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SUMMARY

An efficient adjoint sensitivity technique for optimally collecting targeted observations is presented. The tar-
geting technique incorporates dynamical information from the numerical model predictions to identify when,
where and what types of observations would provide the greatest improvement to specific model forecasts at
a future time. A functional (goal) is defined to measure what is considered important in modelling problems.
The adjoint sensitivity technique is used to identify the impact of observations on the predictive accuracy of
the functional, then placing the sensors at the locations with high impacts. The adaptive (goal) observation
technique developed here has the following features: (i) over existing targeted observation techniques, its
novelty lies in that the interpolation error of numerical results is introduced to the functional (goal), which
ensures the measurements are a distance apart; (ii) the use of proper orthogonal decomposition (POD) and
reduced order modelling for both the forward and backward simulations, thus reducing the computational
cost; and (iii) the use of unstructured meshes.

The targeted adaptive observation technique is developed here within an unstructured mesh finite element
model (Fluidity). In this work, a POD reduced order modelling is used to form the reduced order forward
model by projecting the original complex model from a high dimensional space onto a reduced order space.
The reduced order adjoint model is then constructed directly from the reduced order forward model. This
efficient adaptive observation technique has been validated with two test cases: a model of an ocean gyre
and a model of 2D urban street canyon flows. Copyright © 2016 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Data assimilation is an efficient means of producing a best estimate model solution by fitting a
numerical simulation to observational data over both space and time. The technique also facili-
tates the estimation of the error sources caused by uncertainties in the models. Data assimilation
is achieved by minimising a cost function that reconciles the misfits between the data and dynam-
ical modelling results, as well as the covariances specifying spatial and temporal correlations of
errors [1–7].

There is a need to optimally place observations that will maximally improve the accuracy of
numerical solutions at forecast times typical for the considered models. The resulting observation
network could be adapted for a wide range of forecasting goals, and it could be adapted either by
allocating existing observations differently or by adding observations from programmable platforms
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to the existing network [8–32]. Expensive field-deployed resources can thus be utilised more effec-
tively by selecting an optimal observational network. Adaptive sensor location methods provide
important maps of solutions, which will be convolved with the spatial and time density of observa-
tions in order to determine where best to place monitoring devices (i.e. components and location of
the sensors). Reduction of errors can thus be achieved as well as assimilating fewer observational
resources [10, 24, 33].

Given an energy norm or a goal (a functional or a single quantity of interest, for example, a
component of the solution vector at an important location at a given instance in time), the target-
ing approach incorporates dynamical information from the numerical model predictions to identify
when, where and what types of observations would provide the greatest improvement to specific
model forecasts at a future time. Such targeted observations are important as they will allow the most
effective use of available monitoring resources. The approach initially involves the definition of an
overall goal (functional), which is a measure of what is considered important in an environmen-
tal/physical problem. This approach will provide an optimal sensor location/network, uncertainty
sensitivity analysis as well as quantification of the goal accuracy and will indicate where to increase
or decrease numerical resolution (refine or de-refine the mesh).

The adjoint sensitivity analysis technique [10, 20, 28, 29, 34] has proven to be an essential tool
for developing adaptive observations strategies and will be used to help identify the areas where
the errors in the uncertainties in models are rapidly growing and will mostly influence the fore-
cast. This approach is highly complementary to recent advances in the development and deployment
of portable and mobile wireless sensor networks [12]. The configuration of these systems can
be dynamically adapted to transmit high-resolution data in near real time from a selected set of
locations to a centralised data store.

Many of the most powerful methods in these areas share a fundamental mathematical basis
important for advanced threat detection: they rely on the adjoint model. All of the aforementioned
techniques of predictive modelling depend on the availability of the adjoint model. However, the use
of these adjoint-based techniques is very limited. The main reason is the extreme difficulty of devel-
oping adjoint models: the mathematical and computational expertise required to adjoint complex
forward models is limited to a handful of practitioners around the globe.

In this work, a reduced order method based on proper orthogonal decomposition (POD) has been
used to implement the adjoint model (called adjoint of reduced order modelling in [35]), which
provides a straightforward approach to overcoming one of the key difficulties in developing adjoint
models. This provides a promising way to dramatically simplify the process of adjoint model devel-
opment. In combination with the interpolation error in solutions, the targeted sensitivity technique
provides a space-time important map for optimising sensor locations.

The remainder of this article is organised as follows. The targeted observation technique is
described in Section 2. In Section 3, the details of the POD reduced order forward and adjoint
models are given. The adjoint sensitivity approach based on POD is discussed in Section 4.
Section 5 provides numerical examples of studies on sensor locations. Conclusions are drawn in
Section 6.

2. ADAPTIVE (TARGETED) OBSERVATIONS

The aim of adaptive observations is to optimise the accuracy of a goal (functional) defined at the
verification time over the verification domain.

2.1. Goal or functional

Suppose that the functional is represented as follows:

J .utv / D
Z
�v

f .u/d�; (1)

where uv denotes the solution of a variable u (velocity, pollutants for example) at the verification
time tv and �v is the verification domain. The function f .uv/ may be any derived quantity of
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solutions uv (e.g, kinetic energy, vorticity, pollutant concentration) over �v at the verification time
tv . In finite element methods, the variable u can be written as follows:

u D
NX
nD1

Njun; (2)

where Nj is the finite element basic function, �n is the solution of variable � at node j and N is
the number of nodes used over the computational domain �.

2.2. Impact of observations

Assume that a model forecast during the computational period Œt0; tv� is given by

uti DM.t0;ti / DMti : : :Mt1Mt0.ut0/; ti 2 Œt0; tv� (3)

where uti and ut0 denote the solutions at time levels tv and t0, respectively, and Mti is the nonlinear
model operator at time level ti . A targeted time can be defined at variable time levels during Œt0; tv�
(here, defined at t0). A target region is then defined at the targeted time, where the error of solutions
is expected to cause a significant forecast error at the forecast verification time tv . The adaptive
(targeted) observation method is used to identify the area (targeted) where best to assimilate the
data into the model, thus improving the accuracy of solutions, by minimising the functional defined
in (1):

min
ut0

J .ut0 ;utv / D min
ut0

Z
�v

f .utv /d�: (4)

3. POD REDUCED ORDER ADJOINT MODEL

3.1. POD reduced forward model

The model variables U are sampled at the checkpoints (defined time interval) during the simulation
Œt1; : : : ; tk; : : : ; tK] (where, tK D tv is the verification time). They are also referred to as snapshots
U D ¹utk º (K being the number of snapshots). POD constructs a set of orthogonal basis functions
¹ˆmº; 1 6 m 6M such that it minimises [36]

min
KX
kD1

kutk �
MX
mD1

ˆmˆ
T
mutkk

2
2; (5)

subject to

KX
kD1

< ˆm; ˆn >2D ımn; 1 6 m; n 6M 6 K; (6)

where < �; � >2 is the canonical inner product in L2 norm and M is the number of POD basis
functions to be chosen.

In POD, the variable at time level ti in (3) can be expressed as an expansion of the POD basis
functions ˆ D .ˆ1; : : : ; ˆM /:

uti D ˆurti D
MX
mD1

ˆmu
r
m;ti

; i D 0; : : : ; K; (7)

where ur 2 RM are a set of the time-dependent coefficients to be determined over the reduced
space (the superscript r indicates a variable or operator associated with the reduced order model).
By using the Galerkin projection, the POD reduced system of Equation (3) can be obtained:

urtv DMr
tv
: : :Mr

ti
: : :Mr

t1
Mr

t0
6
�
urt0
�
DMr

.t0;tv/
6
�
urt0
�
; ti 2 Œt0; tv�; (8)
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where urt0 D ˆT ut0 , Mr
.t0;tv/

D Mr
tv
: : :Mr

ti
: : :Mr

t1
Mr

t0
is the reduced order model

operator, and

Mr
ti
D ˆTMti 6

�
urti
�
ˆ: (9)

It is time consuming to calculate Mr
ti

at each time level. To speed up the matrix equation assembly
process, the matrix Mr

ti
is constructed here by a set of sub-matrices independent of time. For a

quadratic nonlinear simulation, the full matrices Mti can be expressed as

Mti D
OM0 C

MX
mD1

OMmu
r
m;ti
2 RN�N ; (10)

where OM0 and OMm.ˆm/ are time-independent operators. For calculation of OM0 and OM.ˆm/, see
[37]. For high order nonlinear problems, there is an error, � .ıu/3, in the POD solutions because of
the high order nonlinearity. However, in this paper, there is only quadratic non-linearities and thus
the current nonlinear treatment is exact.

Projecting Equation (10) onto the reduced space, yields [37]

Mr
ti
D OMr

0 C

MX
mD1

OMr
mu

r
m;ti
2 RM�M ; (11)

where

OMr
0 D ˆ

T OM0ˆ; OMr
m D ˆ

T OMmˆ; (12)

where OMr
0 and OMr

m (m D 1; : : : ;M ) are time-independent matrices and pre-computed.

3.2. Discrete reduced order adjoint equations

A small perturbation ıut0 is applied to the initial state of the full model, in turn, a small perturbation
ıurt0 D ˆT ıut0 to the initial state of the reduced order model urtv D Mr

.t0;tv/
.urt0 C ıu

r
t0
/. The

discrete reduced order tangent linear model (TLM) is obtained using the first order Taylor series:

ıurtv D
@Mr

.t0;tv/
6
�
urt0
�

@urt0
ıurt0 D

NMrıurt0 D
NMr
tv
; : : : ; NMr

ti
; : : : ; NMr

t0
ıurt0 ; (13)

where

NMr
.t0;tv/

D
@Mr

.t0;tv/
6
�
urt0
�

@urt0
D NMr

tv
; : : : ; NMr

ti
; : : : ; NMr

t0
2 RM�M (14)

Taking into account (11), yields

NMr
ti
D
@Mr

ti
6
�
urti
�

@urti
D

MX
mD1

OMr
m 2 R

M�M : (15)

The adjoint of the tangent linear model (14) is the transpose of NMr
.t0;tv/

, that is,

NMr;T
.t0;tv/

D NMr;T
t0
; : : : ; NMr;T

ti
; : : : ; NMr;T

tv
: (16)

4. OPTIMISATION OF SENSOR LOCATIONS BASED ON PROPER
ORTHOGONAL DECOMPOSITION

4.1. The functional (goal) and its gradient

To measure the error in the numerical solution utv at the verification time tv , the functional (goal)
in (1) is defined as follows:
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J .utv ;ut0/ D
1

2
.utv ;o �H.utv //TE�1.utv ;o �H.utv //; (17)

where utv ;o and utv DMt0;tv .u0/ represent the ‘true’ (or observational data) and numerical solu-
tions (velocity, pressure, for example) at the certification time tv , respectively; E is a diagonal error
covariance matrix; H denotes the observational Gaussian operator.

Let us consider a first order derivation of the functional in Equation (17) with respect to the initial
coefficient ut0 . The gradient of the functional can be obtained:

rut0
J D rut0

J D NMT
.t0;tv/

HTE�1.utv ;o �H.utv //; (18)

where

NM.t0;tv/ D
@M.t0;tv/.ut0 C ıut0/

@ut0
D NMtv ; : : : ; NMti ; : : : ;

NMt0ıut0 ; (19)

NMti D
@Mti

@uti
: (20)

4.2. Adjoint sensitivity analysis using POD

In POD, taking into account (7), Equation (17) can be re-written:

J 6
�
urtv ;u

r
t0

�
D
1

2
6
�
utv ;o �H 6

�
ˆurtv

��T
E�1 6

�
utv ;o �H 6

�
ˆurtv

��
; (21)

The first order derivation of the functional in Equation (21) with respect to the initial coefficient ur0
over the reduced order space can be obtained:

rurt0
J D @J

@urt0
D NMr;T

.t0;tv/
ˆHTE�1 6

�
utv ;o �H 6

�
ˆurtv

��
; (22)

where NMT
.t0;tv/

is the adjoint of the tangent linear model (Equation (16)). The impact of each solution
variable un;ti on the predictive accuracy of the functional can be obtained:

ıJun;t0 D .run;t0J /ıun;t0 ; (23)

where n 2 ¹1; : : : ;N º (N is the number of nodes over the domain). This provides a space-time
important map of solutions over the space and time which will be convolved with the spatial and
time density of observations in order to determine where best to place monitoring devices.

4.3. Interpolation error in solutions

An estimate of errors in ut0 D .u1;t0 ; : : : ; uN ;t0/ is used to determine the contribution of solutions
to the error in J . Using the interpolation theory, the error in ut0 can be estimated:

ıut0.x/ D jut0;o � ut0 j �
D

min
oD1

.x � xo/T
1

2
.6 jQ.x/jC 6 jQ.xo/j/.x � xo/; (24)

where ut0;o is the observational data; xo is the observational point o; D is the number of obser-
vational data available over the domain; Q is the Hessian matrix of variable fields ut0 . For one

dimensional problems, Q D
@2ut0
@x2

, while for three dimensional problems,

Q D6

0
BBBB@

@2ut0
@x2

@2ut0
@x@y

@2ut0
@x@´

@2ut0
@y@x

@2ut0
@y2

@2ut0
@x@´

@2ut0
@´@x

@2ut0
@´@y

@2ut0
@´2

1
CCCCA :
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The absolute value of the symmetric Hessian matrix is defined as [38] follows:

6 jQj D Vj E�jVT; (25)

where the matrices V and E� contain the eigenvectors Eek and eigenvalues �k of the Hessian matrix
H, respectively. The introduction of interpolations errors into the functional (a heuristic technique)
ensures the sensors are not co-located. If there are no observations for a particular field within a
multi-field solution variable, then one may simple use the difference between the maximum and
minimum values in the solution as the error in order to determine if it is worth observing a particular
field, for example, pollutants.

4.4. Typical algorithm for adaptive observations

(a) Run the forward model that predicts the functional J at the verification time, by assimilating
the data when/where available at sensors;

(b) Determine rut0
J in Equation (18), which provides the priority of each solution variable

un;t0 ;
(c) Obtain an approximation to the error in the solution ıui;t0 , for example, using the interpola-

tion theory;
(d) Form the convolution ıJun;t0 D .run;t0J /ıun;t0 ;
(e) Choose the maximum value of ıJn, and place a sensor at this position;
(f) Repeat (c) and (d) above until the required number of sensors is attained;
(g) Repeat the whole process until the required accuracy of J is attained.

5. CASE STUDIES

5.1. An unstructured mesh finite element fluid model (Fluidity)

The adjoint sensitivity approach in combination with reduced order modelling has been imple-
mented within a 3D unstructured mesh finite element model (developed by the applied modelling
and computation group at Imperial College London), which is capable of

� solving the Navier–Stokes equations;
� use of a non-hydrostatic solver to model dense water formation and flow over steep topography;

and
� anisotropic unstructured meshes in the vertical as well as the horizontal to capture the details

of local flow in all three directions.

In this work, the adjoint model is implemented using POD ROM, where the interpolation error is
taken into account in the goal-based sensitivity formulation. A comparative study on sensor loca-
tions has been carried out using two test cases: Munk Gyre in ocean modelling and tracer dispersion
in an urban street canyon.

5.2. Case 1: Munk gyre

The adaptive sensor location technique is first demonstrated in the gyre problem (one frequently
used problem in ocean modelling), a circulation flow driven by a wind force on the free surface. The
computational domain is 1000 by 1000 km with a depth of H D 500m. The wind forcing on the
free surface is given by

�y D �0 cos.�y=L/; �x D 0:0; (26)

where �x and �y are the wind stresses on the free surface along the x and y directions, respectively,
and L is the size of the computational domain, here L D 1000 km. A maximum zonal wind stress
of �0 D 0:1 N m�1 is applied in the latitudinal (y) direction. The Coriolis terms are taken into
account using the beta-plane approximation (f D ˇy) where ˇ D 1:8 � 10�11 and the reference
density is 	0 D 1000 kg m�1.
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Figure 1. Case 1 - Gyre: Velocity field and error in velocity solutions at the verification time level (t D 66
days) with and without data assimilation.

Non-hydrostatic Boussinsq equations are solved in this case. The spin-up period is 8 days. The
solution at t D 8 days is taken as the initial state for the forward reduced order model. The
computational period is Œ8; 66� days. The time step is
t D 8 h. The element length of 20m is used.
Fifty snapshots of the solution from the full modelling are recorded during the simulation period
Œ8; 66� days, and from these snapshots, 12 POD basis functions are generated for the velocity com-
ponents u, v, w and the pressure p and capture more than 99% of energy in original kinetic energy.
Both the reduced forward and adjoint models are formed based on these 12 POD basis functions.

The twin experiment scheme is employed in the data assimilation framework. Pseudo-
observational data is generated from the forward simulation driven by a ‘true’ initial condition at
t D 8 days. The guessed value of initial conditions is taken from the forward solution at the 20th
day. The goal functional at the verification time is defined in Equation (17) over the verification
domain. In this case, u in Equation (17) represents the velocity field. The verification time level is
tv D 60 days, while the verification region is defined �v D Œ150; 350� km �Œ550; 800� km (the
small rectangle shown in Figure 1) where a large error in solutions occurs.

The sensitivity of the functional with respect to the velocity solution at the verification time
t D 8 days was obtained by running the adjoint model backwards from day 66 to day 8. Taking
into account the interpolation error of solutions, the impact of the initial state on the accuracy of the
targeted functional is plotted in Figure 2(a) and the corresponding optimal locations of sensors in
Figure 2(b).

Figure 1 shows the velocity field and its error on day 66 before and after assimilating the data
into the model. It illustrates the contribution of optimal data to improving the accuracy of numerical
solutions. By assimilating the data collected at the first 100 optimal locations into the model t D
8 days, the error in the velocity field on day 66 is significantly reduced over the verification region.

Figure 3 demonstrates the impact of data taken at a number of sensor locations on the solutions at
t D 66 days. The circle and star points represent the randomly collected and optimal data respec-
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Figure 2. Case 1 - Gyre: Optimisation of sensor locations. Left panel: adjoint sensitivity of the functional
defined in (17) with respect to the solutions on day 8; right panel: optimal sensor locations.

Figure 3. Case 1 - Gyre: The maximum error in velocity solutions at the verification time and region after
assimilating the data into the model with and without optimising the sensor locations. The circle and star

points represent the randomly collected and optimal data, respectively.

Figure 4. Case 2: Computational domain.

Copyright © 2016 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2017; 83:263–275
DOI: 10.1002/fld



AN EFFICIENT GOAL-BASED REDUCED ORDER MODEL APPROACH FOR TARGETED ADAPTIVE OBSERVATIONS 271

tively. It can be seen the maximum error is reduced by 25% if 100 optimal sensors are used in data
assimilation and further to half with use of 150 optimal sensors. The accuracy of numerical results
is improved with the increased number of targeted data. However, it is not always this case if the
data is not chosen optimally. We can see the accuracy may be not improved after assimilating the
data collected randomly in the domain.

5.3. Case 2: 2D urban street canyon flows

The targeted adjoint sensitivity approach is further applied to the simulation of 2D street canyon
flows. This test case is dimensionless. The geometry of the problem is rectangular in shape, with a
length of 2 and a height of 1, and contains two neighbouring buildings that form a canyon between
them (Figure 4). A uniform velocity of 1 is prescribed on the inflow boundary located on the left

Figure 5. Case 2: Velocity field and error in velocity solutions at the verification time level with and without
data assimilation.
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Figure 6. Case 2: Optimisation of sensor locations. (a) adjoint sensitivity of the functional defined in (17)
with respect to the solution at time instance t D 0:76; (b) optimal sensor locations.

side of the domain. No-slip boundary conditions are applied on the domain’s bottom edge and all
building surfaces. A free-slip condition is applied on the domain’s top boundary. The kinematic
viscosity is set to 1 � 10�4, and the Reynolds number equates to 1 � 104.

The spin-up period was set to 0.76 allowing the eddies to form. Following this, the full simulation
was run to t D 1:56 using a time step of 0.008. Over this time period Œ0:76; 1:56�, forty snapshots
were taken from the pre-computed solution at every tenth time step. From these snapshots, 40 POD
basis functions were constructed for each variable, and these bases were capable of capturing 99%
of their energy whilst reducing the size of the problem by a factor of 200. Again, the forward and
adjoint reduced order models are formed from these POD bases.

The data assimilation system is set up as follows: (i) the observational data for data assimilation
is obtained by the twin experiment, that is, running the forward model forced by the ‘true’ initial
condition at time instance 0.76; (ii) the guessed initial condition is taken from the forward model
solution at time instance 0.8; (iii) the guessed initial condition is optimised by assimilating the
data, which is collected at the optimal sensor locations. The sensor locations are chosen using the
adaptive observation approach, that is, minimising the (goal) functional in Equation (17), which is
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defined as the error in velocity field at the verification time (t D 1:56) over the verification domain,
�v D Œ0:6; 0:9�m �Œ0:15; 0:4� (see the small rectangle area in Figure 5).

The adjoint sensitivity approach using POD (Equations (22) and (18)) is used to identify the
impact of solutions at time instance 0.75 on the predictive results over the verification region at
t D 1:56. The corresponding results are shown in Figure 6(a). The optimal sensor locations can thus
be decided from large sensitivity values. By assimilating the data collected at the optimal sensor
location, the error of solutions at the verification time t D 1:54 is largely decreased over the veri-
fication region, which is shown in Figure 5(b). With the use of POD ROM during the forward and
backward integration, the problem size is reduced by a factor of 200 in comparison with the high
fidelity model.

6. CONCLUSIONS

In this work, an efficient goal-based reduced order model approach for targeted adaptive observa-
tions is developed within an unstructured mesh finite element model (Fluidity). For computational
efficiency, POD ROM has been used in the forward model while the adjoint of the POD ROM has
been used to form the sensitivities. The targeted sensitivity technique is used to identify high impact
of observation on a defined functional (goal). A key novelty in the present study is the way we intro-
duce structure or interpolation error into the sensor placement, which ensures that the sensors are
placed an optimal distance from each other.

The following conclusions can be drawn from the results represented here. The use of the adjoint
targeted sensitivity technique in the data assimilation system can provide an important map for
optimisation of sensor locations. The use of POD ROM can significantly reduce both the computer
memory requirement and CPU time (by several orders of magnitude). It is also demonstrated that
by assimilating the targeted data, the inputs (for example, initial conditions) can be optimised, thus
improving the predictive accuracy of solutions at the verification time.
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