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Abstract
The distance between the true and numerical solutions in some metric is considered as the

discretization error magnitude. If error magnitude ranging is known, the triangle inequality enables
the estimation of the vicinity of the approximate solution that contains the exact one (exact solution
enclosure).  The  analysis  of  distances  between the  numerical  solutions  enables  discretization  error
ranging, if solutions’ errors are significantly different. Numerical tests conducted using the steady
supersonic flows, governed by the two dimensional Euler equations, demonstrate the properties of
the  exact  solution  enclosure.  The  set  of  solutions  generated  by  solvers  of  different  orders  of
approximation is used. The success of this approach depends on the choice of metric.
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1. Introduction
The abundant set of numerical methods with the wide range of approximation orders, which

is available at present, provides additional opportunities for the analysis of CFD results. From this
viewpoint, we consider the distances between approximate solutions. These distances are caused by
the approximation errors, so, some structure in the set of numerical solutions may be engendered by
differences in the order of approximation. The order of approximation of a finite-difference/finite
volume scheme is related to the truncation error order. The truncation error ud  may be obtained via
Taylor series decomposition of the discrete operator hhh fuA = , which approximates the system of
PDE, formally denoted herein as fAu = . The truncation error dependence on the spatial step h  is
usually written as )( nhOu =d , where the order n  is equal to the minor order of series terms.

The approximation error uuu h -=D  is caused by the truncation error and may be
described by the formal solution uAu d1-=D . For linear problems, the approximation error

)( nhOu =D  has the same order n  (Lax theorem, [1]) if the discrete operator is well-posed (the
inverse operator is uniformly bounded CAh <-1 ). For the case of nonlinear equations [2, 3, 4, 5, 6,
7]  the  error  order  is  essentially  local  and  varies  significantly  depending  on  the  type  of  flow
structures. In this case, the observed order of convergence is not equal to the nominal order of the
approximation error even in the asymptotic range. A similar situation may be caused by
discontinuities in the coefficients [8]. There is no convergence, if the discrete operator is not well-
posed, for example, this may occur for the Kelvin-Helmholtz instability [9].

The commonly used single-grid classes of the discretization error estimation are based on
certain norms (a priori and a posteriori error estimation). The present discussion is addressing the
estimation of the distances in metrics, which may either be engendered by a norm or may be norm
independent. We hope to gain additional generality and flexibility by transition from norms to
metrics.
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A priori error norm estimation may be expressed in the form nhCu ×<D , which contains
unknown  constants  independent  of  the  numerical  solution.  It  is  a  common  approach  to  error
analysis in the design of numerical algorithms. A priori error estimation justifies the practice to stop
mesh refining when the dependence of numerical solution on the step size becomes unobservable.

A posteriori error estimation [10, 11, 12] may be presented in the form )( hh uu h£D , where
the computable error indicator )( hh uh  depends only on the approximate solution hu . Sometimes
[13], the form hhuCu h×£D )(  is used, where )( huC is a computable constant, which depends on

the numerical solution, and hh  is the computable bound on the residual hu hd £ .  At present,  the
best results in this direction are achieved for elliptic equations and finite element methods starting
from the seminal work by Babushka [10]. In the finite element notations ud  corresponds to residual

hr  and the approximation error uuu h -=D  is usually noted as he . In most of practical applications
the constant )( huC  is not estimated, while the error indicator is used for the mesh adaptation.
However, a posteriori error estimation may provide additional information regarding both the error
and the exact solution. For example, [13] demonstrated that the estimation of the stability constant
and the residual may be used for the determination of a vicinity of the numerical solution, which
contains the exact solution. The feasibility of single grid rigorous estimations is the significant merit
of this approach when compared with the standard mesh refinement or the Richardson extrapolation
[14, 15].

There are different approaches to the estimation of the truncation error ud . It may be
computed by the action of the high order scheme stencil on a precomputed flowfield [16, 17], by the
action of the differential operator on the interpolation of the numerical solution [18] or via a
differential approximation [19, 20].

Surveys of the global (approximation) error uAu d1-=D  calculation methods may be found
in [21, 22]. In the simplest option, the estimation of this error may be performed using the defect
correction [16, 23, and 24]. In the defect correction frame, the truncation error ud  is  used  as  the
source term intended for the correction of solution. However, the total subtraction of the error
implies  the  elimination  of  the  scheme  viscosity  that  may  cause  oscillations  in  the  vicinity  of
discontinuities or activation of some addition dissipation sources, which engender their own error.
The  estimation  of  the  error  may  be  performed  also  via  the  linearized  problem  [24],  complex
differentiation [25] or by adjoint equations [17, 18, 20, 26]. Usually, adjoint equations are applied to
the estimation of a valuable functional (drag, lift etc.) uncertainty. Nevertheless, the variant of
adjoint method, described in [20], enables estimation of the norm of the solution error.
Unfortunately,  it  implies  the  solution  of  a  number  of  adjoint  problems  that  is  proportional  to  the
number of grid nodes that implies an extremely high computational burden.

The incompleteness of truncation error estimation is the general drawback of the above
listed residual-based methods. The differential approximation methods based on Taylor series [20]
do not account for high order terms of the expansion. The postprocessor based methods do not
account for the higher scheme truncation errors [17] or the interpolation errors [18].

Herein,  the  truncation  error  is  accounted  for  completely,  although  implicitly,  since  the
analysis is conducted in the space of numerical solutions. We consider a single-grid analysis of non-
intrusive post-processor type. The ensemble of calculations, performed by the solvers of different
approximation order, is used for the search of the numerical solution vicinity that contains an exact
solution. We denote this operation as the “exact solution enclosure”. In contrast to above mentioned
norm oriented approaches, the current analysis is based on the ensemble of distances (distance
matrix) in different metrics, an approach that provides a more general and flexible analysis. The
norm oriented variant of this approach is presented in [27, 28]. The Multidimensional Scaling
(MDS) [29] concerns similar problems, however, we consider the cases when MDS cannot be
applied, since the data vector (numerical solution) length greatly exceeds the number of data
vectors. Numerical tests demonstrated that various metrics have significantly different properties



3

from exact solution enclosure perspective. The best characteristics are observed for the IMED
metric [30].

The paper is organized as follows. In Section 2 we discuss the opportunities for the
discretization error estimation that are provided by a priori information regarding error rating.
Section 3 considers a posteriori analysis of error relations provided by the ensemble of numerical
solutions performed by different solvers. The supersonic shocked flows, described by the two
dimensional Euler equations, are considered as test problems in Section 4. Section 5 presents the set
of metrics, which are used for comparing of solutions. In Section 6 we present the results of the
ensemble based error measure estimation, performed using different metrics, in comparison with the
true error. The solvers, used for the computations are listed in this section. Several issues,
concerning the applications of the metric based error analysis, are surveyed in Section 7.
Conclusions are presented in the final Section 8.

2. Exact solution enclosure for approximate solutions with ranged errors.
We analyze the ensemble of numerical solutions obtained on the same grid using finite

volume schemes of different approximation order. We denote the numerical solution as the vector
Ni Ru Î)(  ( i  is the scheme number, N  is the number of grid points). The values of an unknown

exact solution at nodes of this grid (“exact” solution) is denoted as NRu Î~ . The approximation
error magnitude is considered as the distance between the exact and approximate solutions

k
k uud ,0

)( )~,( d=  in some metric (for example,
2

~)~,( )()(

L
kk uuuud -= ). Let the relation of these

approximation error values be known a priori.
The following theorem may be stated for two numerical solutions )1(u  and )2(u having

a priori known errors relation 2,01,0 2 dd ×³ .

Theorem 1. Let the distance ),( )2()1(
2,1 uud=d between two numerical solutions NRu Î)1(  and

NRu Î)2( be known from computations and distances between numerical and exact solutions be
related as

2,01,0 2 dd ×³ , (1)

then the exact solution is located within the hypersphere of radius 2,1d  with the centre at the more

accurate solution )2(u :
2,1

)2( )~,( dd £uu (2)

Proof. The triangle inequality [31] for distances 2,02,11,0 ,, ddd  between points )1(u , )2(u ,u~  may be
presented as 2,02,11,0 ddd +£  or 122,01,0 ddd £- . By accounting (1) in the form 2,02,01,0 ddd ³- , one
obtains 122,01,02,0 dddd £-£  and, finally, the desired expression 122,0 dd £ .

The Theorem 1 may be stated in a slightly more general form: if two solutions are ranged by the
error as

2,01,0 )1( dad +> , 0>a , (3)

then 2,02,01,0 addd >- , 2,12,01,02,0 dddad £-<  and

add /2,12,0 < . (4)

This  means  that  two  numerical  solutions,  having  the  error  relation )0(,1 >+ aa  in some metric,
define the domain, which contains the exact solution as the hypersphere around more accurate
solution add /2,12,0 < . As a result, the distance between two numerical solutions enables finding the
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vicinity of more accurate solution that contains an exact solution, if the relation of errors is known a
priori in some metrics.

3. A posteriori analysis of the error relations
Despite the widespread opinion that the schemes of higher order are more accurate, the

evident weakness of Theorem 1 is the assumption of the existence of solutions with a priori ranged
error. For this reason, we consider some options for a posteriori check of error rating.

Numerical tests demonstrate that the collection of distances between solutions ji ,d  enables a
detection of the close and distant solutions in certain events. For example, if i,01,0 dd >> , the set of
distances ji,d  is split into a cluster related to inaccurate solution (with great values j,1d )  and  the
cluster of more accurate solutions )1(, ¹ijid . This is caused by the asymptotics 1/ 1,0,1 ®dd j  and

0/)(~/)1( 1,0,0,01,0, ®+¹ ddddd jiji i  at 0/ 1,0,0 ®dd i .
The separation of the distances between approximate solutions into clusters is the evidence

of the existence of solutions with significantly different errors and may be considered as a proof of
error ranging. The quantitative criterion, based on dimension of clusters and the distance between
them, is of interest. Let us compare the set of distances j,1d  and ji,d , where )1(u  is maximally

incorrect solution and )(iu  is some more accurate solution (the localization of exact solution is
performed in its vicinity), max

,0 id  is the maximum error in the subset of accurate solutions. The
maximum of )1(, ¹ijid  (the distance from zero to maximum error in the cluster of accurate
solutions) is noted as the upper bound of the accurate solutions’ cluster 1d , the minimum of j,1d  is
noted as the low bound of the second cluster 2d .

The following heuristic criterion for the Theorem 1 applicability may be stated as:
Conjecture 1: If the set of distances between solutions is split into clusters and the distance

between clusters is greater than the size of the cluster of accurate solutions: 112 ddd >- , then the
exact solution is located within a hypersphere of radius 1,id  with its center at )(iu : 1,,0 ii dd £ , where

)(iu  belongs to the cluster of more accurate solutions and )1(u  is the maximally inaccurate solution.
This conjecture is based on the assumptions that the dimension of the accurate cluster is

equal to max
,01 2 id d= )1( ¹i , and the cluster of inaccurate solutions belongs to the interval

),( max,1,0max,1,0 ii dddd +- , so max
,01,02 id dd -= . Since both these evaluations correspond to collinear

vectors of error, they are overestimated. If one assumes them to be valid, the relation of accurate
cluster dimension and the distance between clusters has the form max

,0
max
,01,0 4 ii ddd >- . This leads to

the relation max
,01,0 5 idd > , which ensures the condition (1) max

,01,0 2 idd > .
This criterion may be rigorous only in the limit of the infinite set of solutions obtained by

independent methods.
Nevertheless, numerical tests for two dimensional supersonic inviscid flows confirm the

applicability of this heuristic criterion, however, with a significant dependence on applied metrics.

4. Test problems
Several flow patterns, governed by two dimensional unsteady Euler equations,
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are considered as the tests problems.

Here VUUU == 21 ,  are the velocity components, hVUh ++= 2/)( 22
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1 22 VUeE  are enthalpies and energies (per unit volume), RTP r= is the

state equation and 4.1/ == vp CCg  is the specific heat ratio.
The flow structures engendered by the single oblique shock wave, the interaction of shock

waves of I and VI kinds according Edney classification [32, 33] were used as the test problems due
to the availability of analytic solutions. The flow patterns were determined by the selection of the
inflow and lateral boundaries conditions. The computations were performed for a Mach number
range of 53¸=M , flow deflection angles range o3010-=a . All tests concern the steady state
solutions.

The values of analytical solution at grid points are considered herein as the exact solution.
The  flowfield  contains  undisturbed  domains  (nominal  order  of  error  is  expected),  shock  waves
(error order about 1=n  [5]), contact discontinuity line (error order about 2/1=n , [4]). In result,
one may hope to obtain the nontrivial error, composed of components with different orders of
accuracy. The estimation of this error and the capture of exact solution in certain hypersphere
around a numerical solution are the main purposes of the paper.

Fig. 1 presents the computed isolines of density for Edney-I flow structure ( 3=M  and flow
deflection angles o201 =a  and o152 =a ). The isolines are provided with a small step to illustrate
the presence of a numerical error. The crossing shock waves and contact discontinuity line,
engendered at the shocks crossing point, are the main elements of this flow structure.

Fig. 2 presents the density distribution for Edney-IV flow structure ( 4=M , two
consequent flow deflection angles o101 =a , o152 =a ). The flow is determined by the merging
shock waves, the contact line and the expansion fan.
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Fig. 1. Edney I density isolines. Fig. 2. Edney VI density isolines.

5. The set of metrics for flows comparison
Both the Theorem 1 and Conjecture 1 are stated for the distances determined by some

(unspecified) metrics. Metrics, used in CFD, significantly differ. 1L  norm based metric seems to be



6

most  natural  for  problems  related  with  shocks,  since  most  results  on  approximation  error  are
obtained in this norm. However, it is not informative, since most experience is related to the
valuable functionals (lift, drag, etc). For norms engendered by some inner product ( 2L , for
example) the uncertainty of valuable functionals may be related to the error norm via the Cauchy–
Bunyakovsky–Schwarz inequality

2222

)()1(/~/))~(/(
L

k
LLhLh uuuuuuuuu -×¶¶£-×¶¶<-×¶¶=D eeee . From this viewpoint,

such norms may be more interesting in comparison with 1L . On other hand, the 1-H  norm seems to
be suitable for solutions with a low regularity.

Herein, we compare the metrics engendered by the 1L , 2L , 1-H  norms, 2L  based metrics
which imitates a relative error (REM- 2L ),  and  IMED  metrics  [30].  The  metrics,  having  some
physical meaning, illustrative capabilities, and a potential for flow comparison are not limited by
above considerations, so the search for optimal metric is of further interest.

We consider the four component solution },,,{ )()()()()( iiiii eVUu r= . For the metrics
engendered by the 1L  and 2L  norms, the distance between solutions is expressed as
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For CFD problems, the vector of solution contains elements having different physical
meanings, such as density, velocity components, and energy. So, in parallel to Expressions (8,9),
the distance between solutions was calculated using the normalized expression

2

}/)(,/)(,/)(,/){( )()()()()()()()()()()()(

L

ikiikiikiiki eeeVVVUUU ---- rrr , (10)

which imitates a relative error (we note this expression as “relative error metric” (REM- 2L )). It
should be noted that expression (10) corresponds to the distance

2/1)()(
,

)()( )(),( i
k

i
jkj

ii uuMuMu DD=DD . (11)

This distance is determined by a metric tensor kjM ,  of the diagonal form that describes some

ellipsoid. With account of the presentation AAM *=  (valid  for  a  metric  tensor  as  the  symmetric
positively defined matrix, a Mahalanobis distance metric [34]) one may state

2/1)()(2/1)()(2/1)(*)()()( ),(),(),(),( iiiiiiii zzuAuAuAAuuMu DD=DD=DD=DD .  So,  we  can  enclose  the

solution in the transformed space )(iAu  (and 2L  norm) where the error may be described by a
hypersphere.

The metric engendered by the Sobolev norm of the negative order ( 1-H ) [35,36] also is of
the great interest due to the low regularity of the Euler equation solutions. According to [35], the
Sobolev norm in 1-H  may be expressed as

),(sup
11

1 uff
Hu

H
=

=-
. (12)
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It was computed using the expression [36],

21 )~,( LH
uff =- , (13)

where u~  is the solution of the screened Poisson equation

fu
y
u

x
u

t
u

-=+
¶
¶

-
¶
¶

-
¶
¶ ~~~~

2

2

2

2

ll .
(14)

The coefficient l  determines the smoothing properties for the transformation fu ®~ . The
value of l  was varied in the range 64 1010 -- ¸ . The calculations are performed by components for

)}(),(),(),{( )()()()()()()()( kikikiki eeVVUUf ----= rr  and corresponding u~ . We used the divergent
integro-interpolation method [37] and the time relaxation approach to solve this equation.

The above considered metrics are sensitive to small variations of the flowfield, such as shift
of the shock wave location by single cell. So, two numerical flowfields, engendered by such shift,
are considered as distant and describing different flow structures. However, such flows are identical
from a practical viewpoint. Thus, these distances do not capture the structural proximity between
solutions. The Euclidean Distance, modified for analysis of images (IMage Euclidean Distance
(IMED)), is of interest from this standpoint [30]. It is described by the metric matrix

)}2/(exp{
2

1 22

2 s
ps jiij PPM --= .

(15)

The value ji PP -  is the distance between nodes iP  and jP  on the grid. For example, if iP

corresponds to the cell ),( lk , and jP  corresponds to the cell ),( 11 lk , ji PP -  may be estimated as

2/12
1

2
1 ))()(( llkkPP ji -+-=- . (16)

For our two dimentional problem, the distance was estimated using the following form (presented
here only for density)

2/1)(
,
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,
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2

1(),( i
nm

i
kj

nmkj

ii nkmjM rrs
ps

rr DD-+--=DD å .
(17)

This  distance  corresponds  to  the  averaged  error. At 25.0£s  the probability distribution
approximation is of poor quality. At 15.0 ¸=s  the values obtained by (17) are close to 2L  norm.

Asymptotically 1-H  and IMED tends to 2L  as 0®l  or 0®s .

6. Results of numerical tests
The analysis used the ensemble of computations performed by the following methods.
The first order scheme by Courant Isaacson Rees [38] marked as 1S  was used in the variant

described by [39].
The second order scheme based on the MUSCL method [40] and using algorithm by [41] at

cell boundaries is denoted as 2S .
Second order TVD scheme of relaxation type by [42] is denoted as TVDS2 .
Third order modified Chakravarthy-Osher scheme [43, 44] is marked as 3S .
Fourth order scheme by [45] is marked as 4S .

The FORTRAN codes by [42] are used for TVDS2 . All other solvers were coded by the  authors.
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Computations were performed on uniform grids containing 100100´ , 200200´  and
400400´  nodes.

Methods 4,3,2,1 SSSS  (1,2,3 and 4 nominal truncation orders) demonstrated the order of
convergence (average) slightly below 2/1=n  in norm 2L . In norm 1L  the same computations
demonstrated the order of convergence slightly higher than 2/1=n . The method S2TVD (nominal
order 2) is the only exception with the order about 4/3~n . Second order TVDS2  scheme [42]
from standpoint of error norm is close to first order scheme 1S  for 100100´  grid and to high order
schemes for grid 400400´ . The calculations on the grid 100100´  demonstrated the formation of
clusters in distances between TVDS2  and 4,3,2 SSS  engendered solutions and successful
enclosure of the exact solution. However, the distances between solutions engendered by TVDS2
and 4,3,2 SSS  do not form clusters on the grid 400400´ . Paradoxically, the reason for this failure
is the relatively rapid convergence of TVDS2 . So, the results, obtained by 4,3,2,1 SSSS  methods,
are provided for illustration as more stable.

We first check Conjecture 1 and, second, verify the exact solution enclosure. The enclosure
is considered as successful, if the error estimate )( )()( ki uud -  is greater than the true error

)~( )( uud k - , obtained in comparison with the analytical solution u~ .
The tests permit to conclude that the solutions obtained by the scheme 1S  (as “inaccurate”)

and by 2S , 3S , 4S  (as “accurate”) enable to find the vicinity of numerical solution that contains
exact solution for all tested grids.

The comparison of results by schemes 4,3,2 SSS  does not enable to select  clusters and to
enclose the exact solution. These schemes produce solutions with errors which are close in
magnitude and splitting into clusters is not observed.

If the Conjecture 1 is not satisfied, the enclosure of true solution fails. However, the exact
error value is about two or three maximum distances between numerical solutions that provides
some additional way for the error estimation.

The numerical tests for the single oblique shock demonstrate the feasibility for the exact
solution enclosure, for example, see Tables 1 and 2. Table 1 demonstrates the formation of clusters
in different metrics (S2-S4, S3-S4 and S3-S2 are smaller than S2-S1, S3-S1, S4-S1). Table 2
demonstrates the successful exact solution enclosure with exclusion of the small violation in 2L .

The tests correspond to 4=M , flow deflection angle o101 =a , and the grid 100100´ .

Table 1. Distances between solutions for single shock test.
)()( ki uu - S4-S2 S3-S2 S3-S4 S2-S1 S3-S1 S4-S1

1L 0,00569 0,0052 0,0032 0.0186 0,023 0,024

2L 0,0199 0,0287 0,011 0,0452 0,0566 0,060
1-H 0,0086 0,0076 0,00278 0,029 0,035 0,036

REM- 2L 0,048 0,0145 0,022 0,0945 0,115 0,124
IMED 0,0145 0,0126 0,005 0,0519 0,067 0,0536

Table 2. Exact solution enclosure for single shock test.
)()( ki uu - S2-S1 S2-exact S3-S1 S3-exact S4-S1 S4-exact

1L 0.0186 0,0116 0,023 0,0092 0,024 0,0066

2L 0,0452 0,0459 0,0566 0,0407 0,060 0,0337
1-H 0,029 0,0137 0,035 0,00934 0,036 0,00784

REM- 2L 0,0945 0,0923 0,115 0,079 0,124 0,0655
IMED 0,0519 0,0231 0,067 0,0155 0,0536 0,012
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For Edney-VI shock interaction ( 4=M , o101 =a , o152 =a , 100100´ ), the set of
distances between solutions also splits into clusters. There is a successful enclosure of exact
solution, Tables 3-4.

Table 3. Distances between solutions for Edney-VI test.
)()( ki uu - S4-S2 S3-S2 S4-S3 S2-S1 S3-S1 S4-S1

1L 0,023 0,0098 0,021 0.0668 0,072 0,0874

2L 0,059 0,025 0,051 0,149 0,16 0,191
1-H 0,028 0,0107 0,0127 0,0976 0,0928 0,121

REM- 2L 0,051 0,0189 0,041 0,136 0,145 0,170
IMED 0,043 0,0195 0,035 0,179 0,192 0,171

Table 4. Exact solution enclosure for Edney-VI test.
)()( ki uu - S2-S1 S2-exact S3-S1 S3-exact S4-S1 S4-exact

1L 0.0668 0,046 0,072 0,046 0,0874 0,0375

2L 0,149 0,128 0,16 0,138 0,191 0,133
1-H 0,0976 0,055 0,0928 0,0603 0,121 0,0607

REM- 2L 0,136 0,0898 0,145 0,093 0,170 0,0846
IMED 0,179 0,076 0,192 0,084 0,171 0,098

Tables 5 and 6 present the results for different metrics from the viewpoint of exact solution
enclosure for Edney-I test ( 3=M , flow deflection angles o201 =a  and o152 =a , 100100´ ).

Table 5. Distances between solutions for Edney-I test. Rough mesh.
)()( ki uu - S4-S2 S3-S2 S4-S3 S2-S1 S3-S1 S4-S1

1L 0,017 0,018 0,019 0.0563 0,0673 0,0721

2L 0,044 0,043 0,045 0,107 0,128 0,141
1-H 0,0164 0,0154 0,0129 0,0609 0,0705 0,075

REM- 2L 0,05 0,039 0,043 0,122 0,14 0,159
IMED 0,028 0,028 0,022 0,126 0,148 0,159

Table 6. Exact solution enclosure for Edney-I test. Rough mesh.
)()( ki uu - S2-S1 S2-exact S3-S1 S3-exact S4-S1 S4-exact

1L 0,0563 0,0436 0,0673 0,050 0,0721 0,039

2L 0,107 0,124 0,128 0,146 0,141 0,139
1-H 0,0609 0,0512 0,0705 0,587 0,075 0,0597

REM- 2L 0,122 0,163 0,14 0,178 0,159 0,176
IMED 0,126 0,114 0,148 0,0902 0,159 0,129

The tests by Tables 1-6 corresponds to the relatively rough mesh 100100´ . A similar
behaviour is observed for finer grids ( 200200´  and 400400´ ). Tables 7 and 8 present the results
for different metrics from the viewpoint of exact solution enclosure for Edney-I test ( 3=M , flow
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deflection angles o201 =a  and o152 =a , 400400´ ). Edney-I test is selected since it demonstrates
the worst results if compare with the single shock and Edney-VI tests.

Table 7. Distances between solutions for Edney-I test. Fine mesh.
)()( ki uu - S4-S2 S3-S2 S4-S3 S2-S1 S3-S1 S4-S1

1L 0,0061 0,0052 0,0068 0.0169 0,0202 0,0223

2L 0,0217 0,0226 0,0227 0,0545 0,0655 0,0709

REM- 2L 0,026 0,020 0,022 0,0644 0,0739 0,0830
1-H 0,0148 0,0157 0,0135 0,0649 0,0764 0,0820

IMED 0,014 0,0145 0,011 0,0615 0,0764 0,0815

Table 8. Exact solution enclosure for  Edney-I test. Fine mesh.
)()( ki uu - S2-S1 S2-exact S3-S1 S3-exact S4-S1 S4-exact

1L 0.0169 0,0122 0,0202 0,0147 0,0223 0,0123

2L 0,0545 0,0680 0,0655 0,0802 0,0709 0,0760

REM- 2L 0,0644 0,0662 0,0739 0,0767 0,0830 0,0754
1-H 0,0458 0,0456 0,0546 0,0548 0,0577 0,0521

IMED 0,0615 0,0527 0,0764 0,0638 0,0815 0,0625

Tables 1-8 demonstrate that 1L  successfully  performs  the  exact  solution  enclosure  for  all
tests. 2L  and REM- 2L  fail for significant part of tests. This demonstrates the heuristic, approximate
nature of Conjecture 1. However, the violation of enclosure condition in tests is moderate. 1-H
engendered metric provides an intermediate quality. The IMED metric [30] enables a successful
exact solution enclosure for most of tests. So, the choice of metric may be crucial for exact solution
enclosure.

7. Discussion
The relation of errors, obtained in above analysis, is not necessarily attributed to properties

of considered schemes. It may be caused by the imperfections of numerical realization by the
authors.  The  authors  do  not  pretend  to  assess  the  considered  numerical  schemes.  We  are  mainly
concerned with the verification of the non-intrusive single-grid error estimator based on the
numerical solutions obtained by the solvers of different accuracy.

The standard grid convergence analysis is based on the heuristic rule by C. Runge [12].
From this viewpoint, if the difference of two approximate solutions on the coarse grid and on the
fine grid is small, then numerical solutions are close to exact solution. This rule is not applicable, if
there is no grid convergence, the examples of such problems are provided by [9]. Also, this rule
may be wrong if the convergence rate is slow. For example, [6,7] considers orders of convergence

6/14/1 ¸=n  for multidimensional finite volume methods, while [8] considers elliptic boundary
value problems, whose finite element approximations converge arbitrarily slow.

In a more rigorous approach, one should desire the error estimate of form dd £)~,( uuh  (or
d£- uuh

~ ) with computable d . Formally, the Richardson method [14,15] is close to this ideal. It
enables to determine the refined solution and the error estimate, if the single error order exists in the
total flowfield. The set of solutions, computed for different meshes, is used. Unfortunately, in most
CFD problems the error order on different flow structures varies [2-8], a fact that hampers the
application of the Richardson method.

We considered a single grid alternative to the Richardson method and Runge rule, based on
the ensemble of solutions obtained by different solvers. The above considered method may be used
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as a postprocessor similar to the Richardson extrapolation. However, it does not require mesh
refinement and may be used away from the asymptotic range.

The  feasibility  of  estimating  the  distance  from  the  exact  solution  to  numerical  one
dd £)~,( uuh  seems attractive. However, in practical applications, the numerical value of d

threshold, when two approximate solutions can be considered as describing the same flow, may not
be evident. The magnitude of error ( )~,( uuhd  or norm uuh

~- )  is  not  very  informative  in  CFD,
since most experience is related with the valuable functionals (lift, drag, etc). Nevertheless, the error
may be related with the uncertainty of some valuable functionals via the Cauchy–Bunyakovsky–
Schwarz inequality, if the error magnitude estimate is engendered by some inner product.

The existence of “accurate” and “inaccurate” schemes is one of the main postulates of
computational mathematics, unfortunately, it is valid only in the asymptotic sense.

The above numerical results demonstrate a posteriori feasibility to distinguish between
“accurate” and “inaccurate” schemes in the sense of error ranging in certain metric. For example,
the distributions of distances between solutions provided in Tables 1,3,5,7 show the presence of two
clusters corresponding “accurate” and “inaccurate” schemes. This engenders the hope to enclose the
exact solution only from observable values of distances between solutions (without a priori
information on errors ranging), that is confirmed by Tables 2,4,6,8.

If there is no breaking into clusters, the maximum distance between solutions provides an
opportunity for a rough estimation of numerical error, since it is relatively close to the distance
between numerical and analytical solutions.

The dependence on a set of numerical methods, the analyzed solution, and the metric is the
drawback of the ensemble based method. The same set of methods may provide segregation into
clusters for one flow pattern (or grid size) and may not provide for another. So, this approach
cannot replace the standard accuracy control method (mesh refining) and is aimed to supplement it
by a non expensive algorithm.

8. Conclusions
If two numerical solutions with the discretization error relating twice or more in some

metrics are available, the exact solution is located in the hypersphere with the centre located at the
more accurate solution and with a radius, which equals the distance between numerical solutions.

If there is no a priori information regarding error ranging, the enclosure of the exact solution
is feasible, if the set of distances between solutions is split into separated clusters corresponding
“accurate” and “inaccurate” schemes. The distance between clusters should be greater than the
dimension of "accurate" cluster.

The numerical tests confirmed the efficiency of this heuristic rule for two dimensional
supersonic steady problems, governed by Euler equations, with the dependence on the choice of the
metric. The 1L  based metric operates successfully in all tests. The 2L  based metric and metric,
which imitate the relative error (REM- 2L ), fail rather often, although with rather moderate
violations. The metric, engendered by 1-H  norm, provides an intermediate reliability. The IMED
[30] metric demonstrated the quality of the exact solution enclosure comparable with the 1L  based
metric.
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