
Application of POD-DEIM Approach
for Dimension Reduction of a Diffusive
Predator-Prey System with Allee Effect

Gabriel Dimitriu1(B), Ionel M. Navon2, and Răzvan Ştefănescu2

1 Department of Mathematics and Informatics, The “Grigore T. Popa” University
of Medicine and Pharmacy, 700115 Iaşi, Romania
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Abstract. In this work we carry out an application of DEIM combined
with POD to provide dimension reduction of a system of two nonlinear
partial differential equations describing the spatio-temporal dynamics of
a predator-prey community, where the prey per capita growth rate is
damped by the Allee effect. DEIM improves the efficiency of the POD
approximation reducing the computational complexity of the nonlinear
term and regains the full model reduction expected from the POD model.
Numerical results show that the dynamics of the predator-prey model in
the full-order system of dimension 2048 can be captured accurately by
the POD-DEIM reduced system with the computational time reduced
by a factor of O(104).

1 Introduction

Proper Orthogonal Decomposition (POD) – see [2,4,7,8,10] and the references
therein – is probably the mostly used and most successful model reduction tech-
nique, where the basis functions contain information from the solutions of the
dynamical system at pre-specified time-instances, so-called snapshots. Due to
a possible linear dependence or almost linear dependence, the snapshots them-
selves are not appropriate as a basis. Hence a singular value decomposition is
carried out and the leading generalized eigenfunctions are chosen as a basis,
referred to as the POD basis.

Unfortunately, for nonlinear PDEs, the efficiency in solving the reduced-
order systems constructed from standard Galerkin projection with any reduced
globally supported basis set, including the one from POD, is limited to the linear
or bilinear part, both for finite volume and finite difference schemes. In the case
of quadratic nonlinearities a so-called precomputed POD technique achieves the
same level of reduction as in the case of linear terms.

A considerable reduction in complexity is achieved by DEIM – a discrete vari-
ation of Empirical Interpolation Method (EIM), proposed by Barrault et al. in [3].
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According to this method, the evaluation of the approximate nonlinear term does
not require a prolongation of the reduced state variables back to the original high
dimensional state approximation required to evaluate the nonlinearity in thePOD
approximation.

In this study we carry out an application of DEIM combined with POD
to provide dimension reduction of a system of two nonlinear partial differential
equations describing the spatio-temporal dynamics of a predator-prey commu-
nity, where the prey per capita growth rate is damped by the Allee effect. This
model was introduced and analyzed in an infinite space by Petrovskii et al. [14],
together with properties of the solution and biologically significant dependence
on the parameter values.

2 The Predator-Prey Model with Allee Effect

The spatio-temporal dynamics of a predator-prey system can be described by
the equations [13]:

∂U(X,T )
∂T

= D
∂2U

∂X2
+ f(U)U − r(U)V, (1)

∂V (X,T )
∂T

= D
∂2V

∂X2
+ κr(U)V − g(V )V, (2)

where U and V are the densities of prey and predator, respectively, at position
X and time T . The function f(U) is the per capita growth rate of the prey and
the term r(U)V stands for predation. κ is the coefficient of food utilization, and
g(V ) is the per capita mortality rate of predator. Here, the first term on the
right-hand side of Eqs. (1) and (2) describes the spatial mixing caused either by
self-motion of individuals [15] or by properties of the environment, for example,
for plankton communities the mixing is attributed to turbulent diffusion [9].
D is the diffusion coefficient, which we assume to be the same for both prey and
predator.

For different species, functions f , r, and g can represent different functional
responses (logistic, Gompertz, Holling, etc.). We assume that the prey dynamics
is subjected to the Allee effect [1,6,12], so that its per capita growth rate is not
a monotonically decreasing function of the prey density, but possesses a local
maximum. In this model, the standard parametrization [11] is defined by

f(U) = α(U − U0)(K − U),

where K denotes the prey carrying capacity and U0 is a certain measure of the
Allee effect. Regarding the per capita predator mortality, one assumes that it is
described by the following function:

g(V ) = M + d0V
2

where M and d0 are positive parameters. Function g(V ) gives the so-called
closure term because it is supposed not only to describe the process taking place
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inside the predator population (such as natural mortality, competition, possibly
cannibalism, etc.) but also, virtually to take into account the impact of higher
predators that are not included into the model explicitly. We assume that the
predator shows a linear response to prey according to the classical Lotka-Volterra
model, that is, r(U) = μU . Then, Eqs. (1)–(2) take the form

∂U(X,T )
∂T

= D
∂2U

∂X2
+ αU(U − U0)(K − U)− μUV, (3)

∂V (X,T )
∂T

= D
∂2V

∂X2
+ κμUV −MV − d0V

3. (4)

A common procedure for solving the system of Eqs. (3)–(4) is to first nondi-
mensionalize the system, and then obtain the numerical solution by employing
a discretization scheme. We define the nondimensional variables and parameters
to be:

u =
U

K
, v =

ηV

αK2
, x = X

√
αK2

D
, t = TαK2.

From Eqs. (3) and (4) one obtains

ut = uxx − βu + (β + 1)u2 − u3 − uv, (5)

vt = vxx + kuv −mv − δv3, (6)

where β = U0K
−1, k = κη(αK)−1, m = M(αK2)−1 and δ = d0αK2η−2 are

positive dimensionless parameters, subscripts x and t stand for the partial deriva-
tives with respect to dimensionless space and time, respectively. Here we consider
Eqs. (5) and (6) in a bounded domain Ω with homogeneous Dirichlet boundary
conditions. The initial conditions given by u(x, 0) = u0(x) and v(x, 0) = v0(x)
will be specified in Sect. 4.

3 The POD and POD-DEIM Reduced Order System

In this section we provide some details for constructing the reduced-order sys-
tem of the full-order system (5)–(6) applying Proper Orthogonal Decomposition
(POD) and Discrete Empirical Interpolation Method (DEIM).

POD is an efficient method for extracting orthonormal basis elements that
contain characteristics of the space of expected solutions which is defined as
the span of the snapshots [7,8]. In this framework, snapshots are the sampled
(numerical) solutions at particular time steps or at particular parameter values.
POD gives an optimal set of basis vectors minimizing the mean square error
from approximating these snapshots. In this finite dimensional setting, POD is
in fact just the singular value decomposition (SVD).

The projected nonlinearities in Eqs. (5)–(6) are approximated by DEIM in
the form that enables precomputation, so that evaluating the approximate non-
linear terms using DEIM does not require a prolongation of the reduced state
variables back to the original high dimensional state approximation, as it is
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required for nonlinearity evaluation in the original POD approximation. Only a
few entries of the original nonlinear term, corresponding to the specially selected
interpolation indices from DEIM must be evaluated at each time step [3,5,16].
We give formally the DEIM approximation in Definition 1, and the procedure
for selecting DEIM indices is shown in Algorithm DEIM. Each DEIM index is
selected to limit growth of a global error bound using a greedy technique relating
the DEIM approximation to the full optimal POD approximation [5].

Definition 1. [5] Let f : D �→ IRn be a nonlinear vector-valued function with
D ⊂ IRd, for some positive integer d. Let {u}m�=1 ⊂ IRn be a linearly independent
set, for m = 1, . . . , n. For τ ∈ D, the DEIM approximation of order m for f(τ)
in the space spanned by {u}m�=1 is given by

f̂(τ) := U(PT U)−1PT f(τ), (7)

where basis U = [u1, . . . ,um] ∈ IRn×m can be constructed effectively by apply-
ing the POD method on the nonlinear snapshots f(τi), τi ∈ D and P =
[e�1 , . . . , e�m

] ∈ IRn×m with {
1, . . . , 
m} being the output from Algorithm
DEIM with the input basis {ui}mi=1.

Algorithm DEIM:
INPUT: {u}m�=1 ⊂ IRn linearly independent
OUTPUT: � = [
1, . . . , 
m]T ∈ IRm

1. [|ρ| 
1] = max{|u1|}
2. U = [u1], P = [e�1 ], � = [
1]
3. for � = 2 to m do
4. Solve (PT U)c = PT u� for c
5. r = u� −Uc
6. [|ρ| 
�] = max{|r|}
7. U← [U u�], P← [P e��

], �←
[

�

�

]

8. end for

The notation max in Algorithm DEIM is the same as the function max in
Matlab. Thus, [|ρ| 
�] = max{|r|} implies |ρ| = |r��

| = maxi=1,...,n{|ri|}, with
the smallest index taken in case of a tie. According to this algorithm, the DEIM
procedure generates a set of indices inductively on the input basis in such a
way that, at each iteration, the current selected index captures the maximum
variation of the input basis vectors. The vector r can be viewed as the error
between the input basis {u}m�=1 and its approximation Uc from interpolating
the basis {u}m−1

�=1 at the indices 
1, . . . , 
m−1. The linear independence of the
input basis {u}m�=1 guarantees that, at each iteration, r is a nonzero vector and
the output indices 
1, . . . , 
m are not repeating [5].
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4 Numerical Results

We shall present three numerical experiments. The system (5)–(6) was solved
numerically using a finite difference discretization. Let 0 = x0 < x1 < · · · < xn <
xn+1 = 1 be equally spaced points on the x-axis for generating the grid points on
the dimensionless domain Ω = [0, 1], and take time domain [0, T ] = [0, 1]. The
corresponding spatial finite difference discretized system of (5)–(6) becomes a
system of nonlinear ODEs. The semi-implicit Euler scheme was used to solve the
discretized system of full dimension, as well as POD and POD-DEIM reduced
order systems.

Case 1. The parameters used here are m = β = 4, κ = 15, and δ = 0.25.
The initial conditions were set to u0(x) = sinx sin(πx) exp(x), and v0(x) =
x(1− x)3. The number of spatial inner grid points on the x-axis – which defines
the dimension of the full-order system – was successively taken as 16, 32, 64, 128,
..., 2048. It shows that POD-DEIM reduces more than 400 times in dimension
and reduces the computational time by a factor of O(104) as shown in Table 1.
From Table 1, the CPU time used in computing POD reduced system clearly
reflects the dependency on the dimension of the original full-order system. Table 1
also shows a significant improvement in computational time of the POD-DEIM
reduced system from both the POD reduced and the full-order system.

Table 1. CPU time of full-order system, POD and POD-DEIM reduced systems with
the corresponding average relative errors for u and v – Case 1.

Internal CPU Time CPU Time CPU Time Error rel Error rel Error rel Error rel

Nodes N Full Dim POD POD–DEIM POD – u POD – DEIM – u POD – v POD – DEIM – v

16 3.632462e-001 7.122489e-001 1.811141e-002 1.170196e-005 1.857876e-004 2.103251e-004 1.222462e-002

32 4.169362e-001 7.154559e-001 1.860040e-002 1.169715e-005 1.463095e-004 2.099999e-004 1.230968e-002

64 6.164471e-001 7.516708e-001 2.826825e-002 1.169587e-005 9.926064e-005 2.099146e-004 1.128253e-002

128 6.529374e-001 8.020902e-001 1.812896e-002 1.169554e-005 1.560804e-004 2.098927e-004 1.165304e-002

256 1.631008e+000 8.673314e-001 1.819947e-002 1.169545e-005 1.481253e-004 2.098871e-004 1.168835e-002

512 6.377997e+000 1.012015e+000 1.823390e-002 1.169543e-005 1.323507e-004 2.098857e-004 1.166019e-002

1024 2.924355e+001 1.291486e+000 1.827065e-002 1.169542e-005 1.330641e-004 2.098853e-004 1.172391e-002

2048 1.675980e+002 2.788567e+000 1.825973e-002 1.169542e-005 1.340120e-004 2.098852e-004 1.171443e-002

Table 2. CPU time of full-order system, POD and POD-DEIM reduced systems with
the corresponding average relative errors for u and v – Case 2.

Internal CPU Time CPU Time CPU Time Error rel Error rel Error rel Error rel

Nodes N Full Dim POD POD–DEIM POD – u POD – DEIM – u POD – v POD – DEIM – v

16 3.553413e-001 6.865113e-001 1.793760e-002 2.356905e-005 1.580829e-005 3.047587e-004 4.552821e-004

32 4.284408e-001 6.980146e-001 1.802235e-002 2.360341e-005 2.358619e-005 3.067127e-004 2.008601e-004

64 4.867406e-001 7.455845e-001 1.855140e-002 2.360549e-005 2.207394e-005 3.070870e-004 7.456335e-004

128 6.408845e-001 7.897221e-001 1.834978e-002 2.360580e-005 3.493150e-005 3.071769e-004 4.430065e-004

256 1.098676e+000 8.647706e-001 1.822993e-002 2.360586e-005 3.485313e-005 3.071994e-004 5.934588e-004

512 3.885919e+000 1.006938e+000 1.858914e-002 2.360588e-005 3.497038e-005 3.072050e-004 6.145148e-004

1024 1.917511e+001 1.256279e+000 1.878149e-002 2.360588e-005 3.495507e-005 3.072064e-004 6.035787e-004

2048 1.148451e+002 1.883425e+000 1.870667e-002 2.360588e-005 3.507343e-005 3.072068e-004 5.992118e-004
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Fig. 1. Solution plots of the model from the full-order system of dimension 2048.

Case 2. The numerical results obtained in this case (see Table 2 and Fig. 1)
were generated with parameters: m = β = 1.1, κ = 5, and δ = 1. In Figs. 2 and 3,
the solutions for state variables (u and v) from POD and POD-DEIM reduced
systems, with dimPOD= 10 and dimDEIM= 5, are depicted with the corre-
sponding ones from the full-order system, as well as the corresponding average
relative errors at the grid points. We used the following initial conditions: u0(x) =
10x(1−x)(1+0.8 sin(30x) cos(10x)), v0(x) = 10x(1−x)(1+0.8 sin(10x) cos(30x)).
In comparison with Case 1, here the densities of the species present initially large
fluctuations along the whole space domain, damped very fast by the Allee effect.

Case 3. In this experiment we use the same initial conditions and values of
the parameters as those indicated in Case 1. Here we performed the computa-
tions with dimPOD= 45 and dimPOD-DEIM= 90. The numerical results are
contained in Table 3. We note that the POD-DEIM relative errors for both state
variables, u and v, are 10 times smaller than those obtained in Case 1.

Table 3. CPU time of full-order system, POD and POD-DEIM reduced systems with
the corresponding average relative errors for u and v – Case 3.

Internal CPU Time CPU Time CPU Time Error rel Error rel Error rel Error rel

Nodes N Full Dim POD POD–DEIM POD – u POD – DEIM – u POD – v POD – DEIM – v

128 5.741809e-001 8.289299e-001 5.605313e-002 1.169554e-005 1.106775e-005 2.098927e-004 5.454479e-003

256 1.144514e+000 9.969025e-001 5.958563e-002 1.169545e-005 1.055126e-005 2.098871e-004 2.347417e-003

512 3.807256e+000 1.154277e+000 6.668969e-002 1.169543e-005 1.486580e-005 2.098857e-004 5.295462e-003

1024 1.886075e+001 1.411974e+000 6.400274e-002 1.169542e-005 1.264476e-005 2.098853e-004 5.813729e-003

2048 1.098164e+002 2.144956e+000 6.639338e-002 1.169542e-005 1.548229e-005 2.098852e-004 7.346586e-003
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POD-DEIM Approach of a Diffusive Predator-Prey System 7

Fig. 2. Solution plots of the model from POD reduced system (dimPOD= 10) with
the corresponding average relative errors at the inner grid points – Case 2.

Fig. 3. Solution plots of the model from POD-DEIM reduced system (dimPOD= 10,
dimDEIM= 5), with the corresponding average relative errors at the inner grid
points – Case 2.
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5 Conclusions

The model reduction technique combining POD with DEIM has been shown to
be efficient for capturing the spatio-temporal dynamics of a diffusive predator-
prey model with substantial reduction in both dimension and computational
time. The failure to decrease complexity with the standard POD technique was
clearly demonstrated by the comparative computational times shown in Tables 1,
2, and 3. DEIM was shown to be very effective in overcoming the deficiencies
of POD with respect to quadratic and cubic nonlinearities in the model under
study. The strong Allee effect for prey leads to a very rich dynamics [14], trav-
elling fronts of invasive species and sensitivity to parameter variations [14,17].

In order to increase the efficiency of the POD-DEIM approximation, a pos-
sible extension is to incorporate the POD-DEIM approach with higher-order
FD schemes to improve the overall accuracy.
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