain length towards the right of the domain. The cen-
tre of the cylinder is placed 5 (non-dimensional) units from the
inlet boundary. The Reynolds number (Re) are 2000 and 3600.
Dirichlet boundary conditions are applied to the cylinder and no
normal flow and zero shear (slip) boundary conditions are applied
to both lateral sides. The simulation period is ½0� 10� with a time
step size of Dt ¼ 0:02. The solution at t ¼ 2:4 and t ¼ 7 over the
period ½0� 10� are chosen to show the effects. In order to show sta-
bilisation of Petrov–Galerkin method for Reduced order model, 50
snapshots and 22 POD basis functions which capture 99% percent
of energy are chosen for u; v and p. Fig. 2 shows the results of full
model using a P1P1 element type, together with the POD/Galerkin
and POD/Petrov–Galerkin models for Reynolds number 2000. Both
POD models have a reasonable qualitative agreement with the full
model for this Reynolds number.

Then the Reynolds number is increased until POD/Galerkin
crashes. Fig. 3 shows the velocity field (vector) obtained from the
full model (using P1P1 element type) and POD models using the
Galerkin and Petrov–Galerkin methods. The Reynolds number is



Fig. 2. Flow past a cylinder: velocity solution from the full, POD/Galerkin and
POD/Petrov–Galerkin models using P1P1 (t ¼ 3:6; Re ¼ 2000).

Fig. 4. Comparison of velocity results between the full and Petrov–Galerkin POD
models at a point (near right side of the circle).

D. Xiao et al. / Comput. Methods Appl. Mech. Engrg. 255 (2013) 147–157 153
3600. It can be seen in Fig. 3(c) and (d) that the results of reduced
order model (ROM) using Galerkin method become unstable (the
solution of velocity is too large, 29.2 when t ¼ 2:4 and 113 when
t ¼ 7. A variable colour legend is chosen to show the large velocity
value), while the results of ROM using Petrov–Galerkin method are
considerably more stable.

In order to further investigate the stability and accuracy of the
new Petrov–Galerkin method in ROM, the velocity solution at a
Fig. 3. Flow past a cylinder: Velocity solution from the full, POD/Galerkin and
specified detector in cylinder is plotted in Fig. 4. It shows that
the difference of velocity results between the full model and the
POD model solution using Petrov–Galerkin methods is rather
small.

A mixed P1DGP2 finite element pair is introduced here to further
stabilise the numerical oscillation, which consists of discontinuous
linear elements for velocity and continuous quadratic elements for
pressure. Fig. 5 presents a comparison of the velocity solutions
using the full and POD models with a mixed P1DGP2 finite element
pair. The Reynolds number is 3600. Fig. 6 shows the comparison of
velocity value between the full model, the POD/Galerkin model and
POD/Petrov–Galerkin model at point (x = 0.3 and y = 0.3) along
whole domain (reference coordinate system: 0 6 x 6 2:2 and
0 6 y 6 0:41). It can be seen that the POD results using the
Galerkin method are unstable while those from the POD/
POD/Petrov–Galerkin models using P1P1 at t ¼ 2:4and t ¼ 7 (Re ¼ 3600).



Fig. 5. Flow past a cylinder: solution of full model, POD/Galerkin and POD/Petrov–Galerkin using P1DGP2 at t ¼ 2:4 and t ¼ 7 (Re ¼ 3600).

Fig. 6. The comparison of velocity solution at point (x = 0.3, y = 0.3) between the
Galerkin/POD model and Petrov–Galerkin/POD model using P1DGP2. 0 100 200 300 400 500
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Fig. 7. The correlation coefficient of the Galerkin/POD and Petrov–Galerkin/POD
models using a mixed finite element P1DGP2 pair for velocity and pressure.
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Petrov–Galerkin model are stable. Fig. 7 shows the correlation
coefficient of results between the POD and full models can achieve
from 80% for the traditional Galerkin POD model to 98% if the
Petrov–Galerkin approach is used.

6.2. Case 2: gyre

The Petrov–Galerkin reduced order model is also tested in a
Gyre problem in a computational domain of horizontal dimen-
sions, 1000 km by 1000 km with a depth of H 500 m. The wind
forcing on the free surface is given by

sy ¼ s0cosðpy=LÞ; sx ¼ 0:0; ð72Þ

where sx and sy are the wind stresses on the free surface along the x
and y directions respectively, and L ¼ 1000 km. A maximum zonal
wind stress of s0 ¼ 0:1 N m�1 is applied in the latitude (y) direction.
b ¼ 1:8� 10�11 and the reference density q0 ¼ 1000 kg m�1 were
used. In this case, The simulation period is ½0� 0:6� with a time
step size of D ¼ 0:01. 60 snapshots and 25 POD basis functions
which capture 99% of energy are chosen for u; v and p. In order
to investigate the effects of the new Petrov–Galerkin method, the
Reynolds number is increased until the results of ROM using the
Galerkin method become unstable or crash. The Reynolds number
is chosen to be 10,000. Dirichlet weakly boundary conditions are
applied. Fig. 8 shows the velocity solution at t ¼ 0:35 become very
large and stable while the results of Petrov–Galerkin P1DGP2 are con-
siderably more stable.

Fig. 9 shows the RMSE between the full and POD model using
the Galerkin method and Petrov–Galerkin method. In order to
see clearly the RMSE between Petrov–Galerkin and full model,



Fig. 8. Gyre: comparison of the results between the full and POD models at t ¼ 0:35 using P1DGP2.
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Fig. 9. Gyre: RMSE between full model and POD model.

D. Xiao et al. / Comput. Methods Appl. Mech. Engrg. 255 (2013) 147–157 155
the Fig. 9(a) is enlarged into Fig. 9(b). From the value of y axis, the
RMSE between Petrov–Galerkin with full model is much smaller
than the RMSE between Galerkin method and full model. The RMSE
between the full and POD models is decreased by 90%.
The divergence of Galerkin/POD is well controlled by the new
Petrov–Galerkin/POD.
It can be seen from Figs. 9 and 10 that the POD reduced order
results using the Galerkin approach become oscillatory and
unstable and the RMSE of results increases as the simulation time
increases. By using the Petrov–Galerkin POD approach, the RMSE of
results is reduced while the correlation coefficient increases to
99.99% after a few time steps.
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Table 1
Comparison of CPU (unit: s) required for running the full model and ROM for each
time step.

Case Model Assembling
matrices

Solving Projecting
back

Total

Case 1 Full
model

3.00373 0.112598 0.0000 3.116328

POD
ROM

0.30280 0.000000 0.0199 0.322700

Case 2 Full
model

2.96455 0.103687 0.0000 3.068237

POD
ROM

0.29875 0.000000 0.0193 0.318050
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Table 1 shows the CPU time of main process at each time step. It
can be seen that once the POD model is setup (involving assem-
bling the matrices process), the reduced order model saves 90%
of CPU time required by the full model.

7. Summary and conclusions

A new non-linear Petrov–Galerkin method for reduced order
Navier–Stokes equations using a mixed continuous/discontinuous
finite element pair has been presented. This method is used to sta-
bilise the reduced order Navier–Stokes equations. The method has
been implemented in a finite element adaptive mesh refinement
fluids model (Fluidity) and applied to a Gyre and flow past a cylin-
der test cases.

The effect of the new non-linear Petrov–Galerkin method on
stabilisation of the POD model is evaluated through comparison
of results between the POD model using the Petrov–Galerkin meth-
od and the traditional Galerkin/POD model. The results show that
the Galerkin/POD model becomes oscillatory and unstable as the
Reynolds number increases over a certain value. By introducing
Petrov–Galerkin method in reduced order modelling, the stability
of the results is maintained.

An error analysis has also been carried out for the validation
and accuracy of the new POD/Petrov–Galerkin model. The RMSE
of results between the POD and Full model is decreased while
the correlation coefficient is mostly larger than 99%–99.5%. The
new POD/Petrov–Galerkin model does well in flow past a cylinder
and gyre problems. Future work will investigate the effects of
applying this new Petrov–Galerkin/POD approach to more complex
fluid flow models.
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