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a b s t r a c t

A novel reduced order model (ROM) based on proper orthogonal decomposition (POD) has been
developed for a finite-element (FE) adaptive mesh air pollution model. A quadratic expansion of the non-
linear terms is employed to ensure the method remained efficient. This is the first time such an approach
has been applied to air pollution LES turbulent simulation through three dimensional landscapes. The
novelty of this work also includes POD's application within a FE-LES turbulence model that uses adaptive
resolution. The accuracy of the reduced order model is assessed and validated for a range of 2D and 3D
urban street canyon flow problems. By comparing the POD solutions against the fine detail solutions
obtained from the full FE model it is shown that the accuracy is maintained, where fine details of the air
flows are captured, whilst the computational requirements are reduced. In the examples presented
below the size of the reduced order models is reduced by factors up to 2400 in comparison to the full FE
model while the CPU time is reduced by up to 98% of that required by the full model.

© 2014 Published by Elsevier Ltd.
1. Introduction

Effective air quality management and response to air-quality
emergencies necessitate the implementation of micro-scale
models that are able to capture adequate spatial and temporal
variability of urban emission dispersion. Recent work has revealed
that the accuracy of simulated urban air flows and the dispersion of
pollutants increases with the improved representation of the fluid's
turbulent structures. However, current models available today are
based on approaches that are either too computationally expensive
to resolve within reasonable time scales, or fail to capture the detail
perial.ac.uk (F. Fang).
of such complex problems. In this article a reduced order model is
presented that aims to address this issue by presenting a method
capable of resolving complex turbulent flows while avoiding the
excessive computational requirements.

For general fluid flow problems, steady state Reynolds averaged
numerical simulations (RANS) are now considered to be compu-
tationally inexpensive, however the approach can produce incor-
rect results, particularly when the flow is unsteady (Pope, 2000).
Direct numerical simulations (DNS) on the other hand are capable
of predictions that are indistinguishable from measurements
(Coceal et al., 2007). DNS however has higher computational re-
quirements that often impose restrictions on the size and
complexity of the problems that can be solved. To model realistic
urban flows, the best compromise between RANS and DNS is the
large eddy simulation (LES) approach. This allows a better
description of the turbulent structures without the excessive
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computing costs. It can also be benefitted further, in terms of
improved efficiency and accuracy, when developed within un-
structured and adaptive frameworks that ensure resolution is
placed to only the regions where it is required. However, evenwith
these additional tools, complex 3D air flow problems may still
require large computing resources; high fidelity solutions may
therefore be unattainable for rapid response purposes.

For highly efficient simulations of flows, reduced order models
(ROMs) present a powerful option of representing the dynamics of
large-scale systems using only a smaller number of unknowns and
reduced order basis functions. High-fidelity turbulence models can
be projected onto reduced spaces, that are several orders of
magnitude smaller than standard discrete models, so that their
simulation can be computed efficiently. Not only does this enable
the fast simulation of urban air flows, but also it allows a more
interactive use of the model. Examples include applications of
ROMs in the rapid determination of the impacts of pollutant
sources (for emergency response), in ensemble calculations and in
data assimilation.

Among existing reduced order methods, proper orthogonal
decomposition (POD) has become popular due to its efficiency and
accuracy in simulating fluid flows (Holmes et al., 2012). The tech-
nique entails determining the most energetic modes of a data set
representing the flow, which are typically sets of snapshots taken at
various time instances, and constructing optimal basis functions
from them. However POD ROMs are normally constructed through
a Galerkin projection, and this means they can suffer from nu-
merical instabilities. In addition further adaptations are still
required for the efficient treatment of the nonlinear terms within
the partial differential equations (PDEs). Various ways for
improving numerical stability to account for turbulence closure
include the methods of subgrid-scale modelling, calibration, re-
sidual based stabilisation and PetroveGalerkin POD (for details, see
Bergmann et al., 2009; Fang et al., 2009a; Iollo et al., 2000; Galletti
et al., 2004; Nguyen and Peraire, 2008; Balajewicz et al., 2013;
Wang et al., 2012; Fang et al., 2013; Xiao et al., 2013). Successful
non-linear treatments that remain efficient include the quadratic
expansion method (Fang et al., 2009b; Du et al., 2013a), discrete
empirical interpolation method (DEIM) (Nguyen and Peraire, 2008;
Stefanescu and Navon, 2013), residual DEIM (RDEIM) (Xiao et al.,
2014), and GausseNewton with approximated tensors (GNAT)
(Carlberg et al., 2013). The successful application of POD spans
across a wide range of fields. These include signal analysis and
pattern recognition (Fukunaga, 1990), fluid dynamics and coherent
structures (Holmes et al., 2012; Lumley, 1967; Aubry et al., 1988;
Willcox and Peraire, 2002), image reconstruction (Kirby and
Sirovich, 1990), ocean modelling (Cao et al., 2007; Fang et al.,
2009b; Du et al., 2013a) and four-dimensional variational (4D-
Var) data assimilation (Cao et al., 2007; Robert et al., 2005; Hoteit
and Kohl, 2006; Daescu and Navon, 2008; Du et al., 2013b; Chen
et al., 2011; Vermeulen and Heemink, 2006; Robert et al., 2006).
More recently the POD approach has been incorporated within an
unstructured mesh finite element ocean model (Fang et al., 2009a,
2009b; Du et al., 2013a), upon which the work within this article is
based.

Recently, reduced order methods have been applied to air
pollution (Sportisse and Djouad, 2000; Djouad and Sportisse, 2003;
Debry and Sportisse, 2006; Sportisse and Djouad, 2007; Saunier
et al., 2009; Bieringer et al., 2013; Alkuwari et al., 2013). Bieringer
et al. (2013) utilised a multi-dimensional feature extraction and
classification technique known as a self organizing map for
reduction of the full climatological record into a subset of charac-
teristic meteorological patterns and associated frequencies of
occurrence. Alkuwari et al. (2013) used a new downscaling method
based on fitted empirical orthogonal functions for an air quality
model. Sportisse and Djouad (2007) introduced POD for reduction
of chemical transport equations.

This article applies, for the first time, the PODeROM approach
to air pollution LES turbulent simulation. This new ROM is
implemented within a novel LES adaptive mesh model, which is
based on an adapted Smagorinsky model that uses the local flow
length-scale to compute the sub-grid scale (SGS) viscosity. The use
of the anisotropic Smagorinsky LES model introduces a diffusion
term, thus improving the numerical stability. The model is applied
to 2D/3D urban street canyon flows, and adaptive meshes are used
to ensure all large energy-containing scales are resolved. Com-
parisons between the ROM and full model solutions are made to
investigate the accuracy of the POD formulation. In this investi-
gation a tracer puff release scenario is considered, and the tracer
concentrations predicted by the model are compared at different
space locations.

The remainder of this article is organized as follows. The full LES
fluid model is described in Section 2. In Section 3 the details of the
POD reduced order model are given. Section 4 presents 3 numerical
examples of simulating urban air flows using the POD model.
Conclusions are drawn in Section 5.
2. Governing equations

2.1. The 3D LES turbulent model

In LES, the larger scales of motions are numerically resolved
while the effect of the smaller scales is modelled. This is accom-
plished by filtering the velocity field (bu) according to:

uðx; tÞ ¼
Z
U

Gðr;xÞbudr; (1)

where U is the computational domain, x are the Cartesian co-
ordinates, r the radial coordinates and G represents the filter. The
filter has the effect of removing those scales of motion smaller than
the filter width F. The specified filter function G satisfies the nor-
malisation condition:Z
U

Gðr; xÞdr ¼ 1: (2)

The underlying model equations used here consist of the con-
tinuity equation and incompressible NaviereStokes equations of
the filtered quantities. Assuming an eddy viscosity approach, the
equations are given as:

V,u ¼ 0; (3)

vu
vt

þ u,Vu ¼ �Vpþ V,t; (4)

where u ≡ (u,v,w)T≡(u1,u2,u3)T is the velocity vector, p is the
modified pressure, and t is the viscous stress term.

The viscous stress term is:

t ¼
�
nf þ nt

�
,Vu; (5)

where nf is the kinematic viscosity and nt is the LES sub-grid scale
viscosity which is calculated using an anisotropic Smagorinsky
model (Aristodemou et al., 2009). The advantage of the anisotropic
Smagorinsky model used here over existing Smagorinsky models is
that it combines the LES model with a fully adaptive unstructured
mesh, in order to optimize resolution throughout the flow. Such a
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combination allows us to capture and analyse the complex flow
features expected at street canyons and intersections in detail,
whilst making best use of the computational resources. In our
anisotropic mesh adaptive simulations the length scale is related
directly to the local flow length scale and varies with space, time
and coordinate direction. More information can be found in one of
our previous publications that discusses LES modelling (see
Aristodemou et al., 2009).

In the filtered NaviereStokes equations, the sub-grid scale (SGS)
tensor term from equation (4) is modelled as:

vtij
vxj

¼ v

vxi

�
njk

vuj
vxk

�
; (6)

where njk is a tensorial eddy-viscosity.
The local length-scale of the flow in each direction is already

calculated as part of the mesh adaptivity technology embedded in
the Fluidity model (Pain et al., 2001). This fact has been used to
develop a novel tensorial model for the eddy viscosity. The tensorial
eddy viscosity can be written as:

nt ¼
24 nxx nxy nxz
nyx nyy nxz
nzx nzy nzz

35 ¼ RT

24 nzz 0 0
0 nhh 0
0 0 nxx

35R; (7)

where the multiplication by RT and R represents the rotation from
the local coordinate system (z,h,x) to the global simulation coor-
dinate system. Employing the Smagorinsky model in each
direction:

nt ¼ C2
S

���~S���RT
264D2

z 0 0
0 D2

h 0
0 0 D2

x

375R; (8)

where CS is the Smagorinsky coefficient (CS ¼ 0.1) and���~S��� ¼ ð2SijSijÞ1=2, where Sij ¼ 1=2ððvui=vxjÞ þ ðvuj=vxiÞÞ is the rate of
strain tensor.

The filter width for separation into resolved and unresolved
scales is set to twice the local element size (hz,hh,hx). This allows a
truer representation of the resolved scales than the conventional
approach of setting the filter equal to the element size (Pope,
2000):

nt ¼ 4C2
S

���~S���RT
2664h

2
z 0 0
0 h2h 0
0 0 h2x

3775R: (9)

In the second-order SGS model the viscous or diffusion operator
is evaluated at each quadrature point with the usual finite element
treatment of the second-order terms. That is by applying Green's
theorem to the weighted residual equations using a Bub-
noveGalerkin method.
2.2. Pollutant transport modelling

The dispersion of the tracer concentration (c) is modelled by:

vc
vt

þ u,Vcþ V,ðkVcÞ � Q ¼ 0; (10)

where Q is a source term and k the diffusivity.
This transport equation is solved over control volumes (CV)
through the use of function MCV which is unity over CV and zero
otherwise:Z
U

MCVi

�
vc
vt

þ u,Vcþ V,ðkVcÞ � Q
�
dU ¼ 0: (11)
3. A POD reduced order air pollution model

3.1. Proper orthogonal decomposition

Let the model variable solutions {Vk(x,tk)} (e.g. either one of the
velocity components u,v,w or pressure p) form a set of snapshots
sampled at the defined checkpoints during the simulation
[t1,…,tk,…,tK], where K is the number of snapshots. The average of
the ensemble of snapshots is defined as:

V ¼ 1
K

XK
k¼1

Vk; (12)

and the deviation from the mean of variables is defined as:

~Vk ¼ Vk � V : (13)

The goal of POD is to find a set of orthogonal basis functions {Fk}
such that it maximises

1
K

XK
k¼1

���< ~Vk;Fk > L2

���2; (14)

subject to

XK
k¼1

j<Fk;Fk > L2 j2 ¼ 1; (15)

where < ,; ,> L2 is the canonical inner product in L2 norm. The
approach introduced by Sirovich (1987) is used to find an optimal
set of basis functions F of the optimisation problem (14). The POD
bases can be written as a linear combinations of the snapshots ~Vk:

Fk ¼
XK
k¼1

yk ~Vk; 1 � k � K; (16)

where yk are the eigenvectors which can be obtained by solving a
K � K eigenvalue problem below:

C yk ¼ lkyk; 1 � k � K; (17)

where C is the K � K matrix with
C k;l ¼ ð1=KÞ< ~Vk;

~Vl > ð1 � k; l � KÞ. The eigenvalues lk are real
and positive and should be ordered in descending order. The kth

orthogonal eigenvalue yk is a measure of the kinetic energy con-
tained within the kth basis.

In this work, the POD basis vectors for u,v,w and p are calculated
from the snapshots of the solutions for each variable u,v,w and p
respectively. Different POD numbers can be chosen for different
variables. The key issue consists in forming an effective reduced
order model so as to obtain a set of snapshots which should include
as much as information for generating the POD basis functions.
More POD snapshots as well as more POD bases should be retained
for a realistic representation of flow dynamics on a wide range of



Fig. 1. Case 1: Computational domain and unstructured mesh.
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scales. An increase in the number of snapshots and POD bases leads
to an improvement in the accuracy of the POD model.

3.2. Implementation of a POD air pollution model

In POD, any variable V(t,x,y,z) (here, u,v,w,p) can be expressed as
an expansion of the POD basis functions:

Vðt; x; y; zÞ ¼ V þ
XM
m¼1

am;V ðtÞFm;V ðx; y; zÞ; (18)

where Fm,V(x,y,z) is the POD basis functions for V, am,V(t) is the
corresponding coefficient, 1 � m � M and M is the number of the
POD basis functions. For simplicity, equations (3), (4) and (10) can
be re-written in a general form:

vV
vt

¼ FðVÞ: (19)

Taking the POD basis function as the test function, then inte-
grating (19) over the computational domain U, yields:

〈vVvt ;Fm;V 〉
U
¼ 〈FðVÞ;Fm;V 〉U: (20)

Substituting (18) into (20), the POD reduced order equations are
then obtained:

vam;V

vt
¼ 〈F

 
V þ

XM
m¼1

am;V ðtÞFm;V ðxÞ
!
;Fm;V 〉

U

; (21)

subject to the initial condition

am;V ð0Þ ¼
		
Vð0;xÞ � VðxÞ
;Fm;V



: (22)

The POD ROM (21) has been implemented using the approach
proposed in Du et al. (2013a), that is, by projecting the matrix and
source term vector of the full discrete model onto the reduced
space. The implementation of reduced order modelling codes in-
volves only the matrix vector multiplication of the full model.
Importantly, the code is largely independent of the implementation
details of the original equations. For nonlinear problems, a
perturbation approach is used to help accelerate the matrix equa-
tion assembly process, based on the assumption that the dis-
cretized system of equations has a polynomial representation and
can thus be created by a summation of pre-formed matrices. For
more details see Fang et al. (2009b), Du et al. (2013a). The errors for
the above POD model are bounded by the following expression
(details of the derivation can be found in Fang et al. (2009b)):���Vfull � V

���
2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðMþ1Þ

q
; (23)

where Vfull is the reference solution calculated by the full model,
and lMþ1 is the (Mþ1)th eigenvalue (i.e. the largest singular eigen-
value truncated by the POD approach) for variable V.

4. Tracer dispersion in an urban street canyon

The POD reduced order air pollution model has been developed
with a 3D unstructured and adaptive mesh model, which is capable
of simulating flows on awide range of horizontal and vertical scales
(Pain et al., 2005). The model employs 3D anisotropic mesh adap-
tivity to resolve fine scale features as they develop while reducing
resolution elsewhere. The mesh adaptivity is guided by a-priori
absolute interpolation error of the velocity field (for further details,
see Pain et al., 2001). The transition from the finer regions to the
coarser ones is smooth through the use of an anisotropic linear
gradation parameter in the mesh adaptivity algorithm (Pain et al.,
2001). This ensures that adjacent element edge length differences
do not exceed 30%. A simple point-wise interpolation method is
used for mesh-to-mesh interpolations between adaptations. This
method is bounded but it is non-conservative and it is also diffu-
sive. More sophisticated (conservative) methods are available but
are omitted at this stage to keep computations simple. The aniso-
tropic Smagorinsky LES model is used for improving the stability of
the Galerkin PODeROM.

As already discussed, the reduced order model is formed by
projecting the original model from a high dimensional space onto a
reduced space. A set of optimal basis functions are obtained from
pre-computed solutions sampled at pre-specified time instances
(referred to as snapshots). The quality of the resultant reduced
order model depends highly on the choice of snapshots. Adaptive
mesh refinement is an efficient way to reduce computational
complexity and to provide high resolution snapshots for the
reduced order model.

The accuracy of the new POD reduced order air pollution model
is assessed and validated in three cases: 2D and 3D street canyon
flows as well as the tracer study of dispersion in a 2D canyon street.
These test cases are dimensionless. A comparison between the re-
sults obtained with the full and reduced order models has been
carried out.
4.1. Case1: 2D street canyon flows

The model has been used to simulate flow past an infinite series
of 2D street canyonswhich have unity height-to-width aspect ratio.
The geometry and mesh (consisting of 17,228 nodes and 33,588
elements) used for this simulation is shown in Fig. 1. The boundary
layer depth is five times the building height. At least 60 surface
elements cover each building surface. The mesh is uniform within
the canyon and the elements gradually increase in size with height.
The inflow boundary condition is periodic, which ensures a fully
developed boundary layer. The kinematic viscosity is set to
1 � 10�4. The Reynolds number, based on the building height and
the maximum velocity, is 104. No-slip boundary conditions are
applied on the domain's bottom edge and all building surfaces. A
free-slip boundary condition is applied on the domain's top
boundary. The flow is driven by a prescribed pressure gradient
across the domain, and this results in an approximate maximum
velocity of 1. The time step size is set to 0.01 which ensures the



Fig. 2. Case 1: velocity results obtained from the full (left panel) and reduced order (right panel) models.
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CouranteFriedrichseLewy (CFL) number, defined as DtJ�1u (where
J is the finite element Jacobian matrix), remains under 0.99 for
numerical stability purposes.

Fifty snapshots were taken from the pre-computed solution at
every fourth time level and from these 40 basis functions were
generated for u, v, w and p. These basis functions captured 99% of
‘energy’. With the original FE model consisting of 17,228 nodes, the
problem size is reduced by a factor of 430. The accuracy of the POD
ROM is evaluated by comparing its solution with that of the full
model, and these are shown in Fig. 2. It is shown that both model
solutions are in good agreement with each other and that the
Fig. 4. Case 2: Computational domain, unstructured mesh a

Fig. 3. Case 1: Error in the velocity solution obtained from the red
structures of the eddies inside the canyons are captured. Fig. 3
presents the absolute errors of the ROM at the time instances 3
and 4. Whilst the largest errors do occur around the top section of
the canyons they mainly remain below 0.06. Larger errors at the
time instance t ¼ 4 do occur but these remain restricted to very
small regions.

4.2. Case 2: 3D street canyon flows

To demonstrate the ROM's ability to simulate 3D flows, the
model is applied to resolving flow past two buildings. The domain
nd a 2D schematic of the building with a width of 0.1.

uced order model as compared with the high fidelity model.



Fig. 5. Case 2: velocity results (in both the horizontal and vertical cross sections) obtained from the full (top panel) and reduced order (bottom panel) models.
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and mesh are shown in Fig. 4 which includes a 2D schematic of the
building's height and positions. The size of the domain is 2 � 0.7 in
the horizontal and 1 in the vertical. The buildings are located on the
domain centreline.
Fig. 6. Case 2: Velocity vector field at different cross section at time level t ¼ 3.1. Left: full mo
the buildings; middle panel: the horizontal cross section at z ¼ 0.1; bottom panel: the hor
A uniform velocity of 1 is prescribed on the inflow boundary
located on the domain's left side. No-slip boundary conditions are
applied on the domain's bottom edge and all building surfaces. A
free-slip boundary condition is applied on the domain's top
del and right: reduced order model (top panel: vertical cross section at the centreline of
izontal cross section at z ¼ 0.3).



Fig. 7. Case 2: Eigenvalues and normalised errors for velocity components u, v and w (left panel: eigenvalues; right panel: normalised error of the POD model). The errors for the
POD model are bounded by equation (23), that is, the squared root of the (Mþ1)th eigenvalue (the largest neglected singular eigenvalue). M is the number of eigenvectors (POD
bases) chosen for each variable. The error decreases as the number of POD bases chosen is increased.

F. Fang et al. / Atmospheric Environment 96 (2014) 96e106102
boundary. The kinematic viscosity is set to 1 � 10�5. The Reynolds
number is 2 � 104 based on the average building height and the
reference velocity of 1. The time step size is set to 0.008 which
ensures the CFL number remains under 0.99.

Adaptive mesh refinement of the full FE model is used in this
simulation for building the ROM model. Starting with a uniform
coarse mesh the full model adapts every 20 time steps with the
maximum and minimum element size of 0.5 and 0.01 respectively.
A relatively fine mesh consisting of 96,667 nodes and 539,364
Fig. 8. Case 2: Absolute error in the POD velocity solution at time levels t ¼ 2.4 and 3.1 (in bo
of 50 snapshots and (a)e(b) 40 POD bases; (c) 12 POD bases; as well as (d) 12 snapshots w

Fig. 9. Case 3: Computational dom
elements is achieved when t ¼ 1.592. From this point in time the
fine mesh is fixed and the FE model continues to simulate the flow
over the time period [1.592, 3.192]. During this period snapshots
are recorded with all having the same length of 96,667. In total 50
snapshots are taken at every fourth time level (here, each time level
is set to 0.01), and from these 40 POD basis functions are generated
for u, v, w and p (for which 99% of ‘energy’ is captured). Comparing
with the size of the original FE model the resulting ROM's size is
smaller by a factor of 2400.
th the horizontal and vertical cross sections). The POD ROM is constructed with the use
ith 12 POD bases.

ain and unstructured mesh.



Fig. 10. Case 3: Velocity vector field obtained from the full (left panel) and reduced order (right panel) models.

Fig. 11. Case 3: Comparison of velocity contours obtained from the full (thick line) and
reduced order (thin line) models at time level t ¼ 1.8.

Fig. 12. Case 3: Tracer 1 concentration obtained from the full (left panel) and reduced
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The solutions at times t ¼ 2.4 and t ¼ 3.1 from both the POD and
full model are presented in Figs. 5 and 6. The velocities in both the
horizontal and vertical cross sections are overall in good agreement
with each other. POD is shown to have performed well at capturing
the complex flow patterns around the buildings.

To further address the quality of the POD ROM, the corre-
sponding error estimation of the POD ROM has been carried out in
this work. The errors in the ROM solutions are shown in Fig. 8. It can
be seen that the error in the POD solutions can be reduced by
increasing the number of the snapshots and POD bases. There is a
trade-off between the accuracy and the CPU time. In this work, 50
snapshots are chosen so that the error of the POD results remains
relatively small (less than 0.25) in large regions of the domain,
order (right panel) models, where the magnitude of the concentration is capped.



Fig. 13. Case 3: Tracer 2 concentration obtained from the full (left panel) and reduced order (right panel) models, where the magnitude of the concentration is capped.
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therefore the POD results are considered to be closer to those ob-
tained from the full model.

Fig. 7 presents the eigenvalues and the normalised errors in
velocity results obtained from the POD model (calculated by
equation (23)) for a given number of POD basis functions for each of
the velocity components u, v and w. The first graph displaying the
eigenvalues shows a steep decline in the energy lost as the number
of POD functions is increased. Accordingly, the graph presenting the
predicted errors in velocity results shows that there is a sharp
decrease in the error size as the number of POD functions is
increased. Using 20 POD functions the error decreases by approx-
imately 60% in comparison to using just one POD function. Using 40
functions this error decreases sufficiently to a predicted 2-norm
value of 0.15.
Fig. 14. Case 3: Tracer 3 concentration obtained from the full (left panel) and reduced
4.3. Case 3: dispersion of tracers in a 2D street canyon

In this final example the ROMmodel is applied to the simulation
of the dispersion of three polluting sources within a 2D urban
landscape. The geometry of the problem is rectangular in shape, with
a length of 2 and a height of 1, and contains two neighbouring
buildings that form a canyon between them. The geometry of the
problem is presented in Fig. 9. The figure also displays the unstruc-
tured mesh used in the full FE model. This mesh remains fixed in the
full simulation and consists of 8264 nodes and 33,588 elements. The
three polluting tracer sources (within a radius of 0.005) are posi-
tioned against the left face of the smaller building, and in turn are
placed at heights 0.025, 0.05 and 0.1, respectively. These are
continuous sources that are released into the domain at a rate of 1.
order (right panel) models, where the magnitude of the concentration is capped.



Fig. 15. Case 3: Absolute error in the velocity results obtained from the reduced order model.
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A uniform velocity of 1 is prescribed on the inflow boundary
located on the left side of the domain. No-slip boundary conditions
are applied on the domain's bottom edge and all building surfaces.
A free-slip condition is applied on the domain's top boundary. The
kinematic viscosity is set to 1 � 10�4 and the Reynolds number
equates to 1 � 104. A zero boundary condition is imposed at the
inflow positions of all tracers.

The full simulation was allowed to run to t ¼ 0.79, which was
sufficient time to allow the eddies to form. Following this the full
simulationwas run to t¼ 1.8 using a time step of 0.008. Over this time
period [0.79,1.8] the solutionswere recorded at every tenth time step
(every 0.08), resulting in a total of 50 snapshots. From these snap-
shots 40 POD basis functions were constructed for each of the solu-
tion variables, and these bases were capable of capturing 99% of their
energy whilst reducing the size of the problem by a factor of 200.

Fig. 10 presents the velocity vector field solutions predicted by
the full and POD models at two time instances. The two sets of
results are in close agreement and show the ROM model to have
captured well the eddies forming through the domain. Fig. 11
presents the velocity contours from both models at time t ¼ 1.8.
Again there is close agreement between themodels where even the
small features in the velocities are captured by the ROM.
Fig. 16. Case 3: Absolute error in the tracer concentr
The three tracer concentration solutions predicted by the full
and reduced order models are presented in Figs. 12e14. These so-
lutions are shown at time instances t ¼ 1.3, 1.8 and once again good
agreement is observed between the two models. In particular the
ROM has performed very well at resolving the concentration of
tracer 3 where beyond the second building it forms a complex flow
pattern.

The errors in the ROM's velocity and tracer solutions at times 1.3
and 1.8 are presented in Figs. 15 and 16 respectively. In general the
errors in the velocities are relatively small, typically less than 0.15,
however there are locally larger errors that have formed but these
are restricted to small regions of the domain. The tracer errors are
shown to be very low in value and rarely exceed 0.0001 for all
concentrations.

Table 1 shows the CPU time of main process at each time step. It
can be seen that the reduced order model saves 78�98% of CPU
time required by the full model.

5. Conclusions

This article has presented the first reduced order model for use
in simulating air and pollution flow through urban streets and
ations obtained from the reduced order model.



Table 1
Comparison of CPU (unit: s) required for running the full model and ROM for each
time step.

Assembling matrices Solving Total

Case1 (2D) Full model 1.62 1.24 2.86
POD ROM 0.64 0.04 0.68

Case2 (3D) Full model 53.62 14.54 68.16
POD ROM 1.4 0.06 1.46

Case3 (2D) Full model 1.62 3.34 4.96
POD ROM 0.64 0.74 1.38
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landscapes using a FE-LES turbulent model with adaptive resolu-
tion meshes. In this formulation PODwas used to construct optimal
basis functions from solution snapshots produced by the full LES
model, and the ROM then formed through a Galerkin projection
over this basis set. A quadratic expansion of the non-linear terms
was employed to ensure the method remained efficient and thus
avoid employing PODeDEIM.

The reduced order model has been applied to three test cases
involving air and pollution flow through urban landscapes. Both
two and three dimensional problems of varying difficulty have
been used, and comparisons between the ROM and full model so-
lutions were made to determine the accuracy of the proposed
method. In all cases the ROM was shown to accurately capture the
flow details as both its velocity and tracer profiles showed good
agreement with the full FE model. Without compromising the so-
lution's accuracy the ROM model was able to reduce the problem
size by several orders of magnitude. In comparison to the full model
the problem sizes were reduced by factors of 200e2400, while the
CPU time was correspondingly reduced 78%e98% of that required
by the full model in the examples presented.
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