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Abstract

A novel parameterized non-intrusive reduced order model (P-NIROM) based on proper orthogonal decomposition (POD) has
been developed. This P-NIROM is a generic and efficient approach for model reduction of parameterized partial differential
equations (P-PDEs). Over existing parameterized reduced order models (P-ROM) (most of them are based on the reduced basis
method), it is non-intrusive and independent on partial differential equations and computational codes. During the training process,
the Smolyak sparse grid method is used to select a set of parameters over a specific parameterized space ({2, € RP). For each
selected parameter, the reduced basis functions are generated from the snapshots derived from a run of the high fidelity model. More
generally, the snapshots and basis function sets for any parameters over {2, can be obtained using an interpolation method. The
P-NIROM can then be constructed by using our recently developed technique (Xiao et al., 2015 [41,42]) where either the Smolyak
or radial basis function (RBF) methods are used to generate a set of hyper-surfaces representing the underlying dynamical system
over the reduced space.

The new P-NIROM technique has been applied to parameterized Navier—Stokes equations and implemented with an
unstructured mesh finite element model. The capability of this P-NIROM has been illustrated numerically by two test cases: flow
past a cylinder and lock exchange case. The prediction capabilities of the P-NIROM have been evaluated by varying the viscosity,
initial and boundary conditions. The results show that this P-NIROM has captured the quasi-totality of the details of the flow with
CPU speedup of three orders of magnitude. An error analysis for the P-NIROM has been carried out.
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1. Introduction

Reduced order models (ROMs) are popular and powerful techniques for circumventing the intensive computational
burden in large complex numerical simulations in engineering and science, for example, ocean modelling, weather
prediction, uncertainty quantification, sensitive analysis, data assimilation, sensor placement optimization, porous
media, structural problem, convection diffusion reaction equations, molecular dynamics simulation and optimal
control [1-16]. The basic idea of reduced order modelling is to find an approximate solution by a linear combination
of a set of basis functions. The weighting coefficients of the basis functions are determined by error minimization or
the Galerkin projection method [17].

One of challenges in reduced order modelling is to generate a robust ROM for different parameters/inputs, which
can represent the physical dynamics of parameterized partial differential equations (P-PDEs) as the model parameters
vary. Recently reduced basis method in combination with projection-based methods has been introduced and proven
to be a very powerful means in model reduction of P-PDEs [18-24,17,25]. The high dimensional parameterized PDEs
can be projected onto a low dimensional space which consists of a number of reduced basis functions. The construction
of the reduced basis functions is based on snapshots (solutions of the original PDEs). These reduced basis functions
can be constructed by either global or local approaches [18]. The ‘global’ reduced basis functions can be constructed
by global snapshot matrices over the parameter space while the ‘local’ reduced basis functions can be obtained by
interpolating the local snapshot matrices associated with a set of selected parameters over the parameter space. These
reduced basis functions can then be used for constructing a P-ROM. The original matrices in the discretized PDEs
and variables can be decomposed as a weighted linear combination of the reduced basis functions. The weighting
coefficients for the reduced basis functions are dependent on time and model parameters.

Most of the existing P-ROMs are intrusive and dependent on original PDEs and codes (e.g. numerical schemes).
In most cases, modifications are needed to generate the intrusive P-ROM. These modifications are difficult or even
impossible in commercial software [26]. In addition, the intrusive ROM suffers from non-linear inefficiency and
instability issues [27-29]. The methods of improving the stability of the ROM can be found in [30-33,4,34]. The
approaches of enhancing the non-linearity efficiency have been developed in the work of [35—40].

In order to tackle these issues in intrusive ROMs, a number of non-intrusive reduced order models (NIROMs) have
been developed recently [41-44]. However, very little work can be found addressing non-intrusive model reduction
for parameterized PDEs, where inputs (e.g. initial and boundary conditions) and parameters (e.g. viscosity, material
property) vary in space and time. Audouze et al. presented a proper orthogonal decomposition (POD) non-intrusive
reduced order model for part of nonlinear parameterized PDEs [17,45]. The key idea underpinning the proposed
method in [17] is to split the reduced-order approximation into two terms. The first term was the approximate solution
of an auxiliary parabolic linear PDE, which enforces satisfaction of the boundary and initial conditions whereas the
second term is a linear combination of a tensor product of adapted spatial and temporal basis functions obtained using
the POD method. A non-intrusive approach based on radial basis function (RBF) (in contrast to Galerkin projection)
was introduced to calculate the coefficients (weights) at the second term. However it is noted that to approximate the
solutions of the auxiliary parabolic linear PDE, the classical POD-Galerkin approach was used, which is intrusive.

More recently, we have developed three types of NIROMs based on Taylor series expansion, Smolyak sparse grid
and radial basis function (RBF) methods [41,42]. The NIROMs have been successfully applied to some realistic
problems such as fluid and solid interaction [46] and porous media multi-phase problems [47]. In this work, we have
further extended the NIROMs to parameterized physical problems (described by PDE’s).

A generic parameterized NIROM (P-NIROM) technique has been developed here for parameterized time-
dependent linear/nonlinear physical problems. The P-NIROM developed here is independent of equations and easy to
implement, and there is no need for an auxiliary parabolic linear PDE in contrast to the method proposed by Audouze
et al. [17]. The whole procedure can be divided into the two steps: the offline process-training and online process-
constructing and solving P-NIROM. During the training procedure, the parameter training points are first chosen using
the Smolyak sparse grid method. The parameter vector t € R’ is P-dimensional and each variable parameter denotes
one dimension. The Smolyak sparse grid is constructed from a tensor product grid obtained over the parameter space.
The solution snapshots on the parameter training points (sparse grids) are then obtained by running the original high
fidelity model and the basis functions are computed using singular value decomposition (SVD)/POD. From these
snapshots obtained on the parameterized training points, a set of POD basis functions on each parameterized training
point is generated in an optimal sense that represents the fluid dynamics.
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During the online computation procedure, a two-level RBF interpolation method is used for constructing the P-
NIROM. Firstly, for any given parameter u € R, a set of snapshots and POD bases can be obtained using the
first level RBF interpolation. The second level RBF interpolation is then used to construct a set of hyper-surfaces
representing the dynamics of the original time-dependent PDEs. After the hyper-surfaces are obtained, the solution
of the ROM at the current time level can be obtained by giving reduced solution at previous time level into the
hyper-surface functions.

The above P-NIROM has been implemented under the framework of an unstructured mesh finite element model
(Fluidity). The capabilities of this new NIROM have been assessed for two test cases: a flow past a cylinder case
and a 2-D lock exchange case. Comparisons have been made between the high fidelity model and the P-NIROM to
investigate the accuracy of the P-NIROM methodology.

The structure of the paper is as follows: Section 2 presents the general reduced order model for parameterized
PDEs; Section 3 provides the details of calculation of POD basis functions for any given parameter over R”; Section 4
describes the non-intrusive methods for model reduction of parameterized PDEs; Section 5 illustrates the P-NIROM
method derived by means of two numerical examples: flow past a cylinder and lock exchange problem. Finally in
Section 6, summary and conclusions are presented, and error analysis is provided in the Appendix.

2. General parameterized reduced order PDEs

In general, the parameterized space—time linear/nonlinear PDEs can be written as follows:

Fux,t, ), X, 1, p) = s(X, 1, ), (D

where u(-, 1, u) € RP*N is the state variable vector (including, for example, velocity components, pressure,
temperature, etc. here N is the number of nodes in a scalar grid used in the computational domain and D is the number
of scalars), x is the spatial coordinate system, s denotes source term, # is the time and u € RP is the parameter vector
(constructing a P dimensional parameter space).

In reduced order modelling, the state variable u can be expressed as an expansion of the basis functions
o, pn)=(P1,..., Py, ..., Py)(me(,..., M), M is the number of basis functions and M < N):

ux, t, p) = du’, 2

where u’ (¢, p) € RM is the reduced state variable vector (the superscript 7 indicates a variable or operator associated
with the reduced order model). By using POD, the basis functions @ of the variable are extracted and derived optimally

from the snapshots sampled at time instants {f{, ..., %, ..., tn, }:
N;
DX, 1) = ) 0, 11, ) Ty me (..., M), 3)
i=1
subject to
K
> U@ Bu) 2> =1, )

m=1

where (-, -);2 is the canonical inner product in L? norm, M is the number of basis functions to be chosen (here
M < N; < N), and 1, ; is obtained using singular value decomposition (SVD):

B Tm = )\m Tms (5)
where ¥y = (Y1, ... Tmsis - -, T, n,) and the matrix B has the form of,
1
Bk,l’l = _/ u('vtka')u("tnv')*dxa k5n€ (17-"7Nl‘)- (6)
Nt Jo
The singular values A = (A1, ..., A, ..., Ap) are listed in decreasing order. Projecting (1) onto the reduced space,

yields,

ST F(du (1, x,1), X, 1, p) = DT s(x, 1, p). (7)
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The parameterized reduced order model in (7) can be re-written as:

Fra (u,x,1),x,t, ) =s"(x,t, ). 8)

As discussed above, the traditional method to implement the parameterized reduced order model (8) is intrusive
based on reduced basis methods. In this work, we propose a non-intrusive method for constructing the parameterized
reduced order PDE model.

3. Computation of basis functions over the parameter space

In this section, the details of calculating the basis functions over the parameter space using Smolyak sparse grid
and RBF interpolation methods are provided. Firstly, a number of parameter training points can be chosen using the
Smolyak sparse grid method. The solution snapshots are then obtained for each training parameter by running the
high fidelity model. The corresponding POD basis functions can be calculated using SVD/POD. Finally the solution
snapshots or basis functions can be obtained for any given parameter u € R’ using the RBF interpolation method.

3.1. Choice of the parameter interpolation points using the Smolyak sparse grid

The Smolyak sparse grid is a numerical technique to interpolate or integrate high dimensional functions. It
was developed by the Russian mathematician Smolyak, and it was designed to tackle the problem of ‘curse of
dimensionality’ [48]. The key idea of the Smolyak sparse grid is that it selects a relatively small number of nodes
on the full tensor-product grid in terms of potential importance of the nodes, thus resulting in great computational
efficiency. In this case, only a small number of Smolyak nodes are involved in calculation rather than all the nodes on
the full tensor-product grid. There is a approximation level, that controls how many nodes on the full tensor-product
grid are selected. The higher the approximation level is chosen, the larger number of nodes will be used and higher
approximation quality will be obtained, for more details, see [48,49]. Smolyak presented a rule that selects nodes from
tensor product grid. The process of sampling the parameter interpolation points over the parameter space R” can be
summarized as follows:

Let O ll f be a quadrature rule on dimension 1 with N; parameter points, it assumes the following form,

N; ) )
Q1 f = fupi, ©)
i=1

where / denotes the approximation level of sparse grid and f is the function on the interval [0, 1] to be approximated.
The n denotes the weight corresponding to the parameter point y; and i denotes the ith points on the dimension.

In order to construct the sparse parameter interpolation points, a multi-index [ is introduced and has the following
form of,

1= (10)

i=1

The multi-index / determines the number of points selected from the tensor product grid and it satisfies the condition
given in (14). Using the multi-index, the d-dimensional sparse grid quadrature formulation Q IP f on the space [0, 117
then can be defined as,

off= > A e --0A)f. (11)

N<i+P-1
where A ll is a difference quadrature rule, and is defined as,
Al =(Q] = Q-1 f. (12)
with

04f =0, (13)
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Fig. 1. The graph shows the 1-D Smolyak grid with level 0, level 1 and full tensor product grid (top to bottom) respectively.

]
(a) 2-D tensor (b) Smolyak grid,
product. level = 0.
-
L ] ®
-
(c) Smolyak grid, (d) Smolyak grid,
level = 1. level = 2.

Fig. 2. The figures displayed above shows the full tensor product grid and 2-D Smolyak sparse grid with level 0, 1 and 2.

The Smolyak sparse grid satisfies the following condition:
P<Lii+ir+---+ip <P+, (14)

which i1, i> and i p are indices corresponding to dimension 1, 2 and d respectively, and each one varies from 1 to the
number of parameter points in one dimension. For example, in one dimension case, if there are three parameter points
on the dimension, then iy C 1, 2, 3. Examples of Smolyak sparse grids of approximation levels 0, 1, 2 with dimension
size 1 and 2 are illustrated in Figs. 1 and 2.

As can be seen in Figs. | and 2, the Smolyak sparse grid has a considerably decreased number of nodes. In one-
dimensional cases, see Fig. 1, the full tensor product has 5 nodes while the Smolyak sparse grid has only 1 or 3 nodes
depending on the level zero or one. In two-dimensional cases, see Fig. 2, the full tensor product has 25 nodes (5 x 5),
while the Smolyak sparse grids with levels O, 1 and 2 only have 1, 9 and 13 nodes respectively. It is worth noting
that the number of nodes ratio for the full tensor product and Smolyak sparse grid increases as the dimension size
increases. More details regarding the construction of Smolyak sparse grid can be found in [50,49]. In this work, each
varying parameter constitutes one dimension in the parameter space which can be a high dimension space.

3.2. Interpolation of basis function and snapshots over the parameter space

By running the original high fidelity model (1) for each parameter point p,, € RP (here p = (1,..., P), P is
the number of parameter interpolation points) sampled using the Smolyak sparse grid method, one can obtain a set of
snapshots u(-, -, u p) and basis functions @(-, u p). For any given parameter p € RP . the snapshots u(-, -, u) can be
given using an interpolation function Z:

u('5‘7 M’) ZI(u('v" M’])ﬂ'"vu('a" M’P)) (15)

There are a lot of interpolation methods to choose from. For a high dimensional parameter space, we may choose
the Smolyak sparse grid method described above. Here we will introduce the RBF interpolation method. The RBF
is a function that its value depends on the distance from the origin or some other interpolation points. The RBF
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interpolation method constructs an approximate function through a number of random data points, here the parameter
interpolation points chosen using the Smolyak sparse grid method.
Let Z(p) denote the interpolation function representing u(-, -, ) and (-, p), and has the form of,

P
Iy =Y wyd(le— myl). (16)

p=1

where Z(u) denotes the approximating function, and is a sum of P radial basis functions ¢, each RBF associated with
a different centre u ,, and weighted by a coefficient w,. P is the number of training data points. The norm is usually
chosen to be Euclidean distance. The frequently used RBFs can be either multi-quadric, inverse quadratic, Gaussian,
plate spline or inverse multi-quadric. In this work, the Gaussian RBF is chosen, which has a form of ¢ (r) = e~/ o)?
(r being radius and o being the shape parameter). The weights w = (w1, ..., wp, ..., w p)T can be obtained by
solving the linear equation (17),

Aw = b, (17)

where b is a vector containing real functional values on the training parameter points,

Uy =D ddlpwy —p20) Py —pplD)
Sy — D ddlpa—p2l) @l —ppl)

(18)

S Ump—ml) ¢Urp—mol) e —mpl

The process of constructing a set of snapshots over the parameter space is summarized in algorithm 1.
4. Construction of P-NIROM for parameterized PDEs

In this section, we provide the details of constructing and solving the P-NIROM. The basic idea is to construct a
set of hyper-surfaces for representing the physical dynamics of the parameterized PDEs. The parameterized ROM in
(8) can be re-written at each time level el

u G ) = f ()T ), ), (G ) (19)

where the superscript n represents the time level. In this work, the recently developed non-intrusive ROM approach
is used for constructing the P-NIROM of (19). Using the RBF or Smolyak methods, the hyper-surface sets fi,
(m € (1,..., M)) are constructed to represent the physical dynamics of the original PDEs over the reduced space:

L+l _ , : ,
w, =g (" ) me (1L M, (20)

where f,, € RM*+!isa M + 1 dimensional surface. Using the RBF, a set of hyper-surfaces f,, for any parameter set
[ over the parameter space can be expressed below:

N
Jm@"" () = Z wy ¢ () —u™" (W), me ..., M), ey

n;=1

where the weights w),! can be obtained by solving:

¢(’ur,l_ur,1‘ ) (p(’ur,l_urﬂ‘ ) ¢(‘ur,l_ur,N, ) ) ol
2 2 2 w,, ;
¢ (‘ ur,2 _ ur,l ‘ ) ¢ (‘ ur,2 _ ur,2 ‘ ) . ¢ (‘ ur,2 _ ur,N, ) wgl u:;lZ
2 2 2 m = , (22)
ol ) o] o)
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Algorithm 1: Constructing a set of snapshots and basis functions over the parameter space

Offline procedure: Calculating the snapshots or basis functions over the parameter interpolation points

(1) Construct a parameter space R’ . That is, determine the dimensional size P of the parameter space and the
parameter range along each dimensional direction. The varying parameters then constitute a tensor product
grid;

(2) Generate a Smolyak sparse grid over the parameter space, fy, ..., L, ..., fp;

(3) Generate snapshots u(-, -, ) for each parameter vector u,, (p € (1, ..., P)) by solving the high fidelity
model over the simulation time period [0, T'];

(4) Calculate POD basis functions @(p p) for each node through a truncated SVD of the snapshots matrix;

Online procedure: Construct the basis functions for any parameter set & over the parameter space

(1) Calculate snapshots u(-, ¢, &) € R" for a new arbitrary parameter point g within the domain of the tensor
product grid through the interpolation surface using the following loop:
for j =1to N do
(i) Calculate the weights w; = (w; 1, ..., wj,p)T by solving:
Awj =bj. bj= (.1, ). ....u(. 1. kp)" .

(ii) Obtain an interpolation function (u(j, t, p) = Z;(n)) for calculating the snapshots by substituting
the weights into following equations,

»
Ziw) =Y wjp ¢l —nyl).

p=1

(iii) Obtain the snapshots u(-, ¢, ;) for any given parameter p; € R’ using:

P
Zj(me) = Z wj.p & (e = wp -

p=1
L endfor
(2) Calculate the basis functions @(x, p;) based on the snapshots u(-, ¢, u;) using SVD described (3) - (5) in
section 2.
where u" (g) = (u" (), ..., uy"(w) (n; € (1,..., Ny)) are the reduced numerical solution for any parameter

set u € RP, which can be obtained:

(1) Using algorithm 1, we obtain a set of snapshots {u" (x, #)} and basis function @(x, );
(2) Projecting {u™ (x, )} over the reduced space which is constituted by @(x, i), the reduced order solution, u”" (@),
is calculated.

The construction of P-NIROM is summarized in algorithm 2, the procedure of solving the P-NIROM is provided in
algorithm 3. By projecting the reduced solution u”>**! at time level n + 1, we can obtain the approximation of the
high fidelity solution using Eq. (2).

5. Numerical examples

Two examples are presented in this section to illustrate the capabilities of the P-NIROM in resolving flow
problem governed by the Navier—Stokes equations. In the first example a flow past a cylinder is solved. This is
used to demonstrate the predictive capabilities of the P-NIROM as the boundary condition (inlet velocity) and model
parameter (viscosity) vary. In the second example a 2-D lock exchange problem is solved. This example involves
varying the initial conditions (initial temperature distribution). Both examples were simulated under the framework of
an advanced unstructured mesh finite element model (Fluidity) [51].
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Algorithm 2: Online procedure: constructing a P-NIROM for parameterized PDEs

(1) Obtain the full solution snapshots u”™ (n; =1, ..., N;) for any parameter set u € R’ by interpolating u™ (st »)
over the parameter training points g, (here p € (1,..., P));
(2) Calculate the reduced solution w™>" (u) by projecting u™ onto the reduced space;
(3) Obtain a set of hyper surfaces { f;,}, m € (1, ..., M) for each basis function { $,,} through the following loop:
form =11t M do

(i) Calculate the weights wy, by solving (22);
(i1) Obtain a hyper-surface f,, for the basis function &, using the RBF:
endfor
(4) Construct the P-NIROM for calculating {u};" ™'}, (m € (1, ..., M)) at time level n + 1:

w ) = f (W), (), ()

Algorithm 3: Online procedure: solve the P-NIROM and obtain the approximation of the high fidelity solution
(1) Initialization.
for m = 1tomdo
Initialize ul);
endfor
(2) Calculate reduced numerical solutions at the current time step (here N7 is the number of time levels:
forn =1to NT do
form =11t M do
(i) Assign a complete set of the reduced solution w™" = (u}", ..., u},) at previous time level n
into the hyper-surface f;;:

S ")
(i) Calculate uj;" ! at the current time level n + 1 using:
w, ) = f (05, (), W () (23)

L endfor
Obtain the approximation of the high fidelity solution at the current time level n + 1 by projecting

u”> "1 (n) onto the full space using:

M
vt L) =) uld,
m=1

endfor

5.1. Case I: flow past a cylinder

In this example a two dimensional flow past a cylinder is numerically simulated. The problem domain is presented
in Fig. 7 which shows a cylinder with a radius of 0.12 at location (0.2, 0.2) embedded within a rectangle with a
length of 2 and a width of 0.4 (a non-dimensional unit). The fluid dynamics of the flow is driven by an inlet velocity,
which enters from the left boundary of the domain. The fluid is allowed to flow past through the right boundary of the
domain. No slip and zero outward flow conditions are applied to the lower and upper edges and the Dirichlet boundary
conditions are applied to the cylinder’s wall. The simulation time period is [0, 6], and the time step size is Az = 0.01.
300 snapshots were sampled at an equal time interval of A¢ = 0.02 during the time period [0, 6]. The computational
domain consists of 3213 nodes.

5.1.1. Case la: one-dimensional parameter space (inlet velocity)

In this test case, the parameter to vary is the inlet velocity, i.e. ¢ = u|x = 0 (where u € R, one-dimensional).
The inlet velocity was ranged from 0.45 to 0.55. Three inlet velocities, 0.45, 0.5 and 0.55, were chosen as the training
points within the parameter space {2, € [0.45, 0.55] using the Smolyak sparse grid with an approximate level / = 1.
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Fig. 3. Case la: the figure shows the first 36 eigenvalues in a decreasing order.
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(c) The third POD basis. (d) The sixteenth POD basis.
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(e) The 35th POD basis. (f) The 36th POD basis.
Fig. 4. Case la: the figure shows some of the first 36 POD basis functions of flow past a cylinder test case.

The solution snapshots (u(-, ns, p,,)) over the training points were obtained by running the high fidelity model for
each training inlet velocity. The P-NIROM was then constructed from these solution snapshots over the training inlet
velocity points. To demonstrate the capability of the P-NIROM, a new (untrained) inlet velocity of 0.46, was chosen.
The snapshots for the new inlet velocity were computed by interpolating u(-, ns, ;) using the RBF method, where
the multiquadric basis function was used. The POD basis functions were then obtained by POD-SVD. The P-NIROM
for the new inlet velocity was constructed by a set of hyper-surfaces (see algorithm 3).

The singular values are presented in Fig. 3. It can be seen that there is a sharp drop in the first five singular values.
The POD basis function associated with a larger eigenvalue can capture the more energy in the original flow dynamical
system. This can be confirmed on inspection of the basis function in Fig. 4 which shows the first, second and third
basis functions capturing 50.1%, 14.2% and 9.1% of the total energy respectively, and the 16th, 35th and 36th basis
functions capturing 0.44%, 0.019% and 0.017% of the total energy respectively. Fig. 3 provides us a clear indication
how to choose the number of basis functions to represent the original dynamic system.
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Fig. 5. Case la: the figure shows the velocity from full model and the NIROM with 6, 12 and 36 POD bases at time instances 3 and 6.

In this example, 6, 12 and 36 basis functions are selected to construct the P-NIROMs. Fig. 5 presents the velocity
solution obtained from the high fidelity model and P-NIROMs using 6, 12 and 36 basis functions at time levels r = 3
and ¢ = 6. Whilst there are visual differences between the high fidelity model and NIROM using 6 basis functions,
the P-NIROM has still captured the dominant flow structure. With increased POD basis functions, the P-NIROM
can capture the details of the flow very well in comparison with the high fidelity model. This can be confirmed on
inspection of Fig. 6, which presents the error of solutions between the fidelity model and P-NIROMs with 6, 12 and 36
basis functions. The error is evidently decreased when the number of basis functions is increased to 36. Fig. 7 provides
a comparison of the velocity profile from the high fidelity model with the P-NIROM using 6, 12 and 36 basis functions
at a particular point (x = 0.89514, y = 0.32519). It shows that the P-NIROM solutions with 36 basis functions are in
close agreement with the high fidelity solutions although there is a slight difference at the perturbation peaks.

The error analysis of NIROM has been further carried out using the root-mean-square error (RMSE) and correlation
coefficient of solutions between the high fidelity model and P-NIROMs, which consider all the computational nodes
on the mesh and all the simulation time levels. Fig. 8 shows the RMSE and correlation coefficient between the high
fidelity model and NIROMs with 6, 12 and 36 basis functions. Again we can see that the P-NIROM with more basis
functions exhibits higher prediction accuracy.

5.1.2. Case 1b: two-dimensional parameter space (inlet velocity and viscosity)

To further test the predictive capability of the P-NIROM, two parameters have been varied: the inlet velocity and
viscosity, which construct a two-dimensional parameter space. Table 1 lists a combination of varying parameters in
the case of the flow past a cylinder — labelled A1-A13 are the training parameter points, which are chosen using the
Smolyak grid method with an approximate level of 2. In Table 1, u; and p, denote the inlet velocity and viscosity
respectively. Two new (untrained) parameter points (0.5, 0.833 x 10~%) and (0.525, 0.5 x 10~%) — labelled T1 and
T2 are chosen to demonstrate the capability of the P-NIROMs. The two parameters constitute a 2-D Smolyak sparse
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Fig. 6. Case la: the figure shows the velocity error between the high fidelity model and P-NIROMs with 6, 12 and 36 POD bases at time instances

3 and 6.
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Fig. 7. Case la: the figure shows the velocity profile at location (x = 0.89514, y = 0.32519) from the high fidelity model and P-NIROM with 6,

12 and 36 basis functions.

grid — as shown in Fig. 9. In this figure, solid dotted points are training points (A1-A13) and the circled points (T1

and T2) are untrained points used to demonstrate the predictive capability of the P-NIROM.

Fig. 10 shows the velocity solution from the high fidelity model and P-NIROM at the untrained point T1 at time
levels 3 and 4.6. It can be seen that the P-NIROM predicted the flow pattern well. Visually, there is little difference
between the high fidelity model and P-NIROM. In order to see the difference, the velocity solutions obtained from
the full model and NIROM at a particular point within the computational domain (x = 0.32289, y = 0.34007) are

compared in Fig. 11. Again, there are slight differences at time instances 0.4-0.8 and 2.
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Fig. 8. Case la: the figure shows the root mean squared error (RMSE) and correlation coefficient between the high fidelity model and NIROMs
with 6, 12 and 36 POD bases.

The velocity solutions from the high fidelity model and P-NIROM:s at the untrained point T2 at time levels 3
and 4.6 are presented in Fig. 12. Again, the visual difference is not obvious. In order to see the little difference,
Fig. 13 compares the velocity solutions between the high fidelity model and P-NIROM at a particular point in the
computational domain (x = 0.44274, y = 0.35188) for the untrained point T2. As shown in this figure, the P-NIROM
can predict the velocity solution at the untrained point well.

5.2. Lock exchange

In this case, the P-NIROM is used for resolving a lock exchange problem which involves two fluids of different
temperature and density separated by a lock. When the lock is removed, two currents propagate along the tank
horizontally. This laboratory-scale set up incorporates dynamics observed in gravity currents over a range of
scales [52]. The problem computational domain is presented in Fig. 14 which consists of a non-dimensional rectangle
(0.8 x 0.1). The initial conditions for the velocities and pressure are ug = 0 and py = 0O respectively. The isotropic
value of viscosity is 1 x 10719,

The problem was resolved using the mesh which consisted of 4242 nodes, and 120 snapshots were obtained at
regularly spaced time intervals during the time period [0-30] from the high fidelity solutions. In this test case, the
parameter to vary is the temperature. The parameterized initial temperature condition, p = Ty € R, was varied from
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Fig. 11. Case 1b: comparison of the velocity profile at x = 0.32289, y = 0.34007 at an untrained parameter point T1.
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Table 1

A list of combination of training parameters for the flow past a cylinder (parameter one g1 : inlet velocity; parameter two g, : viscosity).
Cases i %3 Reynolds Cases " 123 Reynolds
Al 0.5000 0.667 x 1074 1500 A8 0.450 0333 x 1074 2700
A2 0.4500 0.667 x 1074 1350 A9 0.550 0.333 x 1074 3300
A3 0.5500 0.667 x 1074 1650 Al10 0.450 1.000 x 104 900
A4 0.5000 0.333 x 1074 3000 All 0.550 1.000 x 1074 1100
AS 0.5000 1.000 x 1074 1000 Al2 0.500 0.431 x 1074 2320
A6 0.4646 0.667 x 1074 1394 Al3 0.500 0.902 x 1074 1109
A7 0.5354 0.667 x 1074 1606

T1 0.5000 0.833 x 1074 1200 T2 0.525 0.5 x 10~% 2100

Velocity Magnitude eloc agnitude
0.2 0.4 06 0.8 0.2 0.4 06 0.8
i .
(a) t = 3, full model. (b) t = 4.6, full model.

Velocity Magnitude elocity Magnitude
0.2 .04 06 08 0.2 0.4 06 .. .. 0.8
(c) t = 3, NIROM, 30 POD basis. (d) t = 4.6, NIROM, 30 POD basis.

Fig. 12. Case 1b: the velocity solutions from high fidelity model and P-NIROMs at an untrained parameter point T2 at time instances 3 and 4.6.
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Time(s)

Fig. 13. Case 1b: comparison of the velocity profile at x = 0.44274, y = 0.35188 at an untrained point T2.
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Fig. 14. Lock exchange: the graph shows the computational domain of the 2-D lock exchange problem.
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Fig. 15. Lock exchange: the graph shows the singular values of the 2-D lock exchange problem.

0.45 to 0.55. It was set to be —Tp for the cold fluid at the left side of the lock T for the hot fluid at the right side
of the lock. Using the Smolyak sparse grid with one approximational level, three training data points were selected:
To = 0.45,0.5 and 0.55. The solution snapshots (u(-, n;, u,)) over the training points were obtained by running
the high fidelity model for each training initial temperature value. An untrained initial temperature (7p = 0.46) was
chosen to show the capability of the P-NIROM, that is, the initial temperature of the hot fluid was set to be —0.46
and 0.46 for the cold fluid. For the given new initial temperature 7y = 0.45, using the RBF interpolation method
(the multiquadric basis function was used here), the snapshots were from these solution snapshots over the training
temperature points. A set of hyper-surfaces using the RBF was then generated for representing the flow dynamics of
the ordinal PDEs.

Fig. 15 presents the singular values of the problem in a decreasing order. In this problem, the reduction in the first
10 singular values is very fast, which means the first 10 leading basis functions corresponding to these 10 singular
values capture most of the energy in the original dynamic system. Some of the first 36 basis functions are presented
in Fig. 16, which shows the first few basis functions capture the general velocity pattern while the last few basis
functions the minor details of velocity structures. In this example 6, 12 and 36 basis functions are chosen to generate
the P-NIROM.

Fig. 17 presents the temperature solutions obtained from the high fidelity model and P-NIROM with 6, 12 and 36
basis functions. In comparison to the solution from the high fidelity model, the P-NIROMs appear to be minor visual
differences between all the temperature solutions. However, the temperature solutions predicted from P-NIROM with
6 and 12 basis functions are shown to be diffusing a little bit slower than NIROM with 36 basis functions at the time
level (+ = 30). Using a larger number of basis functions results in higher accuracy of the P-NIROM. The P-NIROM
with 36 basis functions is almost identical to the high fidelity model. This can be confirmed by inspection of the error
Fig. 18, which shows the solution differences between the high fidelity model and P-NIROM with 6, 12 and 36 basis
functions. It is found that the difference of solutions between the high fidelity model and P-NIROM with 36 basis
functions is too small to notice. The error of P-NIROM is further analysed by RMSE and correlation coefficients,
which is presented in Fig. 19. It can be seen that the RMSE and correlation coefficient curves of P-NIROM with 36
basis functions are flat at this scale, and the RMSE of solutions is close to 0 and the correlation coefficient is very
close to 1. This means that in this case P-NIROM using 36 basis functions has captured almost 99.99% energy of the
original flow dynamical system.
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Fig. 16. Lock exchange: the figure shows some of the first 36 basis functions of the problem.
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Fig. 17. Lock exchange: the figures displayed above show the temperature from the high fidelity model and the P-NIROM using 6, 12 and 36 POD
basis functions at time instances 15 and 30.

5.3. Efficiency of the P-NIROM model

This section compares the online computational cost required by the high fidelity model and NIROM. The
specifications of the computer for simulations were: 4 cores with a frequency of 2.00 GHz (Intelg Core™ i7-3537U
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Fig. 18. Lock exchange: the figures show the temperature error between high fidelity model and NIROM with 6, 12 and 36 POD bases at time
instances 15 and 30.

Table 2

Online dimensionless CPU cost required for simulating the two test cases using the full model and NIROM during one time step.

Cases Model Assembling and solving Projection Interpolation Total
Flow past Full model 0.5891 0 0 0.6002
a cylinder NIROM 0 0.0003 0.0001 0.0004
Lock Full model 0.9489 0 0 0.95003
exchange NIROM 0 0.0003 0.0001 0.0004

CPU @ 2.00 GHz x 4); a 8 GB memory. One core was used when running the simulations since the test cases were
simulated in serial.

Table 2 lists the online CPU cost required for simulating the flow past a cylinder and lock exchange test cases using
the full model and NIROM. The offline cost involving constructing the basis functions is not listed in this table.

As shown in the table that the online CPU time required for the NIROM is substantially less than that for high
fidelity model. The reduction in CPU time is dependent on the complexity of problem.

6. Conclusion

This article has presented a general P-NIROM technique for model reduction of parameterized time-dependent
nonlinear PDEs. It is non-intrusive (independent of equations and numerical discretized schemes/codes) and easy to
implement, especially for complex dynamic codes (e.g. unstructured mesh models). The procedure of constructing a
P-NIROM can be split into the offline and online procedures. During the offline (training) procedure, the parameter
training points are selected using the Smolyak sparse grid. The solution snapshots and POD basis functions can then
be obtained by running the high fidelity model for the selected training parameter. During the online computation,
for any given (untrained) parameter, the snapshots and corresponding POD basis functions can be computed using an
interpolation approach (here the RBF method). Finally we have extended our recently developed NIROM technique
(see [41]) to generate the P-NIROM, that is, by using the RBF approach to construct a set of hyper-surfaces that
represent fluid dynamics of the system. Over the existing non-intrusive ROM for parameterized PDEs proposed
in [17], there is no need to solve an auxiliary parabolic linear PDE which is split from the original nonlinear PDE.
The P-NIROM technique has been used for model reduction of the parameter Navier—Stokes equations and applied to
an unstructured mesh finite element fluid model.

Two numerical examples were chosen to demonstrate the capabilities of the P-NIROM. In the first numerical
example, flow past a cylinder was solved, where the P-NIROM was trained upon a small number of parameter points
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Fig. 19. Lock exchange: the figure shows the root mean squared error (RMSE) and correlation coefficient between the high fidelity model and
P-NIROMs with 6, 12 and 36 POD basis functions.

determined by the Smolyak sparse grid and then tested on an untrained parameter point (here, the two dimensional
parameter space was constructed by the inlet velocity and viscosity). It is shown that the P-NIROM can retain much
of the accuracy of the high fidelity model while the computational time is reduced by three orders of magnitude. In the
second example, a lock exchange problem was solved. The prediction capabilities of the NIROM have been evaluated
by specifying a new (untrained) initial condition. Again it shows that the problem is well predicted with a significantly
reduced computational cost. An error analysis has been undertaken through the RMSE and correlation coefficient of
solutions between the high fidelity model and P-NIROM.

This P-NIROM is independent of the source code of the full system, therefore, it is easy to extend to complex
applications, such as multi-physics problems, model uncertainty analysis, sensitive analysis, model parameter
estimation and control (e.g. shape optimization control and closed-loop turbulence control [53]). The applications
of the P-NIROM are not limited to the fluid flow applications demonstrated in this paper. In the future, we will apply
our model to more complicated time-dependent non-linear PDEs and explore the stability of long-term parametric
non-linear dynamical systems. The generalized Lyapunov’s direct method [28] can be used to guarantee the long-
term boundedness if there is a monotonically attracting ‘trapping region’. The concept of long-term boundedness is
linked to the stability analysis of parametric nonlinear PDE systems with respect to the parameters e.g. initial and
boundary values using the energy method. By analysing the spectrum of eigenvalues and Lyapunov exponents, a
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sufficient criterion for long-term boundedness of Galerkin systems can be used to exclude infinite blow-ups of the
system state solutions in finite or infinite periods of time [28]. In the near future we will explore solution boundedness
and methodologies for interpolating the ROM basis functions over parameter ranges.
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Appendix
A.l1. Error analysis for P-NIROM

This section provides a priori error analysis for P-NIROMs. Let u(g, X, t) and u” =N/ ROM (y x 1) denote the full
and P-NIROM solutions for any given parameter u respectively. The error norm is chosen to be Euclidean distance.
The error between the full and P-NIROM solution can be estimated by:

lu—u? " NROM | = |(u— ¢dTu) + (6Tu— 68T 01) + (6T w" — ul ~NIROM|
< |lu— ¢¢Tul|+ [|#0Tu — ¢dTH)| + | PTd — ulNIROM| (24)
where @ = (¢1, ¢2,...,dm) consists of the leading POD basis functions which are obtained using POD-SVD
and u(p, x, 1) = Z(p) is an optimal approximation of u which can be obtained by interpolating the solutions over
the Smolyak grids (for details, see algorithm 1) and the corresponding POD basis functions ¢ are calculated using
POD-SVD based on snapshots t. We can see that the error, |Jlu — uf—NIROM | g split into three parts: the POD

truncation error, the error of solution snapshots and POD basis functions due to the interpolation over the sparse grids,
and the error from the calculation of the P-NIROM solution u’.

A.l1.1. Truncation error
& @Tu is an optimal approximation of u and the error is bounded by /X341 if M leading POD basis functions are
chosen [54], that is,

lu— ¢80Tl < /Ay, (25)

where Ay is the M + 1th eigenvalue of BT B (where, B is defined in (6)). In P-NIROM, the snapshots and POD
basis functions for any given parameter g over the parameter space are calculated by interpolating them over the
parameter sparse grids (see algorithm 1), thus resulting in the interpolation error described below.

A.1.2. Errorin calculation of snapshots
The second term in (24) is caused by the interpolation error in calculation of snapshots, which is the interpolation
method dependent.

|60 Tu— ¢dTd| < || 0P u— ¢ u| + |2 Tu— T a|
<[®d" — o3| ul + |2 Ju—1q. (26)
(a) In the Smolyak sparse grid method, these errors in (26) are bounded by [55]:

160" — 60T | < Cypm ™ (og(m) TPV o607,
lu— @l < Cgpm*logm)*TVE=D ||, 27)
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where k is the degree of polynomials, d is the dimensional size of the variable space (for parameter space, d = P)
m = m(l +d, d) (I is the approximation level used in the Smolyak grid) is the number of sparse grids used. Due
to the orthonormality of POD basis functions, &7 = I and &7 = I.

(b) In the radial basis function method, for a given positive constant p, we define K, = {u € RP | p—n ol < p}
It is proven the existence of positive constants k¢, ky € N and C1, C; € R, the local errors in (26) are estimated
by [56]:

|67 — 27|

IA

cg-Cp-hi?,

o — @[ < cu-Ca- Ry, (28)

IA

where cg and ¢y are constants dependent of the radial function ¢, as well as ¢ and u respectively, and h, :=
maxyek, Mini<p<p |1 — ppll.

A.1.3. Error in calculation of P-NIROM solution/coefficient
The third term in (24) is

” @é}Tﬁ _ uP—NIROM” — ” &)ﬁr,* _ éur,NIROM”

A

| |22 [E"* — Pu"NTROM (29)

where, u"* = &7 is the POD solution by projecting the full model solution onto the reduced space; u>N/ROM g

the solution from the P-NIROM,; || |22 is defined below:
| Pll2,2 = supx || Px|l/llx]. (30)
Taking into account #&T = T (where 7 is an identity matrix), thus || Plap2 =1.
(a) In the Smolyak sparse grid method, the error between u’>* and u"»N/ROM is bounded by [55]:
@ — duNIROM | < Ctri,kmr’_kr (log(mr))(k’+l)(d'—l)”ﬁr,*”’ 31)

where k" is the degree of polynomials, d” is the dimensional size of variable space, the m" = m" (I" +d",d") (I"
is the level used in the Smolyak grid) is the number of sparse grid used.

(b) In the radial basis function method, for a given positive constant pyr, we define K, = {u

|u-NIROM _ ur’fWROMII < pw} (here {uy,} are training points, Nt is the number of the training points). It is

proven the existence of positive constants kyr € N and Cyr € R, the local errors in (29) are estimated by

rNIROM ¢ RNT |

~ ~ k,
167 — GuNROM| < ey - Cur - M (32)
where cyr is constant dependent on the radial function ¢ and u, and h,, ‘= maxucg o minj<p<p [ — 1 » Il
u <p<
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