
Minimizing Multimodal Functions of
Continuous Variables with the ‘Simulated
Annealing” Algorithm

A. CORANA, M. MARCHESI, C. MARTINI, and S. RIDELLA
lstituto per i Circuiti Elettronici-C.N.R.

A new global optimization algorithm for functions of continuous variables is presented, derived from
the “Simulated Annealing” algorithm recently introduced in combinatorial optimization.

The algorithm is essentially an iterative random search procedure with adaptive moves along the
coordinate directions. It permits uphill moves under the control of a probabilistic criterion, thus
tending to avoid the first local minima encountered.

The algorithm has been tested against the Nelder and Mead simplex method and against a version
of Adaptive Random Search. The test functions were Rosenbrock valleys and multiminima functions
in 2,4, and 10 dimensions.

The new method proved to be more reliable than the others, being always able to find the optimum,
or at least a point very close to it. It is quite costly in term of function evaluations, but its cost can
be predicted in advance, depending only slightly on the starting point.

Categories and subject descriptors: G.1.6. [Numerical Analysis]: Optimization-nonlinear pro-
gramming; G.3 [Mathematics of Computing]: Probability and Statistics-probabilistic algorithms
(including Monte Carlo); G.4. [Mathematics of Computing]: Mathematical Software-certification
and testing

General Terms: Algorithms, Performance

Additional Key Words and Phrases: Global optimization, stochastic optimization, test functions

1. INTRODUCTION
The problem of determining the position in n-space of the minimum of a given
function of n variables has been tackled using nonlinear programming methods
for many years, in practice since digital computers have been available.

If the cost function is unimodal in the domain of interest, one can choose
among many good alternatives. Some of the available minimization algorithms
(direct methods) involve only function evaluations, such as those of Rosenbrock
[161, Hooke and Jeeves [7], and Nelder and Mead [l, 111. Others also use the
evaluation of the derivatives of the cost function [4, 5, 171 and are considered to
be more efficient than direct methods; but they are also more complicated and

Authors’ address: Istituto per i Circuiti Elettronici-C.N.R, via all’ Opera Pia, 11-16145 Genova, Italy.
Permission to copy without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the Association
for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific
permission.
0 1987 ACM 0098-3500/87/0900-0262 $01.50

ACM Transactions on Mathematical Software, Vol. 13, No. 3, September 1987, Pages 262-280.

Minimizing Multi-Modal Functions of Continuous Variable 263

more inclined to terminate far from the minimum if the cost function is very ill-
conditioned.

However, if the cost function is multimodal within the domain of interest, the
number of available algorithms is reduced to very few. In this case, the algorithms
quoted above tend to stop at the first minimum encountered, and cannot be used
easily for finding the global one. Since a systematic search in the function
domain, in nontrivial cases, requires so many function evaluations as to be
impracticable, one must rely on a limited search, either systematic or random.

A simple and widely used technique is to generate a given number of different
points inside the function domain, performing unimodal searches starting from
each of them, and retaining the best result.

Other methods for random global optimization are reported in [2,3,9, 13, 141.
Under mild conditions on the test functions, these stochastic methods guarantee
asymptotic convergence to the global optimum as the number of sample points
increases. All of these techniques are efficient in the case of functions with a few
local minima; but, in practice, many optimization problems deal with a large
number of variables (up to tens or hundreds) and/or a very large number of local
minima that is often an increasing function of the number of variables. In this
situation, traditional methods offer low efficiency and limited reliability.

Recently, a global optimization algorithm called Simulated Annealing (SA) [8]
has been proposed in the area of combinatorial optimization, that is, when the
cost function is defined in a discrete domain. This method is reported to perform
well in the presence of a very high number of variables (even tens of thousands)
[8, 15, 181. It is based on random evaluations of the cost function, in such a way
that transitions out of a local minimum are possible. It does not guarantee, of
course, to find the global minimum, but if the function has many good near-
optimal solutions, it should find one. In particular, this method is able to
discriminate between “gross behavior” of the function and finer “wrinkles.” First,
it reaches an area in the function domain where a global minimum should be
present, following the gross behavior irrespectively of small local minima found
on the way. It then develops finer details, finding a good, near-optimal local
minimum, if not the global minimum itself.

In the present work we propose some modifications to this algorithm, in order
to apply it to the optimization of functions defined in a continuous domain. It is
worth noting that these functions do not need to be smooth or even continuous
in their domain. The algorithm is characterized by the need for a number of
function evaluations, usually about three orders-of-magnitude greater than that
commonly required for a single run of unimodal algorithms. Nevertheless, in the
case of very ill-conditioned cost functions with thousands or millions of local
minima, such big computational effort leads to better results than the random or
systematic use of a traditional optimization algorithm for as many times as it
takes to make the total number of function evaluations equal to SA. Moreover,
the cost of automatic computation is becoming lower and lower, and such
computational tasks are becoming affordable.

In Section 3, we introduce some multimodal test functions that are difficult to
minimize, having a number of local minima greater than 10” in their domain of
interest. In Section 4, our SA algorithm is tested against the Nelder and Mead

ACM Transactions on Mathematical Software, Vol. 13, No. 3, September 1987.

264 l A. Corana, M. Marchesi, C. Martini, and S. Ridella

simplex method and against the “Adaptive Random Search” stochastic method.
The test functions used are both the traditional Rosenbrock valleys and the
multimodal functions quoted above. The results obtained are critically analyzed,
and suggestions are made for future research.

2. METHOD

Let x be a vector in R” and (x1, x2, . . . , x,) its components. Let f(x) be the
function to minimize and let al < x1 < bl, . . . , a, < n, < b, be its n variables,
each ranging in a finite, continuous interval. f does not need to be continuous
but it must be bounded.

Our SA algorithm is schematically shown in Figure 1. It proceeds iteratively:
Starting from a given point x0, it generates a succession of points: x0, xl, . . . ,
Xi, e . * tending to the global minimum of the cost function. New candidate points
are generated around the current point xi applying random moves along each
coordinate direction, in turn. The new coordinate values are uniformly distributed
in intervals centered around the corresponding coordinate of xi. Half the size of
these intervals along each coordinate is recorded in the step vector v. If the point
falls outside the definition domain off, a new point is randomly generated until
a point belonging to the definition domain is found. A candidate point x ’ is
accepted or rejected according to the Metropolis criterion [lo]:

If Af a 0, then accept the new point: Xi+1 = X’

else accept the new point with probability:
p(Af 1 = exd-Af/T)

where Af = f (x’) - f (xi) and T is a parameter called temperature.
At a fixed value of T the succession of points x0, x1, . . . , xi, . . . is not downhill,

except when T = 0. For values of T large compared to the mean value of] f (xh)
- f (xk)] (xh and xk are points randomly chosen inside the definition domain of
f) almost all new points are accepted and the succession is a random sampling
off.

The SA algorithm starts at some “high” temperature To given by the user. A
sequence of points is then generated until a sort of “equilibrium” is approached;
that is a sequence of points xi whose average value off reaches a stable value as
i increases. During this phase the step vector v, is periodically adjusted to better
follow the function behavior. The best point reached is recorded as xopt.

After thermal equilibration, the temperature T is reduced and a new sequence
of moves is made starting from x,,,,~, until thermal equilibrium is reached again,
and so on.

The process is stopped at a temperature low enough that no more useful
improvement can be expected, according to a stopping criterion that we will
describe later.

The SA optimization algorithm can be considered analogous to the physical
process by which a material changes state while minimizing its energy [8, 181. A
slow, careful cooling brings the material to a highly ordered, crystalline state of
lowest energy. A rapid cooling instead yields defects and glass-like intrusions
inside the material.

From an optimization point of view, an iterative search accepting only new
points with lowest function values is like rapidly quenching a physical system at
ACM Transactions on Mathematical Software, Vol. 13, No. 3, September 1987.

Minimizing Multi-Modal Functions of Continuous Variable l 265

I Initialize parameters
I

Perform a cycle of random moves, each along one
coordinate direction. Accept or reject each

point according to the Metropolis criterion.
Record the optimum point reached so far.

l
no

*I
Set current point to the optimum.

Fig. 1. The SA minimization algorithm.

zero temperature: It is very likely to get stuck in a metastable, local minimum.
On the contrary, SA permits uphill moves under the control of a temperature
parameter. At higher temperature only the gross behavior of the cost function is
relevant to the search. As temperature decreases, finer details can be developed
to get a good final point. While the optimality of the final point cannot be

ACM Transactions on Mathematical Software, Vol. 13, No. 3, September 1987.

266 l A. Corana, M. Marchesi, C. Martini, and S. Ridella

guaranteed, the method is able to proceed toward better minima even in the
presence of many local minima.

A detailed description of the algorithm follows.

Step 0 (Initialization)

Choose
A starting point x0.
A starting step vector vo.
A starting temperature To.
A terminating criterion E and a number of successive temperature reductions
to test for termination N,.
A test for step variation Ns and a varying criterion c.
A test for temperature reduction NT and a reduction coefficient rT.

Set i, j, m, k to 0. i is the index denoting successive points, j denotes successive
cycles along every direction, m describes successive step adjustments, and k
covers successive temperature reductions.
Set h to 1. h is the index denoting the direction along which the trial point is
generated, starting from the last accepted point.

Compute f. = f(xo).
Set xopt = x0, fopt = fo.
Set n, = 0, u = 1, . . . , n.
Set fu* = fo, u = 0, -1, . . . , -N, + 1.

Step 1

Starting from the point xi, generate a random point x’ along the direction h:

x’ =x.+ ru I mh h e

where r is a random number generated in the range [-1, l] by a pseudorandom
number generator; eh is the vector of the hth coordinate direction; and v,,,,, is
the component of the step vector v, along the same direction.

Step 2

If the hth coordinate of x’ lies outside the definition domain of f, that is, if
xx C ah or xx > bh, then return to step 1.

Step 3

Compute f' = f (x').
If f' < fip then accept the new point:

set Xi+1 = X’,

setfi+l = f',
add 1 to i,
add 1 to nh;
if f' < fopt, then set

xopt = x’,
fopt = f'.

endif;
ACM Transactions on Mathematical Software, Vol. 13, No. 3, September 1987.

Minimizing Multi-Modal Functions of Continuous Variable 267

else (f ’ >fi) accept or reject the point with acceptance probabilityp (Metropolis
move):

p=exp ‘+
()

.

In practice, a pseudorandom number p ’ is generated in the range [0, l] and is
compared with p. If p’ < p, the point is accepted, otherwise it is rejected.

In the case of acceptance:

set Xi+1 = X’,

setfi+l =f’,

add 1 to i,
add 1 to nh.

Step 4

Add 1 to h.
If h c n, then goto step 1;

else set h to 1 and add 1 to j.

Step 5

If j < Ns, then goto step 1;
else update the step vector v,:

for each direction u the new step vector component v; is

u’=v u if n, > 0.6N,,

v: = %
0.4 - n,/N,

if n, < 0.4N,,
1 + c

u 0.4
u: = urn,

Set v,+] = v ‘,
set j to 0,
set n, to 0, u = 1, . . . , n,
add 1 to m.

otherwise.

The aim of these variations in step length is to maintain the average percentage
of accepted moves at about one-half of the total number of moves. The rather
complicated formula used is discussed at the end of this chapter. The c, parameter
controls the step variation along each uth direction.

Step 6

If m < NT, then go to step 1;
else, it is time to reduce the temperature Tk:

set Tk+, = rT . Tk,
set f X = fi,
add 1 to k,
set m to 0.

ACM Transactions on Mathematical Software, Vol. 13, No. 3, September 1987.

268 9 A. Corana, M. Marchesi, C. Martini, and S. Ridella

It is worth noting that a temperature reduction occurs every Ns . NT cycles
of moves along every direction and after NT step adjustments.

Step 7 (terminating criterion)

If:

If:-fPul<~, u=l,..., N,
fk* - fopt Q 6

then stop the search;
else:

add 1 to i,
set Xi = Xopt,

set fi = fopt.

Go to step 1.

Reasonable values, found after some test optimizations, of the parameters that
control the simulated annealing are

Ns = 20.
NT = max(lOO, 5 * n).

Ci = 2, i = 1, . * . f Iz*
N, = 4.
rT = 0.85.

Step Adjustments. In Monte Carlo simulations of fluids using the Metropolis
approach, new configurations are generated, trying to maintain a 1: 1 rate
between accepted and rejected configurations [lo]. A lower rate means that too
many moves are rejected, thus wasting computational effort. A higher rate means
that trial configurations are too close to the starting ones, thus having a small
difference in energy compared to the temperature. This implies that the accepted
configurations evolve too slowly, again wasting computational effort.

The same criterion is used by our SA algorithm. From an optimization point
of view, a high number of accepted moves with respect to rejected ones means
that the function is explored with too small steps. On the contrary, a high number
of rejected moves means that new trial points are generated too far from the
current point. A 1: 1 rate between accepted and rejected moves means that the
algorithm is following the “function behavior” well.

In our SA algorithm, trial points are generated along each coordinate direction
in turn, independently from the other directions. A step vector v records the
maximum increments possible along each direction and is adjusted every Nsth
move to maintain the 1: 1 ratio quoted above.

For the sake of simplicity, let us focus on one coordinate direction, say u. The
number of accepted moves along the u-axis since the last step adjustment is n,.
The ratio n = n,/Ns is therefore restricted to the interval [0, 11. We define as
g(n) the coefficient to be multiplied by uU in order to obtain the new step uE
along the u-axis. If n = 0.5, the 1: 1 ratio is verified as regards moves along the
u direction, and U, need not to be modified:

g(O.5) = 1.
ACM Transactions on Mathematical Software, Vol. 13, No. 3, September 1987.

Minimizing Multi-Modal Functions of Continuous Variable l 269

If all the moves are accepted, n = 1. In this case the step length is multiplied by
a factor c greater than 1:

g(1) = c.

For the sake of simplicity, and to preserve a certain degree of symmetry, in the
case that all moves were rejected we decided to divide the step by the same
factor c:

g(0) = l/c.

Possible dependencies of g as a function of n are shown in Figures 2(a) and
2(b). The former is simply a piecewise straight line. The latter is a straight line
for n > 0.5. In the interval [0, 0.5], g(n) is a hyperbola obtained by dividing 1 by
the value of the corresponding straight line of Figure 2(a). We made some
comparisons between these and other possible functions g(n). Actually, the SA
algorithm performance depends much more upon the value of c than on the
function g(n), provided that it is reasonably behaved and remembering that
g(0.5) must be equal to 1. Eventually, we decided to adopt the function shown in
Figure 3, which corresponds to the formula given in Step 5 of the SA algorithm
description, with the assumptions

n,n,
Ns ’ c=l+c,.

Using this formula, the step length is more stable than using the functions
shown in Figure 2, and small deviations from the optimal 1: 1 rate between
accepted and rejected moves do not change the step length. Test runs performed
in 2 dimensions showed that the minimum total number of function evaluations
at each temperature needed to end in the global minimum is about 10 percent
lower using the formula of Figure 3 than with the other choices. The starting
temperature and the temperature reduction coefficient were the same for all
tests. In 4 and 10 dimensions there was no significant difference between the
formulas of Figures 2 and 3.

3. TEST FUNCTIONS

To test the simulated annealing algorithm described above for functions of
continuous variables, we have used both classical, monotonic test functions and
multiminima test functions appropriately constructed.

The first requisite of a global optimization algorithm is the capability to find
the minimum of unimodal cost functions, although ill-conditioned and difficult
to minimize. We have chosen the Rosenbrock classical test function [12, 161, in
2 and 4 dimensions:

f2(Xl, x2) = 100(x2 -x9)” - (1 - x1)2,
3

f‘i(1cl,3c2,X3,It4) = Ck100(xk+r-X32- (1 -x/Y.
1

These curved valley functions are indeed a hard test for every minimization
algorithm.

ACM Transactions on Mathematical Software, Vol. 13, No. 3, September 1987.

270 l A. Corana, M. Marchesi, C. Martini, and S. Ridella

3

2

1

1
C

0
0 0.5

(4
n'

cl -
3-

2-

l-

1,
C

0-r
0 0.5

n’
(b)

Fig. 2. Two possible multiplication factors g(n).

ACM Transactions on Mathematical Software, Vol. 13, No. 3, September 1987.

g

3

2

1

Minimizing Multi-Modal Functions of Continuous Variable . 271

7

0 0.5

Fig. 3. The multiplication factor adopted in the SA algorithm presented.

Regarding multimodal functions, we have constructed a family of test functions
q, defined in a limited domain, that are very simple to compute and contain a
very high number of minima. These functions are obtained by defining a regular,
rectangular grid in the R” space and a set of open, nonoverlapping, rectangular
subdomains, each centered around a node of the grid. The definition domain of
the function qn(x) of n variables is a rectangular subdomain of R” centered at
the origin and including several nodes of the grid.

The function q,, is a paraboloid with axes parallel to the coordinate directions,
except inside the open subdomains cited above, where it is constant with a value
lower than the lowest value of q,, computed on the boundary of each subdomain.
These subdomains are like a set of rectangular “holes,” representing local minima
of qn and introducing strong discontinuities in the test function. The absolute
minimum of the functions q lies in the origin and has value 0. The number of
local minima depends on the dimension of the grid step along each axis and on
the number of axes. The flatness of the function inside the domains, where it
presents local minima, is also useful for lowering the function evaluation cost,
since, once the function has been evaluated at a local minimum, subsequent
evaluations relative to the same subdomain can be made at almost no extra cost.
A formal definition of the generic test function q,, is the following.

Let Df be the domain of definition of the function qn in n-space:

Df~~x~jW”:--al~xl~al,...,-u,~~x,~a,;a~IW;).
ACM Transactions on Mathematical Software, Vol. 13, No. 3, September 1987.

272 9 A. Corana, M. Marchesi, C. Martini, and S. Ridella

Df is a rectangular subdomain of R”, centered around the origin and whose width
along each coordinate direction is determined by the corresponding component
of the vector a.

Let D, be the family of open, disjoint, rectangular subdomains of R” contained
in Df and defined as

d xEDf:klsl-t,<xl<klsl+t,,...,k,s,-t,<x,<k,s,+t,;

k k El-t SEW t..cS’ i=l 17.**,?I ,, +; I 2, ,...,n ,
>

Dm = U
k,,. ,k,, E 0

dk ,I..., k, - do,o ,.._, o.

D, is the open subset of D, where the function qn presents local minima. The
vector s controls the grid steps along each axis, the grid points being the centers
of these subdomains, while the vector t controls the size of these subdomains.
The condition ti < sJ2 ensures that the subdomains are disjoint.

Let D, be the closed subdomain of Df complementary to D,: D, = Df - D,.
The test function q,,(x) of n real variables is defined as

qn (xl: D, - R+,

qn(x) = ii djx;, XED,, dE(W:,
1

qn(X) s Cp ii dizf, XEdk ,,..., k,, (kl,..., k,)fO,
1

where

I kisi + ti if ki< 0,
.Zi=’ 0

1

if ki= 0,
kisi - ti if ki> 0.

The components of the vector d determine the steepness of the paraboloid along
the axes, while the coefficient c, controls the depth of local minima relative to
the function values along the boundaries of the regions dkl,. &. It is worth noting
that the region do,.. .,O belongs to the subdomain II,, where q,, is equal to the
paraboloid. This means that qn is not constant around the origin, which is the
unique global minimum of qn.

The parameters that control the test function behavior are usually set to the
following values:

Ui= 104, i= 1,. . . , n.
si = 0.2, i=l , - * * 9 n.
ti = 0.05, i=l . . , n.
d = (1, 1000) n=i.’
d = (1, 1000, 10,100) n = 4.
d = (1, 1000, 10, 100, 1, 10, 100, 1000, 1, 10) n = 10.
c,= 0.15.

ACM Transactions on Mathematical Software, Vol. 13, No. 3, September 1987.

Minimizing Multi-Modal Functions of Continuous Variable . 273

-.6 -.4 -.2 0 .2 .4 .6 .8

X.
1

Fig. 4. A section of Q”(X) along an axis i where di = 10.

The number of grid points along each direction is

The total number of local minima of the test function qn(x) in its domain of
definiti0.n is iherefore 105n - 1. For n = 2 we have 10” minima and for n = 4
these minima are 10”. A section of q,, along an axis where di = 10 is shown in
Figure 4.

The number of local minima, their depth, and the strongly discontinuous
behavior of the q functions are characteristics sufficient for quickly trapping any
unimodal optimization algorithm at a local minimum and for severely testing
any method for finding global minima,

ACM Transactions on Mathematical Software, Vol. 13, No. 3, September 1987.

274 l A. Corana, M. Marchesi, C. Martini, and S. Ridella

4. TESTS AND RESULTS

We decided to test the effectiveness of the SA method against a well-known
optimization algorithm, the Nelder and Mead simplex method [l, 111, and against
a recently introduced general-purpose global optimizer using Adaptive Random
Search (ARS) [9, 141.

The simplex method has been chosen owing to its efficiency and robustness
compared with other direct-search methods. Moreover, the use of a gradient
method would not yield any significant comparison, since the test functions
defined in the previous chapter would immediately stop such algorithms at the
first local minimum encountered.

The simplex method has proven to be very reliable. It is sometimes able to
follow the gross behavior of the test functions despite their many local minima.
This is also the reason why the local minima of our test functions are so deep:
In some cases, a lesser depth does not prevent the simplex method from quickly
finding the global minimum.

The ARS method has been implemented in the form proposed in [14]. It has
been chosen because it is reported to be a simple, reliable, and efficient global
optimizer. Moreover, a comparison with another global optimizer is needed to
state the quality of the SA method.

The tests have been made starting from points randomly generated and quite
far from the optimum, according to a test approach similar to the one proposed
by Hillstrom [6]. The computer was a CDC Cyber 170/720 with go-bit words.
The tests took about 60 hours of computer time.

A first test of the SA method was made on the Rosenbrock functions in 2 and
4 dimensions. The admissible domains of the functions were (2000, 2000)02 and
(200, 200)@4, respectively. The SA algorithm and the comparison methods were
started from different points randomly chosen and quite far from the origin. The
starting temperatures of the SA were 50,000 and lo7 for 2 and 4 dimensions,
respectively. The results are reported in Table I.

As regards reliability, the SA never failed to reach the minimum of the
functions. The simplex method in 4 dimensions stopped twice at a saddle point
of the function. ARS seemed to be the least reliable of the three methods; in 2
dimensions it failed badly three times, and in 4 dimensions it stopped once at
the saddle point mentioned above. It is worth noting that ARS, in these test runs
on Rosenbrock functions, works with 10 different variances and not with 5, as
suggested in [14] and used in the other test runs presented. This is because with
5 variances the algorithm failed in almost all runs on Rosenbrock functions.

The efficiency of the three algorithms has been measured by the number of
function evaluations. The simplex method is by far the most efficient: On average,
the SA takes from 500 to 1000 times more function evaluations than the simplex
method. The number of evaluations needed by the ARS algorithm, on average,
is half-way between the others. This number, however, greatly depends on the
starting point and on the random number generator. In one case in 4 dimensions,
the number of evaluations reached 29 million. This is due to the fact that the
test functions are curved valleys with a bottom descending with a very mild slope.
If ARS finds a point lying very close to the center of the bottom, it is possible to
ACM Transactions on Mathematical Software, Vol. 13, No. 3, September 1987.

276 - A. Corana, M. Marchesi, C. Martini, and S. Ridella

proceed toward the minimum only by generating new points with a very small
variance, thus very slowly.

The number of function evaluations needed to reach the minimum is quite
constant in the SA, depending much more on the starting temperature rather
than on the starting point. This fact is an obvious advantage, since one can
forecast in advance the cost of an optimization run without imposing limits on
the number of function evaluations. The starting temperature of the SA is quite
different between 2 and 4 dimensions. These temperatures were found to empir-
ically make the SA method able to find the minimum. If the starting temperatures
had been set equal to the standard deviation of the test function in the domain
of interest, as suggested by White [181, their values would have been about 2 1013
and 4 lOi in 2 and 4 dimensions, respectively. This would have resulted in an
increase of the number of function evaluations of the order of 55 and 45 percent,
respectively.

Summing up, the test runs performed on two very difficult functions show that
the SA is the most reliable method among those under comparison. It is much
more costly compared to the classical simplex method, but the number of function
evaluations needed is quite constant and can be predetermined in advance.

A second test was made using our parabolic, multiminima, discontinuous test
functions in 2, 4, and 10 dimensions. The SA algorithm was run ten times,
starting from points located at a distance of about 1000 1/;E from the origin,
where n is the dimension of the cost function definition space; the admissible
domains of the test functions were (-10,000, 10,OOO)e”. The results of these runs
are reported in Table II. For each test function, the “s” and “t” parameters are
shown, together with the starting temperature and the termination criterion of
the SA algorithm. In 10 dimensions the “Ns” and “NT” parameters of SA have
been reduced with respect to the values reported in Section 2, resulting in a lower
total number of function evaluations.

In 2 dimensions, SA never failed to find the global minimum at the origin. In
4 dimensions, in two runs out of ten, SA found a minimum value of 3.3753-3,
which is the local minimum closest to the global one, and found the global
minimum in the remaining eight runs. In 10 dimensions and ten test runs, SA
always stopped at local minima valued 5.43-4, which again are not the global
minimum but are the local ones closest to the global minimum. The last two runs
shown refer to the same starting point, with different seeds of the random number
generator. In these test runs the number of function evaluations for each function
is again practically independent of the starting point. Considering the difficulty
of the test function chosen, this performance can be considered fully successful.

The other methods were run many more times, starting from points having
components randomly generated inside the interval [-1000, lOOO], up to a total
number of function evaluations more than five times the average number of
evaluations needed by SA to find the global minimum. In 10 dimensions the
internal parameters of the simplex algorithm were modified relative to the
original Nelder and Mead algorithm, according to the values reported in [l].
Using these values the simplex method behaved very well, also minimizing
functions in 10 dimensions. The admissible domains of the test functions were
(-1000, 1000)@n for ARS, while the simplex method was run without constraints.
ACM Transactions on Mathematical Software, Vol. 13, No. 3, September 1987.

Minimizing Multi-Modal Functions of Continuous Variable l 277

Table II. Results of Test Runs of SA Algorithm on Parabolic, Multiminima Functions
in 2,4, and 10 Dimensions

Starting point

Final function
value

Function
evaluation X

10-S

Tn=lE8 t=lE-4 s=.2 t=.05

2 Dimensions:
1000,888
-999,lOOl
-999, -889
1001, -998
1441,3
-10, -1410
-1100,850
850, -1100

1234, -1234,560, -334

4 Dimensions:
-999, -999, -9999, -1000
999,1000,1001, -998
1000, -1000,10000, -10000
-999, -999, -998, -1000
1000,999,999,998
1000, -1000, -9999,9999
1000, -1000,998, 1000
0, 0, 1, 2001
1998,3, 10, -13

2.53-8 684
3.23-9 680
4.OE-9 708
1.2E-9 696
3.23-g 708
4.OE-8 680
1.2E-8 696
4.2E-10 656

2.63-7

3.43-7

1440
3.43-3

1432

1160
8.73-8 1464
2.OE-7 1440
3.43-7 1424
2.53-7 1416
3.43-3 1176
4.OE-7 1408
4.63-7 1408

Starting noint

Final Function
function evaluation

value x lo+

T,,=lE9 c=lE-4 s=.l t=.04 Ns=15 Nr=60

10 Dimensions:
1000,1000,1000,1000,1000,1000,1000,1000,1000,1000 5.43-4 1638
-1000,1000, -1000,1000, -1000,1000, -1000,1000, -1000,1000 5.43-4 1638
-999, -999, -999, -999, -999, -999, -999, -999, -999, -999 5.43-4 1638
999,999,999,999,999, -999, -999, -999, -999, -999 5.43-4 1548
-999,1000, -999,1000, -999,1000, -999, lOOO,-999,lOOO 5.43-4 1593
3000, 4, 20, 40, 120, -3, -6, 0, 0, 100 5.43-4 1638
1000, -999,1000, -999,1000, -999, 1000, -999,1000, -999 5.43-4 1665
1000, -999,1000, -999,1000, -999,1000, -999,1000, -999 5.43-4 1611

Table III shows the characteristics of the test functions used, together with
the results of the minimizations. In 2 dimensions, the simplex method found the
global minimum after 240 restarts and about 150,000 function evaluations,
performing about four times better than SA. ARS spent five million evaluations
without finding the global minimum. Its best point, however, was not too bad,
considering the difficulty of the function and its average value in the considered
domain.

In 4 dimensions, both algorithms were unable to find the minimum. In 10
dimensions, with a test function having parameter values si = 0.1, ti = 0.04, i =
1 , -a*, 10, again both algorithms were unable to find the minimum. ARS found

ACM Transactions on Mathematical Software, Vol. 13, No. 3, September 1987.

278 - A. Corana, M. Marchesi, C. Martini, and S. Ridella

Table III. Results of Test Runs of the Simplex and ARS Algorithms on Parabolic, Multiminima
Functions in 2, 4, and 10 Dimensions

Simplex ARS

Total Total
number Number number Number
of eval- of Best found of eval- of Best found

Dimensions s. t. uations runs value of F uations runs value of F

2 .2 .05 150000 240 3.963-10 5.E6 654 .064375
4 .2 .05 lE7 36121 276.7 lE7 940 192.6

10 .l .04 2E7 27896 1265355 2E7 715 20332
10 .2 .05 lE7 6497 0.1549 2E7 6049 5222.5

a much better point than the simplex. In 10 dimensions, with a test function
having local minima defined in a much smaller subset of the definition domain
(si = 0.2, ti = 0.05), the simplex method was able to find a very good point
(f = 0.1549) after about ten million evaluations and 6500 restarts.

In all cases, except for the simplex method in 2 dimensions, SA proved much
more reliable and efficient than the other algorithms.

5. CONCLUSIONS

We have presented a method for global minimization of functions of continuous
variables based on simulated annealing. This method needs many function
evaluations, but it is able to find the global minimum of test functions with an
extremely high number of local minima. It seems unlikely that functions of this
kind are easily found in real problems; nevertheless, SA can provide a very high
reliability in the minimization of multimodal functions at high computational
costs, linearly increasing with the number of dimensions of the problem.

Many problems, however, remain to be addressed and solved. The first one is
the choice of the starting temperature To. In combinatorial SA, it has been
suggested to use a value of the same order of magnitude of the standard deviation
of the cost function in its domain of definition [18]. Dealing with continuous
functions, this suggestion yields starting temperatures that are too high, thus
wasting much computational effort. In fact, common cost functions of continuous
variables often present terms varying with powers of the independent variables,
thus leading to a rapid increase of the function toward the boundaries of its
domain. This fact should not be significant for a good minimization algorithm,
which should overcome in a few evaluations those parts of the function domain
where it is varying steeply and monotonically. Moreover, this approach cannot
be applied in the case of unconstrained minimization of continuous functions.

A better approach could be the monitoring of the function behavior as SA
proceeds, using the incremental ratio between the average value of the cost
function and of its square at the points accepted by the moves at a given
temperature, as proposed by White [181. This monitoring presupposes a Gaussian
distribution of the function values in its definition domain, which again is not a
common characteristic of continuous functions. Moreover, it has proven to be
difficult to implement. More work is needed toward this goal, because a good
monitoring of the minimization process can provide information about the
ACM Transactions on Mathematical Software, Vol. 13, No. 3, September 1987.

Minimizing Multi-Modal Functions of Continuous Variable l 279

goodness of the starting temperature, about the effectiveness of the number of
function evaluations at each temperature, and about the time at which it is better
to stop SA, perhaps starting a classical minimization algorithm. In this way it
might be possible to save many function evaluations when the current point is
close to the final minimum and the temperature is too low to allow escape from
its region of attraction.

Further work is also needed to optimize the algorithm parameters, as we did
for the simplex algorithm [l]. Such a study would be very costly, but many
benefits would be gained.

Another open problem that does not appear with the cost functions used is the
poor performance of the proposed algorithm when following multimodal cost
functions having “valleys” not directed along the coordinate directions. This
problem is due to the way new search points are generated. However, highly
directional schemes might lose some of the flexibility of the random search
procedure, as pointed out in [9].

The SA algorithm is commonly used in our Institute to address optimization
problems not solved by conventional algorithms, and in the areas of electrical
measurements and mathematical modeling. It is also used as a standard, to state
the ability of traditional methods to solve particular classes of optimization
problems.

Presently, work is proceeding on a version of the algorithm to run on parallel
computers, thus reducing the major limitation of the method: its high computa-
tional cost.

REFERENCES

1. BARABINO, G. P., BARABINO, G. S., BIANCO, B., AND MARCHESI, M. A study on the perform-
ances of simplex methods for function minimization. In Proceedings of the IEEE International
Conference on Circuits and Computers ZCCC 80 IEEE, New York, 1980,1150-1153.

2. DIXON, L. C. W., AND SZECO, G. P. (EDs.) Toward Global Optimization. North-Holland,
Amsterdam, 1975.

3. DIXON, L. C. W., AND SZEGO, G. P. (EDs.) Toward Global Optimization 2. North-Holland,
Amsterdam, 1978.

4. FLETCHER, R., AND POWELL, M. J. D. A rapidly convergent descent method for minimization.
Comput. J. 6 (1963), 163-168.

5. FLETCHER, R., AND REEVES, C. M. Function minimization by conjugate gradients. Comput. J.
7 (1964), 149-154.

6. HILLSTROM, K. E. A simulation test approach to the evaluation of nonlinear optimization
algorithms. ACM Trans. Math. Softw. 3,4 (Dec. 1977), 305-315.

7. HOOKE, R., AND JEEVES, T. A. Direct search solution of numerical and statistical problems. J.
ACM 7 (1969), 212-229.

8. KIRKPATRICK, S., GELA~, C. D., JR., AND VECCHI, M. P. Optimization by simulated annealing.
Science 220,4598 (May 1983), 671-680.

9. MASRI, S. F., BEKEY, G. A., AND SAFFORD, F. B. A global optimization algorithm using adaptive
random search. Appl. Math. Comput. 7 (1980), 353-375.

10. METROPOLIS, N., ROSENBLUTH, A., ROSENBLUTH, M., TELLER, A., AND TELLER, E. Equation
of state calculations by fast computing machines. J. Chem. Phys. 21 (1953), 1087-1090.

11. NELDER, J. A., AND MEAD, R. A simplex method for function minimization. Comput. J. 7
(1965), 308-313.

12. OREN, S. S. Self-scaling variable metric (SSVM) algorithms, part II: Implementation and
experiments. Manage. Sci. (Theor.) 20 (1974), 845-862.

13. PRICE, W. L. A controlled random search procedure for global optimization. Comput. J. 20
(1977), 367-370.

ACM Transactions on Mathematical Software, Vol. 13, No. 3, September 1987.

280 l A. Corana, M. Marchesi, C. Martini, and S. Ridella

14. PRONZATO, L., WALTER, E., VENOT, A., AND LEBRUCHEC, J. F. A general purpose global
optimizer: Implementation and applications. Math. Comput. Simul. 26 (1984), 412-422.

15. ROMEO, F., SANGIOVANNI VINCENTELLI, A., AND SECHEN, C. Research on simulated annealing
at Berkeley. In Proceedings of the IEEE International Conference on Computer Design, ZCCD 84,
IEEE New York, 1984,652-657.

16. ROSENBROCK, H. H. An automatic method for finding the greatest or least value of a function.
Comput. J. 3 (1960), 175-184.

17. SHAH, R. V., BLJEHLER, R. J., AND KEMPTHORNE, 0. Some algorithms for minimizing a function
of several variables. SIAM J. 12 (1964), 74-92.

18. WHITE, S. R. Concepts of scale in simulated annealing. In Proceedings of the IEEE International
Conference on Computer Design, ICCD 84, New York 1984,646-651.

Received March 1986; revised January 1987; accepted April 1987

ACM Transactions on Mathematical Software, Vol. 13, No. 3, September 1987.

