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a b s t r a c t

A new scheme for implementing a reduced order model for complex mesh-based
numerical models (e.g. finite element unstructuredmeshmodels), is presented. Thematrix
and source term vector of the full model are projected onto the reduced bases. The
proper orthogonal decomposition (POD) is used to form the reduced bases. The reduced
order modeling code is simple to implement even with complex governing equations,
discretization methods and nonlinear parameterizations. Importantly, the model order
reduction code is independent of the implementation details of the full model code. For
nonlinear problems, a perturbation approach is used to help accelerate thematrix equation
assembly process based on the assumption that the discretized system of equations has
a polynomial representation and can thus be created by a summation of pre-formed
matrices.

In this paper, by applying the new approach, the POD reduced order model is
implemented on an unstructured mesh finite element fluid flow model, and is applied to
3D flows. The error between the full order finite element solution and the reduced order
model POD solution is estimated. The feasibility and accuracy of the reduced order model
applied to 3D fluid flows are demonstrated.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

The major issue in large scale complex modeling is that of reducing the computational cost while preserving numerical
accuracy. Using reduced-order modeling amounts to projecting the high-fidelity model onto a reduced space basis. This
yields a set of ordinary differential equations in time, requiring a greatly reduced computational effort [1,2]. Among the
existing approaches, the proper orthogonal decomposition (POD) method provides an efficient means of deriving the
reduced basis for high-dimensional nonlinear flow systems. This technique provides a low-dimensional description of the
time-dependent dynamic system in an optimal way resulting in capture of the greatest possible energy of the system. The
POD method has been widely and successfully applied to signal analysis and pattern recognition [3] as Karhounen–Loeve
expansions, statistics [4] as principal component analysis (PCA), and geophysical fluid dynamics and meteorology [5,6] as
empirical orthogonal functions (EOF). Some reduced order finite difference models and mixed finite element formulations
based on the POD method [7–12] were also developed.
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Most existing approaches for the implementation of POD reduced order models require an intimate knowledge of
complex governing equations and spatial discretizationmethods used in discretizing the full model. The POD reduced order
models are derived by projecting the original partial differential equations (PDEs) onto the reduced space, then discretizing.
For complex mesh based nonlinear models, the reduced order code (including the reduced-basis discretization procedure)
is not simple to implement while retaining the advanced numerical techniques used in the full model (e.g. unstructured
mesh, numerical stabilization schemes, balance conservation etc.). The computational efficiency in forming and solving the
POD reduced-order systems is limited to the linear or bilinear problems [13,14].

More recently, the discrete empirical interpolation method (DEIM) in conjunction with POD improves the efficiency of
the POD approximation and achieves a complexity reduction of the nonlinear term in the full model with a complexity
proportional to the number of reduced variables [15–18]. In this work, a new approach is proposed to derive the POD
reduced order model by projecting the matrix and source term vector of the full discrete model onto the reduced space.
The implementation of reduced order modeling codes involves only the matrix vector multiplication of the full model.
Importantly, the code is largely independent of the implementation details of the original equations. For nonlinear problems,
a perturbation approach is used to help accelerate the matrix equation assembly process, based on the assumption that the
discretized system of equations has a polynomial representation and can thus be created by a summation of pre-formed
matrices.

By using the new approach, a POD based reduced order model has been developed for an unstructured fluid model,
i.e. the Imperial College Ocean Model (Fluidity-ICOM) which can simultaneously resolve both small and large scale ocean
flows while smoothly varying the resolution and conforming to complex coastlines and bathymetry [19,20]. This discrete
POD model retains the advanced numerical techniques as the forward model continues to be developed.

Adaptive unstructured mesh models offer significant advantages over traditional models and are expected to
revolutionize the way multi-scale modeling is performed because they are the only techniques that can simultaneously
resolve both small and large scale flows, thus ensuring that areas of fine resolution are used only when and where they
are required. The key objective of using such meshes is to reduce the overall computational cost and increase the accuracy
of solutions, hence increasing the accuracy of snapshots which are used to form the POD bases for the POD reduced order
models.

This article is organized as follows. Section 2 describes the underlying equations of the fluid model. In Section 3, a POD
reduced order model is derived. Section 4 provides the error analysis between the POD reduced model and the full finite
element model. Section 5 presents some numerical results and demonstrates the feasibility of the POD method as well as
the CPU time gained by applying the POD model reduction in the present form.

2. Description of the fluid model

The three-dimensional (3D) non-hydrostatic Boussinesq equations used in the underlying fluid model are presented as
follows

∇ · u = 0, (2.1)

ρ0
∂u
∂t

= −∇p − u · ∇u − f k × u − ρgk + ∇ · τ , (2.2)

∂T
∂t

+ ∇ · (uT ) = ∇ · (κ∇T ), (2.3)

ρ = ρ0(1 − α(T − T0)), (2.4)

where u = (u, v, w)T = (u1, u2, u3)
T is the velocity vector, p is the perturbation pressure (p := p/ρ0, ρ0 is the constant

reference density), f is the Coriolis force, g is the acceleration due to gravity, T is the temperature. ρ is the density which
satisfies the linear equation of state. ρ0 and T0 are the reference state values. α is the thermal expansion coefficient. The
stress tensor τ is used to represent the viscous terms and is related to the deformation rate tensor Sij as

τij = 2µijSij, 1 ≤ i, j ≤ 3, (2.5)

Sij =
1
2


∂ui

∂xj
+

∂uj

∂xi


−

1
3

3
k=1

∂uk

∂xk
, 1 ≤ i, j ≤ 3, (2.6)

with no summation over repeated indices where x = (x, y, z)T is the Cartesian coordinate system and the viscosities µij are
constants. The horizontal viscosities µ11 and µ22 are allowed to assume two different, uniform values, and the off-diagonal
components of τ satisfy µij = (µiiµjj)

1/2. In principle, coupling of the momentum and continuity equations results in an
extremely large system of equations, for which an efficient solution strategy is difficult to achieve. Therefore, a technique
(e.g. a projection method) is used in which the pressure and velocity variables are solved independently, thus reducing the
total dimension of the equation system [20].
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By applying the finite element method [20], the momentum equations and the continuity equation are rewritten as
follows:

Ω

Mi∇ · udΩ = 0, (2.7)
Ω

Niρ0
∂u
∂t

dΩ =


Ω

Ni(−∇p − u · ∇u − f k × u − ρgk + ∇ · τ)dΩ, (2.8)

where Ω denotes the computational domain, Ni and Mi are the test functions for momentum and pressure, respectively.
The momentum equation discretized in space can be rewritten in a matrix form:

Mu
∂u
∂t

+ A(u)u + Ku + Cp = 0, (2.9)

whereMu is the velocitymassmatrix. A(u) is the advectionmatrix related to the nonlinear term in themomentum equation.
K is the matrix related to the rest of the linear terms of velocity. C is the pressure gradient matrix.

Using the θ-method to discretize the above equations in time yields:

Mu
un+1

− un

1t
+ A(un)un+θm + Kun+θm + Cpn+θp = 0, (2.10)

where

un+θm = θmun+1
+ (1 − θm)un, (2.11)

and

pn+θp = θppn+1
+ (1 − θp)pn, (2.12)

where 0 ≤ θm ≤ 1 and 0 ≤ θp ≤ 1.
Eq. (2.10) is first solved with an initial guess pressure pn+θp

∗ replacing pn+θp , defining:

pn+θp
∗ = θppn+1

∗
+ (1 − θp)pn, (2.13)

where pn+1
∗

could be obtained from the previous time step or an initial pressure-Poisson solve. Denote un+1
∗

as the most
recent solve for velocity. So, instead of Eq. (2.10) one could consider solving

Mu
un+1

∗
− un

1t
+ A(un)un+θm

∗
+ Kun+θm

∗
+ Cpn+θp

∗ = 0, (2.14)

where now

un+θm
∗

= θmun+1
∗

+ (1 − θm)un. (2.15)

Then consider a pressure-correction 1p defined as:

1p̂ = pn+1
− pn+1

∗
(2.16)

where p̂n+1 satisfies

Mu
ûn+1

− un

1t
+ A(un)un+θm

∗
+ Kun+θm

∗
+ Cp̂n+θp

∗ = 0, (2.17)

where

1p̂n+θp = θpp̂n+1
+ (1 − θp)pn. (2.18)

Subtracting (2.14) from (2.17), yields

Mu
ûn+1

− un+1
∗

1t
+ θpC1p = 0. (2.19)

Multiplying (2.19) by CTM−1
u , yields

− CT û
n+1

− un+1
∗

1t
= θpCTM−1

u C1p = 0. (2.20)

To accurately represent the local flow around steep topography, no hydrostatic assumption is made here. The pressure
variable is split into a non-geostrophic and a geostrophic component. This allows the accurate representation of the
hydrostatic/geostrophic balance [20,19].



J. Du et al. / Computers and Mathematics with Applications 65 (2013) 362–379 365

3. POD-reduced model

3.1. Proper orthogonal decomposition

Let V represent the model variables (e.g. u, v, p). The ensemble of snapshots sampled at designated time steps {V l
}
L
l=1 =

{V l
i }

L
l=1 (1 ≤ i ≤ N ) (L ≤ N T ) can be expressed as follows N × L matrix AV , where N is the number of nodes, N T is the

number of time steps, and L is the number of snapshots, respectively.

AV =


V 1
1 V 2

1 · · · VL
1

V 1
2 V 2

2 · · · VL
2

...
...

...
...

V 1
N V 2

N · · · VL
N

 . (3.1)

The average of the ensemble of snapshots {Vi}
N
i=1 is defined as

Vi =
1
L

L
l=1

V l
i , 1 ≤ i ≤ N . (3.2)

Taking the deviation from the mean of the variables yieldsV l
i = V l

i − Vi, 1 ≤ i ≤ N , 1 ≤ l ≤ L, (3.3)

which constructs a N × L matrix A = {V l
}
L
l=1.

The essence of the POD method consists in finding a set of orthogonal basis functions {φi} (i = 1, . . . , L) to maximize
the following representation

1
L

L
i=1

|⟨V i, φi⟩L2 |
2, (3.4)

subject to

⟨φi, φj⟩L2 = 1, i = j, (3.5)

⟨φi, φj⟩L2 = 0, i ≠ j, (3.6)

where i, j = 1, 2, . . . , L and the inner product is defined in the L2 space as ⟨f , g⟩L2 =


Ω
fgdΩ in which f and g are two real

functions defined on the space Ω [21].
Using the L2 inner product, the above optimization problem becomes

max
φi∈L2

1
L

L
i=1

|⟨V i, φi⟩L2 |
2

= max
φi∈L2

1
L

L
i=1


Ω

V iφidΩ. (3.7)

Since the basis functions can be represented as a linear combination of the solution snapshots:

φ =

L
i=1

aiV i, (3.8)

the optimization problem can be represented by the following eigenvalue problem

Dx = λx, (3.9)

where

D = {ci,j}N
i,j=1 =


Ω

(V i)TV jdΩ
N

i,j=1
= AAT . (3.10)

In order to solve the above eigenvalue problem, we employ the Singular Value Decomposition (SVD) to obtain an optimal
representation for A [22]. SVD is an important tool in the construction of optimal bases for reduced order approximation.
For the matrix A ∈ RN ×L, there exists the SVD

A = U

S 0
0 0


W T , (3.11)

where U ∈ RN ×N and W ∈ RL×L are all orthogonal matrices, S = diag{σ1, σ2, . . . , σℓ} ∈ Rℓ×ℓ is a diagonal matrix
corresponding to A, and σi (i = 1, 2, . . . , ℓ) are positive singular values where ℓ denotes the number of positive singular
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values. The matrices U = (φ1, φ2, . . . ,φN ) ∈ RN ×N and W = (ϕ1, ϕ2, . . . ,ϕL) ∈ RL×L contain the orthogonal
eigenvectors to the AAT and ATA, respectively. The columns of these eigenvector matrices are organized corresponding
to the singular values σi and are arranged in S descending order. Since the number of mesh points is much larger than that
of the transient points, i.e., N ≫ L, the order N of the matrix AAT is also much larger than the order L of the matrix ATA,
however, their null eigenvalues are identical.

Therefore, we may solve the eigenvalue equation corresponding to the matrix ATA to find the eigenvectors ϕj (j =

1, 2, . . . , ℓ),

ATAϕj = λiϕj, j = 1, 2, . . . , ℓ. (3.12)

Since the singular values of the SVD method are associated to the eigenvalues of the matrices AAT and ATA in such a
manner that λi = σ 2

i (i = 1, 2, . . . , ℓ), we may obtain ℓ (ℓ ≤ L) eigenvectors {φj}
ℓ
l=1 corresponding to the non-null

eigenvalues for the matrix AAT by

φj =
1
σj

Aϕj, j = 1, 2, . . . , ℓ, (3.13)

which can generate a space V defined by V = span{φ1, . . . , φℓ}.
Our objective is to choose an optimal subspace ofV which is of as low a dimension,m, as possible, while still maintaining

a good approximation of the original data set. WewriteVm = span{φ1, . . . , φm} for this subspace and refer to the vectors φi
as PODmodes. The quality of the approximation is measured using the relative information content [23,24], usually referred
to as energy, defined as:

I(m) =

m
i=1

λi

ℓ
i=1

λi

. (3.14)

The goal is to choose the smallest m such that I(m) is still sufficiently close to 1. For example, if the subspace Vm should
contain a percentage γ of the information in V , then one should choosem such that [25]

m = argmin

I(m) : I(m) ≥

γ

100


. (3.15)

In many applications, including fluid dynamics, one observes an exponential decrease of the singular eigenvalues [26],
there is a good chance to obtain low-order approximate models.

Hence, the state variable can be represented by the linear combination of the retained POD basis functions as follows:

V (x, t) = V +

m
i=1

αi(t)φi(x), (3.16)

where αi(t) (i = 1, . . . ,m) are the POD coefficients corresponding to every POD basis function.

3.2. Implementation of the POD reduced order model for the 3D unstructured mesh fluid model

In this study, a POD reduced order model is developed for the 3D unstructured mesh fluid model (Fluidity-ICOM,
developed by AMCG, Imperial College London) that can simultaneously resolve both small- and large-scale fluid flowswhile
smoothly varying model resolution and conforming to complex coastlines and bathymetry [19,20,27]. The model employs
3D anisotropicmesh adaptivity to resolve and reveal fine scale features as they developwhile reducing resolution elsewhere.
Being non-hydrostatic it can cope with steep topography. The model consists of the 3D continuity and non-hydrostatic
Boussinesq equations.

The variables to be solved can be expressed as an expansion of the first few POD basis functions φu
= {φu

1 , . . . , φ
u
N pod},

φv
= {φv

1 , . . . , φ
v

N pod}, φ
w

= {φw
1 , . . . , φw

N pod} and φp
= {φ

p
1, . . . , φ

p
Mpod}:

u(x, t) = u(x) +

N pod
i=1

αu
i (t)φ

u
i (x), (3.17)

v(x, t) = v(x) +

N pod
i=1

αv
i (t)φ

v
i (x), (3.18)



J. Du et al. / Computers and Mathematics with Applications 65 (2013) 362–379 367

Fig. 1. Unstructured mesh.

w(x, t) = w(x) +

N pod
i=1

αw
i (t)φw

i (x), (3.19)

p(x, t) = p(x) +

Mpod
i=1

α
p
i (t)φ

p
i (x), (3.20)

where u, v, w, p are the model variables, in finite element u =
N

j=1 Nj(x)uj, v =
N

j=1 Nj(x)vj, w =
N

j=1 Nj(x)wj and
p =

N
j=1 Nj(x)pj are the mean of the ensemble of snapshots for the variables of the equations, αu

i , α
v
i , α

w
i (1 ≤ i ≤ N pod)

andα
p
i (1 ≤ i ≤ Mpod) are the coefficients to be determined, andαu

i (0), α
v
i (0), α

w
i (0), αp

i (0) are the coefficients of the initial
condition, N pod and Mpod are the number of POD bases used for velocity and pressure respectively. The POD basis functions
are expressed as a finite element expansion:

φu
m =

N
j=1

Nxt jφ
u
mj, φv

m =

N
j=1

Nxt jφ
v
mj, φw

m =

N
j=1

Nxt jφ
w
mj, 1 ≤ m ≤ N pod, (3.21)

φp
m =

N
j=1

Nxt jφ
p
mj, 1 ≤ m ≤ Mpod. (3.22)

The system equation of the finite element scheme for the fluid model is represented as follows:
B C
CT 0

 
u
p


=


b
0


, (3.23)

in which B ∈ R3N ×3N represents the system matrix of the velocity u = (u, v, w)T , C ∈ R3N ×3N is the system matrix of
pressure p, and b is the source vector.
In a manner analogous to the Galerkin method, by taking the POD basis function as the test function and projecting the
original discrete model (3.23) onto the reduced space (i.e. multiplying the rows and columns of the matrix in (3.23) by the
POD basis functions φu

m and φ
p
m), the POD discrete model of (3.23) is obtained:

Bpod Cpod
CpodT 0

 
αu

αp


=


bpod

0


, (3.24)

where

Bpod
= φuTBφu, Cpod

= φpTCφp, bpod
= φuTb, (3.25)

and φu
= (φu, φv, φw) ∈ RN ×3N pod

, φp
∈ RN ×3Mpod

Bpod
∈ R3N pod

×3N pod
and Cpod

∈ R3Mpod
×3Mpod

.

3.3. Acceleration of the POD reduced model

For a nonlinear simulation, the matrix B is model variable and time dependent, i.e. B = B(u(x), t). It is time consuming
to calculate B at each time level. To speed up the matrix equation assembly process, the matrix B is constructed here by a
set of sub-matrices independent of time. Recalling the POD representations of the state variables (see Eqs. (3.17)–(3.20)) on
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(a) The first POD basis of velocity (x-direction component). (b) The second POD basis of velocity (x-direction component).

(c) The first POD basis of velocity (y-direction component). (d) The second POD basis of velocity (y-direction component).

Fig. 2. The first and second POD basis functions of velocity components.

(a) The first POD basis function. (b) The second POD basis function.

Fig. 3. The first and second POD basis functions of velocity.
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(a) The first POD basis function. (b) The second POD basis function.

Fig. 4. The first and second POD basis functions of pressure.

(a) The full order solution of velocity. (b) The reduced order solution of velocity.

(c) The full order solution of pressure. (d) The reduced order solution of pressure.

Fig. 5. The full model solution and the reduced order solution of velocity and pressure at t = 0.16.
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(a) Velocity. (b) Pressure.

Fig. 6. The eigenvalues in a descending order.

(a) The full order solution of temperature at t = 10. (b) The full order solution of temperature at t = 16.

Fig. 7. The full order solutions of temperature at t = 10 and t = 16.

(a) The first POD basis of velocity. (b) The second POD basis of velocity.

(c) The first POD basis of pressure. (d) The second POD basis of pressure.

Fig. 8. The first and second POD basis functions of velocity and pressure.

the assumption that the discretized system of equations has a polynomial representation (e.g. for quadratic problems), the
matrix B(u(x), t) can be expressed as:

B(u, v, w, t) = B +

N pod
i=1

Bi, (3.26)

and

Bi =

αu
i
Bu

i 0 0
0 αv

i
Bv

i 0
0 0 αw

i
Bw

i

 , (3.27)

whereBu
i = B(φu

i ),
Bv

i = B(φv
i ),

Bw
i = B(φw

i ), B = B(u) (Bu
i ,

Bv
i ,

Bw
i , B ∈ RN ×N ).

A new perturbation approach is employed to calculate the sub-matrices prior to the POD simulation. By applying a
perturbation to the mean velocity u, i.e. setting αu

= {0, . . . , ϵ, . . . , 0} (here, αu
i = ϵ), αv

= {0, . . . , 0, . . . , 0} and
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(a) The full order solution of velocity at t = 10. (b) The reduced order solution of velocity at t = 10.

(c) The full-order solution of velocity at t = 16. (d) The reduced-order solution of velocity at t = 16.

Fig. 9. The full model solution and the reduced order solution of velocity at t = 10 and t = 16.

(a) The three dimensional mesh. (b) The cutplane mesh.

Fig. 10. Unstructured mesh.

αw
= {0, . . . , 0, . . . , 0}, the perturbed velocity is

u(x, t) = u(x) + ϵφu
i ,

v(x, t) = v(x),

w(x, t) = w(x). (3.28)

Taking into account (3.26) yields

B(u + ϵφu
i , v, w, t) = B(u, v, w) + ϵBu

i . (3.29)

The sub-matrixBu
i is then calculated as:

Bu
i =

1
ϵ


B(u + ϵφu

i , v, w, t) − B(u, v, w)

. (3.30)

In a manner analogous toBu
i , the sub-matricesBv

i andBw
i can be pre-computed. ProjectingBi and B (see Eq. (3.25)) onto the

reduced space, yields

Bpod
i = φuTBiφ

u, B
pod

= φuTBφu, (3.31)

whereBpod
i ∈ R3N pod

×3N pod
and B

pod
∈ R3N pod

×3N pod
are stored prior to the POD simulation.
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(a) The first POD basis. (b) The second POD basis.

(c) The third POD basis. (d) The fourth POD basis.

(e) The fifth POD basis. (f) The sixth POD basis.

Fig. 11. The first 6 POD basis functions of velocity in the descending order of corresponding eigenvalues.

4. Numerical simulations

In this section, some 2D numerical tests including the gyre case for the fluid model [13] and the lock exchange case are
carried out to demonstrate the feasibility and efficiency of the PODmethod, as well as the efficiency of the speed-up process
in the unstructuredmesh finite element scheme. Numerical results of POD reduced order modeling applied to the 3Dmodel
of flow past sphere with moderate Reynolds number are also presented.

4.1. The 2D gyre case

The POD reduced order model is tested with a barotropic wind-driven gyre problem in a computational domain,
L = 1000 km by 1000 km with a depth of H = 500 m. The problem is non-dimensionalized with the maximum Sverdrup
balance velocity

βHρ0v =
∂τ

∂y
≤

τ0π

L
⇒ v ≤ 3.5 × 10−2 m s−1, (4.1)
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(a) The seventh POD basis. (b) The eighth POD basis.

(c) The ninth POD basis. (d) The tenth POD basis.

(e) The eleventh POD basis. (f) The twelfth POD basis.

Fig. 12. The 7th to 12th POD basis functions of velocity.

where β = 1.8× 10−11 and the reference density ρ0 = 1000 kg m−1. Thus the velocity scale U = 3.5× 10−2 m s−1 is used
here. Time is non-dimensionalized with T = L/U . The non-dimensional wind stress (applied as a body force here averaged
over the depth of the domain) takes the same cosine of latitude profile with τ ∗

0 = τ0L/(U2ρ0H) = 163.2653. The Coriolis
terms are taken into account with the beta-plane approximation (f = βy). Incorporating the beta-plane approximation
yields a non-dimensional β∗

= L2β/U = 514.286. The spin-up period is 0.3024. The simulation period is [0.3024, 0.6048].
The unstructured mesh adopted consists of 2667 nodes and 5448 elements (Fig. 1). The smallest element side length
is 0.02.

Fig. 2 presents the first and second POD basis functions of the two components of the velocity, and we can see that the
first POD basis function captures the dominant characteristics of the solution. Fig. 3 illustrates the first and second POD basis
functions of the velocity vector. Fig. 4 presents the first and second POD basis functions of the pressure.

The full model solution and the POD reduced order solution of the velocity and pressure at t = 0.16 are presented in
Fig. 5, which demonstrate the feasibility and accuracy of the POD reduced order model.



374 J. Du et al. / Computers and Mathematics with Applications 65 (2013) 362–379

(a) The first POD basis. (b) The second POD basis.

(c) The third POD basis. (d) The fourth POD basis.

(e) The fifth POD basis. (f) The sixth POD basis.

Fig. 13. The first 6 POD basis functions of pressure.

The SVD eigenvalues of the velocity and pressure for the POD reduced order model are presented in Fig. 6 in a decreasing
order. We apply the first six POD basis functions of the velocity and pressure to construct the POD reduced order model,
which captures more than 99.9% of the total energy.

In the present approach, we have the discretized finite element model first and then apply the model reduction method
of POD only by some matrix manipulations. The traditional application of the POD method (reduce, then discretize) to the
same finite element unstructured mesh ocean model can be found in [13].

4.2. The lock exchange case

In the lock-exchange two fluids of different density, namely hot and cold fluids, are initially separated by a gate (or
‘lock’). The gate is removed and two gravity currents propagate horizontally along the tank. This laboratory-scale set up
incorporates dynamics observed in gravity currents over a range of scales [28].
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(a) The full-order solution of velocity at t = 7.5. (b) The reduced-order solution of velocity at t = 7.5.

(c) The full-order solution of velocity at t = 10. (d) The reduced-order solution of velocity at t = 10.

Fig. 14. The full model solution and the reduced order solution of velocity at t = 7.5, t = 10 and t = 20.

The computation region is a non-dimensional rectangle of the size 0.8× 0.1. The unstructured mesh adopted consists of
4040 nodes and 7638 elements. The smallest element side length is 0.005. The initial condition for the velocity and pressure
is u = 0 and p = 0. The initial condition for the non-dimensional temperature is T = −0.5 for the cold fluid at the left
side of the lock and T = 0.5 for the hot fluid at the right side of the lock. The isotropic value of viscosity is 1 × 10−6. The
Crank–Nicolsonmethod is applied in the temporal discretization. The time step is 0.025. The continuous Galerkin projection
is applied in the finite element scheme for the state variables. In this case, temperature is computed using a high resolution
control volume finite element scheme in the full ordermodel, and the thermal expansion coefficient is 10−3. Fig. 7 shows the
full order solution of temperature at t = 10 and t = 16. For the present research, the POD model reduction method is only
applied to the velocity and pressure variables. The POD reduced order model related to the temperature will be developed
in future work.

The first and second POD basis functions of velocity and pressure are presented in Fig. 8 respectively. The first six
POD basis functions are applied in the reduced order model which can capture more than 99% of the total energy. Fig. 9
shows the full order solution and reduced order solution of velocity for the lock exchange case at t = 10 and t = 16
respectively.
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(e) The full-order solution of velocity at t = 20. (f) The reduced-order solution of velocity at t = 20.

Fig. 14. (continued)

4.3. Three dimensional case of flow past a sphere with moderate Reynolds numbers

For the 3Dmodel of flowpast a spherewith the Reynolds number Re = 400 is adopted here. The sphere is of unit diameter
centered at the origin. The entire domain is the cuboid defined by −10 ≤ x ≤ 20, −10 ≤ y ≤ 10, − 10 ≤ z ≤ 10.

The unsteady momentum equations with nonlinear advection and viscous terms along with the incompressibility
constraint are numerically solved. Free slip velocity boundary conditions are applied at the four lateral boundaries, u = 1,
v = w = 0 is applied at the inflow boundary x = −10, and a free stress boundary condition is applied to the outflow at
x = 20. The simulation period for the POD reduced order model is during time interval [44.43, 60]. The time step is chosen
as 0.098.

Adaptive mesh refinement is an efficient way to reduce computational complexity and to provide high resolution
snapshots for the reduced order model. For complex simulations starting with a uniform mesh, adaptive mesh refinement
can be first adopted to achieve a relatively fine mesh. After that, we can fix the mesh and apply the PODmethod to reduced
the model dimension. An adaptive mesh simulation with an initial mesh of 24973 points and 141498 elements as well as
an adaptive time step with an initial time step of 0.001 is carried out for the spin-up process of this case.

The three dimensional unstructured mesh in the case of flow past the sphere is shown in Fig. 10(a) and the cut plane at
the center of the cuboid is shown in Fig. 10(b). The three dimensional unstructured mesh adopted consists of 47593 nodes
and 261791 elements.

For the POD reduced order model, the first 12 POD basis functions of velocity at the cut plane in the center of the cuboid
are presented in Figs. 11 and 12 in a descending order of magnitude of the corresponding eigenvalues. We can see that the
POD basis functions corresponding to smaller eigenvalues contain more eddies. A three dimensional illustration showing
the first 6 POD basis functions for the pressure variable is presented in Fig. 13.

The full order solution and POD reduced order solution of the velocity vector around the sphere at different time levels
(t = 7.5, t = 10 and t = 20) are showed in Fig. 14 to illustrate the feasibility of the POD reduced order model.

In Fig. 15, the full order solution and POD reduced order solution of velocity and pressure at t = 35 are presented. Errors
between the full order solution and the reduced order solutions are also presented in Fig. 16, respectively.

4.4. CPU time analysis

The model reduction approach proposed in this work is to derive the POD reduced order model by projecting the matrix
and source term vector of the full discrete model onto the reduced space. The implementation of reduced order modeling
codes involves only the matrix vector multiplication of the full model. Importantly, the code is largely independent of the
implementation details of the original equations. For nonlinear problems, a perturbation approach is used to help accelerate
the matrix equation assembly process, based on the assumption that the discretized system of equations has a polynomial
representation and can thus be created by a summation of pre-formed matrices.

As shown in Table 1, for Case 1 (the 2D gyre case), the CPU time cost every timestep for the full order model is about
0.8 s. For the new approach, there is no need to rewrite any codes related to the original equations. The reduced ordermodel
setup process (preparation of the perturbed POD reduced matrices) at the beginning of the computation cost 5.24 s and the
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(a) The full-order solution of velocity. (b) The reduced-order solution of velocity.

(c) The full-order solution of pressure. (d) The reduced-order solution of pressure.

Fig. 15. The full model solution and the reduced order solution of velocity and pressure at t = 35.

solution process for every timestep is only 10−2 which is about 1/80 of the full order model. Considering the present test
case with 30 timesteps carried out, the solution process of the full model costs 24.42 s while the POD reduced order model
costs 5.84 s totally. It’s because the full ordermatrix assembling processwill not be carried out once the reduced ordermodel
setup process is completed.

For Case 2 (the 2D lock exchange case) in Table 1, the POD reduced order model of the lock exchange case costs 17.62 s,
which is about 1/25 of the CPU time required by the full ordermodel, namely 403.04 s. If the time spent on the reduced order
model setup process is excluded, the CPU time consumed by the reduced order model is only about 1/30 of that consumed
by the full order model.

For Case 3 (the 3D flow past sphere case) in Table 1, the CPU time consumed by the POD reduced order model is about
1/40 of that consumed by the full order finite element model, which is of the same order as the model reduction results
in [17]. The CPU time of solving the POD reduced order model for every timestep is about 1/500 of that required by the full
order model.

From the three test cases, we can see that the efficiency of the PODmethod applied to the new approach grows with the
complexity of the simulation (the number of nodes) and the simulation time. The CPU time consumed by the reduced order
model can be reduced to about 10−2 of the full order model with the new approach applied to the quadratic nonlinear case.
Further research will investigate impact of DEIM methodology on obtaining additional economy in the CPU time for high
order nonlinear cases.
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(a) Velocity. (b) Pressure.

Fig. 16. Error between the full model solution and the reduced order solution.

Table 1
CPU time(s) analysis.

ROM setup Solving Projecting back Total

Case 1 Full model 0 24.42 0 24.42
POD ROM 5.24 0.32 0.28 5.84

Case 2 Full model 0 403.04 0 403.04
POD ROM 3.02 8.32 6.28 17.62

Case 3 Full model 0 15480 0 15480
POD ROM 352.02 30.23 18.61 400.86

5. Summary and conclusions

In this paper, the POD reduced order model is implemented for a finite element fluid model using an unstructured
mesh, and is successfully applied to three dimensional flows using the unstructured mesh finite element model. A new
scheme for the POD based reduced order model of complex mesh-based numerical models (e.g. finite element unstructured
mesh models) is presented. The matrix and source term vector of the full model are projected onto the reduced bases.
The POD method is used to form the reduced bases. Implementation of reduced order modeling codes involves only the
matrix vector multiplication of the full model. The reduced order modeling code is simple to implement even for complex
governing equations, discretization methods and nonlinear parameterizations. Importantly, the code is independent of the
implementation details of the full model code. For nonlinear problems, a perturbation approach is used to help accelerate
the matrix equation assembly process based on the assumption that the discretized system of equations has a polynomial
representation and can thus be formed by a summation of pre-formed matrices. The feasibility and accuracy of the reduced
order model applied to three dimensional fluid flows is demonstrated.

Further research will investigate the impact of DEIM methodology on obtaining additional economy in CPU time (due
to nonlinear effects); investigate the necessity for a nonlinear turbulence closure POD methodology [29–32]; compare the
impact of retention of more basis functions; address the issue of adaptive mesh refinement and POD model reduction;
consider the inverse POD4-DVARmethodwith andwithoutDEIM; address uncertainty quantification combinedwithmodel
reduction in framework of fluidity; and finally combine EnKF with POD for using Fluidity-ICOM ocean model and compare
with the SEIK filter.
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