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SUMMARY

This paper focuses on a new framework for obtaining a nonintrusive (i.e., not requiring projecting of the
governing equations onto the reduced basis modes) reduced order model for two-dimensional fluid problems.
To overcome the shortcomings of intrusive model order reduction usually derived by combining the Proper
Orthogonal Decomposition and the Galerkin projection methods, we developed a novel technique on the basis
of randomized dynamic mode decomposition (DMD) as a fast and accurate option in model order reduction.
Our approach utilizes an adaptive randomized DMD to obtain a reduced basis in the offline stage, and then
the temporal values of the reduced order model are obtained in the online stage through an interpolation using
radial basis functions. The rank of the reduced DMD model is given as the unique solution of a constrained
optimization problem. The Saint-Venant (shallow water) equations in a channel on the rotating earth are
employed to provide the numerical data. We emphasize the excellent behavior of the nonintrusive reduced
order model by performing a qualitative analysis. In addition, we gain a significantly reduction of CPU time
in computation of the reduced order models compared with the classical DMD method. Copyright © 2016
John Wiley & Sons, Ltd.
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1. INTRODUCTION, FOCUS, AND MOTIVATION

The current line of this survey is motivated by the efficiency of reduced order modelling (ROM) in
different problems arising in hydrodynamics, where data are collected in the aftermath of an experi-
ment or are provided by measurement tools. We refer to this data as nonintrusive data. In the context
of application of mathematical and numerical techniques for modelling the nonintrusive massive
data, the intent of this paper is to undertake an efficient technique of model order reduction of shallow
water systems. The challenge of this task is to build a linear dynamical system that models the evo-
lution of the strongly nonlinear flow and to define a new mathematical and numerical methodology
for studying dominant and coherent structures in the flow.

Among several model order reduction techniques, Proper Orthogonal Decomposition (POD) and
Koopman Mode Decomposition represent modal decomposition methods that are widely applied to
study flow dynamics in different applications. The application of POD is primarily limited to flows
whose coherent structures can be hierarchically ranked in terms of their energy content. But there are
situations when the energy content is not a sufficient criterion to accurately describe the dynamical
behavior of the flows. Instead, Koopman Mode Decomposition links the dominant flow features by
a representation in the amplitudes-temporal dominant frequencies space.
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Current literature has explored a broad variety of applications of ROM. Recently, the POD
approach has been incorporated for model order reduction purposes by Chevreuil and Nouy [1], Ste-
fanescu and Navon [2], Dimitriu et al. [3], Xiao et al. [4], Du et al. [5], and Fang et al. [6]. POD
proved to be an effective technique embedded also in inverse problems, as it was demonstrated by the
work of Cao et al. [7, 8], Chen et al. [9], Stefanescu et al. [10], thermal analysis (Bialecki et al. [11]),
nonlinear structural dynamics problems (Carlberg et al. [12]), and aerodynamics (see for reference
the recent work of Semaan et al. [13]).

In the last decade, Koopman mode theory [14] provided a rigorous theoretical background for
global modes analysis, hydrodynamic stability, or triple decomposition in problems describing
oscillating phenomena. In 2005, Mezic [15] was the first to discover that normal modes of linear
oscillations (which Mezic called shape modes) have their natural analogs—Koopman modes—in the
context of nonlinear dynamics. The advantage of the shape modes introduced in [15] compared with
POD modes is that each shape mode is associated with a pulsation, a growth rate, and each mode
has a single distinct frequency. The numerical technique to compute this type of modal decompo-
sition was first introduced in 2008 by Schmid and Sesterhenn [16] and was called dynamic mode
decomposition (DMD). The original derivation of DMD in [16] is rooted in the theory of Krylov
subspaces [17] as it is classified as an Arnoldi-type method [17]. Only a year later (2009), Rowley
et al. [18] presented a technique for describing the global behavior of complex nonlinear flows. By
decomposing the flow into shape modes determined from spectral analysis of the Koopman opera-
tor, they proved the validity of the DMD algorithm of Schmid and Sesterhenn [16] in computation
of the shape modes introduced by Mezic in [15].

The theory of Koopman modes decomposition associated with different methods for computing
the modes or variants of DMD algorithm was used as a modal decomposition tool in nonlinear
dynamics (Schmid et al. [19], Schmid [20], and Noack et al. [21]) and in fluid mechanics (Rowley
et al. [22], Frederich and Luchtenburg [23], Bagheri [24], and Alekseev et al. [25]) and was recently
introduced in turbulent flow problems (Seena and Sung [26] and Hua et al. [27]) and also in flow
control problems by Bagheri [28] and Brunton et al. [29]. For a complete description of the utility
of DMD versus POD for model reduction in shallow water problems, the reader is referred to our
previous paper (Bistrian and Navon [30]).

The intrusive model order reduction is usually derived by combining the POD and the Galerkin
projection methods [30]. This approach suffers from efficiency issues because the Galerkin projec-
tion is mathematically performed by laborious calculation and requires stabilization techniques in
the process of numerical implementation, as it was argued in [31–35].

To circumvent these shortcomings, we propose in this work a novel approach to derive a nonin-
trusive reduced order model (NIROM) (i.e., not requiring projecting of the governing equations onto
the reduced basis modes) of data originating from Saint-Venant equations [36]) by changing the rep-
resentation of the system from the state-space representation to the dynamics governed by the linear
Koopman operator on two-dimensional (2D) space of observables. The NIROM is computed embed-
ding an adaptive randomized dynamic mode decomposition (ARDMD) to find the reduced basis in
the offline stage in association with radial basis function (RBF) 2D interpolation [17] in the online
stage to compute the temporal values of the ROM.

Several key innovations are introduced in this paper for the ARDMD-based model order reduction.
The first one is represented by the randomization of the numerical data snapshots prior to singular
value decomposition (SVD) of matrix data. Thus, we endow the DMD algorithm with a randomized
SVD algorithm aiming to improve the accuracy of the reduced order linear model and to reduce the
CPU elapsed time. We gain a fast and accurate randomized DMD algorithm, exploiting an efficient
low-rank DMD model of input data. The rank of the reduced DMD model represents the unique
solution of an optimization problem whose constraints are a sufficiently small relative error of data
reconstruction and a sufficiently high correlation coefficient between the numerical data and the
DMD solution. We shall refer to this procedure as ARDMD.

The first major advantage of the adaptive randomized DMD proposed in this work is represented
by the fact that the algorithm produces a reduced order subspace of Ritz values, having the same
dimension as the rank of randomized SVD function. As a consequence, a further selection algorithm
of the Ritz values associated with their DMD modes is no longer needed. We employ in the flow
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reconstruction the smallest number of the DMD modes and their amplitudes and Ritz values, respec-
tively, leading to the minimum error of flow reconstruction, because of the adaptive feature of the
proposed algorithm. The second major improvement offered by the proposed randomized DMD can
be found in the significantly reduction of CPU time for computation of massive numerical data.

A randomized SVD algorithm was recently employed in conjunction with DMD in [37] for pro-
cessing of high resolution videos in real time. We believe that the present paper is the first work that
shows the benefits of an efficient randomized DMD algorithm with application in fluid dynamics.

The Saint-Venant (shallow water) system [36] is employed in the present research to provide the
numerical data. The remainder of the article is organized as follows. In Section 2, we recall the prin-
ciples governing the DMD, and we provide the description of the DMD algorithm employed for
decomposition of numerical data. In particular, we discuss the implementation of the randomized
DMD for optimal selection of the low-order model rank. Section 3 is dedicated to theoretical consid-
erations about multidimensional RBFs interpolation. A detailed evaluation of the proposed numerical
technique is presented in Section 4. Summary and conclusions are drawn in the final section.

2. OFFLINE STAGE: ADAPTIVE RANDOMIZED DYNAMIC MODE DECOMPOSITION
FOR NONINTRUSIVE DATA

2.1. Koopman operator—the root of dynamic mode decomposition

Being rooted in the work of French-born American mathematician Bernard Osgood Koopman [14],
the Koopman operator is applied to a dynamical system evolving on a manifold M such that, for all
vk ∈ M, vk + 1 = f (vk), and it maps any scalar-valued function g ∶ M → R into a new function Ag
given by

Ag(v) = g ( f (v)) . (1)

It has been demonstrated yet that spectral properties of the flow will be contained in the spectrum of
the Koopman operator and even when f is finite-dimensional and nonlinear, the Koopman operator
A is infinite-dimensional and linear [18, [24], 38]. Mezic proved in [15] the unique expansion of
each snapshot in terms of vector coefficients 𝜙j that are called Koopman modes (or shape modes)
and mode amplitudes aj(w), such that iterates of v0 are given by

g (vk) =
∞∑

j=1

𝜆k
j aj (v0)𝜙j, 𝜆j = e𝜎j+i𝜔j , (2)

where 𝜆j are called the Ritz eigenvalues of the modal decomposition that are complex-valued flow
structures associated with the growth rate 𝜎j and the frequency 𝜔j. Koopman modes represent spa-
tial flow structures with time-periodic motion that are optimal in resolving oscillatory behavior.
They have been increasingly used because they provide a powerful way of analyzing nonlinear flow
dynamics using linear techniques (see, e.g., the work provided by the efforts of Rowley et al. [18],
Mezic [38], and Bagheri [24]). The Koopman modes are extracted from the data snapshots, and a
unique frequency is associated to each mode. This is of major interest for fluid dynamics applications
where phenomena occurring at different frequencies must be individualized.

A stable and consistent algorithm introduced in 2008 by Schmid and Sesterhenn [16], referred in
the literature as DMD, can be used for computing approximately a subset of the Koopman spectrum
from the time series of snapshots of the flow. Thus, DMD generalizes the global stability modes and
approximates the eigenvalues of the Koopman operator.

A considerable amount of work has focused on understanding and improving the method of DMD,
and several DMD procedures have been released: optimized DMD (Chen et al. [39]), exact DMD
(Tu et al. [40]), sparsity promoting DMD (Jovanovic et al. [41]), multi-resolution DMD (Kutz et al.
[42]), extended DMD (Williams et al. [43]), recursive DMD (Noack et al. [44]), and DMD with
control (Proctor et al. [45]). Efficient post processing procedures for selection of the most influential
DMD modes and eigenvalues were presented in our previous papers (Bistrian and Navon [30, 46]).
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Employing numerical simulations or experimental measurement techniques, different quantities
associated with the flow are measured and collected as observations at one or more time signals,
called observables or nonintrusive data. It turns out (see the survey of Bagheri [28]) that monitor-
ing an observable over a very long time interval allows the reconstruction of the flow phase space.
Assuming that {v0, v1, … , vN} is a data sequence collected at a constant sampling time 𝛥t, the DMD
algorithm is based on the hypothesis that a Koopman operator A exists that steps forward in time the
snapshots, such that the snapshots data set{

v0, Av0, A2v0, … ,AN−1v0
}

(3)

corresponds to the Nth Krylov subspace generated by the Koopman operator from v0. The goal
of DMD is to determine eigenvalues and eigenvectors of the unknown matrix operator A, thus a
Galerkin projection of A onto the subspace spanned by the snapshots is performed. For a sufficiently
long sequence of the snapshots, we suppose that the last snapshot vN can be written as a linear
combination of previous N − 1 vectors, such that

vN = c0v0 + c1v1 + · · · + cN−1vN−1 +R, (4)

in which ci, i = 0,… , N − 1 are complex numbers and R is the residual vector. We assemble the
following relations

A {v0, v1, … , vN−1} = {v1, v2, … , vN} =
{

v1, v2, … ,VN−1
0 c

}
+ReT

N−1, (5)

where VN−1
0 =

(
v0 v1 … vN−1

)
, 𝑐T =

(
c0 c1 … cN−1

)
is the unknown complex column vector,

and eT
j represents the jth Euclidean unitary vector of length N′ − 1.

In matrix notation form, Equation (5) reads

AVN−1
0 = VN−1

0 C +ReT
N−1, C =

⎛⎜⎜⎜⎝
0 ... 0 c0

1 0 c1

⋮ ⋮ ⋮ ⋮
0 … 1 cN−1

⎞⎟⎟⎟⎠ , (6)

where C is the companion matrix [47].
Relation (6) is true when the residual

R = vN − VN−1
0 c (7)

is minimized when c is chosen such that R is orthogonal to span {v0, … , vN−1}.
A direct consequence of Equation (6) is that decreasing the residual increases overall convergence

and therefore the eigenvalues of the companion matrix C will converge toward the eigenvalues of the
Koopman operator A. A detailed spectral analysis of the Koopman operator for linear and nonlinear
systems is provided by Rowley et al. [18].

The representation of data in terms of DMD is given by

vDMD
t (x) =

k∑
j=1

aj𝜙j (x) 𝜆t−1
j , 𝜆j = e(𝜎j+i𝜔j)Δt, t = t1, … , tN , (8)

where the right eigenvectors 𝜙j ∈ C are dynamic (Koopman) modes, the eigenvalues 𝜆j are called
Ritz values [48], and coefficients aj ∈ C are denoted as amplitudes or Koopman eigenfunctions.

Each Ritz value 𝜆j is associated with the growth rate 𝜎j =
log(|𝜆j|)

Δt
and the frequency 𝜔j =

arg(|𝜆j|)
Δt

,
and k represents the number of DMD modes involved in reconstruction.

So far, we have noticed two directions in developing the algorithms for DMD. The straight-forward
approach proposed by Rowley et al. [22] is seeking the companion matrix C from Equation (6) that
helps to construct in a least squares sense the final data vector as a linear combination of all previous
data vectors. Because this version may be ill-conditioned in practice, Schmid [20] recommends an
alternate algorithm, on the basis of SVD [17] of snapshot matrix, upon which the work within this
article is based.
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2.2. Adaptive randomized dynamic mode decomposition algorithm

To derive the improved algorithm proposed here, we proceed by collecting data vi (t, x) =
v (ti, x) , ti = iΔt, and i = 0, … ,N, x representing the spatial coordinates whether Cartesian or
cylindrical and forms the snapshot matrix V =

[
v0 v1 … vN

]
.

We arrange the snapshot matrix into two matrices. A matrix VN−1
0 is formed with the first N

columns, and the matrix VN
1 contains the last N columns of V: VN−1

0 =
[

v0 v1 … vN−1
]
, VN

1 =[
v1 v2 … vN

]
.

Expressing VN
1 as a linear combination of the independent sequence VN−1

0 yields

VN
1 = AVN−1

0 = VN−1
0 S + R,

where R is the residual matrix and S approximates the eigenvalues of A when R 2 → 0. The objective
at this step is to solve the minimization problem

Minimize
S

R = VN
1 − VN−1

0 S
2
. (9)

An estimate can be computed by multiplying VN
1 by the Moore–Penrose pseudoinverse of VN−1

0 :

S =
(
VN

0 − 1
)+

VN
1 = WΣ+UHVN

1 = XΛX−1, (10)

where X and 𝛬 represent the eigenvectors, respectively the eigenvalues of S, and Σ + is computed
according to Moore–Penrose pseudoinverse definition of Golub and van Loan [17]:

Σ+ = diag

(
1
𝜎1

, · · · , 1
𝜎r
, 0 · · · , 0

)
, r = rank

(
VN−1

0

)
. (11)

It can be seen that the SVD plays a central role in computing the DMD. Therefore, the
Moore–Penrose pseudoinverse approach we previously employed in [30] might not be feasible
when dealing with high-dimensional nonintrusive data. It is more desirable to reduce the problem
dimension to avoid a computationally expensive SVD. Several key innovations are introduced in the
present paper. The first one is represented by the randomization of data VN−1

0 prior to SVD. Thus,
we endow the DMD algorithm with a randomized SVD algorithm aiming to improve the accuracy
of the reduced order linear model and to reduce the CPU elapsed time. We gain a fast and accurate
randomized DMD algorithm, exploiting an efficient low-rank model of input data.

Algorithm 1 describes the procedure for computing the randomized SVD, and it is adapted after
Halko et al. [49].

We define the relative error of the low-rank model as the L2-norm of the difference between the
flow variables and approximate DMD solutions over the exact one, that is,
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ErDMD =
v (x) − vDMD (x) 2

v (x) 2
, (12)

where v (x) represents the numerical data and vDMD (x) represents the low-rank DMD approximation.
The correlation coefficient defined next is used as additional metric to validate the quality of the

low-rank DMD model:

CDMD =
(‖v (x) · vDMD (x)‖F)2‖‖‖v(x)H · v (x)‖‖‖F

‖‖‖vDMD(x)H · vDMD(x)‖‖‖F

, (13)

where v (x) means the numerical data, vDMD(x) represents the computed solution by means of the
reduced order DMD model, (·) represents the Hermitian inner product, and H denotes the conjugate
transpose. We denote by · F the Frobenius matrix norm in the sense that for any matrix A ∈ Cm×n

having singular values 𝜎1,… , 𝜎n and SVD of the form A = UΣVH , then

‖A‖F = ‖‖‖UHAV‖‖‖F
= ‖Σ‖F =

√
𝜎1

2 + ... + 𝜎n
2. (14)

The rank of the reduced DMD model is given such that the relative error of data reconstruction
becomes sufficiently small and the correlation coefficient is sufficiently high. We recall this proce-
dure as ARDMD. Determination of the optimal rank of the reduced DMD model then amounts to
finding the solution to the following optimization problem:

⎧⎪⎨⎪⎩
Find

k∈N,k⩾2
vDMD

t (x) =
k∑

j=1
aj𝜙j (x) 𝜆t−1

j ,

Subject to k = arg min
{

ErDMD ⩽ 10−3 and CDMD ⩾ 0.999
}
.

(15)

The adaptive randomized DMD algorithm (Algorithm 2) that we applied in the forthcoming section
for data originating from the Saint-Venant system proceeds as follows:

In case of the classic DMD algorithm, the superposition of all Koopman modes approximates the
entire data sequence, but there are also modes that have a weak contribution. The modes’ selec-
tion, which is central in model reduction, constitutes the source of many discussions among modal
decomposition practitioners (see, for instance, Chen et al. [39], Jovanovic et al. [50], and Tissot
et al. [51]). With a conscious effort, we lately investigated different techniques of modes selection
in DMD-based ROM.

Reference [30] aimed to present a preliminary survey on DMD modes selection. We proposed
a framework for modal decomposition of 2D flows, when numerical data are captured with large
time steps. Key innovations for the DMD-based ROM introduced in [30] are the use of the
Moore–Penrose pseudoinverse in the DMD computation that produced an accurate result and a novel
selection method for the DMD modes. Unlike the classic algorithm, we arrange the Koopman modes
in descending order of the energy of the DMD modes weighted by the inverse of the Strouhal number.
We eliminate the modes that contribute weakly to the data sequence on the basis of the conservation
of quadratic integral invariants [52] by the reduced order flow.

In [25], we proposed a new framework for DMD on the basis of the reduced Schmid operator. We
investigated a variant of DMD algorithm, and we explored the selection of the modes on the basis of
sorting them in decreasing order of their amplitudes. This procedure works well for models without
modes that are very rapidly damped, having very high amplitudes. Therefore, the selection of modes
based on their amplitude is effective only in certain situations, as reported also by Noack et al. [21].

The investigation we recently presented in [46] has focused on the effects of modes selection
in DMD. We proposed a new vector filtering criterion for dynamic modes selection that is able to
extract dynamically relevant flow features of time-resolved numerical data. The algorithm related in
[46] proposed a dynamic filtering criterion for which the amplitude of any mode is weighted by its
growth rate. This method proved to be perfectly adapted to the flow dynamics, in identification of
the most influential modes for the investigated problems.
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The first major advantage of the adaptive randomized DMD proposed in this paper is represented
by the fact that Algorithm 2 produces a reduced order subspace of Ritz values, having the same
dimension as the rank of randomized SVD algorithm function. In consequence, after solving the
optimization problem (15), an additional selection criterion of the Ritz values associated with their
DMD modes is no longer needed. We employ in the flow reconstruction the most influential DMD
modes associated with their amplitudes and Ritz values, respectively, leading to the minimum error
of flow reconstruction, due to the adaptive feature of the proposed algorithm.

The second major improvement offered by the proposed randomized DMD can be found in the
significantly reduction of CPU time for computation of massive numerical data, as we will detail in
the section dedicated to numerical results.

3. ONLINE STAGE: INTERPOLATION OF TEMPORAL REDUCED ORDER MODELLING
COEFFICIENTS

3.1. Present approach: two-dimensional radial basis function interpolation

Since it was introduced by Rolland Hardy in 1970 [53] for applications in cartography, RBF method
has undergone a rapid progress as an active tool of mathematical interpolation of scattered data in
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many application domains like domain decomposition [54], unsteady fluid flows modelling [4, 55],
or image processing [56]. Investigations of the accuracy and stability of RBF-based interpolation
may be found in Fornberg and Wright [57], Fasshauer [58], and Chenoweth [59].

The ARDMD algorithm previously described allows the identification of a reduced order model
of form

vDMD
t (x) =

k∑
j=1

aj𝜙j (x) 𝜆t−1
j , 𝜆j = e(𝜎j+i𝜔j)Δt, t = t1, … , tN , (17)

in which 𝜙j ∈ C represents dynamic DMD modes, 𝜆j are the Ritz values, aj ∈ C represent the modal
amplitudes, and k is the truncation order.

In the following, we employ the method of RBF interpolation, as a generalization of Hardy’s mul-
tiquadric and inverse multiquadric method [60], for numerical interpolation of the model coefficients
bj

t = aj𝜆
t−1
j for t ∈ [t1, tN].

Considering the determined coefficients as a set of distinct nodes {xi}k×N
i=1 ⊂ R2 and a set of

function values { fi}k×N
i=1 ⊂ R, the problem reduces to find an interpolant s ∶ R2 → R such that

s (xi) = fi for i = 1, … , k × N, (18)

where N is the number of time instances for which numerical data are available and k is the number
of retained DMD modes. Note that we use the notation fi = bj

t, j = 1,… , k, t = t1,… , tN for scattered
points values and x = (x, y) ∈ {1, … , k} × [t1, tN] for scattered points coordinates.

Following Duchon [61] and Green and Silverman [62], we let the RBF interpolant takes the form

s (x) = c0 + c1x +
k×N∑
i=1

𝛽iK (x − xi 2) , (19)

where K is a real valued function defined on the kernel K ∈ K ∶ Rk×N × Rk×N → R, · 2 is the
Euclidian distance between the points x and xi, and the coefficients 𝛽i ∈ R are constant real numbers.
Following Larsson et al. [63], it is beneficial with respect to accuracy and convergence to add the low-
order polynomial term P(x) = c0 + c1x, usually considered of small degree, to obtain conditionally
positive definite RBFs. The points xi are referred as centers of the RBFs K(r) = K (x, xi), where the
variable r stands for x − xi 2.

The coefficients 𝛽 i and the polynomial P(x) are chosen to satisfy the fitting conditions (18) and
the constraints

k×N∑
i=1

𝛽iP (xi) = 0. (20)

Considering that {p1, p2} represents a basis for the polynomial P and {c0, c1} are the coefficients that
give the polynomial P (x) in terms of this basis, the interpolation conditions (18) with the constraints
(20) lead to the following linear system to be solved for the coefficients that specify the RBF(

K P
PT 0

)(
𝛽

c

)
=

(
f
0

)
, (21)

where Kij = K
(

xi − xj 2

)
, i, j = 1, … , k × N, Pij = pj (xi) , i = 1, … , k × N, j = 1, 2, 𝛽 =

(𝛽1, … , 𝛽k×N)T , c = (c0, c1)T , and f = ( f1, … , fk×N)T . The zeros in Equation (21) denote matrices
or vectors of appropriate dimensions, and T stands for the transpose of a matrix or vector. Solving
the linear system (21) determines the constant coefficients 𝛽 and the polynomial coefficients c and
hence the interpolant surface s (x).

A list of well-known RBF kernels is provided in literature [53, [57]–59] (e.g., gaussiane−(r∕𝜎)
2
,

multi-quadratic
√

r2 + 𝜎2, and cubic spliner3). In this work, the so-called thin-plate kernel K(r) =

Copyright © 2016 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2017)
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r2 ln (r + 1) is chosen because it ensures that the matrix K in Equation (21) is non-singular and also
provides more accurate results than other RBFs, for example, the multi-quadratic and the cubic spline
functions, for our test problem.

The methodology presented herein leads to the following linear model (denoted in the following
ARDMD–RBF model) for estimation of the flow field for any time instance t ∈ [t1, tN]

vDMD
t (x) =

k∑
j=1

bj
t𝜙j (x) , bj

t = s (xi) , xi ∈ {1, … , k} × [t1, tN] , (22)

where bj
t are the interpolated coefficients, 𝜙j (x) are the DMD basis functions, k represents the num-

ber of the DMD basis functions retained for the reduced order model, and t denotes any value of
time in the interval [t1, tN].

3.2. Review of model order reduction using projection and disadvantages

So far, the model order reduction practitioners applied the intrusive model order reduction having
modal decomposition (POD or DMD) and the Galerkin projection compound.

In what follows, we consider a coupled system of ordinary differential equations:{
𝜕v
𝜕t
(x, t) = f (t, v (x, t)) , t ∈ (t0,T]

v (x, t0) = v0 (x) ,
(23)

where v0 (x) ∈ Rn is a given initial flow and f ∶ [t0,T] × Rn → Rn a continuous function in both
arguments and locally Lipschitz-type with respect to the second variable. It is well known that under
these assumptions, there exists a unique solution for Equation (23).

In the Cartesian or cylindrical coordinates formulation, we suppose there exists the field solution
v obtained from the spatial discretization of evolution equations in continuous space. To perform
the intrusive model order reduction, we start by replacing the field solution v with reduced order
solution vDMD in Equation (23) and project the resulting equations onto the subspace XDMD =
span {𝜙1(·), 𝜙2(·), … , 𝜙k(·)} spanned by the DMD basis to compute the following inner products:⟨

𝜙i(·),
k∑

j=1

𝜆j𝜙j(·)ȧj(t)

⟩
=

⟨
𝜙i(·), f

(
t,

k∑
j=1

𝜆j𝜙j(·)aj(t)

)⟩
, (24)

⟨
𝜙i(·),

k∑
j=1

𝜆j𝜙j(·)ȧj (t0)

⟩
= ⟨𝜙i(·), v0⟩ , for i = 1, … , k, (25)

where ⟨ f , g⟩ = ∫Ω fg dΩ.
The Galerkin projection gives the DMD–ROM, that is, a dynamical system for temporal coeffi-

cients
{

aj(t)
}

j=1,… ,k
:

ȧi(t) =

⟨
𝜙i(·), f

(
t,

k∑
j=1

𝜆j𝜙j(·)aj(t)

)⟩
, (26)

with the initial condition

ai (t0) = ⟨𝜙i(·), v0⟩ , for i = 1, … , k. (27)

The resulting autonomous system has linear and quadratic terms parameterized by cim, cimn,
respectively:

ȧi(t) =
k∑

m=1

k∑
n=1

cimnam(t)an(t) +
k∑

m=1

cimam(t), i = 1, … , k. (28)
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By projecting the full dynamical system onto a reduced space that is constructed on the basis
of the optimal DMD basis functions, the computational efficiency can be enhanced by several
orders of magnitude [30]. However, this approach presents several shortcomings. As in the case
of POD–ROMs [32–[34], [64], 65], the projection method implies analytical calculations, and
it remains dependent on the governing equations of the full physical system, therefore is not
applicable in case of nonintrusive data. Several techniques to restore the efficiency for nonlin-
ear reduced order models obtained by projection methods are Karhunen–Loeve procedure for
gappy data [66] or discrete empirical interpolation [67–69]. In addition, the projection methods
require stabilization techniques in the process of numerical implementation, like the ones presented
in [31–[35], [69], 70].

In this paper, we propose an efficient approach to derive the reduced order model for non-
intrusive data. In the offline stage of the proposed technique, the ARDMD algorithm finds the
subspace XDMD = span {𝜙1(·), 𝜙2(·), … , 𝜙k(·)} spanned by the sequence of the most efficient DMD
modes. In the online stage, we involve the effectual 2D RBF interpolation that elegantly approxi-
mates the values of the ROM temporal coefficients. RBFs interpolation proved its efficiency also in
POD–ROMs [55, [71], 72].

4. NUMERICAL RESULTS: ANALYSIS OF THE REDUCED ORDER MODEL FOR
SAINT-VENANT DATA

4.1. Acquisition of numerical data

The test problem used in this paper is consisting of the nonlinear Saint-Venant equations model (also
called the shallow water equations (SWEs) [36]) in a channel on the rotating earth, associated with
periodic boundary conditions in the x̃-direction and solid wall boundary condition in the ỹ-direction:

ũt̃ + ũũx̃ + ṽũỹ +
(
gh̃

)
x̃
− f̃ ṽ = 0, (29)

ṽt̃ + ũṽx̃ + ṽṽỹ +
(
gh̃

)
ỹ
+ f̃ ũ = 0, (30)

(
gh̃

)
t̃
+

(
gh̃ũ

)
x̃
+

(
gh̃ṽ

)
ỹ
= 0, (31)

ũ (0, ỹ, t̃) = ũ (Lmax, ỹ, t̃) , ṽ (x̃, 0, t̃) = ṽ (x̃,Dmax, t̃) = 0, (32)

where ũ and ṽ are the velocity components in the x̃ and ỹ axis directions, respectively, gh̃ is the
geopotential height, h̃ represents the depth of the fluid, f̃ is the Coriolis factor, and g is the acceleration
of gravity. We consider that the reference computational configuration is the rectangular 2D domain
Ω = [0,Lmax]×[0,Dmax]. Subscripts represent the derivatives with respect to time and the streamwise
and spanwise coordinates.

The Saint-Venant equations, named after the French mathematician Adhémar Jean Claude Barré
de Saint-Venant (1797–1886) (also called in the literature the SWEs), are a set of hyperbolic partial
differential equations that describe the flow below a pressure surface in a fluid. A description of the
Saint-Venant system has been presented by Vreugdenhil [36], as a result of depth-integration of the
Navier–Stokes equations [73]. In the literature, SWEs come up in global atmospheric modelling [74]
and are used in various forms to describe hydrological and geophysical fluid dynamics phenomena
such as tide–currents [75], pollutant dispersion [76], or tsunami wave propagation [77]. The shal-
low water magnetohydrodynamic system has been devised by Gilman [78] to analyze the thin-layer
evolution of the solar tachocline. Recently, a wave relaxation solver for shallow water magnetohy-
drodynamic has been developed by Bouchut and Lhébrard [79]. Early work on numerical methods
for solving the SWEs is described in Navon (1979) [80].
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We consider the models (29)–(32) in a 𝛽-plane assumption detailed in [81], in which the effect of
the Earth’s sphericity is modeled by a linear variation in the Coriolis factor

f̃ = f0 +
𝛽

2
(2ỹ − Dmax) , (33)

where f 0,𝛽 are constants and Lmax,Dmax are the dimensions of the rectangular domain of integration.
The following initial condition introduced by Grammeltvedt [82] was adopted as the initial height

field that propagates the energy in wave number one, in the streamwise direction:

h0 (x̃, ỹ) = H0 + H1 tanh

(
9(Dmax∕2 − ỹ)

2Dmax

)
+ H2 sin

(
2𝜋x̃
Lmax

)
cosh−2

(
9(Dmax∕2 − ỹ)

Dmax

)
. (34)

Using the geostrophic relationship ũ = −h̃ỹ
(
g∕f̃

)
, ṽ = h̃x̃

(
g∕f̃

)
, the initial velocity fields are

derived as

u0 (x̃, ỹ) = −
g

f̃

9H1

2Dmax

(
tanh2

(
9Dmax∕2 − 9ỹ

2Dmax

)
− 1

)

−
18g

f̃
H2 sinh

(
9Dmax∕2 − 9ỹ

Dmax

) sin
(

2𝜋x̃
Lmax

)
Dmaxcosh3

(
9Dmax∕2−9ỹ

Dmax

) , (35)

v0 (x̃, ỹ) = 2𝜋H2
g

f̃ Lmax
cos

(
2𝜋x̃
Lmax

)
cosh−2

(
9(Dmax∕2 − ỹ)

Dmax

)
. (36)

The dimensional constants used for the previous test model are

f0 = 10−4s−1, 𝛽 = 1.5 × 10−11s−1m−1, g = 10ms−1,

Dmax = 44 × 105m, Lmax = 6 × 106m, H0 = 2 × 106m, H1 = 220m, H2 = 133m. (37)

We have followed the approach used by Navon [83], which implements a two-stage finite-element
Numerov–Galerkin method for integrating the nonlinear SWEs on a 𝛽-plane limited-area domain,
for approximating the quadratic nonlinear terms that appear in the equations of hydrological dynam-
ics. This scheme when applied to meteorological and oceanographic problems gives an accurate
phase propagation and also handles nonlinearities well. The accuracy of temporal and spatial dis-
cretization equals O

(
k2, hp

)
, where p varies in the interval [4, 8]. The training data comprise a

number of 240 unsteady solutions of the 2D SWEs models (29)–(36), at regularly spaced time
intervals 𝛥t = 600s for each solution variable.

To measure the accuracy of the reduced shallow water model and to validate the numerical results
with existing results in the literature, we undertake a nondimensional analysis of the shallow water
model. Following [84], reference quantities of the dependent and independent variables in the shal-
low water model are considered, that is, the length scale Lref = Lmax and the reference units for
the height and velocity, respectively, are given by the initial conditions href = h0, uref = u0. A typi-
cal time scale is also considered, assuming the form tref = Lref /uref . In order to make the system of
Equations (29)–(32) nondimensional, we define the nondimensional variables

(t, x, y) =
(
t̃∕tref , x̃∕Lref , ỹ∕Lref

)
, (h, u, v) =

(
h̃∕href , ũ∕uref , ṽ∕uref

)
. (38)

The numerical results are obtained and used in further numerical experiments in dimensionless form.
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4.2. Computational efficiency of adaptive randomized dynamic mode decomposition algorithm

In this section, the efficiency of ROM based on the ARDMD algorithm is illustrated in comparison
with the classic DMD algorithm, considering the evolution of the flow field along the integration
time window. The first major advantage of the adaptive randomized DMD proposed in this work
is represented by the fact that the ARDMD algorithm produces a reduced order subspace of Ritz
values, which has the same dimension as the rank of randomized SVD function. In consequence, this

Figure 1. The spectrum of dynamic mode decomposition (DMD) decomposition of geopotential height field
h in case of (a) adaptive randomized dynamic mode decomposition (ARDMD) algorithm used in the present

paper and (b) classic DMD algorithm used in [46].

Figure 2. The spectrum of dynamic mode decomposition (DMD) decomposition of streamwise field u in case
of (a) adaptive randomized dynamic mode decomposition (ARDMD) algorithm used in the present paper

and (b) classic DMD algorithm used in [46].
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procedure omits a further selection procedure of the Ritz values, like those mentioned in literature
[21, [25], [30], [39], [46], [50], 51].

Another benefit of the proposed procedure is that the low-order solution (22) is guaranteed to
satisfy the boundary conditions (32) of the full model, because the DMD modes provided by the
ARDMD algorithm meet the relations

𝜙u
j (0, y) = 𝜙u

j (Lmax, y) , j = 1, … , k, (39)

𝜙v
j (x, 0) = 𝜙v

j (x,Dmax) = 0, j = 1, … , k, (40)

where 𝜙u
j , 𝜙v

j are dynamic modes of the u and v fields, respectively, and k represents the number of
the retained modes in the ROM.

To highlight the efficiency of the ARDMD method presented herein, we illustrate in Figures 1 –3
the spectra of DMD decomposition of geopotential height field h, streamwise field u, and spanwise

Figure 3. The spectrum of dynamic mode decomposition (DMD) decomposition of spanwise field v in case
of (a) adaptive randomized dynamic mode decomposition (ARDMD) algorithm used in the present paper

and (b) classic DMD algorithm used in [46].

Figure 4. The process of evaluation of ROM target rank for h field: (a) the relative error of ARDMD computed
as a function of retained number of dynamic modes, and (b) the correlation coefficient of ARDMD computed
as a function of retained number of dynamic modes. ARDMD, adaptive randomized DMD; DMD, dynamic

mode decomposition; ROM, reduced order modelling.
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Figure 5. The process of evaluation of ROM target rank for u field: (a) the relative error of ARDMD computed
as a function of retained number of dynamic modes, and (b) the correlation coefficient of ARDMD computed
as a function of retained number of dynamic modes. ARDMD, adaptive randomized DMD; DMD, dynamic

mode decomposition; ROM, reduced order modelling.

Figure 6. The process of evaluation of ROM target rank for v field: (a) the relative error of ARDMD computed
as a function of retained number of dynamic modes, and (b) the correlation coefficient of ARDMD computed
as a function of retained number of dynamic modes. ARDMD, adaptive randomized DMD; DMD, dynamic

mode decomposition; ROM, reduced order modelling.

field v, respectively, in case of the new ARDMD algorithm and the classic DMD algorithm that was
applied in [46].

Obviously, when the classic DMD algorithm is applied, the practitioner has to address a modes’
selection method. Instead, the randomized DMD algorithm (ARDMD) produces a significantly
reduced size spectrum that elegantly incorporates the most influential modes.

The optimal rank of the reduced DMD model is the unique solution to the optimization problem
(15). In the process of ARDMD construction, we have tested several global optimization methods like
genetic algorithm combined with sequential quadratic programming [85] and simulated annealing
[86], to solve the optimization problem (15), with similar computational difficulties. In this work, a
collaborative optimization technique involving hybrid simulated annealing and sequential quadratic
programming (SA-SQP-CO) [87] is chosen because it ensures the existence of the solution to the
optimization problem (15). The SA-SQP-CO method and its convergence efficiency are fully detailed
in [87]. This leads to the optimal low-rank k and associated DMD subspace VDMD where the most
influential DMD bases live. The rank of the reduced DMD model is automatically found such that
the relative error of field reconstruction given by Equation (12) becomes sufficiently small and the
correlation coefficient (13) is sufficiently high.
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Figures 4 –6 present an insight of how ARDMD works. ARDMD algorithm produces subspaces
of order k = 20 selected from 173 DMD modes. A significant reduction of a factor of eight and a
half is achieved for the representation of Saint-Venant fields h, u, and v.

The ARDMD algorithm presented herein is fully capable of determining the modal growth rates
and the associated frequencies, which are illustrated in Figure 7 for velocity fields u, v, respectively.
This is of major importance when is necessary to isolate modes with very high amplitudes at lower
frequencies or high frequency modes having lower amplitudes.

The relative error ErDMD, the correlation coefficient CDMD, and the rank k of reduced order models
of the flow fields, provided by the ARDMD algorithm, are presented in Table I.

Figure 7. The amplitudes of dynamic mode decomposition modes and associated frequencies obtained by
dynamic mode decomposition of (a) streamwise velocity field u and (b) spanwise velocity field v.

Table I. The relative error ErDMD, the correlation coefficient CDMD,
and the reduced order modelling rank kobtained from ARDMD modal

decomposition.

Flow The relative The correlation The ROM

field error coefficient rank

h (x, y) Erh
DMD = 1.7909 × 10−4 Ch

DMD = 0.99999 k = 20

u (x, y) Eru
DMD = 1.4738 × 10−3 Cu

DMD = 0.99999 k = 20

v (x, y) Erv
DMD = 4.5316 × 10−3 Cv

DMD = 0.99999 k = 20

ARDMD, adaptive randomized dynamic mode decomposition; ROM,
reduced order model.

Table II. The reduced order modelling rank kand the relative error Erh
DMDin

case of several DMD-based modal decomposition methods.

Energetic Reduced Schmid Dynamic ARDMD algorithm

DMD [30] operator DMD [25] DMD [46] the present research

13 19 11 20

1.19 × 10 − 3 2.683 × 10 − 4 2.5785 × 10 − 4 1.7909 × 10 − 4

ARDMD, adaptive randomized dynamic mode decomposition; DMD, dynamic
mode decomposition.
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A comparison of the ROM rank, in the case of several DMD-based modal decomposition methods
associated with different modes’ selection criteria proposed in our previous investigations [25, [30],
46], and novel ARDMD technique is presented in Table II.

Data presented in Table II confirms the efficiency of the novel ARDMD method. Although the
previous techniques detailed in [25, [30], 46] lead to a reduced number of retained modes, there are
still missing modes that would contribute to data approximation. Hence, the relative error of flow
reconstruction by the reduced order model is the best in the case of randomized DMD. Producing a
slightly larger model rank k than the previous algorithms, the great advantage of ARDMD is that it
omits the efforts of implementing an additional criterion of influential modes’selection, they being
selected automatically.

Figure 8. The CPU time required in the offline stage by applying several DMD techniques: ARDMD, adaptive
randomized dynamic mode decomposition (present research), dynamic DMD method presented in [46], and

energetic DMD method employed in [30].

Figure 9. The coefficients of the reduced order models (a) hDMD (x, y) and (b) uDMD (x, y) obtained by radial
basis functions (RBF) interpolation, bj = aj𝜆

t−1
j for j = 1,… ,k.
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Figure 10. (a) Full solution of geopotential height field; (b) nonintrusive reduced order model (NIROM)
solution of geopotential height field.

Thus, a significant reduction in computational time is also achieved comparing with classic DMD
associated with different modes selection criteria. The CPU time required in the offline stage is
presented in Figure 8. By employing the ARDMD algorithm in comparison with dynamic DMD [46]
(DMD associated with a dynamic filtering modes selection method for which the amplitude of any
mode is weighted by its growth rate) and energetic DMD [30] (DMD associated with an energetic
criterion for modes selection), the computational complexity of the low-order model is reduced from
the very beginning by a factor of two and three, respectively, as illustrated in Figure 8.

Estimation of low-order model coefficients by interpolation, in the case of nonintrusive data, rep-
resents a cost effective solution, as has been also reported in the literature by Raisee et al. [88],
Peherstorfer and Willcox [89], and Lin et al. [90]. The coefficients of the reduced order models of
state solutions (hDMD, uDMD, vDMD) (x, y) have been estimated for entire time window by interpolating
the DMD computed coefficients using RBFs discussed in Section 3. They are depicted in Figure 9.

Using the ARDMD algorithm, we obtain the NIROMs of the state solutions (h, u, v) (x, y, t). The
validity of the methodology introduced in this paper is checked by comparing how the NIROMs
assess the full solution fields given by the numerical data at time instance 181, in Figures 10 and 11,
respectively. We applied a normalization condition such that the maximum amplitude of the physical
components (h, u, v) (x, y, t) fields over the (x, y) stations is unity. The NIROM models employ the
Ritz values represented in Figures 1 –3 and associated DMD modes and amplitudes determined by
the ARDMD algorithm.

The local error between the full SWE solution and NIROM solution, respectively, at time instance
181 is provided in Figure 12.
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Figure 11. (a) Full solution of (u, v) field; (b) nonintrusive reduced order model (NIROM) solution of (u, v)
field.

Figure 12. Local error between full shallow water equation solution and nonintrusive reduced order model
(NIROM) of geopotential height field (a), NIROM of streamwise velocity field (b), NIROM of spanwise

velocity field (c), respectively.
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Figure 13. The first two dynamic mode decomposition modes of the (u, v) field.

Figure 14. The third and fourth dynamic mode decomposition modes of the (u, v) field.

The coherent structures in the (u, v) field can be visualized as local vortices in the first DMD
modes, which are illustrated in Figures 13 and 14.

The flow reconstructions by NIROMs presented in Figures 10 and 11 are very close to numer-
ical data snapshots, comparing the solution of SWE flow field after 181 steps. The values of the
correlation coefficients provided in Table I greater than 99% confirm the validity of the NIROMs.
The similarity between the characteristics of the flow field and those obtained by the NIROMs val-
idates the method presented here and certifies that the improved ARDMD method can be applied
successfully to model reduction of 2D flows.

For the problem investigated here, the novel ARDMD method exhibits satisfactory performances
and provides a higher degree of accuracy for our linear reduced order flow model.

5. SUMMARY AND CONCLUSIONS

In this paper, we have proposed a framework for ROM of nonintrusive data with application to
2D flows. To overcome the inconveniences of intrusive model order reduction usually derived by
combining the POD and the Galerkin projection methods, we developed a novel technique on the
basis of randomized DMD as a fast and accurate option in model order reduction of nonintrusive
data originating from Saint-Venant systems. We derived a nonintrusive approach to obtain a reduced
order linear model of the flow dynamics on the basis of DMD of numerical data in association with
the efficient RBF interpolation technique.
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To the best of our knowledge, the present paper is the first work that introduces the randomized
DMD algorithm with application to fluid dynamics, after the randomized SVD algorithm recently
introduced by Erichson and Donovan [37] for processing of high resolution videos.

Several key innovations have been introduced in the present paper:

• We endow the DMD algorithm with a randomized singular value decomposition algorithm.
• We gain a fast and accurate ARDMD algorithm, exploiting an efficient low-rank DMD model

of input data.
• The rank of the reduced DMD model is given as the unique solution of an optimization problem

whose constraints are a sufficiently small relative error of data reconstruction and a sufficiently
high correlation coefficient between the numerical data and the DMD solution. The optimization
problem (15) is solved using an SA-SQP-CO [87].

The major advantages of the ARDMD proposed in this work are the following:

• This method provides an efficient tool in developing the linear model of a complex flow field
described by nonintrusive data.

• This method does not require an additional selection algorithm of the DMD modes. ARDMD
produces a reduced order subspace of Ritz values, having the same dimension as the rank of
randomized SVD function, where the most influential DMD modes live.

• The low-order solution (22) is guaranteed to satisfy the boundary conditions (32) of the full
model.

• We gain a significantly reduction of the offline CPU time in computation of the ROM compared
with classic DMD associated with different modes selection criteria.

• Combining the randomized DMD with RBF interpolation, we have derived a reduced order
model for estimating the flow behavior in the real-time window. The NIROM presents satisfac-
tory performances in flow reconstruction.

• Analyzing the modal growth rates and the associated frequencies is an instance of capturing
the flow dynamics. This is of major importance when is necessary to isolate modes with very
high amplitudes at lower frequencies or high frequency modes having lower amplitudes. Thus,
this paper outlines steps toward hydrodynamic stability analysis and flow control with potential
applications.

To highlight the performances of the proposed methodology, we performed a comparison of the
ROM rank, in the case of several DMD-based modal decomposition methods associated with differ-
ent modes selection criteria and novel ARDMD technique presented herein. The numerical results
confirmed the efficiency of the novel ARDMD method.

We emphasized the excellent behavior of the NIROMs developed in this paper by comparing the
computed shallow water solution with the numerical flow fields, and we found a close agreement. In
addition, we performed a qualitative analysis of the reduced order models by correlation coefficients
and local errors.

There are a number of interesting directions that arise from this work. First, it will be a natural
extension to apply the proposed algorithm to high-dimensional data originating from fluid dynam-
ics and oceanographic/atmospheric measurements. The methodology presented here offers the main
advantage of deriving a reduced order model capable to provide a variety of information describ-
ing the behavior of the flow field. A future extension of this research will address an efficient
numerical approach for modal decomposition of swirling flows, where the full mathematical model
implies more sophisticated relations at domain boundaries that must be satisfied by the reduced order
model also. Moreover, the approach presented here (i.e., modal decomposition based on the random-
ized SVD algorithm) can be used also with other reduced bases not just DMD ones, for example,
POD or balanced POD bases. The application of an adaptive randomized POD–ROM strategy for
nonintrusive ROM represents a subject that we will further address in our studies.
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