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SUMMARY

A posteriori estimation of the numerical error sensitivity to the local truncation error is addressed using
adjoint model endowed with the information on the error field. The numerical error is estimated from the
solution of the linear tangent model (LTM) or from a Richardson extrapolation. The local truncation error
used in the LTM is obtained by the action of a high-order finite-difference stencil on the field computed
by the main (low-order accuracy) algorithm. Copyright q 2009 John Wiley & Sons, Ltd.
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1. INTRODUCTION

At present, there is a body of publications addressing the a posteriori estimation of the error of
certain important functionals using adjoint equations (see for instance, [1–4]). The adjoint approach
provides a fast method for calculation of both the variation of the functional and its sensitivity to
errors of different origin including the truncation error. However, the error of practically important
functional (pointwise parameters at important locations, integral values, such as drag, lift, average
temperature, etc.) provides only a part of information regarding the error of total solution. The global
information regarding solution quality is presented by norms of the solution error (perturbation).
From the perspective of estimation of the total solution quality, the methods for the estimation of
error norms and their sensitivities using adjoint equations are of a significant interest. However,
the adjoint equations are only seldom used for the estimation of the error norm and the authors
are aware of only several works addressing this topic [5–7] and limited to some particular cases
for elliptic equations.
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In the present work we consider the sensitivity of norms of the solution perturbation to a
source-like disturbing term. The emphasis is placed on the sensitivity of norms of the numerical
error to a local truncation error in application to a finite-difference solution. A special adjoint
model endowed by information on the numerical error field is considered. The numerical error is
calculated using linear tangent model (LTM) (loaded by the truncation error, i.e. the truncation
error is a source in LTM) or by Richardson extrapolation and provides the information necessary
for solving this adjoint problem. The estimation of truncation error is obtained using the action of a
high-order accuracy finite-difference stencil on a previously computed field. The resulting adjoint
state provides the global sensitivity of the numerical error norm to the local truncation error, which
constitutes the main feature of the present approach that distinguishes it from other contributions
[5–7] related to this topic. This technique is applicable to parabolic and elliptic problems of rather
general form restricted only by the requirement for existence of a continuous Gateaux differential.

The present approach to the generation of an adjoint model has certain features in common with
the search for the initial conditions providing maximal growth of a perturbation norm as described
in References [8–10]. In these works the maximally growing perturbations of the initial state are
considered as the dominant singular vectors of the Fisher matrix composed of solutions of the
LTM and adjoint problem. This implies solving adjoint problem loaded by the perturbations (i.e.
solutions of LTM−�T are a source term in adjoint) taken at the final time. The technique used
by Farrell [8, 9] and Buizza et al. [10] has essential similarities with the present paper approach.
However, it is not adopted for the present paper purposes such as the search of sensitivity or the
minimization of error norm.

2. ALGORITHM OUTLINE

Let us briefly consider a formal scheme of the adjoint-based a posteriori estimation of the error
norm sensitivity. Let the problem of interest (forward one) be governed by the equations

N (T̃ ) = 0 in Q⊂ Rn

BT̃ = e on �Q
(1)

Here T̃ ∈Hk(Q) is an exact solution of (1), B is a linear differential operator. Herein we imply
k=1,2, which corresponds to most CFD problems and n�2. Hk(Q), L2(Q), L1(Q) are standard
spaces of functions.

Let N be a nonlinear differential operator (Hk(Q)→L2(Q)), assumed to possess the following
continuous Gateaux differential:

NT (T̃ )�T = lim
s→0

N (T̃ +s�T )−N (T̃ )

s
(2)

Consider now the forward problem perturbed by some source term s�T and some boundary
term s�e.

N (T̃ +s�T )+s�T = 0 in Q⊂ Rn

B(T̃ +s�T ) = e+s�e on �Q
(3)
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The Gateaux differential of the forward problem assumes the form

NT (T̃ )�T +�T = 0, Q⊂ Rn

B�T = �e on �Q
(4)

It represents the LTM (formally coinciding with the equations for perturbations, but avoiding
assumptions on the smallness of �T ).

We will use the bilinear identity [11, 12]
(NT�T,�)L2(Q) =(N∗

T�,�T )L2(Q)+(�∗�,�T )L2(�Q)

where N∗
T is an adjoint operator obtained via integration by parts, �∗ are the corresponding

boundary terms and � is an adjoint variable.
We are interested in the computation of a sensitivity of the error norm

ε=(‖�T ‖L2(Q))
2=(�T,�T )L2(Q) (5)

to perturbations �T .
Let us introduce the adjoint variables �∈H1(Q) and formulate the Lagrangian, which is based

on LTM (4)

L = (�T,�T )L2(Q)+(NT (T̃ )�T +�T,�)L2(Q)+(B�T −�e,�)L2(�Q) (6)

On solving the LTM, the norm of the error is equal to above Lagrangian. It may be rewritten using
the bilinear identity as

L = (�T,�)L2(Q)+(�T,�T )L2(Q)+(NT�T,�)L2(Q)+(B�T −�e,�)L2(Q)

= (�T,�)L2(Q)+(N∗
T�,�T )L2(Q)+(�∗�,�T )L2(�Q)+(�T,�T )L2(Q)

+(B∗�,�T )L2(�Q)−(�e,�)L2(�Q)

= (�T,�)L2(Q)+(N∗
T�+�T,�T )L2(Q)+((B∗+�∗)�,�T )L2(�Q)−(�e,�)L2(�Q) (7)

Assuming � to be a solution of the following adjoint problem:

N∗
T�+�T = 0 in Q

(B∗+�∗)� = 0 on �Q
(8)

we may obtain

L=(�T,�)L2(Q)−(�e,�)L2(�Q) (9)

If we take �e=0 then

ε= L=(‖�T ‖L2(Q))
2=

∫
�

�T�dQ (10)

Here, the adjoint variable � has the meaning of sensitivity (weight function) of this norm to a
perturbation �T . This sensitivity is the nonlinear (�=�(�T )) analogue of the Green function.

If we assume �T =0 and �e �=0, we may obtain another form of (9) (ε=−(�e,�)L2(�Q)) and
the corresponding adjoint problem. This statement is similar to the one used in References [8–10]
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for the search of maximally growing initial perturbations and is not considered in the present
paper.

Herein we consider a special case when �T means the truncation error. Let the numerical
solution be provided by the following finite-difference equations:

NhTh = 0 in Q⊂ Rn

BTh = e on �Q
(11)

As the result of its solution, we obtain a grid function Th . We assume the existence of a function
T ∈C∞(Q) that coincides with the grid function at the nodes (only regular grids are considered).
The finite differences in NhT may be expanded using Taylor series (details of which are provided in
the following section). Since the grid is arbitrary, we assume that Equation (11) may be replaced by

NT +�Th =0 in Q⊂ Rn (12)

Here �Th is a formal truncation error containing an infinite number of terms of Taylor expansion.
Equation (12) is the differential approximation of a finite-difference scheme [13, 14]. It is an
infinite dimensional analogue of the finite-difference scheme and it may be treated as the disturbed
initial equation. The corresponding perturbations (numerical error) �T =T − T̃ are governed by
the following equations (LTM):

NT�T +�Th = 0 in Q⊂ Rn

B�T = 0 on �Q
(13)

Herein, we use the notion of ‘differential approximation’ of a finite-difference scheme to mean
some projection of a discrete (vector) solution back to the infinite-dimensional space. This method
consists in some inverse transformation when compared with the standard discretization based on
finite differences. Details may be found in [13, 14]. In the following analysis we will consider a
finite form of �Th using the Lagrange remainder, while in numerical tests we obtain �Th by post
processing in accordance with [15, 16].

As a result, Equation (10) assumes the form (‖�T ‖L2(Q))
2=∫Q �Th�dQ that provides the

nonlinear sensitivity of the numerical error to local truncation error.

3. ESTIMATION OF ERROR NORMS FOR FINITE-DIFFERENCE
APPROXIMATION OF HEAT CONDUCTION

3.1. Estimation of L2 norm of error

Let us consider a posteriori estimation of the norm of temperature error ‖�T ‖L2 for the finite-
difference solution of the unsteady one-dimensional heat conduction equation

�T̃
�t

−�
�2T̃
�x2

=0 in Q=�×(0, t f ), �∈ R1 (14)

with initial conditions

T̃ (0, x)=T0(x), T0(x)∈L2(�) (15)
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and boundary conditions

�T̃
�x

∣∣∣∣∣
x=0

=0,
�T̃
�x

∣∣∣∣∣
x=X

=0 (16)

Here � is thermal diffusion coefficient, �=Const, T̃ the temperature (considered here as exact,
nonperturbed), x the coordinate, X the thickness, t the time, t f the duration of the process, � the
spatial domain of calculation, T̃ (t, x)∈C∞(Q). In this space the problem is well-posed [17].

We illustrate the above-considered technique for a linear problem due to the availability of a
well-known analytical solution used in numerical tests. However, this technique is not restricted
to linear problems and may be applied in vicinity of any solution of a nonlinear forward problem,
provided that the corresponding Gateaux differential exists.

Consider a finite-difference approximation of Equation (14) of first-order accuracy in time and
second-order accuracy in space:

T n+1
k −T n

k

�
−�

T n+1
k+1 −2T n+1

k +T n+1
k−1

h2
=0 (17)

Here T n
k is the solution of the finite-difference equation, � is the time step and h is the spatial

step size. Herein we assume that there exists a smooth function T (t, x) that coincides with T n
k at

all grid points [13]. Let us expand the function at nodes (T (tn+�, xk),T (tn, xk±h)) in an infinite
Taylor series over � and h and substitute it into (17). Then the following equation may be stated
with �Th denoting the Taylor series residual as

�T
�t

−�
�2T
�x2

+�Th =0 (18)

Since the grid is not specified, this form is considered to be general. So, according to [13, 14],
the numerical solution of Equation (17) is considered to be equivalent to solving the perturbed
equation (18). On the specified grid the source term �Th means the local truncation error that can
be calculated using a differential approximation of the finite-difference scheme [13, 14] or by the
special postprocessor [2, 15, 16]. For the considered finite-difference scheme, the corresponding
terms may be represented as the remainder in the Lagrange form:

�Th = �Tt +�Tx

�Tt = 1

2
�
�2T (tn+�nk�, xk)

�t2
, t ∈(tn, tn+1), �hk ∈(0,1)

�Tx = − �

24
h2k

(
�4T (tn+1, xk+�nk h)

�x4
+ �4T (tn+1, xk−�nk h)

�x4

)
, x ∈(xk−1, xk+1)

�hk ∈(0,1), �hk ∈(0,1)

(19)

The transfer of error �T (T = T̃ +�T ) is determined by LTM

��T

�t
−�

�2�T
�x2

+�Th =0 in Q=�×(0, t f ), �∈ R1 (20)
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with initial conditions

�T (0, x)=0 (21)

and boundary conditions

��T

�x

∣∣∣∣
x=0

=0,
��T

�x

∣∣∣∣
x=X

=0 (22)

The norm of error ‖�T ‖L2(Q) assumes the form:

(‖�T ‖L2(Q))
2=

∫
(�T )2 dx dt (23)

Let us now introduce a Lagrangian comprised of the estimated value (23) and the weak statement
of LTM (20), which is equal to the norm of error on the solution of the LTM

L=
∫

�T ·�T dx dt+
∫ (

��T

�t
−�

�2�T
�x2

+�Th

)
�dx dt (24)

Using integration by parts

L =
∫

�T�T dx dt+
∫

�Th�dx dt−
∫ (

��

�t
+�

�2�
�x2

)
�T dx dt

+
∫

��T

∣∣∣∣t f0 dx+�
∫

��

�x
�T

∣∣∣∣ X0 dt−�
∫

�
��T

�x

∣∣∣∣ X0 dt

we obtain the following adjoint problem (in deviation from the standard techniques [12], we do
not differentiate the goal functional that is essential for derivations of the following subsection):

��

�t
+�

�2�
�x2

+�T =0 (25)

Initial condition:

�(t f , x)=0 (26)

and boundary conditions:

��

�x

∣∣∣∣
x=0

=0,
��

�x

∣∣∣∣
x=X

=0 (27)

This problem is solved in the reverse time direction starting from t f . By solving this problem
along with Equations (20)–(22), the norm of error may be expressed as:

(‖�T ‖L2(Q))
2=

∫
�Th�dx dt (28)

Certainly, if the truncation error (residual) �Th is known, one may compute directly the norm
of the error by solving Equations (20)–(22). However, the adjoint-based estimation enables the
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determination of sensitivity of this norm to a local truncation error that may be useful for adaptive
mesh refinement in problems similar to that considered in [4]. Thus, for sensitivity estimation we
need to carry out three calculations: forward model (14), LTM (20), and adjoint model (25). This
configuration is more unfavorable when compared with Inverse Problems that usually require only
calculation of the forward and adjoint models.

3.2. Estimation of L1 norm of error

For the estimation of error in L1 norm, the corresponding expressions assume the form:
Numerical error norm

‖�T ‖L1(Q) =
∫

|�T |dx dt=
∫

sign(�T )�T dx dt (29)

(note that we do not differentiate this functional).
Lagrangian

L=
∫

sign(�T ) ·�T dx dt+
∫ (

��T

�t
−�

�2�T
�x2

+�Th

)
�1 dx dt (30)

Adjoint equation

��1

�t
+�

�2�1

�x2
+sign(�T )=0 (31)

with initial condition

�1(t f , x)=0 (32)

and boundary conditions

��1

�x

∣∣∣∣
x=0

=0,
��1

�x

∣∣∣∣
x=X

=0 (33)

The norm of the numerical error is:

‖�T ‖L1 =
∫

�Th�1 dx dt (34)

This expression is similar to (28) although a different adjoint temperature is assumed. In general, the
norm ‖�T ‖L2 is of greater use; however, ‖�T ‖L1 has some applications that are considered below.

4. NUMERICAL TESTS

The numerical tests are conducted for the well-known analytical solution that readily yields
the numerical error as the difference between numerical and analytical solutions. The tests are
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simulating the temperature field evolution generated by a pointwise heat source (where t0, 	 are
the initial time and the coordinate of the point source, respectively)

Tan(t, x)= q

2
√


�(t− t0)
exp

(
− (x−	)2

4�(t− t0)

)
(35)

We use the data fk =T0(xk) calculated by (35) as the initial data when solving the finite-difference
Equation (17). The length X of the spatial interval is chosen so as to provide a negligible effect
of the boundary condition compared with the effect of approximation error. The round-off errors
were estimated by comparing the calculations obtained with single and double precisions, and the
difference was found to be negligible.

The same implicit finite-difference method (implemented using the Thomas algorithm) of
second-order accuracy in space and first-order over time (Equation (17)) was applied to solve the
heat transfer equation, the LTM, and the adjoint equation. The spatial grid consisted of 100–1000
nodes, the time integration contained 100–10 000 steps. The results obtained are similar within this
range of steps. The illustrations, presented herein, have been carried out with 400 spatial nodes
and for 400 time steps. Thermal diffusivity was taken as �=2 ·10−7m2/s.

A fourth-order accurate (for both time and space variables) stencil was used for the estimation
of the residual:

�nk = −T n+2
k +8T n+1

k −8 f n−1
k + f n−2

k

12�
−�

T n+1
k+2 +16T n+1

k+1 −30T n+1
k +16T n+1

k−1 −T n+1
k−2

12h2
(36)

Using the same approach as that used for deriving Equation (18) we may obtain

�nk = �T
�t

−�
�2T
�x2

+�Tx,4+�Tt,4 (37)

Herein we use the function T from Equation (18). The substitution of (18) into (37) yields

�nk =−�Tt −�Tx +�Tx,4+�Tt,4=−�Tt −�Tx +O(h4)+O(�4) (38)

This expression demonstrates an intuitively transparent result, namely that the residual, engen-
dered by the action of the high-order finite-difference stencil on the solution obtained by the
low-order scheme, contains the sum of both schemes’ truncation errors. If higher-order terms are
neglected, it may be used for the estimation of the truncation error

(�Th)
n
k ≈−�nk (39)

This value is used when Equation (20) is solved to obtain numerical error �T , which is, at the
next step, used in the adjoint problem (25) for calculating the sensitivity.

Solving LTM (20) implies a computational burden caused by coding and debugging an additional
problem. As an alternative, the Richardson extrapolation [18] may be used to calculate �T . If we
have solutions on three different grids (herein, with twofold differences in spatial and temporal
steps) and know the orders of convergence (first order in time and second order in space), then

T 1
n,k = T̃n,k+Ct,n,k�+Cx,n,kh

2

T 2
n,k = T̃n,k+Ct,n,k�/2+Cx,n,kh

2

T 3
n,k = T̃n,k+Ct,n,k�+Cx,n,kh

2/4

(40)
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It can be easily obtained that

Cx,n,k = 4(T 1
n,k−T 3

n,k)/(3h
2)

Ct,n,k = 2(T 1
n,k−T 2

n,k)/�
(41)

and

�Tn,k =T 1
n,k− T̃n,k =Ct,n,k�+Cx,n,kh

2 (42)

So we should solve the forward problem (several times) and the adjoint one loaded with the
information on �T obtained from the Richardson extrapolation. This approach enables one to
avoid the coding and debugging of the LTM at the expense of additional runs of the forward
problem.

Figure 1 presents a comparison of the temperature error obtained from the LTM, the error
estimated from Richardson extrapolation, and the difference between numerical and analytical
solutions (true error) as a function of the grid number. One can see that both solving the LTM (20)
with a source term assuming the form (36) and the Richardson extrapolation provide an acceptable
approximation of the true numerical error.

Figure 2 displays isolines of the temperature field in (x, t) plane, while Figure 3 provides
isolines of the truncation error �T calculated by the action of stencil (36) on the temperature field
of Figure 2.

Figure 4 presents the field of the numerical error �T calculated by linear tangent problem (20)
with the truncation error �T provided in Figure 3. The distribution of this error along the x
coordinate at the final time is presented in Figure 1. The corresponding adjoint field is displayed
in Figure 5.

The results of ‖�T ‖L2 calculation using Equation (20) as compared with the result obtained
using the adjoint equation (28) are presented in Tables I and II for different time steps with a
fixed space step (400 and 100 nodes over space). The adjoint field presented in Figure 5 may

-1.5
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0.0

0.5
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2.5

0
n

d
T

1

2

3
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Figure 1. Numerical error �T . 1—Linear Tangent Problem; 2—Richardson extrapolation; and
3—difference between numerical and analytical solutions.
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Figure 2. Temperature field.
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Figure 3. Truncation error �T calculated by action of stencil (36).

be considered as the sensitivity of this norm to the local truncation error, a result that provides
significant additional information when compared with the LTM solution, which provides only
field of �T and ‖�T ‖L2 , while our approach provides the means to diminish �T by affecting �T .
This provides us with additional options when compared with the pure LTM.

Copyright q 2009 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2010; 63:1421–1434
DOI: 10.1002/fld



AN ESTIMATION OF THE SENSITIVITY OF NUMERICAL ERROR NORM 1431
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Figure 4. Numerical error �T field.
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Figure 5. Adjoint temperature � field from Equation (25) for ‖�T ‖L2 .

Similar calculations are conducted for the adjoint equation (31) aimed at estimating ‖�T ‖L1 . The
corresponding field of the adjoint temperature is presented in Figure 6. The results of the ‖�T ‖L1

calculation using Equation (20) compared with the result obtained using the adjoint equation (31)
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Table I. Comparison of numerical error norm ‖�T ‖L2 computed using the adjoint equation and LTM as
a function of time steps (400 spatial nodes).

� 1.0 0.5 0.1 0.05 0.01

‖�T ‖L2 , adjoint, Equation (28) 1.6014 0.93973 0.23099 0.12684 0.040510
‖�T ‖L2 , LTM, Equation (20) 1.6003 0.93941 0.23097 0.12685 0.040509

Table II. Comparison of numerical error norm ‖�T ‖L2 computed using the adjoint equation and LTM as
a function of time steps (100 spatial nodes).

� 1.0 0.5 0.1 0.05 0.01

‖�T ‖L2 , adjoint, Equation (28) 3.26259 1.37880 0.24758 0.15859 0.099797
‖�T ‖L2 , LTM, Equation (20) 3.25823 1.37788 0.24753 0.15857 0.099795

0 100 200 300 400

t

50

100

150

200

250

300

350

400

X

Figure 6. Adjoint temperature �1 field from Equation (31) for ‖�T ‖L1 .

are presented in Tables III and IV for different time steps with a fixed space step (400 and 100
nodes over space).

The results provided in Tables I–IV demonstrate a good correlation of solutions, obtained by
LTM and adjoint approaches of both statements (25)–(27) and (31)–(33) when the time step �
varies over a range of two orders of magnitude. The presented results verify the solution for both
the LTM and the adjoint problems.
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Table III. Comparison of numerical error norm ‖�T ‖L1 computed using adjoint equation and LTM as a
function of time step size (400 spatial nodes).

� 1.0 0.5 0.1 0.05 0.01

‖�T ‖L1 , adjoint, Equation (31) 2.0018 1.1470 0.27343 0.14942 0.047526
‖�T ‖L1 , LTM, Equation (20) 1.9896 1.1437 0.27328 0.14938 0.047523

Table IV. Comparison of numerical error norm ‖�T ‖L1 computed using adjoint equation and LTM as a
function of time step size (100 spatial nodes).

� 1.0 0.5 0.1 0.05 0.01

‖�T ‖L1 , adjoint, Equation (31) 2.24599 1.42645 0.58693 0.46768 0.36968
‖�T ‖L1 , LTM, Equation (20) 2.23255 1.42245 0.58661 0.46756 0.36966

5. DISCUSSION

The sensitivity of the norm of solution perturbation to local errors of different origin exhibits the
same form for a significant number of statements. For example, if an uncertainty is connected with
the thermal diffusion coefficient, we obtain the form

(‖�T ‖L2(Q))
2=

∫
Q

��
�2T
�x2

�dQ (43)

This information may serve to guide experiments aimed at estimation of �.
For the case of the adaptive mesh refinement we may readily obtain �T ; nevertheless, the

grid cannot just simply be refined for zones of high �T 2 since �T is a nonlocal value and is
engendered by both the local truncation error �T and the transfer of �T from other parts of
the computational domain. The mesh may however be refined in zones of large |�T�|, which
correctly represents the numerical error transfer. However, due to the nonlinearity of the problem,
this mesh adaptation should assume an iterative structure. Additionally, to avoid problems with
multidimensional interpolation, we may consider the mesh to be regular at the initial stage and
to be regular in a finite number of subdomains after refinement. Adaptive mesh refinement (cubic
volumes being divided in smaller cubes) [19] may be considered as an illustration of this approach.

The estimations of norms in L2 and L1 are very close in form and are practically identical from a
computational cost consideration, although the L2 norm is commonly used due to natural links with
the evaluation of dispersion (for example as in (43)). However, one may see that problem (31) for
estimation in L1 norm uses a lesser amount of information about�T (only the sign), when compared
with (25). The problem (25) may be recast as A ·�1=F with a formal solution �1= A−1F . The
norm of the error may be estimated via ‖�T ‖L1 =(�1,�Th)L2�·‖�‖·‖�Th‖�‖A−1‖·‖F‖·‖�Th‖.
For the L1 norm, an estimate ‖F‖L∞ ≡1 may be easily obtained that stimulates certain interest
in this norm. If we have estimates for ‖A−1‖ (Reference [5] provides such estimates for some
elliptic problems), the upper bound of ‖�T ‖L1 may be readily obtained from the truncation error
without solving an adjoint problem.
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6. CONCLUSION

The sensitivity of the norm of the numerical error to the truncation error may be estimated using a
special adjoint model. This model should account for the information concerning numerical error
that may be obtained either by solving the tangent linear model or by a Richardson extrapolation.
The validity of this approach is confirmed by results of numerical tests for the heat transfer equation
solved by a finite-difference discretization.

This sensitivity provides the possibility for carrying out adaptive mesh refinement based on the
minimization of the numerical error norm.
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