
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS
Int. J. Numer. Meth. Fluids 2017; 83:73–89
Published online 16 June 2016 in Wiley Online Library (wileyonlinelibrary.com). DOI: 10.1002/fld.4257

The method of dynamic mode decomposition in shallow water and
a swirling flow problem

Diana A. Bistrian1,*,† and Ionel M. Navon2

1Department of Electrical Engineering and Industrial Informatics, Politehnica University of Timisoara, 331128
Hunedoara, Romania

2Department of Scientific Computing, Florida State University, Tallahassee, FL 32306-4120, USA

SUMMARY

In this paper, a new vector-filtering criterion for dynamic modes selection is proposed that is able to extract
dynamically relevant flow features from dynamic mode decomposition of time-resolved experimental or
numerical data. We employ a novel modes selection criterion in parallel with the classic selection based on
modes amplitudes, in order to analyze which of these procedures better highlight the coherent structures of
the flow dynamics. Numerical tests are performed on two distinct problems. The efficiency of the proposed
criterion is proved in retaining the most influential modes and reducing the size of the dynamic mode decom-
position model. By applying the proposed filtering mode technique, the flow reconstruction error is shown
to be significantly reduced. Copyright © 2016 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Among several snapshot-based model order reduction, proper orthogonal decomposition (POD)
and dynamic mode decomposition (DMD) represent modal decomposition methods that are widely
applied to study dynamics in different applications.

The well-known method of POD has been illustrated on a variety of examples ranging from fluid
mechanics [1, 2], turbulent flows and oceanography [3–6], or engineering [7–9]. More recently, the
POD approach has been incorporated for reduced order modeling purposes by Du et al. [10], Fang
et al. [11], Stefanescu et al. [12], Dimitriu et al. [13], and Xiao et al. [14]. POD proved to be an
effective technique also in inverse problems, as demonstrated by the work of Winton et al. [15],
Chen et al. [16, 17], and Cao et al. [18, 19].

The method of DMD is rooted in the theory of Krylov subspaces [20–22] because of the original
derivation of DMD as a variant of the Arnoldi algorithm [23] and was first introduced in 2008 by
Schmid and Sesterhenn [24]. Only a year later, Rowley et al. [21] presented their theory of Koopman
spectral analysis, which has its inception back in 1931 [25].

So far, we have noticed two directions in DMD technique, underlined in the two seminal papers
on the topic, respectively [21, 22]. The straightforward approach is seeking a companion matrix
employed to construct in a least-squares sense the final data vector as a linear combination of all
previous data vectors [21, 26, 27]. Schmid [22] explored the similarities between POD and DMD
and recommended a more well-conditioned algorithm for DMD.
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In DMD, the modes are not orthogonal, but one advantage of DMD compared with POD is that
each DMD mode is associated with a pulsation, a growth rate, and each mode has a single distinct
frequency. Owing to this feature, DMD method was originally used in nonlinear dynamics, for
instance, by Muld et al. [28] and was just recently introduced in fluid mechanics [21, 29–31]. Mezic
[32, 33] was the first to apply the DMD theory for the purposes of model reduction.

Recently, a novel data-driven modal decomposition of fluid flow is proposed by Noack et al. [34]
comprising key features of POD and DMD. They introduced a recursive DMD technique consid-
ering modes that are orthogonal by construction. In contrast to DMD with exponentially growing
or decaying oscillatory amplitudes, the novel recursive DMD identifies initial, maximum, and final
fluctuation levels and was shown to be significantly better than DMD and POD.

The utility of DMD versus POD for model reduction is illustrated in our previous paper [35], in
the study of shallow water problem. There are several major differences between these two decom-
position methods. The spatial basis functions for DMD and POD respectively offer an insight of the
coherent structures in the flow field. The differences between POD and DMD occur because of the
principles of their respective decomposition methods. The time evolution of a DMD mode is influ-
enced by the multiplication of the complex eigenvalue of the Koopman operator [25] weighted by
the amplitude, while the time evolution of POD modes is described by the temporal coefficients. The
POD modes are orthonormal in space with the energy inner product. In DMD, each mode oscillates
at a single frequency, hence the expression that the DMD modes are orthogonal in time.

Selection of Koopman modes and amplitudes used for the flow reconstruction constitutes the
source of many discussions among modal decomposition practitioners. For instance, Jovanovic et al.
[36] introduced a low-rank DMD algorithm to identify an a priori specified number of modes that
provide optimal approximation of experimental or numerical snapshots at a certain time interval.
Consequently, the modes and frequencies that have strongest influence on the quality of approx-
imation have been selected. Chen et al. [20] introduced an optimized DMD, which tailors the
decomposition to a desired number of modes. This method minimizes the total residual over all
data vectors and uses simulated annealing and quasi-Newton minimization iterative methods for
selecting the frequencies.

In this work, a new criterion for dynamic modes selection is proposed that is able to extract
dynamically relevant flow features from time-resolved experimental or numerical data. Our objec-
tive is to employ the improved modes selection in parallel with the classic selection based on modes
amplitudes, in order to analyze which of these procedures better highlight the coherent structures of
the flow dynamics.

The remainder of this paper is organized as follows. In Section 2, we recall the principles govern-
ing the DMD, and we provide the description of the DMD algorithm employed for decomposition of
numerical data. In particular, we discuss the implementation of a novel criterion for optimal selec-
tion of the DMD modes as an alternative to the classic modes selection based on their amplitude.
Sections 3 and 4 illustrate the impact of the aforementioned new criterion on the numerical results
for the shallow water problem and a swirling flow problem, respectively. Summary and conclusions
are drawn in the final section.

2. THE METHOD OF DYNAMIC MODE DECOMPOSITION

2.1. The principles of dynamic mode decomposition

The Koopman operator is rooted in the work of French-born American mathematician Bernard
Osgood Koopman [25]. Considering a dynamical system evolving on a manifold M such that, for
all vk 2 M, vkC1 D f .vk/, the Koopman operator maps any scalar-valued function g W M ! R
into a new function Vg given by the following:

Vg.v/ D g.f .v//: (1)

Most informative on the spectral properties of the Koopman linear operator are the papers authored
by independent investigators such as Rowley et al. [21, 27], Chen et al. [20], and Bagheri [37],
where a rigorous treatment on the subject is given.
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Assuming that ¹v0; v1; : : : ; vN º is a data sequence collected at a constant sampling time �t , the
DMD algorithm is based on the hypothesis that a Koopman operator A exists, which steps forward
in time the snapshots, such that the snapshots data set®

v0; Av0; A2v0; : ::; AN�1v0
¯

(2)

corresponds to the N th Krylov subspace generated by the Koopman operator from v0. The goal
of DMD is to determine eigenvalues and eigenvectors of the unknown matrix operator A; thus, a
Galerkin projection of A onto the subspace spanned by the snapshots is performed. For a sufficiently
long sequence of the snapshots, we suppose that the last snapshot vN can be written as a linear
combination of previous N � 1 vectors, such that

vN D c0v0 C c1v1 C � � � C cN�1vN�1 CR; (3)

in which ci ; i D 0; : : : ; N � 1 are complex numbers and R is the residual vector. We assemble the
following relations:

A ¹v0; v1; : : : ; vN�1º D ¹v1; v2; : : : ; vN º D
®
v1; v2; : : : ; V

N�1
0 c

¯
CReTN�1; (4)

where V N�10 D
�
v0; v1; : : :; vN�1

�
, cT D

�
c0; c1; : : :; cN�1

�
is the unknown complex column

vector, and eTj represents the j th Euclidean unitary vector of length N � 1.
In matrix notation form, Eq. (4) reads

AV N�10 D V N�10 C CReTN�1; C D

0
BBB@
0 ::: 0 c0
1 0 c1
:::
:::
:::

:::

0 : : : 1 cN�1

1
CCCA ; (5)

where C is the companion matrix.
A direct consequence of (5) is that decreasing the residual increases overall convergence and

therefore the eigenvalues of the companion matrix C will converge toward some eigenvalues of the
Koopman operator A.

The quantitative capabilities of DMD have already been well demonstrated in the literature, and
several DMD procedures have been released by the efforts of Rowley et al. [21], Schmid [22],
Bagheri [37], Mezic [33], Belson et al. [38], and Williams et al. [39]. The representation of data in
terms of DMD is given by the linear model:

yDMD
t .x/ D

mX
jD1

aj�j .x/ �t�1j ; �j D e
.�jCi!j /�t ; t D 1; : : : ; N; (6)

where the right eigenvectors �j 2 C are dynamic (Koopman) modes, the eigenvalues �j are called
Ritz values [40], and coefficients aj 2 C are denoted as amplitudes or Koopman eigenfunctions.

Each Ritz value �j is associated with the growth rate �j D
log.j�j j/
�t

and the frequency !j D
arg.j�j j/
�t

and m represents the number of DMD modes involved in reconstruction.
The DMD algorithm that we applied in the forthcoming section for two distinct problems in

hydrodynamics is based on the procedure proposed by Rowley [21] and proceeds as follows:

(1) Collect data yi .t; x/ D y .ti ; x/ ; ti D i�t; i D 0; : : : ; N , and x representing the
spatial coordinates whether Cartesian or cylindrical and form the snapshot matrix V D�
y0; y1; : : :; yN

�
.

(2) A matrix V N�11 is formed with the first N columns, and the matrix V N2 contains the last N
columns of V : V N�11 D

�
y0; y1; : : :; yN�1

�
, V N2 D

�
y1; y2; : : :; yN

�
.

(3) Express V N2 as a linear combination of the independent sequence V N�11 : V N2 D AV
N�1
1 D

V N�11 SCR, whereR is the residual matrix and S approximates the eigenvalues ofAwhen
kRk2 ! 0. The objective at this step is to solve the minimization problem:
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Minimize
S

R D
��V N2 � V N�11 S

��
2
:

(4) We identify the singular value decomposition of V N�11 : V N�11 D U†W H , where U con-
tains the proper orthogonal modes of V N�11 , † contains the singular values, and W H is
the conjugate transpose of W . The use of this approach allows avoiding the use of the
QR-decomposition when the matrix V N�10 is rank deficient [22].

(5) This step aims to compute S , and for the reader information, we will detail it in the fol-
lowing. Relations AV N�11 D V N2 D V N�11 S C R; kRk2 ! 0 and V N�11 D U†W H

yield:

AU†W H D V N2 D U†W
HS

) UHAU†W H D UHU†W HS

) S D UHAU:

From AU†W H D V N2 , it follows that AU D V N2 W†
�1 and hence S D UH�

V N2 W†
�1
�
.

(6) The procedure to compute dynamic modes consists in solving the eigenvalue problem
SX D Xƒ and obtain the dynamic modes asˆ D UX . The diagonal entries ofƒ represent
the eigenvalues �.

(7) The vector containing dynamic modes amplitudes Ampl D
�
aj
�rank.ƒ/

jD1
is obtained

projecting dynamic modes onto the first snapshot.
(8) As a result of the presented algorithm, the reconstructed flow involving the DMD modes is

given by the product:

V DMD1 D ˆ � diag.Ampl/ � Van; (7)

where the Vandermonde matrix is

Van D

0
BBBBB@

1 �11 �21 : : : �
N�2
1

1 �12 �22 : : : �
N�2
2

1
:::

:::
:::

:::

: : : : : : : : : : : : : : :

1 �1m �2m : : : �N�2m

1
CCCCCA :

2.2. Selection of dynamic modes

The modes’ selection, which is central in model reduction, constitutes the source of many discus-
sions among modal decomposition practitioners. A low-rank DMD algorithm to identify an a priori
specified number of modes that provide optimal approximation of experimental or numerical snap-
shots was introduced by Jovanovic et al. [36]. An optimized DMD method was recently introduced
by Chen et al. [20], which tailors the decomposition to a desired number of modes. Their technique
minimizes the total residual over all data vectors and uses simulated annealing and quasi-Newton
minimization methods for selecting the frequencies. Tissot et al. [41] propose a new energetic
criterion for model reduction using DMD, which incorporates the growth rate of the modes.

The superposition of all Koopman modes, weighted by their amplitudes and complex frequencies,
approximates the entire data sequence, but there are also modes that have a weak contribution.

Bistrian and Navon [35] aimed to present a preliminary survey on DMD modes selection. In
this previous investigation, we introduced a novel selection method for the DMD modes, asso-
ciated amplitudes, and Ritz values to derive a DMD reduced-order model of the shallow water
equations. We arranged the Koopman modes in descending order of the energy of the DMD modes
weighted by the inverse of the Strouhal number. We eliminated the modes that contribute weakly
to the data sequence based on the conservation of quadratic integral invariants by the reduced order
flow. We address in this section the problem of identification of a small subset of DMD modes that
yield an optimal truncated representation of the flow field in order to capture its most important
dynamic structures.
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A criterion of selecting the DMD modes can be their amplitude aj . Assuming that, for a partic-
ular problem investigated here, there are no modes that are very rapidly damped having very high
amplitudes, we explore the selection of the modes based on sorting them in decreasing order of their
amplitudes. We define the relative error as the L2-norm of the difference between the variables of
the full model and approximate DMD solutions over the exact one, that is,

ErDMD D
ky .x/ � yDMD .x/k2

ky .x/k2
; (8)

where y .x/ represent the full solution of the model and yDMD .x/ represent the DMD solution. We
retain dynamic modes and associated frequencies in descending order of their amplitudes until a
minimum relative error of reconstruction is achieved:

arg min
m
¹a1 > a2 > � � � > am; ErDMD 6 "º ; " D 10�4: (9)

The flow dynamics may be unpredictable and exhibit modes with very high amplitudes but which
are very fast damped, or rapidly growing modes having lower amplitudes. Therefore, the selection
of modes based on their amplitude is not efficient as reported also by Noack et al. [42]. A different
option could be the modes selection based on their frequency !j . This is not rigorous because it
relies on a priori physical knowledge of the flow. The frequencies resolved by the DMD are still
subjected to the Nyquist sampling theorem [43], and it is better to know in advance frequencies that
are essential in the flow physics to adjust the sampling interval �t .

To overcome these difficulties, we introduce in the following a new vector-filtering criterion for
which the amplitude of any mode is weighted by its growth rate. This new dynamic filtering criterion
is perfectly adapted to the flow dynamics and selects the modes that are dominant in both situations
described previously. We define the amplification of any mode j as follows:

Aj D
1

T

TZ
0

aj

�
�
t=�t
j C �

�t=�t
j

�
dt D aj

e�jT C e��jT � 2

�jT
; T D .N � 1/�t: (10)

We retain dynamic modes and associated frequencies in descending order of their amplification
defined by (10) until a minimum relative error of reconstruction is achieved:

arg min
m
¹A1 > A2 > � � � > Am; ErDMD 6 "º ; " D 10�4: (11)

Consequently, the modes and frequencies that have strongest influence on the quality of approx-
imation are selected to be included in the reduced order model. We devote the next sections
to illustrate the numerical results obtained upon application of the two aforementioned selection
criteria for distinct hydrodynamic problems.

3. NUMERICAL RESULTS FOR SHALLOW WATER PROBLEM

The shallow-water equations have been used for a wide variety of hydrological and geophysical fluid
dynamics phenomena such as tide-currents [44], pollutant dispersion [45], storm surges, or tsunami
wave propagation [46]. In the Cartesian coordinates formulation, we suppose there exists a time-
dependent flow w D .u; v; h/ .x; y; t/ and a given initial flow w .x; y; 0/ D .u0; v0; h0/ .x; y/,
which are solutions of the Saint Venant equations, also called the shallow-water equations [47]:

ut C uux C vuy C �x � f v D 0; (12)

vt C uvx C vvy C �y C f u D 0; (13)

�t C .�u/x C .�v/y D 0; (14)

where u .x; y; t/ and v .x; y; t/ are the velocity components in the x and y axis, respectively,
� .x; y; t/ D gh .x; y; t/ is the geopotential height, h .x; y; t/ represents the depth of the fluid, f
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is the Coriolis factor, and g is the acceleration of gravity. Subscripts represent the derivatives with
respect to time and the streamwise and spanwise coordinates.

We consider that the reference computational configuration is the rectangular two-dimensional
domain � D Œ0; Lmax� � Œ0;Dmax�. The model (12)–(14) is considered here in a ˇ-plane assump-
tion [48], in which the effect of the earth’s sphericity is modeled by a linear variation in the
Coriolis factor:

f D bf C ˇ

2
.2y �Dmax/ ; (15)

where bf and ˇ are constants and Lmax and Dmax are the dimensions of the rectangular domain
of integration �, associated with periodic boundary conditions in the x-direction and solid wall
boundary condition in the y-direction:

w .0; y; t/ D w .Lmax; y; t/ ; v .x; 0; t/ D v .x;Dmax; t / D 0: (16)

The initial condition introduced by Grammeltvedt in section 6 of [49] was adopted as the initial
height field, which has been tested by different researchers [50–53], that is,

h0 .x; y/ D H0CH1 tanh

	
9.Dmax=2 � y/

2Dmax



CH2 sin

	
2	x

Lmax



cosh�2

	
9.Dmax=2 � y/

Dmax



; (17)

which propagates the energy in wave number 1, in the streamwise direction. Using the geostrophic
relationship, u D �hy .g=f /, and v D hx .g=f /, the initial velocity fields are derived as follows:

u0 .x; y/ D �
g

f

9H1

2Dmax

	
tanh2

	
9Dmax=2 � 9y

2Dmax



� 1



�

18g

f
H2 sinh

	
9Dmax=2 � 9y

Dmax


 sin
�
2�x
Lmax

�
Dmaxcosh3

�
9Dmax=2�9y

Dmax

� ; (18)

v0 .x; y/ D 2	H2
g

f Lmax
cos

	
2	x

Lmax



cosh�2

	
9.Dmax=2 � y/

Dmax



: (19)

We have followed the approach used by Navon [48] to implement a two-stage finite-element
Numerov–Galerkin method for integrating the nonlinear shallow-water equations on a ˇ-plane
limited-area domain. This method when applied to meteorological and oceanographic problems
gives an accurate phase propagation and also handles nonlinearities well. The accuracy of temporal
and spatial discretization scheme equals O

�
k2; hp

�
, where p varies in the interval Œ4; 8�. Using the

numerical integration scheme detailed in [48], we have captured the shallow-water dynamics over
long-term numerical integrations (10–20 days). The dimensional constants used for the model are
as follows:

bf D 10�4s�1; ˇ D 1:5 � 10�11s�1m�1; g D 10ms�1;

Dmax D 4400 km; Lmax D 6000 km; H0 D 2000m; H1 D 220m; H2 D 133m: (20)

The two-stage finite-element Numerov–Galerkin method for integrating the nonlinear shallow-
water equations on a ˇ-plane limited-area domain proposed by Navon [48] was employed in order
to obtain the numerical solution of the shallow-water equations model (12)–(14) associated with the
initial conditions (17)–(19). In Figure 1, the initial fields are presented.

As an alternative to different modes selection methods existing in the literature, we explore both
the selection criteria (9) and (11) when DMD algorithm is applied to the shallow-water problem. We
record a number of 240 unsteady solutions of the two-dimensional shallow water equations model
(12)–(14), with time step �t D 600s. The solutions of geopotential height field h and streamwise–
spanwise fields .u; v/ at T D 31h are illustrated in Figures 2 and 3, respectively.
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THE DMD METHOD IN SHALLOW WATER AND A SWIRLING FLOW PROBLEM 79

Figure 1. Geopotential height field for the Grammeltvedt initial condition h0 and streamwise and spanwise
velocity fields .u0; v0/ calculated from the geopotential field by using the geostrophic approximation.

Figure 2. Solution of geopotential height field h at T D 31h.

Figure 3. (a) Solution of streamwise field u and (b) solution of spanwise field v at T D 31h.

Copyright © 2016 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2017; 83:73–89
DOI: 10.1002/fld



80 D. A. BISTRIAN AND I. M. NAVON

Table I. The number of selected modes for representation of h; u, and v
fields employing criteria (9) and (11) and relative errors.

Shallow-water equations Selection based on Selection based on
field amplitude criterion (9) dynamic criterion (11)

h 17 11
u 27 11
v 17 13

Relative error ErDMD
h 3:731 � 10�4 2:5785 � 10�4

Relative error ErDMD
u 5:8036 � 10�3 8:6709 � 10�4

Relative error ErDMD
v 1:78 � 10�3 1:62 � 10�3

Figure 4. Reduced dynamic mode decomposition solution of geopotential height field h at T D 31h: (a)
involving 17 dynamic modes selected with amplitude criterion (9) and (b) involving 11 dynamic modes

selected with dynamic criterion (11).

Figure 5. Reduced dynamic mode decomposition solution of u field at T D 31h: (a) involving 27 dynamic
modes selected with amplitude criterion (9) and (b) involving 11 dynamic modes selected with dynamic

criterion (11).

The selection of dynamic modes was performed employing both criteria presented herein, namely,
the amplitude criterion and dynamic vector-filtering criterion. We solved the constrained optimiza-
tion problems described by Eqs. (9)–(11) employing the sequential quadratic programming [54].
The number of selected modes for representation of h; u, and v fields by the reduced DMD model
is presented in Table I. The flow reconstructions based on the selected modes in both cases are rep-
resented respectively in Figures 4, 5, and 6 and exhibit the relative errors illustrated in Figures 7
and 8.

In case of application of the dynamic vector-filtering criterion (11) introduced in this paper, the
number of dominant modes is reduced compared with the classic amplitude criterion, preserving
a very good approximation of the full solution by the reduced DMD model. The benefit of the
proposed filtering criterion consists in eliminating the modes that contribute weakly to the data

Copyright © 2016 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2017; 83:73–89
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Figure 6. Reduced dynamic mode decomposition solution of v field at T D 31h: (a) involving 17 dynamic
modes selected with amplitude criterion (9) and (b) involving 13 dynamic modes selected with dynamic

criterion (11).

Figure 7. The relative errors computed as the retained number of dynamic modes, in case of application of
the amplitude criterion (9) (17 modes) and dynamic criterion (11) (11 modes) for h field.

Figure 8. (a) The relative errors for u field computed as the retained number of dynamic modes, in case
of application of the amplitude criterion (9) (27 modes) and dynamic criterion (11) (11 modes) and (b)
the relative errors for v field, in case of application of the amplitude criterion (9) (17 modes) and dynamic

criterion (11) (13 modes).

sequence. It provides an automatic selection of the most representative modes, even they exhibit
rapidly growing with lower amplitudes or they are high-amplitudes fast damped modes.

The next figures illustrate the spectra of DMD. The colored Ritz values are selected by the two
mentioned criteria and are associated to the selected dynamic modes involved in the reduced DMD
model of the flow field. In Figures 9–14, the Ritz values selected for the reduced model of the h
field, u field, and v field employing the two mentioned criteria are presented, respectively.

The figures highlight the effect of the new dynamic criterion (11) to select different modes than
the classic amplitude criterion, but having the strongest impact in the reconstruction of the flow
dynamics. For the shallow-water problem investigated in this section, the modes selection based on

Copyright © 2016 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2017; 83:73–89
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Figure 9. (a) The spectrum of dynamic mode decomposition of geopotential height field h. Colored dots
represent the Ritz values with the most influential modes selected with amplitude criterion (9) (17 modes).

(b) Indices of modes selected with amplitude criterion (9).

Figure 10. (a) The spectrum of dynamic mode decomposition of geopotential height field h. Colored dots
represent the Ritz values with the most influential modes selected with dynamic criterion (11) (11 modes).

(b) Indices of modes selected with dynamic criterion (11).

Figure 11. (a) The spectrum of dynamic mode decomposition of u field. Colored dots represent the Ritz
values with the most influential modes selected with amplitude criterion (9) (27 modes). (b) Indices of modes

selected with amplitude criterion (9).

Figure 12. (a) The spectrum of dynamic mode decomposition of u field. Colored dots represent the Ritz
values with the most influential modes selected with dynamic criterion (11) (11 modes). (b) Indices of modes

selected with dynamic criterion (11).
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Figure 13. (a) The spectrum of dynamic mode decomposition of v field. Colored dots represent the Ritz
values with the most influential modes selected with amplitude criterion (9) (17 modes). (b) Indices of

selected modes selected with amplitude criterion (9).

Figure 14. (a) The spectrum of dynamic mode decomposition of v field. Colored dots represent the Ritz
values with the most influential modes selected with dynamic criterion (11) (13 modes). (b) Indices of modes

selected with dynamic criterion (11).

the new dynamic criterion (11) proved to be more efficient than the selection based on modes ampli-
tude. Dynamic criterion (11) is perfectly adapted to the flow dynamics and selects the significant
modes for the representation of the flow model, consisting both on fast damped modes having high
amplitudes and rapidly growing modes having lower amplitudes.

4. NUMERICAL RESULTS FOR SWIRLING FLOW PROBLEM

The main interest in recent decade is to use the mathematical modeling and advanced computational
methods in predicting transitions between laminar and turbulent configurations for a given flow
field. The challenge of this task is to build the linear dynamical system that models the evolution
of the flow and to define a new mathematical and numerical methodology to compute the modes
that have the strongest influence to the flow dynamics. The intent of this section is to undertake the
study of a confined swirling flow dynamics, by means of DMD and to test the capabilities of the
aforementioned modes selection criteria.

We consider a bounded domain� � R2, and let L2 .�/ be the Hilbert space of square integrable
vector functions over�, associated with the energy norm kukL2 D .u; u/

1=2

L2
and the standard inner

product .u; v/L2 D
R
�

u � v d�. Let Hr be the Hilbert space of divergence-free functions given by

the following:

Hr D
°
u 2 L2 .�/

ˇ̌̌
r � u D 0 in �; u �

!
n D 0 on @�

±
; (21)

where
!
n is the outward normal to the boundary. We define Hd .�/ � L2 .�/ to be the Hilbert

space of functions with d distributional derivatives that are all square integrable. Let V be the
Hilbert space:
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V D

²
u 2 Hr

ˇ̌̌
ˇu 2 H 1 .�/ ; u D 0;

@u

@
!
n
D 0; on @�

³
; (22)

with norm kukV D .u; u/
1=2
V and the inner product .u; v/V D

dP
iD1

.rui ;rvi /.

We consider the incompressible Navier–Stokes equations [55, 56] in two space dimensions, in
non-dimensional form, in a rectangular domain � D Œ0; lx� �

�
0; ly

�
:

@u

@t
D �

@u2

@x
�
@uv

@y
�
@p

@x
C

1

Re

	
@2u

@x2
C
@2v

@y2



; (23)

@v

@t
D �

@v2

@y
�
@uv

@x
�
@p

@y
C

1

Re

	
@2u

@x2
C
@2v

@y2



; (24)

@u

@x
C
@v

@y
D 0; (25)

where .u; v/ represents the velocity field, p is the pressure, and Re stands for the Reynolds number.
Vorticity-stream function approach to two-dimensional problem of solving Navier–Stokes equations
requires to remove explicitly the pressure from the Navier–Stokes equations. The vorticity for two-
dimensional case is defined as follows:

& D j& j D
@v

@x
�
@u

@y
; (26)

and stream function definition is as follows:

@‰

@y
D u;

@‰

@x
D �v: (27)

Combining these definitions with Navier–Stokes equations (23)–(24) will eliminate pressure
from the momentum equations. Non-pressure vorticity transport equation is obtained, which in
non-steady form can be written as follows:

@&

@t
C u

@&

@x
C v

@&

@y
D

1

Re

	
@2&

@x2
C
@2&

@y2



: (28)

Having combined Eqs. (26) and (27), the Poisson equation for the stream function variable ‰ is
obtained:

r2‰ D
@2‰

@x2
C
@2‰

@y2
D �&: (29)

In the present numerical experiment, the vorticity-stream solution is obtained by employing the
Crank–Nicolson method described by Strang in his book [57], considering no-slip boundary condi-
tions on each wall [58] of the fixed spatial domain �. We have captured the swirling flow dynamics
with the numerical constants lx D ly D 120m along the integration time window Œ0; 20s�.

In order to assess the performances of the method proposed, we have considered two numerical
experiments. In the first experiment, we record a number of 200 unsteady solutions of the vorticity
field, with time step �t D 10�1, considering the flow in laminar regime, with Reynolds number
Re D 200. In the second experiment, we consider the flow in turbulent regime with Reynolds
number Re D 5000, and we decrease the time step at �t D 10�2. A number of 2000 unsteady
solutions of the vorticity field have been recorded.

Figure 15(a) presents the solution of vorticity field at T D 18s in laminar regime. Employing
the sequential quadratic programming [54] to solve the constrained optimization problems (9) and
(11), we obtain the numbers of retained modes for vorticity field, which are presented in Table II.
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Figure 15. (a) Solution of vorticity field at T D 18s in laminar regime with Reynolds number Re D 200
and (b) the relative errors computed as the retained number of dynamic modes, in case of application of the

amplitude criterion (9) (14 modes) and dynamic criterion (11) (10 modes) for vorticity field & .

Table II. The number of selected modes for representation of vorticity field
employing criteria (9) and (11) and relative errors in laminar regime.

Flow regime Selection based on Selection based on
laminar amplitude criterion (9) dynamic criterion (11)

No. of modes 14 10
Relative error ErDMD

& 4:16 � 10�5 4:93 � 10�5

Figure 16. Reduced order solution of vorticity field at T D 18s in laminar regime Re D 200, employing
(a) 14 modes selected with amplitude criterion (9) and (b) 10 modes selected with dynamic criterion (11).

The amplitude criterion (9) leads to a number of 14 retained modes. The propose dynamic filter-
ing criterion (11) selects the most influential 10 dynamic modes. The relative errors are illustrated
in Figure 15(b). The vorticity field reconstruction based on the selected modes in both cases are
represented, respectively, in Figure 16.

Figure 17 illustrates the spectra of DMD of vorticity field in laminar regime. The Ritz values
retained for the reduced order DMD model employing both the amplitude criterion and dynamic
filtering criterion introduced in this paper are marked on the figure.

Figure 18(a) presents the solution of vorticity field at T D 18s in turbulent regime. The selec-
tion criteria (9) and (11) lead to the numbers of dynamic modes presented in Table III. In this
experiment, the amplitude criterion (9) proved to be more efficient in terms of mode number reduc-
tion, filtering 44 influential dynamic modes, while dynamic criterion (11) selects a number of 56
dynamic modes to contribute to the reduced order model with a relative error presented in Table III
and in Figure 18(b). Instead, the novel filtering technique provides a higher degree of accuracy for
flow reconstruction linear model. The vorticity field reconstruction in turbulent regime based on the
selected modes with both criteria is represented respectively in Figure 19.

For the problem investigated here, both criteria show satisfactory performances.
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Figure 17. The spectrum of dynamic mode decomposition of vorticity field in laminar regime. Colored dots
represent the Ritz values with the most influential modes selected with (a) amplitude criterion (9) (14 modes)

and (b) dynamic criterion (11) (10 modes), respectively.

Figure 18. (a) Solution of vorticity field at T D 18s in turbulent regime with Reynolds number Re D 5000
and (b) the relative errors computed as the retained number of dynamic modes, in case of application of the

amplitude criterion (9) (44 modes) and dynamic criterion (11) (56 modes) for vorticity field & .

Table III. The number of selected modes for representation of vorticity field
employing criteria (9) and (11) and relative errors in turbulent regime.

Flow regime Selection based on Selection based on
turbulent amplitude criterion (9) dynamic criterion (11)

No. of modes 44 56
Relative error ErDMD

& 7:57 � 10�6 9:08 � 10�7

Figure 19. Reduced order solution of vorticity field at T D 18s in turbulent regime Re D 5000, employing
(a) 44 modes selected with amplitude criterion (9) and (b) 56 modes selected with dynamic criterion (11).
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5. SUMMARY AND CONCLUSIONS

The present investigation has focused on the effects of modes selection in dynamic modes decom-
position. Based on the DMD method introduced in [21], we proposed an improved algorithm for
selecting the dominant DMD modes from the flow field, and we pointed out the problems for which
the new criterion proved its efficiency.

In order to assess the performances of the proposed technique, we have considered three numer-
ical experiments, and we applied both the classic amplitude criterion and the improved selection
criterion for different snapshots obtained by sampling down the original solutions of the full model.
We compared the effect of the novel selection criterion with the classic one in illustrative examples
originating from shallow water, laminar flows, and turbulent flows.

Unlike the classic selection based on modes amplitude, dynamic vector-filtering criterion intro-
duced in this paper offers two major advantages: It is able to select modes with very high amplitudes
but which are very fast damped, or rapidly growing modes having lower amplitudes. The new
dynamic filtering criterion proved its efficiency in application to shallow-water problem and swirling
flow in laminar regime. It contributes to a reduced size of the DMD model than the classic modes
selection method. A different situation may occur in the case of turbulent regime. For this case,
the selection of modes based on their amplitude proved to be more efficient in terms of modes
number reduction, but the novel filtering technique provides a higher degree of accuracy for flow
reconstruction linear model.

From the present investigation, we pointed out that the filtering of dynamic modes in DMD must
be adapted to the problem that is investigated. In these benchmarks, applying the proposed filtering
mode technique, the flow reconstruction error is shown to be significantly reduced.

For modeling problems with strong nonlinearities, the cost of evaluating the reduced order mod-
els still depends on the size of the full order model and therefore is still expensive. The discrete
empirical interpolation method (DEIM) described in detail in [59] represents an option to further
approximate the nonlinearities in the projection-based reduced order strategies. The application of a
DEIM-ROM strategy combined with the DMD method proposed in this paper represents a subject
that we will defer to a future study. The resulting DEIM-DMD-ROM will be evaluated efficiently at
a cost that is independent of the size of the original problem.
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