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We investigate the issue of variational and sequential data assimilation with
nonlinear and non-smooth observation operators using a two-dimensional limited-
area shallow-water equation model and its adjoint. The performance of the
four-dimensional variational approach (4D-Var: two dimensions plus time)
compared with that of the maximum-likelihood ensemble filter (MLEF), a hybrid
ensemble/variational method, is tested in the presence of non-smooth observation
operators.

Following the work of Lewis & Overton and Karmitsa, we investigate
minimization of the data-assimilation cost functional using the limited-memory
Broyden–Fletcher–Goldfarb–Shanno (L-BFGS) quasi-Newton algorithm originally
intended for smooth optimization and the limited-memory bundle method (LMBM)
algorithm specifically designed to address large-scale non-smooth minimization
problems.

Numerical results obtained for the MLEF method show that the LMBM algorithm
yields results superior to the L-BFGS method. Results for 4D-Var suggest that
L-BFGS performs well when the non-smoothness is not extreme, but fails for non-
smooth functions with large Lipschitz constants. The LMBM method is found to be
a suitable choice for large-scale non-smooth optimization, although additional work
is needed to improve its numerical stability. Finally, the results and methodologies
of 4D-Var and MLEF are compared and contrasted. Copyright c© 2011 Royal
Meteorological Society
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1. Introduction

In this article, we investigate data assimilation of the
shallow-water equations with discontinuous observa-
tion operators in order to compare the performance

of large-scale non-smooth optimization methods. We
employ both a variational (4D-Var: Chevallier et al., 2004)
approach and the maximum-likelihood ensemble filter
(MLEF: Zupanski, 2005; Zupanski and Zupanski, 2006)
hybrid ensemble/variational data-assimilation method. In
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light of Zupanski et al. (2008)’s demonstration that MLEF
can be derived without a differentiability requirement for the
prediction model and the observation operators, we inves-
tigate the non-smooth optimization properties of MLEF.
We also compare and contrast the results obtained using
the limited-memory Broyden–Fletcher–Goldfarb–Shanno
method (L-BFGS: Liu and Nocedal, 1989) and limited-
memory bundle method (LMBM: Karmitsa, 2007) mini-
mization algorithms for large-scale non-smooth optimiza-
tion within 4D-Var and MLEF.

Data assimilation (Kalnay, 2003) aims to utilize
observations of a system optimally in combination with
a previous estimate of the initial state of the system known
as the background. Both the background and observations
contain noise and thus must be considered together. An
observation operator is a function mapping between model
space and the observations. For example, in the context of
atmospheric science, an observation operator for satellite
radiances has a radiative transfer model that can take the
state of the atmosphere as input and produce synthetic
observations that can be compared with actual satellite
radiance observations. Non-smooth observation operators
are those that have a discontinuity in the derivative of order
zero (function value) or higher. The lower the order of
the discontinuity, the more difficult the issue is to deal with
numerically and mathematically (Makela and Neittaanmaki,
1992). In this work we focus our investigation on observation
operators with discontinuities in the first derivative.

The issue of data assimilation with discontinuous
observation operators is relevant to many outstanding data-
assimilation problems. For example, the data assimilation of
‘all-sky’ satellite radiance observations, which may or may
not be affected by clouds, has a discontinuous observation
operator with respect to cloud microphysical variables (Zou
and Navon, 1996; Janiskova et al., 2002; Errico et al., 2007).
Sea-ice modelling is another area in which discontinuities
complicate the data-assimilation process (Levy et al., 2010).
Furthermore, in many other situations discontinuities
arise due to ‘on/off’ switches in model parametrizations
(Zupanski, 1993; Zupanski and Mesinger, 1995; Zhang
et al., 2001; Errico et al., 2007). These discontinuities may
become an issue for any smooth optimization algorithm
that is employed to minimize the cost functional in
either the 4D-Var system or hybrid ensemble/variational
methods such as MLEF. Their presence also poses serious
problems for the correct adjoint-model formulation. The
non-smoothness may lead to a poor solution or even a
failure of the minimization algorithm (Greenwald et al.,
2004). In particular, issues may arise with both the line
search and descent direction (Makela and Neittaanmaki,
1992). This article evaluates several optimization algorithms
in data assimilation using a finite-difference shallow-water
equation model.

Because a typical data-assimilation analysis equation
proceeds from the assumption of linearity and smoothness,
current approaches include regularizing and smoothing
simplified versions of the parametrizations (van Leeuwen,
2001; Janiskova and Morcrette, 2005). This approach can
introduce new problems, however (Zhang et al., 2000). In
addition, when the discontinuity in the observation process
is mathematically inherent with respect to the control
variables –as is the case for all-sky radiances when cloud
microphysical variables are part of the control –it is not
clear that smoothing or regularizing the problem is the

correct approach. Changing the problem being solved may
indeed prevent the extraction of the maximum amount
of information from highly nonlinear or discontinuous
processes. This limitation would in turn affect the skill of
the data-assimilation procedure.

MLEF has been tested with the shallow-water equations
in Zupanski et al. (2006), Uzunoglu et al. (2007) and
Fletcher and Zupanski (2008) and non-smooth variational
data assimilation problems have been investigated in
Makela and Neittaanmaki (1992), Homescu and Navon
(2003), Zhang et al. (2000), Zhu et al. (2002) and Bardos
and Pironneau (2005) for highly simplified problems.
However, the existing optimization algorithms at the
time those studies were conducted were not suitable for
large-scale non-convex optimization (Haarala et al., 2004).
The situation has now changed, due to both theoretical
and algorithmic advances. An excellent comparison
of non-smooth optimization algorithms for large-scale
minimization is given in Karmitsa et al. (2009), showing
positive results for problems with as many as 4000 variables.
Levy and coauthors recently investigated a physical-
based approach for potentially discontinuous optimal
interpolation of sea-ice data assimilation for a model
with 15 physical control variables in Levy et al. (2010).
The approach in the current article suggests techniques
suitable for more general and larger-scale data-assimilation
problems, although combining these techniques is certainly
an intriguing possibility.

The smooth optimization quasi-Newton L-BFGS algo-
rithm, long used in data assimilation (Zou et al., 1992;
Honda et al., 2005), has recently been found to possess the
properties of a non-smooth optimization algorithm in Lewis
and Overton (2008a,b) and Skajaa (2010). This method may
offer promise for large-scale non-smooth optimal control
problems.

In this article we test the L-BFGS algorithm as well as
the LMBM algorithm, a globally convergent non-smooth
optimization algorithm specifically designed for large-scale,
possibly non-convex minimization (Haarala et al., 2007;
Karmitsa, 2007) for problems with more than 1000 control
variables. In addition, we also test the MLEF hybrid-
filter data-assimilation method implemented with the L-
BFGS minimization algorithm to assess its non-smooth
optimization properties (Zupanski et al., 2008).

We conduct our tests using a series of closely related 4D-
Var optimal control problems with observation operators
containing varying degrees of non-smoothness. We also test
the same data-assimilation problems using the hybrid MLEF
filter.

The article is organized as follows: section 2 describes the
nonlinear limited-area shallow-water equation model and
the initial and boundary conditions employed, section 3
details the data-assimilation problem and methodologies
used to solve it, section 4 describes the non-smooth
optimization algorithms used in this study, section 5 details
the set-up of the computational experiments and section 6
presents the numerical results. Finally, section 7 is reserved
for a summary and conclusions.

2. Shallow-water equation model

We begin by describing the model that will be used in our
optimal control problem.
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Consider the limited-area shallow-water equation model
as detailed in Wang et al. (1992):

∂u
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where u and v are the two components of the horizontal
velocity in m s−1, φ = gh is the geopotential field in m2 s−2,
h is the free surface height in m and f is the Coriolis factor
in s−1.

The initial conditions used were based on those in
Grammeltvedt (1969), namely a channel on a β plane
of length L and depth D, with h given by

h(x, y) = h0 + h1 tanh

(
9(y − y0)

2D

)

+h2 sech2

(
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)
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(
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(4)

where h0 = 2000 m, h1 = −220 m, h2 = 133 m, L =
6000 km, D = 4400 km and y0 = D/2.

From Eq. (4), the initial conditions are derived through
geostrophic balance by the relation

φ0(x, y) =gh(x, y),

u0(x, y) = − g

f

∂h

∂y
(x, y),

v0(x, y) =g

f

∂h

∂x
(x, y),

(5)

where g = 10 m s−2 and f = 10−4 s−1.
This model is discretized using the second-order quadratic

conservation advective scheme detailed in Grammeltvedt
(1969), referred to as ‘scheme F’. The space and time
increments are �x = 300 km, �y = 220 km and �t =
600 s, respectively, resulting in a mesh comprising 21 ×
21 spatial grid points. The model is integrated for 80 time
steps, i.e. a window of assimilation of 13 h 20 min in model
time. These initial conditions are shown in Figure 1.

Because in this article the u and v velocity components
will have separate observation-operator components, as
described in section 5.2, the contour plots for the initial
values of these two fields are shown in Figure 2.

The boundary conditions are given by a rigid-wall
homogeneous Neumann condition along the south and
north boundaries and wrapping periodic conditions along
the east/west boundary. In other words,

u(xl, y, t) =u(xr, y, t),

v(xl, y, t) =v(xr, y, t),

φ(xl, y, t) =φ(xr, y, t),
∂u

∂y
(x, yt, t) =0,

∂u
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Figure 1. Initial conditions (u0, v0, φ0): (a) φ0 from (5) and (b) wind field
from (5). Arrows are scaled by a factor of 1 km. This figure is available in
colour online at wileyonlinelibrary.com/journal/qj
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where xl, xr, yt, yb are locations of the left, right, top and
bottom boundaries, respectively.

3. Data-assimilation methods

In a general setting with standard assumptions, the data-
assimilation problem is shown in Table I.

The background state xb is assumed to be of the form

xb = x(0)
true + ηb, (6)

where xtrue is the true state of the system and ηb ∼ N(0, B)
is a Gaussian random variable with mean 0 and covariance
matrix B.

The observations y(i) are assumed to be

y(i) = H
(

x(i)
true

)
+ ηobs, (7)

where ηobs ∼ N(0, R) is a Gaussian random variable with
mean 0 and covariance matrix R. The observation errors are
considered independent, so R is a diagonal matrix.
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Figure 2. Contour plot for (a) u0 and (b) v0. This figure is available in
colour online at wileyonlinelibrary.com/journal/qj

The model M we investigate here consists of the shallow-
water equations detailed in section 2. As we will show below
in section 5, we create a twin experiment by taking the

initial conditions in Eq. (5) to be x(0)
true in order to create the

background and observations.
Many different algorithms have been employed to solve

the data-assimilation problem in Table I. In this article, we
investigate the solution of the data-assimilation problem
using both 4D-Var, a variational approach, and the MLEF,
which employs both variational and sequential techniques
and can thus be considered a hybrid method.

In practice there are many issues that arise when trying
to solve the data-assimilation problem. Issues such as
estimating the uncertainties B and R, observation sparsity,
model error and background-state formulation are not
considered in this research in order to focus on the case
of an observation operator H that is non-differentiable (as
detailed in section 5.2).

3.1. 4D-Var

The 4D-Var approach to data assimilation is to minimize
a cost function, with the lack of fit between background
and observations scaled by their respective uncertainties. In

other words, we seek the value x∗ that minimizes

J(x) = 1
2 δb(x) T B−1δb(x)
+ 1

2

∑NT
k=0 δyk (x) T R−1δyk (x),

(8)

subject to the constraint

xi(x) = M [xi−1(x)] , x0(x) = x, (9)

where x is the control variable representing the unknown
initial conditions,

δb(x) = x − xb (10)

is the difference between the control variable and the
background state xb and

δyk (x) = y(k) − H(x(k)(x)) (11)

is the difference between the observation at time k, y(k), and
the model at time k, x(k)(x), acted on by the observation
operator H.

In this work, the model M is taken as a strong constraint;
in other words, the model constraint equation (9) is satisfied
at each time step. Once the optimal initial conditions x∗ have
been found, the optimal trajectory x(i)(x∗) can be found by
evolving the model forward in time using model M.

In order to proceed with the minimization, the gradient
of the cost function (8) is needed. In the case of a once-
differentiable model M and operator H, this is given by

∇xJ(x) = B−1δb −
NT∑
k=0

∂x(k)

∂x

∂H
∂x(k)

R−1δyk , (12)

where ∂H/∂xi is the Jacobian of the observation operator
and ∂x(i)/∂x ∈ R

3NM×3NM is the Jacobian of x(i). From
Eq. (9),

∂x(i)

∂x
(x) = ∂x(i−1)

∂x
(x)M

(
x(i−1)(x)

)
(13)

for i = 1, . . . , NT, where M is the Jacobian of the model
operator.

In order to compute this gradient efficiently, the adjoint of
the tangent linear model is computed. The adjoint is detailed
in Wang et al. (1992). It uses a discretize-then-differentiate
approach (Gunzburger, 2003), i.e. the derivatives are found
by applying the chain rule to the discrete operator M and
reversing the order of the Fortran code.

As detailed in sections 4 and 5, the functions H in this
research are only assumed to be locally Lipschitz-continuous
and may not in general be differentiable (i.e. they are non-
smooth).

3.2. MLEF

The MLEF approach to data assimilation shares similarities
with both a variational approach such as 4D-Var and an
ensemble approach such as the Ensemble Kalman Filter (see
e.g. Kalnay et al., 2007) and especially the Ensemble Square
Root Filter (Tippett et al., 2003) and Ensemble Kalman
Transform Filter (Bishop et al., 2001). The derivation
presented below is similar to those of Fletcher and Zupanski
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Table I. Data assimilation problem. The following information is required to find an ‘optimal’ trajectory x(i) ∈ R
Nstate at

each time step {i = 0, . . . , NT}.

A ‘background’ state of the model xb that approximates x(0) (from either a first guess or a previous prediction).

Complete or partial noisy observations of the system y(j) ∈ R
N

(j)
obs for some or all values 0 ≤ j ≤ NT.

Background-error covariance matrix B ∈ R
Nstate×Nstate quantifying the covariance of the error between the background xb

and the unknown true state.

Observation-error covariance matrix Rj ∈ R
N

(j)
obs×N

(j)
obs quantifying the covariance of the error between the observations y(j)

and the unknown true observations.
A model M : R

Nstate → R
Nstate that maps x(i) to x(i+1) (assumed here to be perfect).

An observation operator Hj : R
Nstate → R

N
(j)
obs (also assumed to be perfect) that models the mapping between x(j) to the

observations y(j).

(2008) and Zupanski et al. (2008), in which additional details
can be found.

Like the Kalman filter families, the MLEF algorithm
proceeds in two stages: forecast and analysis. Suppose

that a square-root analysis covariance matrix
(
P(k−1)

a

)1/2

is available at time k − 1, such that

P(k−1)
a =

(
P(k−1)

a

)1/2 (
P(k−1)

a

)T/2
. (14)

This is approximately equal to the background B at time
0, i.e. P(0)

a ≈ B. In MLEF, the columns of the forecast-error

covariance
(

P(k)
f

)1/2
at time k are given by

(
P(k)

f

)1/2 = [
pf

1, pf
2, . . . , pf

Nens

]
,

pf
i = M

(
x(k−1)

a + pa
i

) − M
(
x(k−1)

a

)
,

(15)

where Nens are the number of ensembles, x(k−1)
a is the

previous analysis value (x(0)
a = xb) and pa

i is the ith column

of
(
P(k−1)

a

)1/2
.

Once the forecast covariance has been obtained, the
analysis step can proceed. The analysis step of MLEF
takes its inspiration from variational methods, in particular
3D-Var (Lorenc, 1986). MLEF seeks to find the analysis,
x(k)

a = arg minx J, that minimizes the cost function

J(x) = 1

2
δf (x) T P−1

f δf (x) + 1

2
δyk (x) T R−1δyk (x), (16)

where δf = x − x(k)
f , x(k)

f = M
(
x(k−1)

a

)
and the other

variables are the same as in section 3.1.
In order to avoid inverting the matrix Pf , which will be

rank-deficient as it is approximated by a matrix of rank at
most Nens, a change of variables is introduced, namely

δf (x) = P1/2
f (I + C(x))−T/2 ζ , (17)

where ζ are the new control variables, defined in the Nens × 1
space of ensembles, and C ∈ R

Nens×Nens is a preconditioning
matrix of the quadratic cost function (16). C is formed as
follows:

C(x) = ZTZ, (18)

where

Zi(x) = R−1/2
[
H(x + pf

i ) − H(x)
]
. (19)

Because of the mutual dependence between the precondi-

tioner and x, C is fixed to C(x = x(k)
f ), i.e. C does not change

during the minimization process.
The inversion of the symmetric matrix (I + C), required

by (17), is accomplished using a spectral decomposition of
the form

I + C = V	VT, (20)

where V is an orthogonal matrix of eigenvectors and 	 is a
diagonal matrix of eigenvalues. Once this decomposition is
found, the required square root can be found by

(I + C)−1/2 = V	−1/2VT. (21)

Finally, the square-root analysis covariance matrix at time
(k) is found by

P1/2
a = P1/2

f

[
I + C(x(k)

a )
]−T/2

, (22)

with the notation C(x(k)
a ) denoting that C is recomputed at

the solution x(k)
a of (16).

This update to the covariance matrix is similar to that of
Bishop et al. (2001); however, the main difference is that the
observation operator is not restricted to be linear and the
Jacobian is not required.

In summary, MLEF is an ensemble method that directly
maximizes the posterior probability density function at each
time step. It does not require the Jacobian of either the
model or the observation operator.

4. Non-smooth optimization algorithms

4.1. Introduction

In this section we describe the non-smooth optimization
algorithms used in this research. Before further discussion
we introduce a few common definitions. In what follows we
use an Euclidean norm, i.e. ||x|| = (∑n

i=1 x2
i

)1/2
.

Definition 4.1 Function J : R
n → R is locally Lipschitz-

continuous at x ∈ R
n with a constant L > 0 if there exists a

positive number ε such that

|f (y) − f (z)| ≤ L||y − z||

for all y, z such that ||x − y|| ≤ ε, ||x − z|| ≤ ε.
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Intuitively, L is an upper limit of how fast the function
changes at x within the sphere of radius ε. Note that the
function f itself cannot have a discontinuity, but the higher
order derivatives may.

For a locally Lipschitz-continuous function the classical
directional derivative need not exist. However, we can
generalize the concept of differentiability by defining a
generalized directional derivative as follows.

Definition 4.2 Let J : R
n → R be a locally Lipschitz-

continuous function at a point x ∈ R
n. The generalized

directional derivative of J at x in the direction p ∈ R
n is

defined by

Jo(x; p) = lim sup
y→x as t↓0

J(y + tp) − J(y)

t
,

where y ∈ R
n and t ∈ R.

Note that the only difference between this definition and
the definition of a traditional directional derivative is the
sup, meaning that the largest directional derivative along
any direction y is taken. At a differentiable point, these
limits will be the same along any direction; however at a
non-differentiable point these values may be different and
choosing the largest is a choice of convenience that will be
exploited later.

Unlike a traditional gradient, which is unique, at non-
smooth points in general infinite subgradients exist as part
of the subdifferential set, defined as follows.

Definition 4.3 Let J : R
n → R be a locally Lipschitz-

continuous function at a point x ∈ R
n. Then the subdif-

ferential of J at x is the set ∂J(x) of vectors ξ ∈ R
n such

that

∂J(x) = {
ξ ∈ R

n|Jo(x; p) ≥ ξTp for all p ∈ R
n
}
.

Each vector ξ ∈ ∂J(x) is called a subgradient of J at x.

In analogy to the traditional interpretation of the gradient
as a tangent hyperplane to the function J, intuitively one
can consider a subgradient at x to be a normal vector of any
tangent hyperplane that remains on or below the generalized
directional derivatives Jo(x; p) in all directions p.

When J is differentiable at x there is only one element
of the subdifferential ∂J(x), and it is the standard gradient.
Below, the gradients (12) and (16) will be replaced with a
subgradient in order to allow for non-smooth optimization
in general. Because the gradient and subgradient are identical
at differentiable points, this change is primarily transparent
to the model and adjoint development, although care must
be taken to ensure that a value for the adjoint is chosen such
that definition (4.3) holds at the discontinuities. In addition,
care must be taken in the optimization algorithms. More
details can be found in the book of Makela and Neittaanmaki
(1992).

4.2. Optimization algorithms

Both 4D-Var and MLEF employ an optimization algorithm
as an integral part of finding the solution. As shown in
section 3, 4D-Var relies entirely upon this optimization

algorithm while MLEF uses it to maximize the posterior
probability density function at each step.

Following the derivation of Zupanski et al. (2008), we
introduce two non-smooth iterative optimization methods.

In general, an iterative optimization algorithm can be
formulated as

xk+1 = xk + αkpk, (23)

where k is the iteration number, pk is the search direction
and αk is the step length. This procedure continues until
some convergence criterion has been met.

If J(xk+1) ≤ J(xk) for all k, then an iterative method is
called a descent method and the direction pk is called a
descent direction. For smooth (continuously differentiable)
objective functions, a descent direction may be generated
by exploiting the fact that the direction opposite to the
gradient is locally the direction of steepest descent. The
step size αk can then be determined, for example, using a
line-search technique (see e.g. Nocedal and Wright, 2006).
Furthermore, a necessary condition for local optimality is
that the gradient goes to zero and by continuity becomes
small on approach to an optimal point. This fact provides a
useful stopping criterion for smooth iterative methods.

However, the direct application of smooth gradient-
based methods to non-smooth problems may lead to a
failure in convergence, optimality conditions or gradient
approximation. The usage of subgradients allows us to
generalize well-developed gradient-based methods for non-
smooth problems. In this section, we detail the optimization
algorithms used in this study. For the rest of the paper, a
subgradient ∇J(xk) ∈ ∂J(xk) is denoted by ∇Jk.

4.3. L-BFGS

In this work, we test an implementation of the L-BFGS
algorithm version VA15 of Liu and Nocedal (1989) in the
Harwell library. The version of L-BFGS with subgradients is
detailed in Zupanski et al. (2008).

The L-BFGS method is an adaptation of the BFGS method
to large problems, achieved by changing the generalized
Hessian update of the latter. The L-BFGS method uses an
approximation Hk to an inverse generalized Hessian, which
is updated at each time step. The search direction is found,
in analogy to the Newton method, by

pk = −Hk∇Jk. (24)

An inverse generalized Hessian approximation is updated
at each iteration by

Hk+1 = VT
k HkVk + ρksksT

k , (25)

where sk = xk − xk−1,

Vk = I − ρkyksT
k , (26)

yk = ∇Jk − ∇Jk−1 and ρk = 1/(yT
k sk).

In the L-BFGS method, instead of forming the matrices
Hk explicitly (which would require a prohibitively large
allocation of memory for even a medium-size problem),
one only stores the vectors sk and yk obtained in the last m
iterations, which define Hk implicitly; a cyclical procedure is
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used to retain the latest vectors and discard the oldest ones.
Thus, after the first m iterations, Eq. (25) becomes

Hk+1 =�T
k−m̂H0�k−m̂

+ ρk−m̂�T
k−m̂+1Sk−m̂�k−m̂+1

+ ρk−m̂+1�
T
k−m̂+2Sk−m̂+1�k−m̂+2

...

+ ρkSk,

(27)

where �j = VjVj+1 · · · Vk, Si = sisT
i , m̂ = min(k, m − 1)

and the initial approximation H0 is taken to be I.
Thus, only at most 2m correction pairs si and yi for

i = 1, . . . , m are needed and no full matrix is ever stored in
memory as Eq. (24) is solved.

4.4. LMBM

The L-BFGS method was originally created for smooth
optimization and is generalized for non-smooth methods
by replacing the gradient with an arbitrary subgradient.
However, there are some potentially serious drawbacks to
this approach. Firstly, it is theoretically possible for a non-
descent search direction to occur, as the direction opposite
to an arbitrary subgradient does not guarantee descent.
Thus, a smooth line-search algorithm, used for step-size
(αk) selection, may fail. Secondly, due to the fact that
the norm of an arbitrary subgradient does not necessarily
become small in the neighbourhood of an optimal point, a
convergence criterion based on this assumption, valid for
smooth gradients, will also fail when the optimal point occurs
at a discontinuity. Moreover, in general the convergence
speed of subgradient methods can be poor.

In this subsection we describe the LMBM (Haarala
et al., 2004, 2007), where the above-mentioned drawbacks
are avoided by using a so-called bundling technique
(Lemarechal, 1975). The idea of bundling is that instead
of using just one arbitrary subgradient we approximate
the whole subdifferential (see Definition (4.3)) of the
objective function by gathering the subgradients from
previous iterations into a bundle. In this way, we obtain
more information about the local behaviour of the function
than an individual arbitrary subgradient can yield.

LMBM was specifically developed for solving large-scale
non-smooth optimization problems. It is characterized by
the usage of null steps together with a simple aggregation of
subgradients. Moreover, as in L-BFGS, the limited-memory
approach is utilized in the calculation of the search direction

pk = −Hk∇ J̃k, (28)

where ∇ J̃k ∈ R
n is an aggregate subgradient and Hk is not

formed explicitly but calculated by the L-BFGS update (see
Eq. (27)) after a serious step and by the L-SR1 update
(see e.g. Byrd et al. (1994)) after a null step. The usage of
null steps gives further information about the non-smooth
objective in the case in which the search direction is not
‘good enough’. That is, a null step is taken when the descent
criterion

J(xk + tk
Rpk) ≤ J(xk) + εk

R (29)

is not satisfied. Here tk
R is the step size and εk

R > 0 is the
desired descent of J at xk. In the case of a null step, we set

Table II. LMBM pseudo-code.

Program LMBM
Initialize x1 ∈ R

n, ∇J1 ∈ ∂J(x1), and εs > 0;
Set k = 1 and p1 = −∇J1;
While the termination condition

wk ≤ εs is not met
Find step sizes tk

L and tk
R;

Set xk+1 = xk + tk
Lpk

Evaluate J(xk+1) and ∇Jk+1 ∈ ∂J(xk + tk
Rpk);

If tk
L > 0 then

Compute the search direction pk+1

using ∇Jk+1 and the L-BFGS update;
Else

Compute the aggregate
subgradient ∇ J̃k+1;

Compute the search direction pk+1

using ∇ J̃k+1 and the L-SR1 update;
End if
Set k = k + 1;

End While
Return final solution xk;

End LMBM

xk+1 = xk but information about the objective function is
increased by storing the auxiliary point yk+1 = xk + tk

Rpk and
the corresponding auxiliary subgradient ∇Jk+1 ∈ ∂f (yk+1).
These values are used in the computation of the new
aggregate subgradient that is used in the next iteration.
A simple aggregation of subgradients guarantees the global
convergence of the method (for more details see Haarala
et al., 2007) and make it possible to evaluate a subgradient-
based stopping criterion.

The pseudo-code of the LMBM algorithm is shown in
Table II.

5. Experimental set-up

We now consider data assimilation of the shallow-
water equations with a discontinuous observation operator
detailed below.

Starting from the exact initial conditions given in (5)
and boundary conditions given in (2), the model is evolved
forward in time. Observations of the model state (u, v, φ)
are taken at each time step and every spatial grid point
using an observation operator and are then perturbed
with uncorrelated Gaussian noise of mean 0 and standard
deviation σuobs , σvobs and σφobs , respectively. The exact
initial conditions are perturbed with correlated Gaussian
noise of mean 0 and covariance matrix B. The perturbed
initial conditions are the background and the problem is to
reconstruct the exact solution optimally using background
and observations.

Both the 4D-Var and MLEF approaches are used to solve
this problem.

In this research, observations at all grid points are available
for each time step –perhaps the best possible scenario for
data assimilation. This removes the issue of sparsity of
observations from the experimental set-up in order to focus
on the impact of non-smooth observation operators. Thus,
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assuming there are N, M non-boundary grid points in the x
and y direction, respectively, Nstate = Nobs = 3NM.

5.1. Observation-error covariance matrix

For this experiment, the observation-error covariance
matrix R is taken to be diagonal. Thus, R−1 is the diagonal
inverse matrix with

R−1
i,i =




1/σ 2
uobs

, 1 ≤ i ≤ MN,
1/σ 2

vobs
, MN + 1 ≤ i ≤ 2MN,

1/σ 2
φobs

, 2MN + 1 ≤ i ≤ 3MN.

(30)

In this experiment, σuobs = σvobs = 1 m s−1 and σφobs =
12 m2 s2 were chosen based on approximate geostrophic
considerations. A sample of this uncorrelated noise at time
t0 is shown in Figure 3.

5.2. Observation operator

In this section we detail an observation operator with varying
levels of non-smoothness in its components. This operator
is not based on physical considerations but rather chosen
solely to demonstrate the behaviour of the optimization
algorithms.

The observation operator H is given by

H(xi) =



H1(ui), 1 ≤ i ≤ MN,
H2(vi−MN ), MN + 1 ≤ i ≤ 2MN,
H3(φi−2MN ), 2MN + 1 ≤ i ≤ 3MN,

(31)

H1(ui) =



u3
i /u2

min, ui < umin,
u2

i /umax, ui ≥ umax,
ui, else,

(32)

H2(vi) =
{

log(vi + δ), vi ≥ 0,
log(−vi + δ), vi < 0,

(33)

H3(φi) =
{

φi, φi < Hmax,
φ2

i /Hmax, φi ≥ Hmax.
(34)

Here, umin = −5 m s−1, umax = 5 m s−1 and Hmax =
20 000 m.

These components of the observation operator are shown
in Figure 4 and the observation operator of the initial state
plus observational noise is shown in Figure 5.

Due to the kinks in the observation operators,
this becomes a non-smooth optimization problem. The
discontinuity in the piecewise derivatives of H1–H3 are
shown in Figure 6. Note that the discontinuity becomes
progressively more acute in ∇H3, ∇H1 and ∇H2,
giving flexibility for testing the behaviour of non-smooth
optimization algorithms. In ∇H2, the parameter δ controls
the size of the discontinuity. All of these functions are locally
Lipschitz-continuous, and the best global Lipschitz constant
for H2 is 1/δ.
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Figure 3. Observation error sample at t0 for u, v and φ. (a) η
(u)
obs sample,

contour interval 0.5; (b) η
(v)
obs sample, contour interval 0.5; (c) η

(φ)
obs

sample, contour interval 5. This figure is available in colour online at
wileyonlinelibrary.com/journal/qj

5.3. Background-error covariance matrix

In this work we use an exact background-error covariance
matrix to perturb the background xb. The perturbation to
the background vector is given by

ub = u0 + ηu,
vb = v0 + ηv,
φb = φ0 + ηφ ,

(35)
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Figure 4. Observation operators: (a)H1(u), (b)H2(v) and (c)H3(φ). This
figure is available in colour online at wileyonlinelibrary.com/journal/qj

where (ui, vi, φi) are the exact initial conditions given in (5),
ηu ∼ N(0, �u), ηv ∼ N(0, �v) and ηφ ∼ N(0, �φ), where
�u, �v, �φ ∈ R

NM×NM are the covariance matrices of
(u, v, φ). Thus, B is the block matrix

B =

�u 0 0

0 �v 0
0 0 �φ


 (36)

and

B−1 =

�−1

u 0 0
0 �−1

v 0
0 0 �−1

φ


 . (37)
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Figure 5. Observation sample for u, v, and φ at t0. (a) uobs, contour
interval 100. (b) vobs, contour interval 1; the two columns of tightly
spaced contours are caused by the sharp drop in H2(v) at v = 0. (c)
φobs, contour interval 250. This figure is available in colour online at
wileyonlinelibrary.com/journal/qj

�u = σ 2
u �, �v = σ 2

v � and �φ = σ 2
φ� are created by the

exponential squared kernel of

� = B1/2BT/2 (38)

and

B1/2
i,j = B1/2

j,i = exp(−r2
i,j/L2). (39)

Here, r represents the Euclidean distance between two points
in the grid, i.e.

r2
i,j = �x2

i,j + �y2
i,j, (40)
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where �xi,j and �yi,j are the x- and y-coordinate distances
in metres between the two points with global indexes i and
j, respectively. L represents the correlation length in metres
required for the correlation between two points to reach
1/e ≈ 0.36788.

The normal perturbation ηu is created with the transfor-
mation ηu = �

1/2
u Zu, where Zu ∈ R

NM and the components
of Zui ∼ N(0, 1) are independent and identically distributed
standard normal variables. ηv and ηφ are created the same
manner with �v, �φ , Zv and Zφ uncorrelated standard
normal variables, respectively.
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Figure 7. Background perturbation versus exact solution: (a) ub, contour
interval 1; (b) vb, contour interval 1; (c) φb, contour interval 10. This figure
is available in colour online at wileyonlinelibrary.com/journal/qj

Based on the results in Zupanski et al. (2006), a correlation
length of L = 7000 km and background-perturbation
magnitudes of σu = σv = 20 m and σφ = 200 m2 s−2 were
chosen. As discussed below, the background used in the 4D-
Var experiment and MLEF experiments is found by taking
an ensemble average over 96 realizations of (ub, vb, φb). The
actual perturbation versus the exact solution used as the
background is shown in Figure 7.

While the matrix B has, in theory, full rank, like
many other background-error covariances used in practice,
this background-error covariance matrix is numerically
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rank-deficient due to the effect of having a much larger
correlation length than the grid spacing. Thus, the inverse
background-error covariance cannot be computed numer-
ically. This issue is addressed in our 4D-Var implemen-
tation with the approach used in Chen et al. (2011),
i.e. by applying the change-of-variables transformation
δb(x) = x − xb = B1/2z and using z as the control variable.
Since B1/2BT/2 = B, this removes the necessity of obtaining
the inverse from the cost function, so that (8) becomes

J(z) = 1

2
zTz + 1

2

NT∑
k=0

δ′
yk

(z) T R−1δ′
yk

(z), (41)

where δ′
yk

(z′) = δyk (B1/2z + xb), while the gradient (Chen
et al., 2011) becomes

∇′
zJ(z′) = z′ −

NT∑
k=0

∂x(k)

∂z′
∂H
∂x(k)

R−1δ′
yk

, (42)

and, as x(0) = B1/2z + xb,

∂x(0)

∂z
(z) = B1/2. (43)

5.4. Design

In order to compare both 4D-Var and MLEF in the presence
of non-smooth observation operators, the following
procedure is used.

(1) The initial condition for h is listed in Eq. (4). From
this, u0, v0 and φ0 are created by (5).

(2) These conditions are evolved forward in time
by solving (1) through (3) to create xexact =
(uexact, vexact, φexact) at times t = 0, . . . , NT.

(3) Observations: Gaussian noise, as detailed in section
5.1, is added to H (xexact) to create the observations.

MLEF:

(4a) Ensemble members: each member of the initial
ensemble is created by sampling from a correlated
Gaussian random variable with mean xexact and
covariance matrix B, as discussed in section 5.3.

(5a) Control state: the mean of the ensemble created in
(4a) is used as the control state.

4D-Var:

(4b) Background value: the MLEF initial control state from
(5a) is used as the background value.

(5b) Background-error covariance matrix: the matrix B
used in (4a) to create the ensemble is used. The matrix
B1/2 is found using an eigenvalue decomposition.

Both MLEF and 4D-Var:

(6) The experiment is then run and the root-mean-
squared error (RMSE) is taken at each time step
versus (uexact, vexact, φexact), as detailed in section 5.6.

Table III. Experimental set-up.

Experiment # u obs op v obs op φ obsop

1 linear linear linear
2 linear linear H3

3 H1 linear H3

4 H1 H2 H3

5.5. Experiments

Within the context above, we now design three numerical
experiments to test the performance of L-BFGS and LMBM
within the 4D-Var and MLEF frameworks in order to assess
their performance in data assimilation in the presence
of non-differentiable observation operators of increasing
difficulty. The experimental set-up is shown in Table III.
Experiment 1 is the most favuorable experimental set-up
for data assimilation with all linear (and thus differentiable)
observation operators. Experiment 2 possesses only a ‘slight’
non-smoothness in the observation operator for φ and
experiment 3 has a discontinuity in both u and φ, while
experiment 4 constitutes the most difficult case with a sharp
discontinuity in the observation operator for v and the same
operator as experiment 3 for u and φ.

5.6. Success criteria

We now define our success criteria for the experiments listed
in section 5.5.

To judge the quality of the assimilation results, we use the
RMSE of the calculated solution versus the exact solution.
The RMSE for cycle (k) is calculated as follows:

RMSE(k)
u =

√√√√
(

u(k)
exact − u(k)

)T (
u(k)

exact − u(k)
)

NM
,

RMSE(k)
v =

√√√√
(

v(k)
exact − v(k)

)T (
v(k)

exact − v(k)
)

NM
,

RMSE(k)
φ =

√√√√
(
φ

(k)
exact − φ(k)

)T (
φ

(k)
exact − φ(k)

)
NM

.

(44)

As is common in data-assimilation experiments, success
is judged by the assimilation achieving an RMSE that is
lower than both the observation and background errors.
In this case, the expected RMSE from simply using the
observations is much lower than that the expected RMSE
of the background. Thus, in order for the data-assimilation
procedure to be considered a success, the RMSE must reach
a level lower than the observational noise (σuobs , σvobs , σφobs )
from section 5.1.

6. Numerical results

In this section we present the numerical results for both
MLEF and 4D-Var with the experimental set-up detailed in
section 5.
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6.1. MLEF results

For MLEF, 96 ensemble members are used with the
experimental set-up detailed in section 5.4 to test
experiments 1–4 using MLEF with the L-BFGS quasi-
Newton method as well as the LMBM algorithm. Up to 100
iterations of the minimization algorithm are allowed at each
step for both methods, with the minimization terminating
at each step if the change between subsequent normalized
cost-function evaluations is less than 10−1. Note that in a
large-scale implementation this would mean a prohibitively
large number of observation-operator evaluations, but it
was chosen here to focus on the actual performance of
the minimization algorithms. The δ parameter, used in
experiment 4 in the observation operator H2(v), is set to
δ = 10−4.

The RMSEs for the four experiments using MLEF and the
smooth optimization algorithm are shown for the u and v
components of the velocity field along with the geopotential
field φ in Figure 8.

The results show a drop from the background state below
the observation RMSE in just one cycle for experiments 1–3;
however, experiment 4 is not successful, as the RMSE in v
and φ never reach below the expected observational RMSE
at the same time. In this experiment L-BFGS initially fails
to reduce the RMSE of φ sufficiently much beyond the level
of the background, while later in the assimilation process
the RMSE in v grows above the level of the observation
error. Both of these symptoms are indicative of problems in
the minimization process owing to the non-smoothness
of the observation operator. Note also that the RMSE
oscillates between successful time steps. The reasons for
this are twofold: firstly, unlike 4D-Var, MLEF does not
take the model into consideration during the minimization
process. Secondly, the numerical scheme for the shallow-
water equation model uses a two time-step filtering scheme
(Grammeltvedt, 1969). These two issues combined cause the
MLEF solution to oscillate between two different trajectories
based on the model fluctuations across time steps.

The results from experiments 2–3 demonstrate that, as
predicted by theory in Zupanski (2005), MLEF can handle
slightly non-smooth cases even with an algorithm originally
designed for smooth optimization in place. However, the
RMSE from experiment 4 shows that MLEF with the smooth
L-BFGS algorithm has difficulty with a highly non-smooth
data-assimilation case.

These experiments are repeated with the LMBM algorithm
in place, and the results are shown in Figure 9. The results of
using LMBM show that all experiments are now successful,
even the most difficult cases. However, once again the RMSE
level of φ reaches the expected RMSE from observations
alone after approximately 50 cycles.

6.2. 4D-Var results

For 4D-Var, the four experiments from section 5.5 are run
for the cost function (41) with the set-up described in section
5.4. As for the MLEF case, the δ parameter for H2 is set to
δ = 10−4.

The performance of the L-BFGS and LMBM methods
(measured in terms of cost-function value versus number
of cost-function evaluations) is shown in Figure 10(a) and
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Figure 8. MLEF RMSE versus data-assimilation cycle, smooth minimiza-
tion algorithm. Since observations are taken at each model time step, the
cycle number is equal to the model time step. Thus the y-axis represents the
RMSE achieved during each cycle. (a) u RMSE–L-BFGS; (b) v RMSE–L-
BFGS; (c) φ RMSE–L-BFGS. This figure is available in colour online at
wileyonlinelibrary.com/journal/qj

(b). The results demonstrate that the more challenging non-
smooth experiments require more iterations. In addition,
we see that L-BFGS fails to converge for experiment 4.

The results of using L-BFGS are shown in Figure 11,
while the LMBM results are shown in Figure 12. For the
first three experiments, the level of RMSE achieved for both
methods is nearly identical and the cost difference between
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Figure 9. MLEF RMSE versus data-assimilation cycle, LMBM algorithm.
(a) u RMSE–LMBM; (b) v RMSE–LMBM; (c) φ RMSE–LMBM. This figure
is available in colour online at wileyonlinelibrary.com/journal/qj

L-BFGS and LMBM is not pronounced. However, for the
fourth experiment L-BFGS does not successfully reduce the
RMSE below that expected only from observations, and thus
has failed on this challenging non-smooth case. Changing
the line search from strong to weak Wolfe conditions,
as suggested in Lewis and Overton (2008b), does not
remedy the situation. LMBM, however, is able to handle
this situation with the same level of accuracy as the other
cases.
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Figure 10. 4D-Var cost history. The x-axis shows the number of cost-
function evaluations required for the minimization, while the y-axis shows
the cost function achieved at that point in the optimization. (a) 4D-Var
cost, L-BFGS; (b) 4D-Var cost, LMBM. This figure is available in colour
online at wileyonlinelibrary.com/journal/qj

By adjusting the parameter δ, we can control the Lipschitz
parameter of the observation operator H2, thus increasing
the difficulty of the non-smooth optimization. The results of
varying δ for both L-BFGS and LMBM are shown in Figures
13 and 14, respectively. These results show that LMBM can
successfully handle even the case in which δ = 10−8.

The error in the final solution versus the exact solution
found by LMBM for experiment 4 is shown in Figure 15 for
δ = 10−4. The error is small and has evolved in time away
from the smooth background error in Figure 7.

7. Conclusions

In this research, we tested the impact of non-differentiable
observation operators on the data assimilation of a limited-
area shallow-water equation model. By simply replacing
the gradient of the cost function with the subgradient,
both 4D-Var and MLEF are able to assimilate the non-
smooth observations to varying degrees of success with a
smooth optimization algorithm, especially when the non-
smoothness is not severe, as is the case for experiment 2.
However, both methodologies encounter difficulties with
the more sharply non-smooth experiments 3 and 4. This
difficulty can be remedied in both MLEF and 4D-Var with
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Figure 11. 4D-Var RMSE versus data-assimilation cycle, L-BFGS algo-
rithm. (a) u RMSE; (b) v RMSE; (c) φ RMSE. This figure is available in
colour online at wileyonlinelibrary.com/journal/qj

the use of an algorithm specifically designed for non-smooth
optimization, which in this research was the LMBM.

As MLEF is a sequential algorithm, it is not able to
incorporate observations beyond a single time step. Like
all data-assimilation algorithms that do not use the model
as a constraint, this can lead to solutions that satisfy the
minimization algorithm but are unphysical. 4D-Var, on the
other hand, optimizes over the entire window, and thus
can take advantage of observations at various times. In light
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Figure 12. 4D-Var RMSE versus data-assimilation cycle, LMBM algo-
rithm. (a) u RMSE; (b) v RMSE; (c) φ RMSE. This figure is available in
colour online at wileyonlinelibrary.com/journal/qj

of this, it is not surprising that 4D-Var achieves superior
results in this particular case. However, one major strength
of MLEF is that, unlike 4D-Var, the adjoint/tangent linear
model of neitherM norH is required. For complex models,
developing, testing and maintaining these adjoints represent
a major investment. Since in practice data-assimilation cycles
may not cover 80 cycles, as tested here, the results of MLEF,
approximately equal to those of 4D-Var, may be more than
sufficient.
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Figure 13. 4D-Var: impact of δ on RMSE versus data-assimilation cycle
for experiment 4, L-BFGS. (a) u RMSE; (b) v RMSE; (c) φ RMSE. This
figure is available in colour online at wileyonlinelibrary.com/journal/qj

While the limited-memory bundle algorithm worked well
in these cases, it should be noted that additional work
remains to be done on LMBM to improve its numerical
stability. With low error tolerances or numerically unstable
cost functions and gradients, LMBM can often fail to achieve
the desired minimization results (Karmitsa, 2007). In fact,
in order to run the above minimization effectively, double-
precision versions of MLEF and 4D-Var were required;
single precision was not numerically stable enough for
LMBM to perform successfully. This may be an issue for
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Figure 14. 4D-Var: impact of δ on RMSE versus data-assimilation cycle
for experiment 4, LMBM. (a) u RMSE; (b) v RMSE; (c) φ RMSE. This
figure is available in colour online at wileyonlinelibrary.com/journal/qj

large-scale numerical weather prediction models that use
single-precision variables.

L-BFGS handled the first three non-smooth cases well, but
failed on the more difficult experiment 4 for δ < 10−3. This
translates into an observation operator with a Lipschitz
constant greater than 1000. This suggests that L-BFGS
performs well when the Lipschitz constants are not extreme.
In particular, LMBM, which pays careful attention to
line-search and convergence issues, enables it to perform
successfully in practice far beyond the range at which
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Figure 15. Final error of the computed versus exact solution. (a) u, contour
interval 10−3; (b) v, contour interval 10−3; (c) φ, contour interval 10−1.
This figure is available in colour online at wileyonlinelibrary.com/journal/qj

L-BFGS fails. The use of ‘null steps’, which do not progress
the optimization algorithm but only contribute additional
information about the function, allows LMBM to handle
such difficult cases. In addition, the use of a modified line
search and avoiding a convergence criterion based on small
gradients enables LMBM to be globally convergent. While
it is possible to have some measure of success without
paying attention to these issues, as shown the adverse
effects on data assimilation become increasingly apparent
at larger Lipschitz constants. A globally convergent line
search such as the null-step approach used by LMBM is thus

recommended for non-smooth data assimilation with large
Lipschitz constants.

While data assimilation of non-smooth observation
operators using this model –with control variables of the
order of 103 –was successful, it remains to be seen whether
similar results may be obtained in the case of data assim-
ilation using realistic non-smooth observation operators
and an actual operational weather prediction model with
number of variables of the order of 107. Continued research
in this area is needed in order to be of practical benefit to
operational weather prediction centres and other large-scale
data-assimilation optimal control problems. In particular,
the assimilation of all-sky satellite radiances, long considered
the holy grail of atmospheric data assimilation, may benefit
greatly from continued research in this direction.
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