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A new global optimization algorithm for functions of continuous variables is presented, derived from 
the “Simulated Annealing” algorithm recently introduced in combinatorial optimization. 

The algorithm is essentially an iterative random search procedure with adaptive moves along the 
coordinate directions. It permits uphill moves under the control of a probabilistic criterion, thus 
tending to avoid the first local minima encountered. 

The algorithm has been tested against the Nelder and Mead simplex method and against a version 
of Adaptive Random Search. The test functions were Rosenbrock valleys and multiminima functions 
in 2,4, and 10 dimensions. 

The new method proved to be more reliable than the others, being always able to find the optimum, 
or at least a point very close to it. It is quite costly in term of function evaluations, but its cost can 
be predicted in advance, depending only slightly on the starting point. 

Categories and subject descriptors: G.1.6. [Numerical Analysis]: Optimization-nonlinear pro- 
gramming; G.3 [Mathematics of Computing]: Probability and Statistics-probabilistic algorithms 
(including Monte Carlo); G.4. [Mathematics of Computing]: Mathematical Software-certification 
and testing 
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1. INTRODUCTION 
The problem of determining the position in n-space of the minimum of a given 
function of n variables has been tackled using nonlinear programming methods 
for many years, in practice since digital computers have been available. 

If the cost function is unimodal in the domain of interest, one can choose 
among many good alternatives. Some of the available minimization algorithms 
(direct methods) involve only function evaluations, such as those of Rosenbrock 
[ 161, Hooke and Jeeves [7], and Nelder and Mead [l, 111. Others also use the 
evaluation of the derivatives of the cost function [4, 5, 171 and are considered to 
be more efficient than direct methods; but they are also more complicated and 
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more inclined to terminate far from the minimum if the cost function is very ill- 
conditioned. 

However, if the cost function is multimodal within the domain of interest, the 
number of available algorithms is reduced to very few. In this case, the algorithms 
quoted above tend to stop at the first minimum encountered, and cannot be used 
easily for finding the global one. Since a systematic search in the function 
domain, in nontrivial cases, requires so many function evaluations as to be 
impracticable, one must rely on a limited search, either systematic or random. 

A simple and widely used technique is to generate a given number of different 
points inside the function domain, performing unimodal searches starting from 
each of them, and retaining the best result. 

Other methods for random global optimization are reported in [2,3,9, 13, 141. 
Under mild conditions on the test functions, these stochastic methods guarantee 
asymptotic convergence to the global optimum as the number of sample points 
increases. All of these techniques are efficient in the case of functions with a few 
local minima; but, in practice, many optimization problems deal with a large 
number of variables (up to tens or hundreds) and/or a very large number of local 
minima that is often an increasing function of the number of variables. In this 
situation, traditional methods offer low efficiency and limited reliability. 

Recently, a global optimization algorithm called Simulated Annealing (SA) [8] 
has been proposed in the area of combinatorial optimization, that is, when the 
cost function is defined in a discrete domain. This method is reported to perform 
well in the presence of a very high number of variables (even tens of thousands) 
[8, 15, 181. It is based on random evaluations of the cost function, in such a way 
that transitions out of a local minimum are possible. It does not guarantee, of 
course, to find the global minimum, but if the function has many good near- 
optimal solutions, it should find one. In particular, this method is able to 
discriminate between “gross behavior” of the function and finer “wrinkles.” First, 
it reaches an area in the function domain where a global minimum should be 
present, following the gross behavior irrespectively of small local minima found 
on the way. It then develops finer details, finding a good, near-optimal local 
minimum, if not the global minimum itself. 

In the present work we propose some modifications to this algorithm, in order 
to apply it to the optimization of functions defined in a continuous domain. It is 
worth noting that these functions do not need to be smooth or even continuous 
in their domain. The algorithm is characterized by the need for a number of 
function evaluations, usually about three orders-of-magnitude greater than that 
commonly required for a single run of unimodal algorithms. Nevertheless, in the 
case of very ill-conditioned cost functions with thousands or millions of local 
minima, such big computational effort leads to better results than the random or 
systematic use of a traditional optimization algorithm for as many times as it 
takes to make the total number of function evaluations equal to SA. Moreover, 
the cost of automatic computation is becoming lower and lower, and such 
computational tasks are becoming affordable. 

In Section 3, we introduce some multimodal test functions that are difficult to 
minimize, having a number of local minima greater than 10” in their domain of 
interest. In Section 4, our SA algorithm is tested against the Nelder and Mead 
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simplex method and against the “Adaptive Random Search” stochastic method. 
The test functions used are both the traditional Rosenbrock valleys and the 
multimodal functions quoted above. The results obtained are critically analyzed, 
and suggestions are made for future research. 

2. METHOD 

Let x be a vector in R” and (x1, x2, . . . , x,) its components. Let f(x) be the 
function to minimize and let al < x1 < bl, . . . , a, < n, < b, be its n variables, 
each ranging in a finite, continuous interval. f does not need to be continuous 
but it must be bounded. 

Our SA algorithm is schematically shown in Figure 1. It proceeds iteratively: 
Starting from a given point x0, it generates a succession of points: x0, xl, . . . , 
Xi, e . * tending to the global minimum of the cost function. New candidate points 
are generated around the current point xi applying random moves along each 
coordinate direction, in turn. The new coordinate values are uniformly distributed 
in intervals centered around the corresponding coordinate of xi. Half the size of 
these intervals along each coordinate is recorded in the step vector v. If the point 
falls outside the definition domain off, a new point is randomly generated until 
a point belonging to the definition domain is found. A candidate point x ’ is 
accepted or rejected according to the Metropolis criterion [lo]: 

If Af a 0, then accept the new point: Xi+1 = X’ 

else accept the new point with probability: 
p(Af 1 = exd-Af/T) 

where Af = f (x’) - f (xi) and T is a parameter called temperature. 
At a fixed value of T the succession of points x0, x1, . . . , xi, . . . is not downhill, 

except when T = 0. For values of T large compared to the mean value of ] f (xh) 
- f (xk) ] (xh and xk are points randomly chosen inside the definition domain of 
f) almost all new points are accepted and the succession is a random sampling 
off. 

The SA algorithm starts at some “high” temperature To given by the user. A 
sequence of points is then generated until a sort of “equilibrium” is approached; 
that is a sequence of points xi whose average value off reaches a stable value as 
i increases. During this phase the step vector v, is periodically adjusted to better 
follow the function behavior. The best point reached is recorded as xopt. 

After thermal equilibration, the temperature T is reduced and a new sequence 
of moves is made starting from x,,,,~, until thermal equilibrium is reached again, 
and so on. 

The process is stopped at a temperature low enough that no more useful 
improvement can be expected, according to a stopping criterion that we will 
describe later. 

The SA optimization algorithm can be considered analogous to the physical 
process by which a material changes state while minimizing its energy [8, 181. A 
slow, careful cooling brings the material to a highly ordered, crystalline state of 
lowest energy. A rapid cooling instead yields defects and glass-like intrusions 
inside the material. 

From an optimization point of view, an iterative search accepting only new 
points with lowest function values is like rapidly quenching a physical system at 
ACM Transactions on Mathematical Software, Vol. 13, No. 3, September 1987. 
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I Initialize parameters 
I 

Perform a cycle of random moves, each along one 
coordinate direction. Accept or reject each 

point according to the Metropolis criterion. 
Record the optimum point reached so far. 

l 
no 

*I 
Set current point to the optimum. 

Fig. 1. The SA minimization algorithm. 

zero temperature: It is very likely to get stuck in a metastable, local minimum. 
On the contrary, SA permits uphill moves under the control of a temperature 
parameter. At higher temperature only the gross behavior of the cost function is 
relevant to the search. As temperature decreases, finer details can be developed 
to get a good final point. While the optimality of the final point cannot be 
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guaranteed, the method is able to proceed toward better minima even in the 
presence of many local minima. 

A detailed description of the algorithm follows. 

Step 0 (Initialization) 

Choose 
A starting point x0. 
A starting step vector vo. 
A starting temperature To. 
A terminating criterion E and a number of successive temperature reductions 
to test for termination N,. 
A test for step variation Ns and a varying criterion c. 
A test for temperature reduction NT and a reduction coefficient rT. 

Set i, j, m, k to 0. i is the index denoting successive points, j denotes successive 
cycles along every direction, m describes successive step adjustments, and k 
covers successive temperature reductions. 
Set h to 1. h is the index denoting the direction along which the trial point is 
generated, starting from the last accepted point. 

Compute f. = f(xo). 
Set xopt = x0, fopt = fo. 
Set n, = 0, u = 1, . . . , n. 
Set fu* = fo, u = 0, -1, . . . , -N, + 1. 

Step 1 

Starting from the point xi, generate a random point x’ along the direction h: 

x’ =x.+ ru I mh h e 

where r is a random number generated in the range [-1, l] by a pseudorandom 
number generator; eh is the vector of the hth coordinate direction; and v,,,,, is 
the component of the step vector v, along the same direction. 

Step 2 

If the hth coordinate of x’ lies outside the definition domain of f, that is, if 
xx C ah or xx > bh, then return to step 1. 

Step 3 

Compute f' = f (x'). 
If f' < fip then accept the new point: 

set Xi+1 = X’, 

setfi+l = f', 
add 1 to i, 
add 1 to nh; 
if f' < fopt, then set 

xopt = x’, 
fopt = f'. 

endif; 
ACM Transactions on Mathematical Software, Vol. 13, No. 3, September 1987. 
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else (f ’ >fi) accept or reject the point with acceptance probabilityp (Metropolis 
move): 

p=exp ‘+ 
( ) 

. 

In practice, a pseudorandom number p ’ is generated in the range [0, l] and is 
compared with p. If p’ < p, the point is accepted, otherwise it is rejected. 

In the case of acceptance: 

set Xi+1 = X’, 

setfi+l =f’, 

add 1 to i, 
add 1 to nh. 

Step 4 

Add 1 to h. 
If h c n, then goto step 1; 

else set h to 1 and add 1 to j. 

Step 5 

If j < Ns, then goto step 1; 
else update the step vector v,: 

for each direction u the new step vector component v; is 

u’=v u if n, > 0.6N,, 

v: = % 
0.4 - n,/N, 

if n, < 0.4N,, 
1 + c 

u 0.4 
u: = urn, 

Set v,+] = v ‘, 
set j to 0, 
set n, to 0, u = 1, . . . , n, 
add 1 to m. 

otherwise. 

The aim of these variations in step length is to maintain the average percentage 
of accepted moves at about one-half of the total number of moves. The rather 
complicated formula used is discussed at the end of this chapter. The c, parameter 
controls the step variation along each uth direction. 

Step 6 

If m < NT, then go to step 1; 
else, it is time to reduce the temperature Tk: 

set Tk+, = rT . Tk, 
set f X = fi, 
add 1 to k, 
set m to 0. 
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It is worth noting that a temperature reduction occurs every Ns . NT cycles 
of moves along every direction and after NT step adjustments. 

Step 7 (terminating criterion) 

If: 

If:-fPul<~, u=l,..., N, 
fk* - fopt Q 6 

then stop the search; 
else: 

add 1 to i, 
set Xi = Xopt, 

set fi = fopt. 

Go to step 1. 

Reasonable values, found after some test optimizations, of the parameters that 
control the simulated annealing are 

Ns = 20. 
NT = max(lOO, 5 * n). 

Ci = 2, i = 1, . * . f Iz* 
N, = 4. 
rT = 0.85. 

Step Adjustments. In Monte Carlo simulations of fluids using the Metropolis 
approach, new configurations are generated, trying to maintain a 1: 1 rate 
between accepted and rejected configurations [lo]. A lower rate means that too 
many moves are rejected, thus wasting computational effort. A higher rate means 
that trial configurations are too close to the starting ones, thus having a small 
difference in energy compared to the temperature. This implies that the accepted 
configurations evolve too slowly, again wasting computational effort. 

The same criterion is used by our SA algorithm. From an optimization point 
of view, a high number of accepted moves with respect to rejected ones means 
that the function is explored with too small steps. On the contrary, a high number 
of rejected moves means that new trial points are generated too far from the 
current point. A 1: 1 rate between accepted and rejected moves means that the 
algorithm is following the “function behavior” well. 

In our SA algorithm, trial points are generated along each coordinate direction 
in turn, independently from the other directions. A step vector v records the 
maximum increments possible along each direction and is adjusted every Nsth 
move to maintain the 1: 1 ratio quoted above. 

For the sake of simplicity, let us focus on one coordinate direction, say u. The 
number of accepted moves along the u-axis since the last step adjustment is n,. 
The ratio n = n,/Ns is therefore restricted to the interval [0, 11. We define as 
g(n) the coefficient to be multiplied by uU in order to obtain the new step uE 
along the u-axis. If n = 0.5, the 1: 1 ratio is verified as regards moves along the 
u direction, and U, need not to be modified: 

g(O.5) = 1. 
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If all the moves are accepted, n = 1. In this case the step length is multiplied by 
a factor c greater than 1: 

g(1) = c. 

For the sake of simplicity, and to preserve a certain degree of symmetry, in the 
case that all moves were rejected we decided to divide the step by the same 
factor c: 

g(0) = l/c. 

Possible dependencies of g as a function of n are shown in Figures 2(a) and 
2(b). The former is simply a piecewise straight line. The latter is a straight line 
for n > 0.5. In the interval [0, 0.5], g(n) is a hyperbola obtained by dividing 1 by 
the value of the corresponding straight line of Figure 2(a). We made some 
comparisons between these and other possible functions g(n). Actually, the SA 
algorithm performance depends much more upon the value of c than on the 
function g(n), provided that it is reasonably behaved and remembering that 
g(0.5) must be equal to 1. Eventually, we decided to adopt the function shown in 
Figure 3, which corresponds to the formula given in Step 5 of the SA algorithm 
description, with the assumptions 

n,n, 
Ns ’ c=l+c,. 

Using this formula, the step length is more stable than using the functions 
shown in Figure 2, and small deviations from the optimal 1: 1 rate between 
accepted and rejected moves do not change the step length. Test runs performed 
in 2 dimensions showed that the minimum total number of function evaluations 
at each temperature needed to end in the global minimum is about 10 percent 
lower using the formula of Figure 3 than with the other choices. The starting 
temperature and the temperature reduction coefficient were the same for all 
tests. In 4 and 10 dimensions there was no significant difference between the 
formulas of Figures 2 and 3. 

3. TEST FUNCTIONS 

To test the simulated annealing algorithm described above for functions of 
continuous variables, we have used both classical, monotonic test functions and 
multiminima test functions appropriately constructed. 

The first requisite of a global optimization algorithm is the capability to find 
the minimum of unimodal cost functions, although ill-conditioned and difficult 
to minimize. We have chosen the Rosenbrock classical test function [12, 161, in 
2 and 4 dimensions: 

f2(Xl, x2) = 100(x2 -x9)” - (1 - x1)2, 
3 

f‘i(1cl,3c2,X3,It4) = Ck100(xk+r-X32- (1 -x/Y. 
1 

These curved valley functions are indeed a hard test for every minimization 
algorithm. 
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Fig. 2. Two possible multiplication factors g(n). 
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7 

0 0.5 

Fig. 3. The multiplication factor adopted in the SA algorithm presented. 

Regarding multimodal functions, we have constructed a family of test functions 
q, defined in a limited domain, that are very simple to compute and contain a 
very high number of minima. These functions are obtained by defining a regular, 
rectangular grid in the R” space and a set of open, nonoverlapping, rectangular 
subdomains, each centered around a node of the grid. The definition domain of 
the function qn(x) of n variables is a rectangular subdomain of R” centered at 
the origin and including several nodes of the grid. 

The function q,, is a paraboloid with axes parallel to the coordinate directions, 
except inside the open subdomains cited above, where it is constant with a value 
lower than the lowest value of q,, computed on the boundary of each subdomain. 
These subdomains are like a set of rectangular “holes,” representing local minima 
of qn and introducing strong discontinuities in the test function. The absolute 
minimum of the functions q lies in the origin and has value 0. The number of 
local minima depends on the dimension of the grid step along each axis and on 
the number of axes. The flatness of the function inside the domains, where it 
presents local minima, is also useful for lowering the function evaluation cost, 
since, once the function has been evaluated at a local minimum, subsequent 
evaluations relative to the same subdomain can be made at almost no extra cost. 
A formal definition of the generic test function q,, is the following. 

Let Df be the domain of definition of the function qn in n-space: 

Df~~x~jW”:--al~xl~al,...,-u,~~x,~a,;a~IW;). 
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Df is a rectangular subdomain of R”, centered around the origin and whose width 
along each coordinate direction is determined by the corresponding component 
of the vector a. 

Let D, be the family of open, disjoint, rectangular subdomains of R” contained 
in Df and defined as 

d xEDf:klsl-t,<xl<klsl+t,,...,k,s,-t,<x,<k,s,+t,; 

k k El-t SEW t..cS’ i=l 17.**,?I ,, +; I 2, ,...,n , 
> 

Dm = U 
k,,. ,k,, E 0 

dk ,I..., k, - do,o ,.._, o. 

D, is the open subset of D, where the function qn presents local minima. The 
vector s controls the grid steps along each axis, the grid points being the centers 
of these subdomains, while the vector t controls the size of these subdomains. 
The condition ti < sJ2 ensures that the subdomains are disjoint. 

Let D, be the closed subdomain of Df complementary to D,: D, = Df - D,. 
The test function q,,(x) of n real variables is defined as 

qn (xl: D, - R+, 

qn(x) = ii djx;, XED,, dE(W:, 
1 

qn(X) s Cp ii dizf, XEdk ,,..., k,, (kl,..., k,)fO, 
1 

where 

I kisi + ti if ki< 0, 
.Zi=’ 0 

1 

if ki= 0, 
kisi - ti if ki> 0. 

The components of the vector d determine the steepness of the paraboloid along 
the axes, while the coefficient c, controls the depth of local minima relative to 
the function values along the boundaries of the regions dkl,. &. It is worth noting 
that the region do,.. .,O belongs to the subdomain II,, where q,, is equal to the 
paraboloid. This means that qn is not constant around the origin, which is the 
unique global minimum of qn. 

The parameters that control the test function behavior are usually set to the 
following values: 

Ui= 104, i= 1,. . . , n. 
si = 0.2, i=l , - * * 9 n. 
ti = 0.05, i=l . . , n. 
d = (1, 1000) n=i.’ 
d = (1, 1000, 10,100) n = 4. 
d = (1, 1000, 10, 100, 1, 10, 100, 1000, 1, 10) n = 10. 
c,= 0.15. 
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-.6 -.4 -.2 0 .2 .4 .6 .8 

X. 
1 

Fig. 4. A section of Q”(X) along an axis i where di = 10. 

The number of grid points along each direction is 

The total number of local minima of the test function qn(x) in its domain of 
definiti0.n is iherefore 105n - 1. For n = 2 we have 10” minima and for n = 4 
these minima are 10”. A section of q,, along an axis where di = 10 is shown in 
Figure 4. 

The number of local minima, their depth, and the strongly discontinuous 
behavior of the q functions are characteristics sufficient for quickly trapping any 
unimodal optimization algorithm at a local minimum and for severely testing 
any method for finding global minima, 
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4. TESTS AND RESULTS 

We decided to test the effectiveness of the SA method against a well-known 
optimization algorithm, the Nelder and Mead simplex method [l, 111, and against 
a recently introduced general-purpose global optimizer using Adaptive Random 
Search (ARS) [9, 141. 

The simplex method has been chosen owing to its efficiency and robustness 
compared with other direct-search methods. Moreover, the use of a gradient 
method would not yield any significant comparison, since the test functions 
defined in the previous chapter would immediately stop such algorithms at the 
first local minimum encountered. 

The simplex method has proven to be very reliable. It is sometimes able to 
follow the gross behavior of the test functions despite their many local minima. 
This is also the reason why the local minima of our test functions are so deep: 
In some cases, a lesser depth does not prevent the simplex method from quickly 
finding the global minimum. 

The ARS method has been implemented in the form proposed in [14]. It has 
been chosen because it is reported to be a simple, reliable, and efficient global 
optimizer. Moreover, a comparison with another global optimizer is needed to 
state the quality of the SA method. 

The tests have been made starting from points randomly generated and quite 
far from the optimum, according to a test approach similar to the one proposed 
by Hillstrom [6]. The computer was a CDC Cyber 170/720 with go-bit words. 
The tests took about 60 hours of computer time. 

A first test of the SA method was made on the Rosenbrock functions in 2 and 
4 dimensions. The admissible domains of the functions were (2000, 2000)02 and 
(200, 200)@4, respectively. The SA algorithm and the comparison methods were 
started from different points randomly chosen and quite far from the origin. The 
starting temperatures of the SA were 50,000 and lo7 for 2 and 4 dimensions, 
respectively. The results are reported in Table I. 

As regards reliability, the SA never failed to reach the minimum of the 
functions. The simplex method in 4 dimensions stopped twice at a saddle point 
of the function. ARS seemed to be the least reliable of the three methods; in 2 
dimensions it failed badly three times, and in 4 dimensions it stopped once at 
the saddle point mentioned above. It is worth noting that ARS, in these test runs 
on Rosenbrock functions, works with 10 different variances and not with 5, as 
suggested in [14] and used in the other test runs presented. This is because with 
5 variances the algorithm failed in almost all runs on Rosenbrock functions. 

The efficiency of the three algorithms has been measured by the number of 
function evaluations. The simplex method is by far the most efficient: On average, 
the SA takes from 500 to 1000 times more function evaluations than the simplex 
method. The number of evaluations needed by the ARS algorithm, on average, 
is half-way between the others. This number, however, greatly depends on the 
starting point and on the random number generator. In one case in 4 dimensions, 
the number of evaluations reached 29 million. This is due to the fact that the 
test functions are curved valleys with a bottom descending with a very mild slope. 
If ARS finds a point lying very close to the center of the bottom, it is possible to 
ACM Transactions on Mathematical Software, Vol. 13, No. 3, September 1987. 
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proceed toward the minimum only by generating new points with a very small 
variance, thus very slowly. 

The number of function evaluations needed to reach the minimum is quite 
constant in the SA, depending much more on the starting temperature rather 
than on the starting point. This fact is an obvious advantage, since one can 
forecast in advance the cost of an optimization run without imposing limits on 
the number of function evaluations. The starting temperature of the SA is quite 
different between 2 and 4 dimensions. These temperatures were found to empir- 
ically make the SA method able to find the minimum. If the starting temperatures 
had been set equal to the standard deviation of the test function in the domain 
of interest, as suggested by White [ 181, their values would have been about 2 1013 
and 4 lOi in 2 and 4 dimensions, respectively. This would have resulted in an 
increase of the number of function evaluations of the order of 55 and 45 percent, 
respectively. 

Summing up, the test runs performed on two very difficult functions show that 
the SA is the most reliable method among those under comparison. It is much 
more costly compared to the classical simplex method, but the number of function 
evaluations needed is quite constant and can be predetermined in advance. 

A second test was made using our parabolic, multiminima, discontinuous test 
functions in 2, 4, and 10 dimensions. The SA algorithm was run ten times, 
starting from points located at a distance of about 1000 1/;E from the origin, 
where n is the dimension of the cost function definition space; the admissible 
domains of the test functions were (-10,000, 10,OOO)e”. The results of these runs 
are reported in Table II. For each test function, the “s” and “t” parameters are 
shown, together with the starting temperature and the termination criterion of 
the SA algorithm. In 10 dimensions the “Ns” and “NT” parameters of SA have 
been reduced with respect to the values reported in Section 2, resulting in a lower 
total number of function evaluations. 

In 2 dimensions, SA never failed to find the global minimum at the origin. In 
4 dimensions, in two runs out of ten, SA found a minimum value of 3.3753-3, 
which is the local minimum closest to the global one, and found the global 
minimum in the remaining eight runs. In 10 dimensions and ten test runs, SA 
always stopped at local minima valued 5.43-4, which again are not the global 
minimum but are the local ones closest to the global minimum. The last two runs 
shown refer to the same starting point, with different seeds of the random number 
generator. In these test runs the number of function evaluations for each function 
is again practically independent of the starting point. Considering the difficulty 
of the test function chosen, this performance can be considered fully successful. 

The other methods were run many more times, starting from points having 
components randomly generated inside the interval [-1000, lOOO], up to a total 
number of function evaluations more than five times the average number of 
evaluations needed by SA to find the global minimum. In 10 dimensions the 
internal parameters of the simplex algorithm were modified relative to the 
original Nelder and Mead algorithm, according to the values reported in [l]. 
Using these values the simplex method behaved very well, also minimizing 
functions in 10 dimensions. The admissible domains of the test functions were 
(-1000, 1000)@n for ARS, while the simplex method was run without constraints. 
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Table II. Results of Test Runs of SA Algorithm on Parabolic, Multiminima Functions 
in 2,4, and 10 Dimensions 

Starting point 

Final function 
value 

Function 
evaluation X 

10-S 

Tn=lE8 t=lE-4 s=.2 t=.05 

2 Dimensions: 
1000,888 
-999,lOOl 
-999, -889 
1001, -998 
1441,3 
-10, -1410 
-1100,850 
850, -1100 

1234, -1234,560, -334 

4 Dimensions: 
-999, -999, -9999, -1000 
999,1000,1001, -998 
1000, -1000,10000, -10000 
-999, -999, -998, -1000 
1000,999,999,998 
1000, -1000, -9999,9999 
1000, -1000,998, 1000 
0, 0, 1, 2001 
1998,3, 10, -13 

2.53-8 684 
3.23-9 680 
4.OE-9 708 
1.2E-9 696 
3.23-g 708 
4.OE-8 680 
1.2E-8 696 
4.2E-10 656 

2.63-7 

3.43-7 

1440 
3.43-3 

1432 

1160 
8.73-8 1464 
2.OE-7 1440 
3.43-7 1424 
2.53-7 1416 
3.43-3 1176 
4.OE-7 1408 
4.63-7 1408 

Starting noint 

Final Function 
function evaluation 

value x lo+ 

T,,=lE9 c=lE-4 s=.l t=.04 Ns=15 Nr=60 

10 Dimensions: 
1000,1000,1000,1000,1000,1000,1000,1000,1000,1000 5.43-4 1638 
-1000,1000, -1000,1000, -1000,1000, -1000,1000, -1000,1000 5.43-4 1638 
-999, -999, -999, -999, -999, -999, -999, -999, -999, -999 5.43-4 1638 
999,999,999,999,999, -999, -999, -999, -999, -999 5.43-4 1548 
-999,1000, -999,1000, -999,1000, -999, lOOO,-999,lOOO 5.43-4 1593 
3000, 4, 20, 40, 120, -3, -6, 0, 0, 100 5.43-4 1638 
1000, -999,1000, -999,1000, -999, 1000, -999,1000, -999 5.43-4 1665 
1000, -999,1000, -999,1000, -999,1000, -999,1000, -999 5.43-4 1611 

Table III shows the characteristics of the test functions used, together with 
the results of the minimizations. In 2 dimensions, the simplex method found the 
global minimum after 240 restarts and about 150,000 function evaluations, 
performing about four times better than SA. ARS spent five million evaluations 
without finding the global minimum. Its best point, however, was not too bad, 
considering the difficulty of the function and its average value in the considered 
domain. 

In 4 dimensions, both algorithms were unable to find the minimum. In 10 
dimensions, with a test function having parameter values si = 0.1, ti = 0.04, i = 
1 , -a*, 10, again both algorithms were unable to find the minimum. ARS found 
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Table III. Results of Test Runs of the Simplex and ARS Algorithms on Parabolic, Multiminima 
Functions in 2, 4, and 10 Dimensions 

Simplex ARS 

Total Total 
number Number number Number 
of eval- of Best found of eval- of Best found 

Dimensions s. t. uations runs value of F uations runs value of F 

2 .2 .05 150000 240 3.963-10 5.E6 654 .064375 
4 .2 .05 lE7 36121 276.7 lE7 940 192.6 

10 .l .04 2E7 27896 1265355 2E7 715 20332 
10 .2 .05 lE7 6497 0.1549 2E7 6049 5222.5 

a much better point than the simplex. In 10 dimensions, with a test function 
having local minima defined in a much smaller subset of the definition domain 
(si = 0.2, ti = 0.05), the simplex method was able to find a very good point 
(f = 0.1549) after about ten million evaluations and 6500 restarts. 

In all cases, except for the simplex method in 2 dimensions, SA proved much 
more reliable and efficient than the other algorithms. 

5. CONCLUSIONS 

We have presented a method for global minimization of functions of continuous 
variables based on simulated annealing. This method needs many function 
evaluations, but it is able to find the global minimum of test functions with an 
extremely high number of local minima. It seems unlikely that functions of this 
kind are easily found in real problems; nevertheless, SA can provide a very high 
reliability in the minimization of multimodal functions at high computational 
costs, linearly increasing with the number of dimensions of the problem. 

Many problems, however, remain to be addressed and solved. The first one is 
the choice of the starting temperature To. In combinatorial SA, it has been 
suggested to use a value of the same order of magnitude of the standard deviation 
of the cost function in its domain of definition [18]. Dealing with continuous 
functions, this suggestion yields starting temperatures that are too high, thus 
wasting much computational effort. In fact, common cost functions of continuous 
variables often present terms varying with powers of the independent variables, 
thus leading to a rapid increase of the function toward the boundaries of its 
domain. This fact should not be significant for a good minimization algorithm, 
which should overcome in a few evaluations those parts of the function domain 
where it is varying steeply and monotonically. Moreover, this approach cannot 
be applied in the case of unconstrained minimization of continuous functions. 

A better approach could be the monitoring of the function behavior as SA 
proceeds, using the incremental ratio between the average value of the cost 
function and of its square at the points accepted by the moves at a given 
temperature, as proposed by White [ 181. This monitoring presupposes a Gaussian 
distribution of the function values in its definition domain, which again is not a 
common characteristic of continuous functions. Moreover, it has proven to be 
difficult to implement. More work is needed toward this goal, because a good 
monitoring of the minimization process can provide information about the 
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goodness of the starting temperature, about the effectiveness of the number of 
function evaluations at each temperature, and about the time at which it is better 
to stop SA, perhaps starting a classical minimization algorithm. In this way it 
might be possible to save many function evaluations when the current point is 
close to the final minimum and the temperature is too low to allow escape from 
its region of attraction. 

Further work is also needed to optimize the algorithm parameters, as we did 
for the simplex algorithm [l]. Such a study would be very costly, but many 
benefits would be gained. 

Another open problem that does not appear with the cost functions used is the 
poor performance of the proposed algorithm when following multimodal cost 
functions having “valleys” not directed along the coordinate directions. This 
problem is due to the way new search points are generated. However, highly 
directional schemes might lose some of the flexibility of the random search 
procedure, as pointed out in [9]. 

The SA algorithm is commonly used in our Institute to address optimization 
problems not solved by conventional algorithms, and in the areas of electrical 
measurements and mathematical modeling. It is also used as a standard, to state 
the ability of traditional methods to solve particular classes of optimization 
problems. 

Presently, work is proceeding on a version of the algorithm to run on parallel 
computers, thus reducing the major limitation of the method: its high computa- 
tional cost. 
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