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Estimation of the error arising in the cost (goal) functional due to stopping the iterative process is considered for a steady

problem solved by temporal relaxation. The functional error is calculated using an iteration residual along with related

adjoint parameters. Numerical tests demonstrate the applicability of this approach for the steady 2D Euler equations.
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1. Introduction

The quantitative evaluation of errors caused by different

components of a numerical algorithm including the error

of approximation and iteration error is of significant

current interest (AIAA Standard 1998, Oberkampf and

Blottner 1998, Roache 1998). Iterative methods are

commonly used for solving steady CFD problems. One

of the simplest techniques involves the temporal

evolution from an initial guess to obtain a steady

solution. This approach implies performing iterations

along the time coordinate or a certain pseudo-temporal

variable (Roache 1976, Samarskii 2001). Different

variants of preconditioning (Pulliam and Chaussee

1981, Allmaras 1993, Turkel 1993, Jameson and

Caughey 2001, Turkel and Vatsa 2005) are used to

improve the relaxation rate. Commonly used a priori

estimates of iteration convergence (Samarskii 2001)

(linking the error with iteration residual in certain norms)

contain constants that are unknown in the general case

(for nonlinear non self-adjoint operators). Very often, the

iterations are terminated when some semi-empirical

convergence criterion (for example, max
i
jrnþ1

i 2 rni j #

10m (Roache 1976)) is satisfied. This entails a small

iteration error; however the exact magnitude of this error

remains unknown. In the present paper, we estimate the

error of a cost (valuable from a practical viewpoint)

functional in the form of a posteriori error estimation

obtained via adjoint parameters (Wigner 1945, Marchuk

1995, Giles and Pierce 1997, Giles and Pierce 1999,

Alekseev 2000, Fursikov 2000, Oden and Vemaganti

2000, Becker and Rannacher 2001, Giles and Suli 2002,

Oden and Prudhomme 2002, Zuazua 2002, Braack and

Ern 2003, Cnossen et al. 2003, Gunzburger 2003,

Hartmann and Houston 2003, Giles et al. 2004, Pierce

and Giles 2004, Alekseev and Navon 2005a, 2005b,

Alekseev 2006) and the residual of the iterations. From

another viewpoint, the approach used here may be

considered as an estimation of the error caused by the

variation of the physical model. A sizeable number of

publications cover the impact of physical model variation

(Oden and Vemaganti 2000, Giles and Suli 2002, Oden

and Prudhomme 2002, Braack and Ern 2003, Cnossen

et al. 2003, Giles et al. 2004, Alekseev and Navon 2005a,

Alekseev 2006) using the adjoint equations. The results

provided by ‘coarse’ and ‘fine’ physical models are

compared by Oden and Vemaganti (2000) and Oden and

Prudhomme (2002) for several problems including the

flow of a viscous incompressible fluid governed by

the Navier –Stokes or Stokes equations models.

The influence of a coefficient’s oscillations and

nonlinearity for the Poisson and convection–diffusion–

reaction equations is estimated in (Braack and Ern 2003),

while the deviation of solutions governed by Helmholtz

and Poisson equations models is considered in (Cnossen

et al. 2003). Alekseev and Navon (2005a) discuss the

impact of viscosity on the flow parameters by comparing

the Euler and parabolised Navier–Stokes equations.

In the present paper, we address the issue of comparing

steady and unsteady inviscid gas flows. The flow density

at a certain reference point is chosen here as the cost

functional. This choice is not central to the method and is

used due to its convenience for numerical tests. This

approach was also employed for the heat transfer

equation and pointwise temperature in (Alekseev 2006).
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2. Algorithm outline

Let us consider briefly the formal scheme of the adjoint a

posteriori error estimation in accordance with work by

Giles and Pierce (1997), Giles and Pierce (1999), Oden

and Vemaganti (2000), Becker and Rannacher (2001),

Giles and Suli (2002), Oden and Prudhomme (2002),

Braack and Ern (2003), Hartmann and Houston (2003),

Giles et al. (2004) and Pierce and Giles (2004). This

approach is adopted for the present paper purposes and

assumes the same form of accounting for the impact of

both unsteady terms and truncation error.

Let the problem of interest (direct one) be governed

by the equation

Nðf Þ ¼ w in V , Rn; ð1Þ

with boundary conditions

Bðf Þ ¼ e on ›V; ð2Þ

where N is a nonlinear differential operator

(H k(V) ! L2(V)), f denotes a set of physical parameters

( f [ H k(V)),w, e are the control parameters (w [ L2(V),

e [ L2(›V)). The operators N( f ), B( f ) are considered to

be Frechet differentiable, while their corresponding

derivatives are denoted as Nf ( f ), Bf ( f ), respectively.

For the sake of brevity, wewill also use for these operators

the following notations: Nf, Bf and Nf, Bf, respectively.

Consider also a Frechet differentiable cost functional

1(·):L2(V) ! R 1.

Apart from the value of this functional, its sensitivity

to the control parameter variation is also of practical

significance. We introduce the adjoint parameters

C [ H 1(V) and formulate the Lagrangian

L ¼ 1þ ðNf 2 w;CÞL2ðVÞ þ ðBf 2 e;CÞL2ð›VÞ: ð3Þ

We want to track the impact of the control parameter

variations Dw, De on the cost functional.

The variation of the Lagrangian assumes the form

DL ¼ð1f ;Df ÞL2ðVÞ þ ðNfDf 2 Dw;CÞL2ðVÞ

þ ðNf 2 w;DCÞL2ðVÞ þ ðBf 2 e;DCÞL2ð›VÞ

þ ðBfDf 2 De;CÞL2ð›VÞ: ð4Þ

It may be seen that the variation of the cost functional

is equal to the variation of the Lagrangian on the

solutions of the direct problem and an additional

problem, describing the perturbations:

Nf ðf ÞDf ¼ Dw in V; ð5Þ

Bf ðf ÞDf ¼ De on ›V: ð6Þ

It is convenient to use Gateaux derivatives (deriva-

tives along the direction of disturbance Df ¼ Df/kDfk)

of the functional (and Lagrangian) instead of variations

and equations for the perturbations

D1 ¼ 1f ðf ÞDf ¼ lim
s!0

1ðf þ sDf Þ2 1ðf Þ

s
; ð7Þ

and a Gateaux derivative of the operator

NfDf ¼ lim
s!0

Nðf þ sDf Þ2 Nðf Þ

s
: ð8Þ

The Gateaux derivative of the direct problem

operators is denoted as the tangent linear problem

assuming the following form:

Nf ðf ÞDf ¼ Dw in V; kDwk ¼ 1; ð9Þ

with boundary conditions

Bf ðf ÞDf ¼ De on ›V; kDek ¼ 1: ð10Þ

This statement is more useful compared with (5)–(6)

since it does not involve assumptions of smallness of the

disturbances.

The Gateaux derivative of the cost functional is a

linear continuous functional that may be formulated as a

Riesz-representation using an inner product in L2(V)

D1 ¼ ð1f ;Df ÞL2ðVÞ: ð11Þ

Correspondingly, the Gateaux derivative of the

Lagrangian assumes the form

DL ¼ ð1f ;Df ÞL2ðVÞ þ ðNfDf 2 Dw;CÞL2ðVÞ

þ ðBfDf 2 De;CÞL2ð›VÞ: ð12Þ

Using the bilinear identity ðNfDf ;CÞL2ðVÞ ¼

ðN
*

fC;Df ÞL2ðVÞ þ ðGDf ;CÞ›V implemented by integration

by parts, we may recast (12) as

DL ¼ ð1f ;Df ÞL2ðVÞ þ ðNfDf ;CÞL2ðVÞ

2 ðDw;CÞL2ðVÞ þ ðBfDf ;CÞL2ð›VÞ

2 ðDe;CÞL2ð›VÞ

¼ ð1f ;Df ÞL2ðVÞ þ ðDf ;N
*

fCÞL2ðVÞ

2 ðDw;CÞL2ðVÞ þ ðGDf ;CÞL2ð›VÞ

þ ðDf ;B
*

TCÞL2ð›VÞ 2 ðDe;CÞL2ð›VÞ

¼ Df ;N
*

fCþ 1f

� �
L2ðVÞ

2ðDw;CÞL2ðVÞ

þ Df ;B
*

fCþ G*C
� �

L2ð›VÞ
2ðDe;CÞL2ð›VÞ:

ð13Þ

A.K. Alekseev and I.M. Navon222
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The derivative of the Lagrangian along the control

parameter disturbance may be expressed as

DL ¼ 2ðDw;CÞL2ðVÞ 2 ðDe;CÞL2ð›VÞ: ð14Þ

It is valid under the condition (that forms the adjoint

equations)

N
*

fCþ 1f ¼ 0 in V;

B
*

fCþ G*C ¼ 0 on ›V:
ð15Þ

The variation of the Lagrangian subject to the

perturbations Dw, De equals

D1 ¼ DL ¼ 2aðDw;CÞL2ðVÞ 2 bðDe;CÞL2ð›VÞ

¼ 2ðDw;CÞL2ðVÞ 2 ðDe;CÞL2ð›VÞ; ð16Þ

where a ¼ kDwk, Dw ¼ aDw.

The present paper aims to estimate the impact of an

unsteady term on the cost functional. In the numerical

tests to be presented, we compare the above impact with

the impact of the truncation error of the finite-difference

scheme. In both problems the control parameters should

have a source-like form. Thus, we will only consider the

impact of sources Dw and reduce (16) to the form

D1 ¼ 2 (Dw,C)L2(V).

2.1 Impact of the truncation error

It is natural to compare the numerical effect of the

iteration termination to other numerical errors. For these

reasons, the influence of the truncation error on the cost

functional is accounted for according to approaches

presented by Giles and Pierce (1997), Giles and Pierce

(1999), Giles and Suli (2002), Venditti and Darmofal

(2002), Hartmann and Houston (2003), Giles et al.

(2004), Pierce and Giles (2004), Alekseev and Navon

(2005a, 2005b) and Alekseev and Navon (2006).

We consider that the numerical solution of the direct

problem is assuming the following form

Nf ¼ w in V , Rn;

f ð›VÞ ¼ f BðxÞ [ L2ð›VÞ:
ð17Þ

The numerical solution is provided by the finite-

difference equation

Nhf h ¼ w: ð18Þ

As a result of its solution we obtain a grid function

fh. We assume the existence of a smooth enough

function f [ HkþnðVÞ that coincides with the grid

function at the discretisation nodes. Finite differences in

Nhfh may be expanded using the Taylor series. This

provides us with a differential approximation of the

finite-difference scheme

Nf þ dhðf Þ ¼ w; or Nf ¼ wþ Dw: ð19Þ

Here, dh( f) is the approximation error containing the

leading terms of the Taylor expansion and it serves as the

disturbing term Dw ¼ 2dh( f). The corresponding

disturbances are governed by the expression

NfDf ¼ Dw ¼ 2dhðf Þ;

V , Rn; Df ð›VÞ ¼ 0:
ð20Þ

According to (16) the variation of the cost functional

caused by the approximation error may be expressed by

D1 ¼ 2ðDw;CÞL2ðVÞ ¼

ð
V

dhðf ÞC dV: ð21Þ

The adjoint equations are modified for this problem

as follows:

N
*

fCþ 1f ¼ 0; in V; C ¼ 0; on ›V: ð22Þ

2.2 Impact of the unsteady terms

Let us consider a brief formal scheme of the above-

mentioned approach for temporal relaxation. We solve a

steady nonlinear differential problem (coinciding with

(17))

N ~f ¼ w in V , Rn;

~fð›VÞ ¼ ~fBðxÞ [ L2ð›VÞ:
ð23Þ

For solving this problem, time iterations are used that

are equivalent to the following unsteady statement

›f=›t þ Nf ¼ w in Q ¼ V £ ð0; tf Þ;

f ð›VÞ ¼ f BðxÞ [ L2ð›VÞ;

with an initial guess

f ðV; 0Þ ¼ f 0ðxÞ [ L2ðVÞ:

ð24Þ

Consider N ~f ¼ w as an exact equation and Nf ¼

w2 ›f=›t as the perturbed one. The exact and perturbed

solutions are related by f ðt; xÞ ¼ ~fðxÞ þ Df ðt; xÞ. Then, for
a fixed time t the disturbance Df(t,x) may be obtained as

the solution of the steady equation

Dw2 NfDf ¼ 0 in V , Rn; Df ð›VÞ ¼ 0; ð25Þ

where Dwðt; xÞ ¼ ›f=›t is considered as a source-like

disturbance.

International Journal of Computational Fluid Dynamics 223
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So, for a fixed moment t, we obtain practically the

same problem as (20) or (5), (6) with the only difference

being in form of the sources. The variation of a cost

functional may be represented by using the inner product

in L2(V) as

D1 ¼ ðDf ; 1f ÞL2ðVÞ ¼ ðDw;CÞL2ðVÞ; ð26Þ

where C is the solution of adjoint problem

N
*

fC2 1f ¼ 0 in V , Rn; Cð›VÞ ¼ 0: ð27Þ

Thus, the cost functional variation caused by the

iteration residual may be expressed as

D1 ¼

ð
V

Dwðt; xÞC dV: ð28Þ

The adjoint problem can be solved using another

iterative method; herein the time relaxation of the

following form was used:

›C=›tþ N
*

fCþ 1f ¼ 0 in Q ¼ V £ ð0; tf Þ;

Cð›VÞ ¼ 0; CðV; 0Þ ¼ 0:
ð29Þ

It should be noted that problem (29) is not related to

problem (24) neither by a common temporal interval nor

by the form of iterations.

3. Test problem

Let us consider the approach described above for a steady

2D compressible inviscid flow. The iterations are based

on temporal relaxation using the unsteady form of the 2D

Euler equations

›r

›t
þ

›ðrUkÞ

›X k
¼ 0; ð30Þ

›ðrU iÞ

›t
þ

›ðrUkU i þ PdikÞ

›X k
¼ 0; ð31Þ

›
�
rðeþ U iU i=2ÞÞ

›t
þ

›ðrUkðgeþ U iU i=2Þ
�

›Xk
¼ 0; ð32Þ

P ¼ ðg2 1Þre;

ðx; yÞ [ V ¼ ð0 , x , Xmax; 0 , y , YmaxÞ;

ð0 , t , tf Þ:

Here, r-density, X k-coordinates (X 1 ¼ x,X 2 ¼ y),

U k-velocity components, u ¼ 1/2(U iU i), P-pressure,

g ¼ Cp/Cv, e ¼ CvT-inner energy, h(r,P) ¼ ge-enthalpy,

and h0 ¼ u þ h-total enthalpy, where summation over

repeating indices is assumed.

The boundary conditions for inflow and lateral sides

(x ¼ 0;y ¼ 0;y ¼ Ymax) were considered as steady ones

corresponding to inflow parameters, while for the outflow

boundary (x ¼ Xmax) the condition ›f/›x ¼ 0 was

imposed.

The calculation of the steady flow-field was

performed using time evolution starting from a spatially

uniform initial guess.

The pointwise density was used as the goal functional

r(x est,y est)

1 ¼ r ðxest; xestÞ ¼

ð
V

r ðx; yÞdðy2 yestÞdðy2 yestÞdx dy:

ð33Þ

The present form of the cost functional is selected by

considering the simplicity of comparisons with exact

(analytical) values. It is a rather difficult one from a

computational viewpoint due to the singularity. A large

set of practically important functionals is formed by

some integration (usually of the pressure) and does not

engender singularities in the adjoint statements.

The corresponding adjoint problem may be obtained

using the standard approach (Marchuk 1995, Giles and

Pierce 1997, Giles and Pierce 1999, Alekseev 2000,

Fursikov 2000, Oden and Vemaganti 2000, Becker and

Rannacher 2001, Giles and Suli 2002, Oden and

Prudhomme 2002, Zuazua 2002, Braack and Ern 2003,

Cnossen et al. 2003, Gunzburger 2003, Hartmann and

Houston 2003, Giles et al. 2004, Pierce and Giles 2004,

Alekseev and Navon 2005a, 2005b, Alekseev 2006) and

assumes the form

›Cr

›t
þ ð2U 2 þ uðg2 1ÞÞ

›CU

›x
2 UV

›CV

›x

þ ð2Uh0 þ Uuðg2 1ÞÞ
›CE

›x
þ ð2UVÞ

›CU

›y

þ ð2V 2 þ uðg2 1ÞÞ
›CV

›y
þ ð2Vh0 þ Vuðg2 1ÞÞ

£
›CE

›y
2 dðX 2 X estÞdðY 2 Y estÞ ¼ 0; ð34Þ

›CU

›t
þ

›Cr

›x
þ ð2U 2 Uðg2 1ÞÞ

›CU

›x

þ V
›CV

›x
þ ðh0 2 U 2ðg2 1ÞÞ

›CE

›x
þ V

›CU

›y

2 Uðg2 1Þ
›CV

›y
2 UVðg2 1Þ

›CE

›y
¼ 0; ð35Þ

›CV

›t
2 Vðg2 1ÞÞ

›CU

›x
þ U

›CV

›x
2 UVðg2 1ÞÞ

›CE

›x

þ
›Cr

›y
þ U

›CU

›y
þ ð2V 2 Vðg2 1ÞÞ

›CV

›y

þ ðh0 2 V 2ðg2 1ÞÞ
›CE

›y
¼ 0; ð36Þ

A.K. Alekseev and I.M. Navon224
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›CE

›t
þ ðg2 1Þ

›CU

›x
þ gU

›CE

›x
þ ðg2 1Þ

›CV

›y

þ gV
›CE

›y
¼ 0; ð37Þ

with initial conditions : Cr;U;V ;Ejt¼0 ¼ 0; and ð38Þ

boundary conditions ðy ¼ 0; y ¼ YmaxÞ :

Cr;U;V;Ej›V ¼ 0:
ð39Þ

The parameters (Cr,CU,CV,CE) are the adjoint

analogues of density, velocity components and energy,

respectively. The coefficients in these equations are

composed of gas dynamics parameters obtained from

the solution of (30)–(32) at the estimated moment.

The problem (34)–(39) is linear, so there is no shock

wave formation within the computational field.

The discontinuities may be provided only by the

boundary conditions (Kraiko 1979) or the cost functional.

The Dirac d-form source in the equation for Cr

corresponds to the location of the reference point.

A mollification of the d-form source term was used

according to Walden (1999) and Tornberg and Engquist

(2003) and is based on following form:

d , expð2ðx2 xestÞ2=s2 2 ðy2 yestÞ2=s2Þ: ð40Þ

In numerical tests the value of s was selected so as to

provide a smearing of the source over 2–3 cells (s , h)

thus providing regularity of the numerical solution.

The convergence error estimate (analogue of

Equation (28)) has a form:

d1 ¼

ð
V

ð
Cr

›r

›t
þCU

›U

›t
þCV

›V

›t
þCE

›e

›t

� �
dx dy:

ð41Þ

This expression determines quantitatively the devi-

ation of the numerical result from an exact steady value

due to the terminationof iterations (evolution) atmoment t.

4. Numerical tests

A flow-field engendered by two crossing shock waves

(with slopes a ¼ ^22.238) in supersonic uniform flow

(M ¼ 4) was calculated in the numerical tests. The steady

inflow parameters are posed at lateral boundaries. These

conditions are valid for a domain where shocks have not

reached the boundaries yet. The test problem was chosen

due to the availability of an analytical solution.

A first-order finite-difference scheme (donor cells

(Roache 1976, Alekseev and Navon 2005a)) was used.

The technique proposed here is not limited by the first-

order schemes (chosen here for convenience sake) since

the adjoint weighted error estimation technique is also

well tested for second order schemes (Venditti and

Darmofal 2002, Alekseev and Navon 2006).

Figure 1 illustrates the isolines of the density in the

flow-field and Figure 2 illustrates the isolines of the

adjoint density (the concentration of isolines corresponds

to a reference point).

The time evolution starts from a spatially uniform

initial guess. During the time relaxation (after every 50

steps), the adjoint problemwas solved and the value of the

convergence error (41) was estimated. Figure 3 presents

the history of the density error (deviation from the

analytic value) at the reference point past crossing shocks

as a function of time. The difference between the

calculated and analytic solution, the convergence error

estimated via adjoint parameters and the commonly used

convergence indicator max
i;j

jrnþ1
ij 2 rnijj (multiplied by a

coefficient 200 for the sake of visibility) are compared

in Figure 3.

One can see that the commonly used convergence

indicatormax
i;j

jrnþ1
ij 2 rnijj provides a qualitatively correct

pattern of time evolution but it does not involve any

quantitative information for the distance from the exact

solution. The adjoint estimation of the convergence error

at the initial stage of relaxation deviates significantly

from the exact value due to the nonlinearity of the

problem.

Figure 4 provides the final part of the temporal

evolution. Curve 1 presents the deviation of the numerical

solution from the analytic one (shifted by the value of the

error caused by the spatial approximation). Curve 2

presents the error estimation using the iteration residual

and adjoint parameters. The error of the spatial

approximation at the final stage of iteration is marked as

line 3. This error was estimated using an adjoint weighted

Figure 1. Isolines of the density.

International Journal of Computational Fluid Dynamics 225
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residual according to Giles and Pierce (1997), Giles and

Pierce (1999),Oden andVemaganti (2000),Giles andSuli

(2002), Oden and Prudhomme (2002), Giles et al. (2004)

and Pierce and Giles (2004). Using the solution of the

above adjoint problem the variation of the cost

functional was expressed as a function of the truncation

error in the following form:

d1 ¼

ð
V

ð
ðdrCr þ dUCU þ dVCV

þ deCeÞdX dY : ð42Þ

Here, dr, etc. are the truncation errors obtained by the

Taylor series expansion of finite differences according

to Alekseev and Navon (2005a, 2005b). The coefficients

in the expansion terms contain derivatives that are

calculated from the numerically computed flow-field at

the final stage tf.

For the final stage of the time relaxation, the adjoint

error estimation (41) is close to the true convergence

error. It should be noted that by increasing the number of

iterations the convergence error may be set to be

negligibly small compared with the approximation error.

The results presented in Figures 1–4 were calculated

on a grid of 100 nodes in the y-direction. Similar results

are obtained for grid densities varying between 50 and

200 nodes, i.e. for finer mesh resolution.

5. Discussion

The commonly used convergence indicator

max
i;j

jrnþ1
ij 2 rnijj (Roache 1976) qualitatively correctly

reflects the convergence but does not provide a

quantitative estimation of the deviation from the steady

state. On the contrary, the adjoint based convergence

indicator provides a quantitative estimate of the iteration

error. At the starting stage of the time relaxation, the

adjoint error estimation deviates significantly from an

exact error due to nonlinearity (this effect is considered

also in Alekseev (2006)). At the final stage, the adjoint

error estimation is quite close to the exact error (if the

spatial approximation error is taken into account).

Unfortunately, if the exact solution is unknown, it is

difficult to determine when the adjoint estimate

approaches the true error. A value of the spatial

approximation error (Giles and Pierce 1997, Giles and

Pierce 1999, Oden and Vemaganti 2000, Giles and Suli

2002, Oden and Prudhomme 2002, Venditti and

Darmofal 2002, Braack and Ern 2003, Cnossen et al.

Figure 2. Isolines of the adjoint density.

Figure 3. The history of density relaxation as a function of the number of time steps. 1: deviation of the numerical solution from the
analytic one; 2: adjoint estimation of the convergence error; 3: convergence indicator max

i;j
jrnþ1

ij 2 rnijj
*200.
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2003, Giles et al. 2004, Pierce and Giles 2004, Alekseev

and Navon 2005a, 2005b, Alekseev and Navon 2006)

may serve as an auxiliary criterion for estimating the

acceptability of a convergence error. The approximation

error may be calculated using already known adjoint

parameters and some estimate of the truncation error

provided either by the Taylor series or by the action of

some postprocessor (Giles and Suli 2002, Alekseev and

Navon 2006) on the flow-field. This calculation is based

on already prepared fields of direct and adjoint

parameters; hence it is not computationally expensive.

In general, the considered estimate may serve for

checking the convergence-stopping criterion, if one

considers a necessary tolerance of the cost functional for

termination of the iterations. However, if we need to

track the iterations by estimating the convergence quality

according to (41), we should solve the adjoint problem at

every checkpoint which implies a large computational

burden. Thus, the number of time points, where the

estimation is performed, should be limited.

6. Conclusions

The error in the cost functional caused by truncating

iterations may be calculated using adjoint variables and

the value of the iteration residual.

Numerical tests demonstrate this approach to be able

to provide correctly the error of the cost functional

(density at a checkpoint) caused by truncating the time

iterations for 2D Euler equations.
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