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a b s t r a c t

A reduced order model based on Proper Orthogonal Decomposition (POD) 4D VAR
(Four-dimensional Variational) data assimilation for the parabolized Navier–Stokes (PNS)
equations is derived. Various approaches of POD implementation of the reduced order
inverse problem are studied and compared including an ad-hoc POD adaptivity along with
a trust region POD adaptivity. The numerical results obtained show that the trust region
POD 4D VAR provides the best results amongst all the POD adaptive methods tested in all
error metrics for the reduced order inverse problem of the PNS equations.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

The parabolized Navier–Stokes (PNS) equations are simplified Navier–Stokes equations obtained by eliminating the
streamwise second order viscous terms [1,2]. The solution can be obtained by marching in the streamwise direction (i.e.
in the x direction along the surface, downstream direction) from some known initial location. Thus the x direction is taken
as time and the y direction is taken as space for a two-dimensional problem, which makes the problem a one-dimensional
problem in space actually.

The four-dimensional variational (4D VAR) data assimilation process seeks the minimum of a functional estimating the
discrepancy between the solution of the model and the observation [3]. The derivation of the optimality system, using the
adjoint model, permits us to compute a gradient which is used in the optimization.

The data assimilation problem, which is one type of inverse computational fluid dynamics (CFD) problems, is
characterized by the high CPU time and memory load required for the computation of the cost functional and its gradient,
as well as by the instability (due to ill-posedness) which prohibits use of Newton-type algorithms without prior explicit
regularization [1]. Specifically, the computation of the gradient of the cost functional with respect to the control variables
using the adjoint model requires the same computational effort as the direct model.

For the data assimilation problem of the PNS equations, the PODmodel reduction technique [4,5] for the introduction of
the POD theory and [6–10] for the application of POD is introduced in order to improve the efficiency of the 4D VAR data
assimilation process [11].
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Since the validity of the POD reduced order model is limited to the vicinity of the design parameters in the control
parameter space, it might not be an appropriate model when the latest state is significantly different from the one on which
the POD reduced order model is based. Therefore, an ‘ad-hoc’ adaptive POD 4D VAR data assimilation method [12,13,3] was
implemented by updating the POD reduced order model during the optimization process.

To improve the performance of the ‘ad-hoc’ adaptive POD 4D VAR data assimilation method, the trust region POD
4D VAR data assimilation was introduced by Bergmann and Cordier [14] and Arian et al. [15]. It was applied to fluid
mechanics for the first time by Fahl [16] in a flow control problem with the unsteady boundary condition being
the control variables. In the data assimilation process of the PNS model, the initial condition is used as the control
variable.

Combining the PODmodel reduction technique with the concept of the trust region optimizationmethod [17] presents a
framework for deciding when to update the POD reduced order model by projecting back to the high-fidelity model during
the optimization process [18,16,15]. The limited-memory BFGS (L-BFGS) quasi Newton optimization method was used in
the minimization of the cost function. Moreover, the trust region method is supported by a global convergence result that
ensures the trust region iterates produced by the optimization algorithm that started at an arbitrary initial iterate, will
converge to a local optimizer of the high-fidelity 4D VAR problem [19,18,16,15].

Part I of this paper relates to reduced order modeling based on POD of a PNS equations model and is focused on the
POD reduced order forward model. The POD 4D VAR data assimilation process performed in this paper is based on the
POD reduced order forward model. During the adaptive POD 4D VAR data assimilation process, a new set of snapshots is
generated from the full forward PNSmodel using an updated initial condition (control variable). The reduced order forward
model was then updated using the new set of snapshots.

In the present article we apply the PODmethod to derive a reduced order model of the data assimilation problem for the
PNS equations and then introduce the POD 4D VAR adaptivity to improve the performance of the reduced order model. The
trust region scheme is combined with POD 4D VAR data assimilation in order to solve the reduced order inverse problem
more efficiently. To the best of our knowledge, this is a first application of the POD 4D VAR and the adaptive POD 4D VAR
(the ad-hoc adaptive POD 4D VAR and the trust region POD 4D VAR) for a data assimilation problem addressing the PNS
equations.

The paper is organized as follows. Section 2 presents the PNS model description along with the corresponding adjoint
model of the PNS equations. Section 3 details the construction of the POD 4D VAR data assimilation model, consisting of
Section 3.1 where the basic theory of the PODmethod is presented and Section 3.2 which illustrates the process of applying
the POD method to the 4D VAR data assimilation of the inverse PNS model along with the algorithm of the ad-hoc adaptive
POD 4D VAR method. Section 4 presents the classical trust region optimization method and the trust region scheme for the
POD 4D VAR data assimilation. In Section 5 we present numerical results obtained comparing the performance of the POD
4D VAR, the ad-hoc adaptive POD 4D VAR and the trust region POD 4D VAR with that of the full 4D VAR for solving the
inverse problem of the PNS equations. In Section 6 a summary and conclusions are provided including a discussion related
to future research work.

2. PNS model description

2.1. Forward model

The two-dimensional steady supersonic laminar flow is modeled by the parabolized Navier–Stokes equations (PNS). This
model is valid if the flow is supersonic along the x coordinate and the second order viscous effects along this direction are
negligible, a fact which allows a rapid decrease in the computational time required to complete the calculation [20]. As a
matter of fact, the x direction is taken as time and the y direction is taken as space when solving the equations numerically.
Themodel description used here can be referred to Alekseev’s works on the PNS equations [21–23]. The following equations
describe an under-expanded jet (Fig. 1).
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Fig. 1. Flow region. A—inflow boundary, B, C—lateral boundaries, D—outflow boundary (measurement).

where u and v represent the velocity components along the x and y directions respectively, ρ represents the flow density,
p the pressure, e the specific energy, Re the Reynolds number, R the gas constant, T the temperature, Cv the specific volume
heat capacity and κ is the specific heat ratio.

The following conditions are used for the inflow boundary (A, Fig. 1):

ρ(0, y) = ρ∞(y), u(0, y) = u∞(y), v(0, y) = v∞(y), e(0, y) = e∞(y) (2.2)

where ρ∞(y), u∞(y), v∞(y) and e∞(y) are all given functions.
The lateral boundary (B, C , Fig. 1) conditions are prescribed as follows:
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A space-marching finite difference discretization [21] is employed in Eq. (2.5) to derive the solution of this problem. The
finite difference discretization is of second order accuracy in the y direction and of first order in the x direction. At every step
along the x coordinate, the flow parameters are calculated from the initial inflow location in an iterative manner assuming
the form of time relaxation.

For instance, the discretization of the continuity equation assumes the following form:
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where i and j denote the node index along the x and y coordinates respectively, n is the number of time iterations, and τ is
the relaxation factor.

The discretization form of the other equations in (2.1) of the PNS model is obtained in a similar fashion.

2.2. Adjoint model

For the inverse problem of the PNS equations [21–23], the flow parameters f exp(xm, ym)(m = 1, . . . ,M) at some
designated points of the flow field are available. The parameters f∞(y) = (ρ∞(y), u∞(y), v∞(y), e∞(y)) at the entrance
boundary are to be determined. In order to obtain an optimal representation of the inflow parameters, we construct a cost
functional whichmeasures the discrepancy between themeasured values f exp and the computed values (model predictions)
with respect to the unknown parameters for a set of measurement points.

ϵ(f∞(y)) =

No
m=1


Ω

(f exp(x, y) − f (x, y))2δ(x − xm)δ(y − ym)dxdy (2.6)

where No is the total number of measurement points along the x direction and δ(·) is the Dirac delta function.
Using the forward model and the discrepancy functional with respect to the control variables defined above, we obtain

the adjoint model corresponding to the PNS equations (2.1) as follows:
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The boundary conditions at the outflow location D (x = xmax, Fig. 1) are

Φρ(xmax, y) = 0, Φu(xmax, y) = 0, Φv(xmax, y) = 0, Φe(xmax, y) = 0. (2.8)

The boundary conditions applied at B (y = 1) and C (y = 0) are as follows
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The gradient of the cost functional with respect to the control variables is determined by the forward model flow
parameters as well as the adjoint parameters:
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Note that the underlying numerical procedure for the forward problem (as described in Section 2.1) is only first order
accurate in the x direction. A more advanced numerical scheme is still in development. Because our purpose is to test the
application of the model reduction technique to the data assimilation process, we start with the 2D PNS equations and a
space-marching finite difference scheme. The x direction is taken as time and the y direction is taken as space when solving
the 2D PNS equations numerically. For the space-marching finite difference scheme we adopted here, the stability can be
guaranteed with first order accuracy in the x direction (taken as time).

3. POD 4D VAR

Proper Orthogonal Decomposition (POD) is a model reduction technique which provides a useful tool for efficiently
approximating a large amount of data and representing fluid flows with a reduced number of degrees of freedom.We apply
this method to obtain a reduced order model of the inverse problem for the PNS equations. A decrease both in CPU time and
in the memory requirement is yielded for the computation of the gradient of the cost functional with respect to the control
variables. A reduction in the number of optimization iterations in the reduced order 4D VAR data assimilation process is also
obtained.
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3.1. Proper orthogonal decomposition

Let V represent the model variables (e.g. u, v, e, p). The ensemble of snapshots sampled at designated time steps
{V l

}
L
l=1 = {V l

i }
L
l=1 (1 ≤ i ≤ M) (L ≤ N) can be expressed as the following M × L matrix AV , where M is the number of

nodes, N is the number of time steps, and L is the number of snapshots, respectively.
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The essence of the PODmethod is to find a set of orthogonal basis functions {φi} (i = 1, . . . , L) tomaximize the following
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where i, j = 1, 2, . . . , L and the inner product is defined in the L2 space as ⟨f , g⟩L2 =


Ω
fgdΩ in which f and g are two real

functions defined on the measure space Ω .
Using the L2 inner product, the above optimization problem becomes

max
φi∈L2

1
L

L
i=1

|⟨V i, φi⟩L2 |
2

= max
φi∈L2

1
L

L
i=1


Ω

V iφidΩ. (3.7)

Since the basis functions can be represented as the linear combination of the solution snapshots:
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L
i=1

aiV i (3.8)

the optimization problem changes to the following eigenvalue problem
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In order to solve the above eigenvalue problem,we employ the Singular Vector Decomposition (SVD)method to obtain an
optimal representation for A [24,25], which is an important tool to construct optimal basis of reduced order approximation.
For matrix A ∈ RM×L, there exists the SVD

A = U

S 0
0 0


W T (3.11)

where U ∈ RM×M and W ∈ RL×L are all orthogonal matrices, S = diag{σ1, σ2, . . . , σℓ} ∈ Rℓ×ℓ is a diagonal matrix
corresponding to A, and σi (i = 1, 2, . . . , ℓ) are positive singular values where ℓ denotes the number of positive singular
values. ThematricesU = (φ1, φ2, . . . ,φM) ∈ RM×M andW = (ϕ1, ϕ2, . . . ,ϕL) ∈ RL×L contain the orthogonal eigenvectors
to the AAT and ATA, respectively. The columns of these eigenvector matrices are organized corresponding to the singular
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values σi which are comprised in S in a descending order. Since the number of mesh points is much larger than that of
transient points, i.e.,M ≫ L, the orderM of the matrix AAT is also much larger than the order L of the matrix ATA, however,
their null eigenvalues are identical.

Therefore, we may first solve the eigenvalue equation corresponding to the matrix ATA to find the eigenvectors ϕj (j =

1, 2, . . . , ℓ),

ATAϕj = λiϕj, j = 1, 2, . . . , ℓ. (3.12)

Since the singular values of the SVD method are associated with the eigenvalues of the matrices AAT and ATA in such
a manner that λi = σ 2

i (i = 1, 2, . . . , ℓ), we may obtain ℓ (ℓ ≤ L) eigenvectors {φj}
ℓ
l=1 corresponding to the non-null

eigenvalues for the matrix AAT by

φj =
1
σj

Aϕj, j = 1, 2, . . . , ℓ (3.13)

which can generate a space V defined by V = span{φ1, . . . , φℓ}.
We have to choose an optimal subspace of dimension m given by Vm = span{φ1, . . . , φm} to get a good approximation

of the data set. The vectors φi (i = 1, . . . ,m) are then called POD modes. The goal is to choose m small enough that the
relative information content [26,27], also usually referred to as ‘energy’ I(m) is near to one, which is defined by

I(m) =

m
i=1

λi

ℓ
i=1

λi

(3.14)

i.e., if the subspace Vm should contain a percentage γ of the information in V , then one should choose m such that [28]
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I(m) : I(m) ≥

γ

100


. (3.15)

Inmany applications like fluid dynamics, one observes an exponential decrease of the eigenvalues, so that there is a good
chance to derive low-order approximate models.

Hence, the state variable can be represented by the linear combination of the retained POD basis functions as follows:

V (x, y) = V +

m
i=1

αi(x)φi(y) (3.16)

where αi(x) (i = 1, . . . ,m) are the POD coefficients corresponding to every POD basis function. Note that the x direction is
taken as time and the y direction is taken as space in the PNS model.

3.2. POD 4D VAR

The aim of 4D VAR data assimilation is to reconcile observations with model predictions subject to the model serving
as a strong constraint [29,30]. In the full high-fidelity nonlinear 4D VAR, this process is implemented by minimizing the
following cost functional with respect to the control variables:

J(V0) = (V0 − V b)TB−1(V0 − Vb) +

No
k=1

(HkVk − V o
k )TO−1(HkVk − V o

k ) (3.17)

where V0 is the control vector, V b is the vector containing the background information, B is the background error covariance
matrix, H is an observation operator, Vk is the vector of the model prediction obtained from the full forwardmodel, V o

k is the
observation information vector, O is the observation error covariance matrix and No is the number of observations taken. In
the data assimilation process of the PNS model, we just consider the observation information at the outflow boundary and
don’t involve the background information.

The POD reduced order cost functional in POD 4D VAR assumes the form

JPOD(V0) = (V POD
0 − V b)TB−1(V POD

0 − Vb) +

No
k=1

(HkV POD
k − V o

k )TO−1(HkV POD
k − V o

k ) (3.18)

where V POD
0 is the reduced order control vector and V POD

k is the model prediction obtained from the POD reduced order
forward model.
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In explicit form, the reduced order control vector and the model prediction can be represented as

V POD
0 = V POD

0 (0, y) = V +

m
i=1

αi(0)φi(y) (3.19)

V POD
k = V POD

k (xk, y) = V +

m
i=1

αi(xk)φi(y) (3.20)

where xk (k = 1, . . . ,No) are the locations along the x direction (playing the role of time evolution in the PNSmodel) where
the measurements are taken and m is the number of retained POD basis functions. And αi(xk) (i = 1, . . . ,m) are obtained
from the POD reduced order forward model.

Hence, in POD 4D VAR, the control variables are α1(0), . . . , αm(0). Because m ≪ N ≪ M (N being the number of time
steps, i.e. the number of nodes along the x direction, andM the number of nodes along the y direction), the dimension of the
POD reduced order space is much smaller than that of the full space.

In the process of minimizing the cost functional with respect to the control variables, the limited-memory BFGS (L-BFGS)
quasi-Newtonmethod [17] is applied. The gradient of the reduced cost functional (3.18)with respect to the control variables
can be expressed as

∇α(0)JPOD = ΦT (∇V0 J)|V0=V+Φα(0) (3.21)

where α(0) = (α1(0), . . . , αm(0))T ∈ Rm and Φ = (φ1, . . . , φm) ∈ RM×m (M is the number of nodes along the y direction).
Consequently, computational savings are mainly achieved by a drastic reduction in the number of iterations due to the

low dimension of the optimization problem [31].
Since the validity of the POD reduced order model is limited to the vicinity of the design parameters in the control

parameter space, it might not be an appropriate model when the latest state is significantly different from the one on which
the POD reduced order model is based. Therefore, an ‘ad-hoc’ adaptive POD 4D VAR algorithm [12,13,3] is proposed as
follows:
(1) Generate a set of snapshots from the solution of the full forwardmodel using the specific control variables and construct

the POD reduced order model.
(2) Perform iterations for the optimization problem using the reduced order model with the L-BFGS method and calculate

the cost functional Jn where n is the number of L-BFGS optimization iterations taken.
(3) Check the value of the cost functional.

If |Jn| < ϵ where ϵ is the tolerance for the optimization, then stop, the POD 4D VAR data assimilation is completed;
If |Jn| > ϵ and |Jn − Jn−1| > η (η > 0), then set n = n + 1 and go back to (2);
If |Jn| > ϵ and |Jn − Jn−1| < η, project back the reduced order control variables from the latest optimization iteration

to the original space, generate a new set of snapshots by integrating the original forward model using the projected control
variables and construct a new POD reduced order model, then go to (1).

4. The trust region POD approach

In the POD 4D VAR data assimilation, the POD reduced order model is based on the solution of the full model with the
specific control variables, i.e., whose validity is limited to the vicinity of the design parameters in the control parameter
space [14]. Thus it is necessary to reconstruct the POD reduced order model using a new set of snapshots generated by the
original forward model when the control variables from the latest optimization iteration are significantly different from the
ones on which the POD reduced order model is based. It is important to determine when to project back to the high-fidelity
model and reconstruct a new POD reduced order model based on freshly derived snapshots. The trust region scheme is then
applied to the POD 4D VAR data assimilation process in order to determine when to update the POD reduced order model
during the optimization process. The trust region POD approach was introduced by Fahl [16] and used in fluid mechanics
for the first time in [14].

4.1. Trust region method

The classical trust region method aims to define a region around the current iterate within which it trusts the model to
be an adequate representation of the objective function f , and then choose the step to be the approximate minimizer of the
model inside the trust region. The objective function is approximated with a model function (usually a quadratic function)
only in a certain region (the so-called trust region) [17]. It is assumed that the first two terms of the approximate quadratic
model functionmk at each iterate xk are identical to the first two terms of the Taylor-series expansion of f around xk with a
step p as follows:

mk(xk + p) = fk + ∇f Tk p +
1
2
pTBkp (4.1)

where fk = f (xk), ∇fk = ∇f (xk) and Bk is an approximation to the Hessian matrix.
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We solve the following constrained optimization problem of the approximate model to obtain a proper step pk for the
objective function

minmk(xk + p) = fk + ∇f Tk p +
1
2
pTBkp

subject to ∥p∥ ≤ δk

(4.2)

where δk is the trust region radius.
In order to choose the trust region radius δk at each iteration, we define the ratio

ρk =
f (xk) − f (xk + pk)

mk(xk) − mk(xk + pk)
. (4.3)

If the ratio ρk is negative, the new objective value is greater than the current value so that the step pk must be rejected. On
the other hand, if ρk is close to 1, there is a good agreement between the approximate modelmk and the objective function
fk over this step, so it is safe to accept the step pk and to expand the trust region radius for the next iteration. If ρk is positive
but not close to 1, we accept this step but keep the trust region radius unchanged. But if ρk is positive and far from 1, this
step must be rejected and the trust region radius should be shrunk.

4.2. Trust region POD 4D VAR

In order to decidewhen to project back to the high-fidelitymodel and to construct a new POD reduced ordermodel using
the updated control variables from the optimization iterations, we combine the trust region method with the POD 4D VAR
data assimilation (using the trust regional adaptive POD approach).

An outline of the trust region POD 4D VAR algorithm is as follows [15,32].
Let V 0

= V0, δ0, 0 < η1 < η2 < 1 and 0 < γ1 < γ2 < 1 < γ3 be given, set k = 0.

1. Generate snapshots corresponding to the control V k using the full forward model and construct the POD reduced order
model.

2. Minimize the reduced order cost functional within the trust region

sk = arg min
∥s∥≤δk

mk(V k
+ s). (4.4)

3. Compute the full order model cost functional J(V k
+ sk) and the ratio

ρk
=

J(V k) − J(V k
+ sk)

mk(V k) − mk(V k + sk)
. (4.5)

4. Update the radius of the trust region:

If ρk
≥ η2, set V k+1

= V k
+ sk and increase the trust region radius δk+1

= γ3δ
k, set k = k + 1 and GOTO 1.

If η1 < ρk < η2, set V k+1
= V k

+ sk and decrease the trust region radius δk+1
= γ2δ

k, set k = k + 1 and GOTO 1.
If ρk

≤ η1, set V k+1
= V k and decrease the trust region radius δk+1

= γ1δ
k, set k = k + 1 and GOTO 2.

For the constrained minimization sub-problem

minmk(V k
+ s)

subject to ∥s∥ ≤ δk
(4.6)

we use the bound-constrained L-BFGS-B algorithm [33,34]. It is not necessary to obtain the optimal solution of this problem,
rather it is sufficient to compute a trial step sk that achieves only a certain level of decrease for the fullmodel, to start the trust
region procedure. The trust region methodology is advantageous since we have rigorous convergence results [19,16] that
guarantee that the trust region POD algorithmwill converge to the local minimizer of the original high-fidelity optimization
problem [18,16,15].

5. Numerical results

In this section, the flow-field is computed by marching along the x coordinate which is a proxy for the time evolution
from x = 0 to x = xmax and in the reverse direction for the adjoint model.

5.1. Numerical results of POD 4D VAR

Let the length of the x direction of the flow-field be normalized to 1. The computational grid contains 100 points in
the marching direction (the x direction) and 100 points in the transversal direction (the y direction). Set Re = 103. The
measurement (observation) is taken at the outflow boundary. Fig. 2 shows the initial specific energy e of the flow at the
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Fig. 2. The initial condition for the specific energy e at the inflow boundary A (see Fig. 1).

Fig. 3. The observation for the specific energy e at the outflow boundary D (see Fig. 1).

entrance boundary A (x = 0, Fig. 1), which was obtained using the logistic function. The observation information for the
specific energy e at the outflow boundary D (see Fig. 1) is presented in Fig. 3.

The control variables, i.e., the initial condition at the entrance boundary in this case, after the full 4DVARdata assimilation
compared with the exact initial condition are presented in Fig. 4.

The parameters used in the ad-hoc adaptive POD 4D VAR are taken as ϵ = 10−6 and η = 10−3. Six POD basis functions
were chosen to construct the reduced order model. The optimal initial conditions at the entrance boundary obtained by the
POD 4D VAR data assimilation and the ad-hoc adaptive POD 4D VAR data assimilation as compared with the exact initial
condition are presented in Fig. 5.

For the POD reduced order model, the number of POD bases m = 6 was chosen to maintain a 99% of energy as stated
in Eq. (3.15). In Fig. 6, the reduction of the cost functional using the POD 4D VAR and the ad-hoc adaptive POD 4D VAR
is compared with the result obtained using the full 4D VAR of the PNS model. It can be seen that the cost functional was
reduced from an initial value 1.0 to 10−4 using the full 4D VAR of the PNS model. However, the POD 4D VAR and the ad-hoc
adaptive POD 4D VAR can only reduce the cost functional to 10−1.2 and 10−1.5, respectively.

5.2. Numerical results of trust region POD 4D VAR

For the present case, the cost functional is chosen as follows:

J(e∞) =

M
n=1

(eexp(xmax, yn) − e(xmax, yn))2 (5.1)

whereM denotes the number of nodes along the y direction.
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Fig. 4. The control variables at the entrance boundary for full 4D VAR data assimilation compared with the exact one.

Fig. 5. The control variables at the entrance boundary for POD 4D VAR and ad-hoc adaptive POD 4D VAR compared with the exact one.

  

 

Fig. 6. The performance of minimization of the cost functional for POD 4D VAR and ad-hoc adaptive POD 4D VAR compared with full 4D VAR.
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Fig. 7. The control variables at the entrance boundary for the trust region POD 4D VAR compared with the exact one.

Fig. 8. The performance of minimization of the cost functional for the trust region POD 4D VAR and full 4D VAR.

In POD 4D VAR, we look for an optimal solution of the POD reduced cost function

JPOD(α(0)) =

M
n=1

(eexp(xmax, yn) − ePOD(xmax, yn))2 (5.2)

where α(0) = (α1(0), . . . , αm(0))T and

ePOD(xmax, y) = e +

m
i=1

αi(xmax)φi(y) (5.3)

where e is the mean value of the forward model solution of the specific energy e over the time (the x direction) and φi
(i = 1, . . . ,m) are POD basis functions.

The parameters for the trust region POD 4D VAR algorithm are chosen as [16,14] η1 = 0.25, η2 = 0.75, γ1 = 0.25,
γ2 = 0.75, γ3 = 2.

In Fig. 7, the initial condition of the specific energy e at the entrance boundary after applying the trust region POD 4D VAR
data assimilation is compared with the exact initial condition. The reduction of the cost functional using the trust region
POD 4D VAR data assimilation compared with the one using the full 4D VAR is presented in Fig. 8, in which we can see that
the cost functional was reduced from 1.0 to 10−1.9 using the trust region POD 4D VAR data assimilation.
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(a) RMSE. (b) Correlation coefficient.

Fig. 9. Comparison of the RMSE and correlation coefficient between the full model and the POD reduced order model before and after trust region POD
4D VAR data assimilation.

Table 1
Comparison of the performance of the full 4D VAR, the POD 4DVAR, the ad-hoc adaptive
POD 4D VAR and the trust region POD 4D VAR for the PNS model.

4D VAR Full POD Ad-hoc adaptive POD Trust region POD

Iterations 259 32 71 153
Outer projections N/A N/A 2 6
Cost functional 10−4 10−1.2 10−1.5 10−1.9

CPU time (s) 69.93 10.16 21.18 42.33

In the present paper, the root-mean square error (RMSE) and the correlation coefficient (COR) between the full PNSmodel
and the POD reduced order one are defined as

RMSEl
=

 M
i=1

(V l
i − V l

0,i)
2

M
, l = 1, . . . , L (5.4)

and

CORl
=

M
i=1

(V l
i − V

l
)(V l

0,i − V
l
0)

M
i=1

(V l
i − V

l
)2


M
i=1

(V l
0,i − V

l
0)

2

, l = 1, . . . , L (5.5)

where V l
i and V l

0,i are vectors containing the POD reduced order model solution and the full model solution of the state

variables respectively, V
l
and V

l
0 are average solutions over the y direction corresponding to the POD reduced order model

and the full PNS model respectively,M is the number of nodes along the y direction and L is the number of ‘‘timesteps’’ (the
x direction).

The RMSE and correlation coefficient between the POD reduced order model and the full model before and after the trust
region POD 4D VAR data assimilation are presented in Fig. 9. The results obtained show that the use of the trust region POD
4D VAR data assimilation improved the performance of the reduced order PNS model.

A summary of the performance of the full 4D VAR, the POD 4D VAR, the ad-hoc adaptive POD 4D VAR and the trust region
POD 4D VAR for the reduced order inverse problem of the PNS model is provided in Table 1.

5.3. Numerical results with improved POD reduced order model

To improve the results of the trust region POD 4D VAR data assimilation process, we made some experiments on the
mesh resolution and the selection of POD basis functions adopted to construct the POD reduced order model. The number
of grid points along the y direction was increased from 100 to 400. The number of POD basis functions chosen to construct
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Fig. 10. The control variables at the entrance boundary for the trust region POD 4D VAR compared with the exact one.

 

 

Fig. 11. The performance of minimization of the cost functional for the trust region POD 4D VAR and full 4D VAR.

the reduced order model was increased from six to thirty. When generating the POD basis functions, a H1 norm calibration
method [35] was applied using the gradient information of the snapshots.

After the improvement for the PNS reduced order model, the initial condition (control variable) for the PNS model at the
entrance boundary using the trust region POD 4D VAR compared with the exact one was shown in Fig. 10. The reduction of
the cost functional is shown in Fig. 11. We can see that the cost functional is reduced to 10−3 compared with 10−4 of the full
4D VAR.

The results of the full 4D VAR and trust region POD 4D VAR data assimilation are shown in Fig. 12. We can see that the
result of the POD reduced order model is almost as good as that of the full order model except for some oscillations due to
shortwave instability.

A summary of the performance of the full 4D VAR and the trust region POD 4DVAR for the reduced order inverse problem
of the PNS model using the fine mesh and the improved POD reduced order model is provided in Table 1.

The oscillations in the POD results in the data assimilation process are due to short wave instability in the POD
reduced order ordinary differential equation(ODE) system.Wewill focus on introducing the POD calibration using Tikhonov
regularization, as well as the artificial viscosity [36,37] and mesh stretching [38,39] to get rid of the oscillations in the POD
results in future work.

6. Conclusions and future work

A Proper Orthogonal Decomposition (POD) technique is applied to the ill-posed inverse problem of the parabolized
Navier–Stokes (PNS) equations in order to estimate the inflow parameters from the outflow measurements of the two-
dimensional supersonic laminar flow. The ad-hoc adaptive POD4DVARdata assimilationmethod alongwith the trust region
POD 4D VAR method are studied aiming to improve the performance of the reduced order model. The bound-constrained
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Fig. 12. The control variables at the entrance boundary for the trust region POD 4D VAR compared with full 4D VAR.

Table 2
Comparison of the performance of the full 4D VAR, the POD
4D VAR, the ad-hoc adaptive POD 4D VAR and the trust region
POD 4D VAR for the PNS model.

4D VAR Full Trust region POD

Iterations 259 112
Outer projections N/A 6
Cost functional 10−4 10−3

CPU time (s) 69.93 36.26

version of the limited-memory BFGS method is applied in the optimization process of the trust region POD 4D VAR of the
PNS model. It is evident from the numerical results obtained that the trust region POD 4D VAR method obtained the best
estimation of the control variables amongst all the POD adaptive methods tested, in all error metrics for the reduced order
inverse problem of the PNS equations (see Table 2).

In future research we will implement the shift-mode for non-equilibrium modes proposed by Noack et al. [40–42] that
may improve the results obtained by the trust region POD 4D VAR data assimilation. And we will consider applying the
calibration of the POD reduced order model using the Tikhonov regularization [43] addressing the issue of the choice of a
suitable parameter for the regularization using the L-curve method. Also we will focus on introducing the artificial viscosity
[36,37] and mesh stretching [38,39] to get rid of the oscillations due to short wave instability in the POD reduced order
model. Another approach will consist in using the bundle algorithm of non-smooth optimization coupled with the bound-
constrained L-BFGS-B [44,45] to address the ill-posedness of the inverse problem in the framework of the trust region POD
adaptivity.
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