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Motivation of Reduced Order Modelling

The modal decomposition of fluid dynamics is a frequently employed
technique, capable of providing tools for studying dominant and
coherent structures in turbulent flows.

A complex turbulent flow often consists of a superposition of coherent
structures, whose development is responsible for the bulk mass, energy
transfer or hydrodynamic instability.

The present study is motivated by the need to further clarify the
connection between Koopman modes and POD dynamic modes, as well
as address their physical significance, for problems occurring in
oceanography.
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Reduced Order Modelling (ROM) Principles

Dimension reduction means representing the solution of a dynamical system
in high dimensional space w ∈ Rn with a corresponding vector in a much
lower dimensional space w̃ ∈ Rp , p� n, assuring:

(i) Preservation of stability,

(ii) Computational stability and efficiency,

(iii) Approximation error small-global error bounded.
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Complementary techniques for ROM

Proper orthogonal decomposition (POD) finds the most persistent spatial
structures ΦPOD

j and is primarily limited to flows whose coherent
structures can be hierarchically ranked in terms of their energy content.

w (x, y, t) ≈
p∑

j=1

bPOD
j (t)︸ ︷︷ ︸

Amplitudes

ΦPOD
j (x, y)︸ ︷︷ ︸

Spatial modes

,

Dynamic Mode Decomposition (DMD) finds the single frequency modes
φDMD

j and approximates the eigenvalues of the Koopman operator.

w (x, y, t) ≈
r∑

j=1

aDMD
j︸ ︷︷ ︸

Amplitude

eλjt︸︷︷︸
Time evolution

φDMD
j (x, y)︸ ︷︷ ︸

Spatial modes
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Saint–Venant Equations (Shallow Water Equations)

In the Cartesian coordinates formulation, we suppose there exists a time
dependent flow w = (u, v, h) (x, y, t) ∈ V and a given initial flow
w (x, y, 0) = (u0, v0, h0) (x, y), that are solutions of the Saint Venant
equations, also called the Shallow Water Equations (SWE),

ut + uux + vuy + ηx − fv = 0, (1)

vt + uvx + vvy + ηy + fu = 0, (2)

ηt + (ηu)x + (ηv)y = 0, (3)

where u (x, y, t) and v (x, y, t) are the velocity components in the x and y axis
respectively, η (x, y, t) = gh (x, y, t) is the geopotential height, h (x, y, t)
represents the depth of the fluid, f is the Coriolis factor and g is the
acceleration of gravity.

D.A. Bistrian and I.M. Navon Highly-efficient ROM Techniques for SWE ICAS2017, May 10-12, 2017 6 / 46



Boundary conditions:

w (0, y, t) = w (Lmax, y, t) , v (x, 0, t) = v (x,Dmax, t) = 0. (4)

The initial Grammeltvedt condition I1 as the initial height field:

h0 (x, y) = H0 + H1 tanh
( 9(Dmax/2− y)

2Dmax

)
+ H2 sin

( 2πx

Lmax

)
cosh−2

( 9(Dmax/2− y)

Dmax

)
, (5)

The initial velocity fields using the geostrophic relationship, u = −hy (g/f ),
v = hx (g/f ):

u0 (x, y) = −
g

f

9H1

2Dmax

(
tanh2

( 9Dmax/2− 9y

2Dmax

)
− 1
)
−

18g

f
H2 sinh

( 9Dmax/2− 9y

Dmax

) sin
(

2πx
Lmax

)
Dmaxcosh3

(
9Dmax/2−9y

Dmax

) , (6)

v0 (x, y) = 2πH2
g

f Lmax
cos
( 2πx

Lmax

)
cosh−2

( 9(Dmax/2− y)

Dmax

)
. (7)

D.A. Bistrian and I.M. Navon Highly-efficient ROM Techniques for SWE ICAS2017, May 10-12, 2017 7 / 46



18000
18500

1850019000195002000020500
21000

21500
21500

22000

x [km]

y
 [

k
m

]

0 2 4 6

x 10
6

0

2

4

x 10
6

0
5
x 10

60

5

x 10
6

1.5

2

2.5

x 10
4

x [km]

h
0
 field

y [km]

0

0

0

0

50

50

50
50 −50 −50100100−100 −100150

150
−150

−150
200

x [km]

y
 [

k
m

]

0 2 4 6

x 10
6

0

2

4

x 10
6

0
5
x 10

60

5

x 10
6

−500

0

500

x [km]

u
0
 field

y [km]

0

0

−50 50

50
−100 100

100

x [km]

y
 [

k
m

]

0 2 4 6

x 10
6

0

2

4

x 10
6

0
5
x 10

60

5

x 10
6

−200

0

200

x [km]

v
0
 field

y [km]

Figure: Initial velocity fields: Geopotential height field for the Grammeltvedt initial
condition h0, streamwise and spanwise velocity fields (u0, v0) calculated from the
geopotential field by using the geostrophic approximation.
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Characteristics of POD Method

w (x, y, t) ≈
p∑

j=1

bPOD
j (t)︸ ︷︷ ︸

Amplitudes

ΦPOD
j (x, y)︸ ︷︷ ︸

Spatial modes

,

POD is related to the principal component analysis, Karhunen-Love
expansion in the stochastic process theory, and the method of empirical
orthogonal functions.

POD represents at the moment state-of-the-art technique for the
reduced-order modeling of nonlinear PDEs.

The strong point of POD is that it can be applied to non-linear partial
differential equations, especially for smooth systems in which the
energetics can be characterized by the first few modes.

Related work: Holmes et al. 1996 [7], Navon and DeVilliers 1996 [2],
Fang et al. 2009 [5], Wang et al. 2012 [6], Stefanescu and Navon 2013
[4].
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Description of POD Method

POD approximates the state variable as a finite sum of form

w (x, y, t) ≈
p∑

j=1

bj (t) Φj (x, y), (8)

expecting that this approximation becomes exact as p→ +∞.

The POD problem reduces to find the subspace
X = span {Φ1,Φ2, ...,Φp} spanned by the sequence of orthonormal
functions Φj (x, y) such that the p-approximation of w (x, y, t) is as good
as possible in the least square sense:

min
Φ1,Φ2,...,Φp

∫
Ω

∥∥∥∥∥w (x, y, t)−
p∑

j=1
〈w (x, y, t) ,Φj (x, y)〉L2Φj (x, y)

∥∥∥∥∥
2

L2

dr

s.t. 〈Φi,Φj〉L2 = δij, 1 ≤ i ≤ j ≤ p
(9)
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POD Algorithm for 2D flows

(i) Collect data wi (x, y) = w (x, y, ti), ti = i∆t, i = 0, ...,N from the flow
field, equally distributed in time.

(ii) Placing the columns one after another, transform snapshots wi into
columns w̃i of the matrix

V =
[

w̃0 w̃1 ... w̃N
]
. (10)

(iii) Compute the mean column Wb = 1
N+1

N∑
i=0

w̃i and the mean-subtracted

snapshot matrix V ′ = V −Wb. Reshaping Wb into the matrix form
corresponds to the base flow Wb (x, y).
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POD Algorithm for 2D flows

(iv) Calculate the empirical correlation matrix

C =
1

N + 1
V ′V ′T , (11)

where N + 1 represents the number of snapshots and V ′T represents the
transpose of the mean subtracted snapshot matrix.

(v) Compute the singular eigenvalue decomposition

Cvj = λjvj, j = 1, ...,N + 1, vj ∈ RN+1, (12)

where N + 1 represents the number of the total eigenvalues.
(vi) Find the number of POD basis vectors rPOD capturing 99.99% of the

snapshots energy, defined as

ePOD =

rPOD∑
j=1

λj

/
N+1∑
j=1

λj. (13)
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POD Algorithm for 2D flows

(vii) We can choose the first orthonormal basis of eigenvectors {v1, ..., vrPOD}
and the corresponding POD basis functions are given by

Φj =
1√
λj
V ′vj, j = 1, ..., rPOD. (14)

(viii) The temporal coefficients are stored in the matrix B, which is obtained
by relation

B = ΦTV ′. (15)
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POD-ROM Model

Full model: {
∂w
∂t (x, y, t) = f (t,w (x, y, t))
w (x, y, t0) = w0 (x, y)

(16)

POD approximation:

w (x, y, t) ≈ wPOD (x, y, t) = Wb (x, y) +

rPOD∑
j=1

bj (t) Φj (x, y), (17)

Galerkin projection gives the POD-ROM and allows reconstruction of reduced
order model by solving the resulting ODE system:

ḃi (t) =

rPOD∑
m=1

rPOD∑
n=1

dimnbm (t) bn (t) +

rPOD∑
m=1

dimbm (t) , i = 1, ..., rPOD. (18)

ḃi (t) =

〈
Φi (·) , f

t,
rPOD∑
j=1

Φj (·) bj (t)

〉 , (19)

with the initial condition

bi (t0) = 〈Φi (·) ,w0〉 , for i = 1, ..., rPOD. (20)
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Description of DMD Method

w (x, y, t) ≈
r∑

j=1

aDMD
j︸ ︷︷ ︸

Amplitude

eλjt︸︷︷︸
Time evolution

φDMD
j (x, y)︸ ︷︷ ︸

Spatial modes

Introduced by Rowley in 2009 [5] for spectral analysis of nonlinear
flows.

In 2010, Schmid [1] recommends an alternate algorithm, based on
averaging the mapping from the snapshots to the new one, upon which
the work within this article is based.

Related work: Rowley 2009 [5], Schmid 2010 [1], Bagheri 2013 [3],
Mezic 2013 [4], Belson et al. 2014 [6].
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The Koopman Operator and the General Description of
DMD

Considering a dynamical system evolving on a manifold M such that, for all
wk ∈M

wk+1 = f (wk), (21)

the Koopman operator, defined by Koopman [2] in 1931 maps any
scalar-valued function g : M→ R into a new function Ug given by

Ug (w) = g (f (w)) . (22)

The Koopman operator is infinite-dimensional and it steps forward in time an
observable.
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The Koopman Operator and the General Description of
DMD

There is a unique expansion that expands each snapshot in terms of vector
coefficients φj which are called Koopman modes and mode amplitudes aj (w),
such that iterates of w0 are then given by

g (wk) =

∞∑
j=1

λk
j aj (w0)φj, λj = eσj+iωj , (23)

where λj are called the Ritz eigenvalues of the modal decomposition, that are
complex-valued flow structures associated with the growth rate σj and the
frequency ωj.
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The Koopman Operator and the General Description of
DMD

Assuming that {w0,w1, ...wN} is a data sequence collected at a constant
sampling time ∆t, we define the following matrices

VN−1
0 =

(
w0 w1 ... wN−1

)
, VN

1 =
(

w1 w2 ... wN
)
. (24)

The DMD algorithm is based on the hypothesis that a Koopman operator A
exists, that steps forward in time the snapshots, such that

wi+1 = Awi, i = 0, ...,N − 1. (25)

It follows that the snapshots data set

VN−1
0 =

(
w0 Aw0 A2w0 ... AN−1w0

)
(26)

corresponds to the Nth Krylov subspace generated by the Koopman operator
from w0.
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The Koopman Operator and the General Description of
DMD

For a sufficiently long sequence of the snapshots, we suppose that the last
snapshot wN can be written as a linear combination of previous N − 1 vectors,
such that

wN = c0w0 + c1w1 + ...+ cN−1wN−1 +R, (27)

which can be written in matrix notation as

wN = VN−1
0 c +ReT

N−1, (28)

in which cT =
(

c0 c1 ... cN−1
)

is a complex column vector andR is
the residual vector.
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The Koopman Operator and the General Description of
DMD

We assemble the following relations

A{w0,w1, ...wN−1} = {w1,w2, ...wN} =
{

w1,w2, ...VN−1
0 c

}
+ReT

N−1 (29)

in the matrix notation form,

AVN−1
0 = VN

1 = VN−1
0 C +ReT

N−1, C =


0 ... 0 c0
1 0 c1
...

...
...

...
0 . . . 1 cN−1

 , (30)

where C is the companion matrix and eT
j represents the jth Euclidean unitary

vector. The last column of the companion matrix may be found using the
Moore-Penrose pseudo-inverse of VN−1

0 , as

c =
(

VN−1
0

)+
wN =

((
VN−1

0

)∗
VN−1

0

)−1(
VN−1

0

)∗
wN .
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Description of an Improved DMD Algorithm for SWE

The main objective is to find a representation of the flow field in the form

wDMD (x, y, t) = Wb +

r∑
j=1

aje(σj+iωj)tφj (x, y), (31)

σj =
log (|λj|)

∆t
, ωj =

arg (|λj|)
∆t

, (32)

φj ∈ C are the DMD modes,
r is the number of the DMD modes kept for flow decomposition,
aj ∈ C are the amplitudes of the modes,
λj ∈ C are the Ritz eigenvalues,
σj is the growth rate,
ωj is the frequency,
Wb is a constant offset that represents the data mean, usually called the
base flow.
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Description of an Improved DMD Algorithm

Selection of modes – is subject of many discussions in literature (Bagheri
[3], Mezic [4], Rowley et al. [5], Belson et al. [6], Holmes et al. [7]).

We introduce in this paper a DMD based approach yielding a
supplementary subroutine for extracting the optimal Koopman modes.
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Strategy for the Optimal Selection of the Dominant
Koopman Modes

We seek for a number rDMD < r, which represents the optimal number of the
selected modes that must be identified such that the flow can be reconstructed
using the first rDMD optimal Koopman modes and associated amplitudes and
Ritz eigenvalues as:

wDMD (x, y, t) = Wb (x, y) +

rDMD∑
j=1

ajλjφj (x, y). (33)

The DMD algorithm that we propose, is based on the conservation of
quadratic integral invariants of the SWE model by the finite-element
discretization scheme of the shallow-water model (1)-(3) (Navon 1987
[1]).
We assume that the reduced order reconstructed flow (33) also preserves
the conservation of the total flow energy.
In parallel, we aim to eliminate the modes that contribute weakly to the
data sequence.
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Optimal Selection of the Dominant Koopman Modes in
DMD

(i) Compute the total energy of the high fidelity flow (Navon 1987 [1])

E =
1

N + 1

N∑
i=0

∫ ∫
Ω

hi(x, y)
(

ui(x, y)
2

+ vi(x, y)
2
)

+ ghi(x, y)
2dx dy, (34)

(ii) Compute the total energy of the reduced order flow

EDMD
=

1

N + 1

N∑
i=0

∫ ∫
Ω

hi
DMD

(x, y)
(

ui
DMD

(x, y)2
+ vi

DMD
(x, y)2

)
+ ghi

DMD
(x, y)2dx dy, (35)

where (hi, ui, vi) (x, y) and
(
hi

DMD, ui
DMD, vi

DMD
)

(x, y), i = 0, ...,N
represents the full rank flow, respectively the Koopman decomposed flow
at time i.
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Optimal Selection of the Dominant Koopman Modes in
DMD

(iii) Arrange the Koopman modes in descending order of the energy of the
modes, weighted by the inverse of the Strouhal number
St = arg (λj) / (2π∆t):

eDMD
j =

1
St
·
‖φj (x, y)‖F
‖V‖F

, j = 1, ..., r. (36)

(iv) Find the solution to the following minimization problem Minimize
rDMD

1
N+1

N∑
i=0

‖wi(x,y)−wi
DMD(x,y)‖F

‖wi(x,y)‖F
,

Subject to
∣∣E − EDMD

∣∣ < ε,

(37)

where wi (x, y) and wi
DMD (x, y), i = 0, ...,N represents the full rank

flow, respectively the Koopman decomposed flow at time i and ε = 10−5

sets an upper bound on the relative error due to rounding in floating point
arithmetic.
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DMD-ROM Model

Full model: {
∂w
∂t (x, y, t) = f (t,w (x, y, t))
w (x, y, t0) = w0 (x, y)

(38)

DMD approximation:

w (x, y, t) ≈ wDMD (x, y, t) = Wb (x, y) +

rDMD∑
j=1

aj (t)λjφj (x, y), (39)

Galerkin projection gives the DMD-ROM and allows reconstruction of reduced
order model by solving the resulting ODE system:

ȧi (t) =

rDMD∑
m=1

rDMD∑
n=1

cimnam (t) an (t) +

rDMD∑
m=1

cimam (t) , i = 1, ..., rDMD, (40)

ȧi (t) =

〈
φi (·) , f

t,
rDMD∑
j=1

λjφj (·) aj (t)

〉 , (41)

with the initial condition

ai (t0) = 〈φi (·) ,w0〉 , for i = 1, ..., rDMD. (42)
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Numerical Results for the Improved DMD Algorithm

Setup for the first numerical experiment:

Dmax = 4400km, Lmax = 6000km,

f̂ = 10−4s−1, β = 1.5× 10−11s−1m−1, g = 10ms−1,

H0 = 2000m, H1 = 220m, H2 = 133m,

∆t = 600s, N = 240

unsteady solutions of the two-dimensional shallow water equations model.
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Improved DMD algorithm

a. b.

c.

Figure: Spectrum of the Dynamic Mode Decomposition: a. Geopotential field h; b.
Streamwise velocity field u; c. Spanwise velocity field v, ∆t = 600s.
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Improved DMD algorithm

a. b.

Figure: a. Absolute error between the total energy of the high fidelity flow and the
total energy of the reduced order flow, as the number of the DMD modes; b. The

relative error
‖h(x,y)−hDMD(x,y)‖

F
‖h(x,y)‖F

of geopotential height field decomposition, using
rDMD = 13 modes.
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Classic DMD algorithm

a. b.

Figure: a. Absolute error between the total energy of the high fidelity flow and the
total energy of the reduced order flow, as the number of the DMD modes; b. The

relative error
‖h(x,y)−hDMD(x,y)‖

F
‖h(x,y)‖F

of geopotential height field decomposition, using
rDMD = 23 modes.
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Number of basis functions
rDMD = 23 rDMD = 13

a. b.

Figure: Decomposition of streamwise velocity field u-The normalized vector energy
versus the Strouhal number: a. Application of classic DMD algorithm; b. Application
of improved DMD algorithm - present approach. The lighter colored dots indicate the
amplitude values for which the corresponding modes and Ritz eigenvalues are kept in
the flow reconstruction.
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Second numerical experiment:

∆t = 1200s, N = 240

Spectrum of the Dynamic Mode Decomposition: a. Geopotential field h; b.
Streamwise velocity field u; c. Spanwise velocity field v

a. b.

c.
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Number of basis functions
rDMD = 21 rDMD = 4

a. b.

Figure: The normalized vector energy versus the Strouhal number: The lighter
colored dots indicate the modes for which the amplitude values and Ritz eigenvalues
are retained in the flow decomposition. a. The classic DMD algorithm - rDMD = 21;
b. Improved DMD algorithm - present research-rDMD = 4, ∆t = 1200s.
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Numerical Results for POD Algorithm

Number of basis functions rPOD = 17

a.
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Figure: a. POD eigenvalues; b. Based on an energetic criterion rPOD = 17 modes are
kept for the POD expansion.
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Numerical Results for POD Algorithm

a.

Figure: The energy captured in the POD decomposition as the number of the POD
modes.
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A Quantitative Comparison of the Spatial Modes

Left: first four DMD modes. Right: first four POD modes.
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A Quantitative Comparison of the Spatial Modes
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Figure: Modal Assurance Criterion - MAC Matrix between DMD and POD modes.
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The first four DMD modes are sufficient to describe the flow field, as indicated the higher MAC values⇒ DMD is more efficient than POD in

term of reduced size of ROM.
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DMD-ROM and POD-ROM Models

Table: The average relative errors of reduced order models

DMD-ROM POD-ROM
errorDMD

h = 0.0119 errorPOD
h = 0.0042

errorDMD
u = 0.1770 errorPOD

u = 0.0929
errorDMD

v = 0.1534 errorPOD
v = 0.0456

Table: Energy conserving test

DMD-ROM POD-ROM∣∣E − EDMD
∣∣ = 0.1956× 10−5

∣∣E − EPOD
∣∣ = 0.7436× 10−6
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Comparison of the geopotential height field solution between full model and reduced
order models at time T = 10h: a. Full solution; b. DMD-ROM solution; c.
POD-ROM solution.
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Efficiency of DMD-ROM and POD-ROM Models

a. b.

Figure: Correlation coefficients for the SWE variables: a. DMD-ROM model vs. full
SWE model; b. POD-ROM model vs. full SWE model.
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Efficiency of DMD-ROM and POD-ROM Models
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Conclusions

(i) Improved DMD method introduced in the present research exhibits more
efficiency in reconstruction of flows described by shallow water equations
model. For ∆t = 1200s, rDMD = 4 Koopman modes are selected for flow
reconstruction, while rDMD = 21 Koopman modes are retained in the case of the
classic DMD algorithm and rPOD=17 modes are kept for flow reconstruction in
POD method.

(ii) By employing the DMD, the most energetic Koopman modes are associated to
the the higher amplitudes selected for flow decomposition. Instead, the
eigenvalues capturing most of the snapshots energy indicate the corresponding
basis functions in POD decomposition.

(iii) DMD is useful when the main interest is to capture the dominant frequency of
the phenomenon. POD is useful when the main interest is to find coherent
structures in the POD modes which are energetically ranked. Further techniques
for system identification or flow optimization can be addressed based on both
DMD method and POD method.
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Future work

There are a number of interesting directions that arise from this work:

The application of the proposed algorithm to high-dimensional systems in fluid
dynamics and to oceanographic/atmospheric measurements.

For parametrically varying problems or for modeling problems with strong
nonlinearities, the cost of evaluating the reduced order models still depends on
the size of the full order model and therefore is still expensive.

The use of Discrete Empirical Interpolation Method (DEIM) [4] to approximate
the nonlinearity in the projection based reduced order strategies for FEM
models combined with the methods proposed in this paper.

The resulting DEIM-DMD-ROM and DEIM-POD-ROM will be evaluated
efficiently at a cost that is independent of the size of the original problem.
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