
Mathematical Functions in Fortran

IMSL Fortran Library User’s Guide
MATH/LIBRARY Volume 2 of 2

Trusted For Over Years30

Mathematical Functions in Fortran

IMSL Fortran Library User’s Guide
MATH/LIBRARY Volume 2 of 2

P/N 7694 [w w w . v n i . c o m]

Visual Numerics, Inc. – United States
Corporate Headquarters
2000 Crow Canyon Place, Suite 270
San Ramon, CA 94583
PHONE: 925-807-0138
FAX: 925-807-0145
e-mail: info@vni.com
Westminster, CO
PHONE: 303-379-3040

Houston, TX
PHONE: 713-784-3131

Visual Numerics International Ltd.
Sussex House
6 The Forbury
Reading, Berkshire RGI 3EJ
UNITED KINGDOM

PHONE: +44-1-189 25-3370
FAX: +44 –1-189-25-3371
e-mail: info@vniuk.co.uk
Support: support@vniuk.co.uk

Visual Numerics SARL
Immeuble le Wilson 1
70, avenue due General de Gaulle
F-92058 PARIS LA DEFENSE, Cedex
FRANCE

PHONE: +33-1-46-93-94-20
FAX: +33-1-46-93-94-39
e-mail: info@vni.paris.fr

Visual Numerics S. A. de C. V.
Florencia 57 Piso 10-01
Col. Juarez
Mexico D. F. C. P. 06600
MEXICO

PHONE: +52-55-514-9730 or 9628
FAX: +52-55-514-4873

Visual Numerics International GmbH
Zettachring 10
D-70567Stuttgart
GERMANY

PHONE: +49-711-13287-0
FAX: +49-711-13287-99
e-mail: vni@visual-numerics.de

Visual Numerics Japan, Inc.
GOBANCHO HIKARI BLDG. 4TH Floor
14 GOBAN-CHO CHIYODA-KU
TOKYO, JAPAN 102

PHONE: +81-3-5211-7760
FAX: +81-3-5211-7769
e-mail: vnijapan@vnij.co.jp

Visual Numerics, Inc.
7/F, #510, Sect. 5
Chung Hsiao E. Road
Taipei, Taiwan 110
ROC

PHONE: +(886) 2-2727-2255
FAX: +(886) 2-2727-6798
e-mail: info@vni.com.tw

Visual Numerics Korea, Inc.
HANSHIN BLDG. Room 801
136-1, MAPO-DONG, MAPO-GU
SEOUL, 121-050
KOREA SOUTH

PHONE: +82-2-3273-2632 or 2633
FAX: +82-2-3273--2634
e-mail: info@vni.co.kr

World Wide Web site: http://www.vni.com

COPYRIGHT NOTICE: Copyright 1994-2003 by Visual Numerics, Inc. All rights reserved. Unpublished–rights reserved under the
copyright laws of the United States.
Printed in the USA.

The information contained in this document is subject to change without notice.

This document is provided AS IS, with NO WARRANTY. VISUAL NUMERICS, INC., SHALL NOT BE LIABLE FOR ANY
ERRORS WHICH MAY BE CONTAINED HEREIN OR FOR INCIDENTAL, CONSEQUENTIAL, OR OTHER INDIRECT
DAMAGES IN CONNECTION WITH THE FURNISHING, PERFORMANCE OR USE OF THIS MATERIAL. [Carol: note case
change]

IMSL, PV- WAVE, and Visual Numerics are registered in the U.S. Patent and Trademark Office by, and PV- WAVE Advantage is a
trademark of, Visual Numerics, Inc.

TRADEMARK NOTICE: The following are trademarks or registered trademarks of their respective owners, as follows: Microsoft,
Windows, Windows 95, Windows NT, Internet Explorer — Microsoft Corporation; Motif — The Open Systems Foundation, Inc.;
PostScript — Adobe Systems, Inc.; UNIX — X/Open Company, Limited; X Window System, X11 — Massachusetts Institute of
Technology; RISC System/6000 and IBM — International Business Machines Corporation; Sun, Java, JavaBeans — Sun
Microsystems, Inc.; JavaScript, Netscape Communicator — Netscape, Inc.; HPGL and PCL — Hewlett Packard Corporation; DEC,
VAX, VMS, OpenVMS — Compaq Information Technologies Group, L.P./Hewlett Packard Corporation; Tektronix 4510 Rasterizer —
Tektronix, Inc.; IRIX, TIFF — Silicon Graphics, Inc.; SPARCstation — SPARC International, licensed exclusively to Sun
Microsystems, Inc.; HyperHelp — Bristol Technology, Inc. Other products and company names mentioned herein are trademarks of
their respective owners.

Use of this document is governed by a Visual Numerics Software License Agreement. This document contains confidential and
proprietary information. No part of this document may be reproduced or transmitted in any form without the prior written consent of
Visual Numerics.

RESTRICTED RIGHTS NOTICE: This documentation is provided with RESTRICTED RIGHTS. Use, duplication or disclosure by the
US Government is subject to restrictions as set forth in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software
clause at DFAR 252.227-7013, and in subparagraphs (a) through (d) of the Commercial Computer software — Restricted Rights clause
at FAR 52.227-19, and in similar clauses in the NASA FAR Supplement, when applicable. Contractor/Manufacturer is Visual
Numerics, Inc., 2500 Wilcrest Drive, Suite 200, Houston, TX 77042-2759.

IMSL Fortran, C, and Java
Application Development Tools

IMSL MATH/LIBRARY Contents � i

Contents

Volume I

Introduction xiii

Chapter 1: Linear Systems 1

Chapter 2: Eigensystem Analysis 427

Chapter 3: Interpolation and Approximation 553

Chapter 4: Integration and Differentiation 769

Appendix A: GAMS Index A-1

Appendix B: Alphabetical Summary of Routines B-1

Appendix C: References C-1

Product Support i

Index iii

Volume II

Chapter 5: Differential Equations 833

Chapter 6: Transforms 989

ii � Contents IMSL MATH/LIBRARY

Chapter 7: Nonlinear Equations 1147

Chapter 8: Optimization 1181

Chapter 9: Basic Matrix/Vector Operations 1363

Chapter 10: Linear Algebra Operators and Generic Functions 1463

Chapter 11: Utilities 1553

Reference Material 1677

Appendix A: GAMS Index A-1

Appendix B: Alphabetical Summary of Routines B-1

Appendix C: References C-1

Product Support i

Index iii

IMSL MATH/LIBRARY Chapter 8: Optimization � 1181

Chapter 8: Optimization

Routines
8.1. Unconstrained Minimization
8.1.1 Univariate Function

Using function values only ..UVMIF 1186
Using function and first derivative values UVMID 1189
Nonsmooth function..UVMGS 1193

8.1.2 Multivariate Function
Using finite-difference gradient ...UMINF 1196
Using analytic gradient ..UMING 1202
Using finite-difference Hessian .. UMIDH 1208
Using analytic Hessian .. UMIAH 1213
Using conjugate gradient with finite-difference gradient.....UMCGF 1219
Using conjugate gradient with analytic gradient UMCGG 1223
Nonsmooth function.. UMPOL 1227

8.1.3 Nonlinear Least Squares
Using finite-difference Jacobian... UNLSF 1231
Using analytic Jacobian ..UNLSJ 1237

8.2. Minimization with Simple Bounds
Using finite-difference gradient ... BCONF 1243
Using analytic gradient ...BCONG 1249
Using finite-difference Hessian ...BCODH 1257
Using analytic Hessian ... BCOAH 1263
Nonsmooth Function..BCPOL 1271
Nonlinear least squares using finite-difference Jacobian BCLSF 1274
Nonlinear least squares using analytic Jacobian..................BCLSJ 1281
Nonlinear least squares problem subject to bounds............BCNLS 1288

8.3. Linearly Constrained Minimization
Dense linear programming ..DLPRS 1297
Sparse linear programming ... SLPRS 1301
Quadratic programming ..QPROG 1307
General objective function with finite-difference gradient....LCONF 1310
General objective function with analytic gradient LCONG 1316

1182 � Chapter 8: Optimization IMSL MATH/LIBRARY

8.4. Nonlinearly Constrained Minimization
Using a sequential equality constrained QP methodNNLPF 1323
Using a sequential equality constrained QP methodNNLPG 1329

8.5. Service Routines
Central-difference gradient... CDGRD 1336
Forward-difference gradient ..FDGRD 1338
Forward-difference Hessian .. FDHES 1340
Forward-difference Hessian using analytic gradientGDHES 1343
Forward-difference Jacobian..FDJAC 1346
Check user-supplied gradient .. CHGRD 1349
Check user-supplied Hessian ...CHHES 1352
Check user-supplied Jacobian .. CHJAC 1355
Generate starting points ... GGUES 1359

Usage Notes
Unconstrained Minimization
The unconstrained minimization problem can be stated as follows:

� �min
nx

f x
�R

where f : Rn� R is at least continuous. The routines for unconstrained minimization are grouped
into three categories: univariate functions (UV***), multivariate functions (UM***), and nonlinear
least squares (UNLS*).

For the univariate function routines, it is assumed that the function is unimodal within the
specified interval. Otherwise, only a local minimum can be expected. For further discussion on
unimodality, see Brent (1973).

A quasi-Newton method is used for the multivariate function routines UMINF (page 1196) and
UMING (page 1202), whereas UMIDH (page 1208) and UMIAH (page 1213) use a modified Newton
algorithm. The routines UMCGF (page 1219) and UMCGG (page 1223) make use of a conjugate
gradient approach, and UMPOL (page 1227) uses a polytope method. For more details on these
algorithms, see the documentation for the corresponding routines.

The nonlinear least squares routines use a modified Levenberg-Marquardt algorithm. If the
nonlinear least squares problem is a nonlinear data-fitting problem, then software that is designed
to deliver better statistical output may be useful; see IMSL (1991).

These routines are designed to find only a local minimum point. However, a function may have
many local minima. It is often possible to obtain a better local solution by trying different initial
points and intervals.

High precision arithmetic is recommended for the routines that use only function values. Also it is
advised that the derivative-checking routines CH*** be used to ensure the accuracy of the user-
supplied derivative evaluation subroutines.

IMSL MATH/LIBRARY Chapter 8: Optimization � 1183

Minimization with Simple Bounds
The minimization with simple bounds problem can be stated as follows:

� �min
nx

f x
�R

subject to li � xi � ui, for i = 1, 2, �, n

where f : Rn� R, and all the variables are not necessarily bounded.

The routines BCO** use the same algorithms as the routines UMI**, and the routines BCLS* are
the corresponding routines of UNLS*. The only difference is that an active set strategy is used to
ensure that each variable stays within its bounds. The routine BCPOL (page 1271) uses a function
comparison method similar to the one used by UMPOL (page 1227). Convergence for these
polytope methods is not guaranteed; therefore, these routines should be used as a last alternative.

Linearly Constrained Minimization
The linearly constrained minimization problem can be stated as follows:

� �min
nx

f x
�R

subject to Ax = b

where f : Rn� R, A is an m � n coefficient matrix, and b is a vector of length m. If f(x) is linear,
then the problem is a linear programming problem; if f(x) is quadratic, the problem is a quadratic
programming problem.

The routine DLPRS (page 1297) uses a revised simplex method to solve small- to medium-sized
linear programming problems. No sparsity is assumed since the coefficients are stored in full
matrix form.

The routine QPROG (page 1307) is designed to solve convex quadratic programming problems
using a dual quadratic programming algorithm. If the given Hessian is not positive definite, then
QPROG modifies it to be positive definite. In this case, output should be interpreted with care.

The routines LCONF (page 1310) and LCONG (page 1316) use an iterative method to solve the
linearly constrained problem with a general objective function. For a detailed description of the
algorithm, see Powell (1988, 1989).

Nonlinearly Constrained Minimization
The nonlinearly constrained minimization problem can be stated as follows:

� �min
nx

f x
�R

subject to gi(x) = 0, for i = 1, 2, �, m�

 gi(x) � 0, for i = m� + 1, �, m

where f : Rn� R and gi : Rn� R, for i = 1, 2, �, m

1184 � Chapter 8: Optimization IMSL MATH/LIBRARY

The routines NNLPF (page 1323) and NNLPG (page 1329) use a sequential equality constrained
quadratic programming method. A more complete discussion of this algorithm can be found in the
documentation.

Selection of Routines
The following general guidelines are provided to aid in the selection of the appropriate routine.

Unconstrained Minimization
1. For the univariate case, use UVMID (page 1189) when the gradient is available, and use

UVMIF (page 1182) when it is not. If discontinuities exist, then use UVMGS (page 1193).

2. For the multivariate case, use UMCG* when storage is a problem, and use UMPOL (page
1227) when the function is nonsmooth. Otherwise, use UMI** depending on the
availability of the gradient and the Hessian.

3. For least squares problems, use UNLSJ (page 1237) when the Jacobian is available, and
use UNLSF (page 1231) when it is not.

Minimization with Simple Bounds
1. Use BCONF (page 1243) when only function values are available. When first

derivatives are available, use either BCONG (page 1249) or BCODH (page 1257). If first
and second derivatives are available, then use BCOAH (page 1263).

2. For least squares, use BCLSF (page 1274) or BCLSJ (page 1281) depending on the
availability of the Jacobian.

3. Use BCPOL (page 1271) for nonsmooth functions that could not be solved satisfactorily
by the other routines.

IMSL MATH/LIBRARY Chapter 8: Optimization � 1185

The following charts provide a quick reference to routines in this chapter:

nonsmooth

UMCGF no derivative large-size

least squaresno Jacobian

no derivative

nonsmooth

UNLSF

UVMSG

UVMIF

UMCGG

UNLSJ

UMPOL

UMINF

UMING
UMIDH

UVMID UMIAH

no first
derivative

no second

problem

derivative

UNCONSTRAINED
MINIMIZATION

univariate multivariate

smooth

1186 � Chapter 8: Optimization IMSL MATH/LIBRARY

UVMIF
Finds the minimum point of a smooth function of a single variable using only function
evaluations.

Required Arguments
F — User-supplied FUNCTION to compute the value of the function to be minimized. The

form is F(X), where
X – The point at which the function is evaluated. (Input)

IMSL MATH/LIBRARY Chapter 8: Optimization � 1187

X should not be changed by F.
F – The computed function value at the point X. (Output)

F must be declared EXTERNAL in the calling program.

XGUESS — An initial guess of the minimum point of F. (Input)

BOUND — A positive number that limits the amount by which X may be changed from its
initial value. (Input)

X — The point at which a minimum value of F is found. (Output)

Optional Arguments
STEP — An order of magnitude estimate of the required change in X. (Input)

Default: STEP = 1.0.

XACC — The required absolute accuracy in the final value of X. (Input)
On a normal return there are points on either side of X within a distance XACC at which
F is no less than F(X).
Default: XACC = 1.e-4.

MAXFN — Maximum number of function evaluations allowed. (Input)
Default: MAXFN = 1000.

FORTRAN 90 Interface
Generic: CALL UVMIF (F, XGUESS, BOUND, X [,…])

Specific: The specific interface names are S_UVMIF and D_UVMIF.

FORTRAN 77 Interface
Single: CALL UVMIF (F, XGUESS, STEP, BOUND, XACC, MAXFN, X)

Double: The double precision name is DUVMIF.

Example

A minimum point of ex � 5x is found.
 USE UVMIF_INT
 USE UMACH_INT
! Declare variables
 INTEGER MAXFN, NOUT
 REAL BOUND, F, FX, STEP, X, XACC, XGUESS
 EXTERNAL F
! Initialize variables

1188 � Chapter 8: Optimization IMSL MATH/LIBRARY

 XGUESS = 0.0
 XACC = 0.001
 BOUND = 100.0
 STEP = 0.1
 MAXFN = 50
!
! Find minimum for F = EXP(X) - 5X
 CALL UVMIF (F, XGUESS, BOUND, X, STEP=STEP, XACC=XACC, MAXFN=MAXFN)
 FX = F(X)
! Print results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) X, FX
!
99999 FORMAT (’ The minimum is at ’, 7X, F7.3, //, ’ The function ’ &
 , ’value is ’, F7.3)
!
 END
! Real function: F = EXP(X) - 5.0*X
 REAL FUNCTION F (X)
 REAL X
!
 REAL EXP
 INTRINSIC EXP
!
 F = EXP(X) - 5.0E0*X
!
 RETURN
 END

Output
The minimum is at 1.609

The function value is -3.047

Comments
Informational errors

Type Code
 3 1 Computer rounding errors prevent further refinement of X.
 3 2 The final value of X is at a bound. The minimum is probably beyond the

bound.
 4 3 The number of function evaluations has exceeded MAXFN.

Description
The routine UVMIF uses a safeguarded quadratic interpolation method to find a minimum point
of a univariate function. Both the code and the underlying algorithm are based on the routine
ZXLSF written by M.J.D. Powell at the University of Cambridge.

The routine UVMIF finds the least value of a univariate function, f, that is specified by the
function subroutine F. Other required data include an initial estimate of the solution, XGUESS ,
and a positive number BOUND. Let x� = XGUESS and b = BOUND, then x is restricted to the

IMSL MATH/LIBRARY Chapter 8: Optimization � 1189

interval [x� � b, x� + b]. Usually, the algorithm begins the search by moving from x� to
x = x� + s, where s = STEP is also provided by the user and may be positive or negative. The first
two function evaluations indicate the direction to the minimum point, and the search strides out
along this direction until a bracket on a minimum point is found or until x reaches one of the
bounds x� � b. During this stage, the step length increases by a factor of between two and nine
per function evaluation; the factor depends on the position of the minimum point that is
predicted by quadratic interpolation of the three most recent function values.

When an interval containing a solution has been found, we will have three points, x�, x�, and x�,
with x� < x� < x� and f (x�) � f (x�) and f (x�) � f (x�). There are three main ingredients in the
technique for choosing the new x from these three points. They are (i) the estimate of the
minimum point that is given by quadratic interpolation of the three function values, (ii) a
tolerance parameter �, that depends on the closeness of f to a quadratic, and (iii) whether x� is
near the center of the range between x� and x� or is relatively close to an end of this range. In
outline, the new value of x is as near as possible to the predicted minimum point, subject to
being at least � from x�, and subject to being in the longer interval between x� and x� or x� and x�
when x� is particularly close to x� or x�. There is some elaboration, however, when the distance
between these points is close to the required accuracy; when the distance is close to the machine
precision; or when � is relatively large.

The algorithm is intended to provide fast convergence when f has a positive and continuous
second derivative at the minimum and to avoid gross inefficiencies in pathological cases, such
as

f (x) = x + 1.001|x|

The algorithm can make � large automatically in the pathological cases. In this case, it is usual
for a new value of x to be at the midpoint of the longer interval that is adjacent to the least
calculated function value. The midpoint strategy is used frequently when changes to f are
dominated by computer rounding errors, which will almost certainly happen if the user requests
an accuracy that is less than the square root of the machine precision. In such cases, the routine
claims to have achieved the required accuracy if it knows that there is a local minimum point
within distance 	 of x, where 	 = XACC, even though the rounding errors in f may cause the
existence of other local minimum points nearby. This difficulty is inevitable in minimization
routines that use only function values, so high precision arithmetic is recommended.

UVMID
Finds the minimum point of a smooth function of a single variable using both function evaluations
and first derivative evaluations.

Required Arguments
F — User-supplied FUNCTION to define the function to be minimized. The form is F(X),

where

X — The point at which the function is to be evaluated. (Input)

1190 � Chapter 8: Optimization IMSL MATH/LIBRARY

F — The computed value of the function at X. (Output)

F must be declared EXTERNAL in the calling program.

G — User-supplied FUNCTION to compute the derivative of the function. The form is G(X),
where

X — The point at which the derivative is to be computed. (Input)

G — The computed value of the derivative at X. (Output)

G must be declared EXTERNAL in the calling program.

A — A is the lower endpoint of the interval in which the minimum point of F is to be located.
(Input)

B — B is the upper endpoint of the interval in which the minimum point of F is to be located.
(Input)

X — The point at which a minimum value of F is found. (Output)

Optional Arguments
XGUESS — An initial guess of the minimum point of F. (Input)

Default: XGUESS = (a + b) / 2.0.

ERRREL — The required relative accuracy in the final value of X. (Input)
This is the first stopping criterion. On a normal return, the solution X is in an interval
that contains a local minimum and is less than or equal to MAX(1.0, ABS(X)) * ERRREL.
When the given ERRREL is less than machine epsilon, SQRT(machine epsilon) is used
as ERRREL.
Default: ERRREL = 1.e-4.

GTOL — The derivative tolerance used to decide if the current point is a local minimum.
(Input)
This is the second stopping criterion. X is returned as a solution when GX is less than or
equal to GTOL. GTOL should be nonnegative, otherwise zero would be used.
Default: GTOL = 1.e-4.

MAXFN — Maximum number of function evaluations allowed. (Input)
Default: MAXFN = 1000.

FX — The function value at point X. (Output)

GX — The derivative value at point X. (Output)

IMSL MATH/LIBRARY Chapter 8: Optimization � 1191

FORTRAN 90 Interface
Generic: CALL UVMID (F, G, A, B, X [,…])

Specific: The specific interface names are S_UVMID and D_UVMID.

FORTRAN 77 Interface
Single: CALL UVMID (F, G, XGUESS, ERRREL, GTOL, MAXFN, A, B, X, FX,

GX)

Double: The double precision name is DUVMID.

Example

A minimum point of ex � 5x is found.
 USE UVMID_INT
 USE UMACH_INT
! Declare variables
 INTEGER MAXFN, NOUT
 REAL A, B, ERRREL, F, FX, G, GTOL, GX, X, XGUESS
 EXTERNAL F, G
! Initialize variables
 XGUESS = 0.0
! Set ERRREL to zero in order
! to use SQRT(machine epsilon)
! as relative error
 ERRREL = 0.0
 GTOL = 0.0
 A = -10.0
 B = 10.0
 MAXFN = 50
!
! Find minimum for F = EXP(X) - 5X
 CALL UVMID (F, G, A, B, X, XGUESS=XGUESS, ERRREL=ERRREL, &
 GTOL=FTOL, MAXFN=MAXFN, FX=FX, GX=GX)
! Print results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) X, FX, GX
!
99999 FORMAT (’ The minimum is at ’, 7X, F7.3, //, ’ The function ’ &
 , ’value is ’, F7.3, //, ’ The derivative is ’, F7.3)
!
 END
! Real function: F = EXP(X) - 5.0*X
 REAL FUNCTION F (X)
 REAL X
!
 REAL EXP
 INTRINSIC EXP
!
 F = EXP(X) - 5.0E0*X

1192 � Chapter 8: Optimization IMSL MATH/LIBRARY

!
 RETURN
 END
!
 REAL FUNCTION G (X)
 REAL X
!
 REAL EXP
 INTRINSIC EXP
!
 G = EXP(X) - 5.0E0
 RETURN
 END

Output
The minimum is at 1.609

The function value is -3.047

The derivative is -0.001

Comments
Informational errors

Type Code
 3 1 The final value of X is at the lower bound. The minimum is probably

beyond the bound.
 3 2 The final value of X is at the upper bound. The minimum is probably

beyond the bound.
 4 3 The maximum number of function evaluations has been exceeded.

Description
The routine UVMID uses a descent method with either the secant method or cubic interpolation to
find a minimum point of a univariate function. It starts with an initial guess and two endpoints.
If any of the three points is a local minimum point and has least function value, the routine
terminates with a solution. Otherwise, the point with least function value will be used as the
starting point.

From the starting point, say xc, the function value fc = f (xc), the derivative value gc = g(xc), and
a new point xn defined by xn = xc � gc are computed. The function fn = f(xn), and the derivative
gn = g(xn) are then evaluated. If either fn � fc or gn has the opposite sign of gc, then there exists a
minimum point between xc and xn; and an initial interval is obtained. Otherwise, since xc is kept
as the point that has lowest function value, an interchange between xn and xc is performed. The
secant method is then used to get a new point

()n c
s c c

n c

g g
x x g

x x
�

� �

�

IMSL MATH/LIBRARY Chapter 8: Optimization � 1193

Let xn
 xs and repeat this process until an interval containing a minimum is found or one of the
convergence criteria is satisfied. The convergence criteria are as follows: Criterion 1:

c n cx x �� �

Criterion 2:

c gg ��

where �c = max{1.0, |xc|}�, � is a relative error tolerance and �g is a gradient tolerance.

When convergence is not achieved, a cubic interpolation is performed to obtain a new point.
Function and derivative are then evaluated at that point; and accordingly, a smaller interval that
contains a minimum point is chosen. A safeguarded method is used to ensure that the interval
reduces by at least a fraction of the previous interval. Another cubic interpolation is then
performed, and this procedure is repeated until one of the stopping criteria is met.

UVMGS
Finds the minimum point of a nonsmooth function of a single variable.

Required Arguments
F — User-supplied FUNCTION to compute the value of the function to be minimized. The

form is F(X), where

X – The point at which the function is evaluated. (Input)
X should not be changed by F.

F – The computed function value at the point X. (Output)

F must be declared EXTERNAL in the calling program.

A — On input, A is the lower endpoint of the interval in which the minimum of F is to be
located. On output, A is the lower endpoint of the interval in which the minimum of F
is located. (Input/Output)

B — On input, B is the upper endpoint of the interval in which the minimum of F is to be
located. On output, B is the upper endpoint of the interval in which the minimum of F
is located. (Input/Output)

XMIN — The approximate minimum point of the function F on the original interval (A, B).
(Output)

1194 � Chapter 8: Optimization IMSL MATH/LIBRARY

Optional Arguments
TOL — The allowable length of the final subinterval containing the minimum point. (Input)

Default: TOL = 1.e-4.

FORTRAN 90 Interface
Generic: CALL UVMGS (F, A, B, XMIN [,…])

Specific: The specific interface names are S_UVMGS and D_UVMGS.

FORTRAN 77 Interface
Single: CALL UVMGS (F, A, B, TOL, XMIN)

Double: The double precision name is DUVMGS.

Example
A minimum point of 3x� � 2x + 4 is found.

 USE UVMGS_INT
 USE UMACH_INT
! Specification of variables
 INTEGER NOUT
 REAL A, B, FCN, FMIN, TOL, XMIN
 EXTERNAL FCN
! Initialize variables
 A = 0.0E0
 B = 5.0E0
 TOL = 1.0E-3
! Minimize FCN
 CALL UVMGS (FCN, A, B, XMIN, TOL=TOL)
 FMIN = FCN(XMIN)
! Print results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) XMIN, FMIN, A, B
99999 FORMAT (’ The minimum is at ’, F5.3, //, ’ The ’, &
 ’function value is ’, F5.3, //, ’ The final ’, &
 ’interval is (’, F6.4, ’,’, F6.4, ’)’, /)
!
 END
!
! REAL FUNCTION: F = 3*X**2 - 2*X + 4
 REAL FUNCTION FCN (X)
 REAL X
!
 FCN = 3.0E0*X*X - 2.0E0*X + 4.0E0
!
 RETURN
 END

IMSL MATH/LIBRARY Chapter 8: Optimization � 1195

Output
The minimum is at 0.333

The function value is 3.667

The final interval is (0.3331,0.3340)

Comments
1. Informational errors

Type Code
 3 1 TOL is too small to be satisfied.
 4 2 Due to rounding errors F does not appear to be unimodal.

2. On exit from UVMGS without any error messages, the following conditions hold: (B-A) �
TOL.
A � XMIN and XMIN � B
F(XMIN) � F(A) and F(XMIN) � F(B)

3. On exit from UVMGS with error code 2, the following conditions hold:
A � XMIN and XMIN � B
F(XMIN) � F(A) and F(XMIN) � F(B) (only one equality can hold).
Further analysis of the function F is necessary in order to determine whether it is not
unimodal in the mathematical sense or whether it appears to be not unimodal to the
routine due to rounding errors in which case the A, B, and XMIN returned may be
acceptable.

Description
The routine UVMGS uses the golden section search technique to compute to the desired accuracy
the independent variable value that minimizes a unimodal function of one independent variable,
where a known finite interval contains the minimum.

Let � = TOL. The number of iterations required to compute the minimizing value to accuracy � is
the greatest integer less than or equal to

� �� �
� �

ln /
1

ln 1
b a

c
� �

�

�

where a and b define the interval and

� �3 5 / 2c � �

The first two test points are v� and v� that are defined as

v� = a + c(b � a), and v� = b � c(b � a)

1196 � Chapter 8: Optimization IMSL MATH/LIBRARY

If f(v�) < f(v�), then the minimizing value is in the interval (a, v�). In this case, b
 v�, v�
 v�,
and v�
 a + c(b � a). If f(v�) � f(v�), the minimizing value is in (v�, b). In this case, a
 v�, v�

 v�, and v�
 b � c(b � a).

The algorithm continues in an analogous manner where only one new test point is computed at
each step. This process continues until the desired accuracy � is achieved. XMIN is set to the
point producing the minimum value for the current iteration.

Mathematically, the algorithm always produces the minimizing value to the desired accuracy;
however, numerical problems may be encountered. If f is too flat in part of the region of interest,
the function may appear to be constant to the computer in that region. Error code 2 indicates that
this problem has occurred. The user may rectify the problem by relaxing the requirement on �,
modifying (scaling, etc.) the form of f or executing the program in a higher precision.

UMINF
Minimizes a function of N variables using a quasi-Newton method and a finite-difference gradient.

Required Arguments
FCN — User-supplied SUBROUTINE to evaluate the function to be minimized. The usage is

CALL FCN (N, X, F), where

N – Length of X. (Input)

X – The point at which the function is evaluated. (Input)
X should not be changed by FCN.

F – The computed function value at the point X. (Output)

FCN must be declared EXTERNAL in the calling program.

X — Vector of length N containing the computed solution. (Output)

Optional Arguments
N — Dimension of the problem. (Input)

Default: N = size (X,1).

XGUESS — Vector of length N containing an initial guess of the computed solution. (Input)
Default: XGUESS = 0.0.

XSCALE — Vector of length N containing the diagonal scaling matrix for the variables.
(Input)
XSCALE is used mainly in scaling the gradient and the distance between two points. In
the absence of other information, set all entries to 1.0.
Default: XSCALE = 1.0.

IMSL MATH/LIBRARY Chapter 8: Optimization � 1197

FSCALE — Scalar containing the function scaling. (Input)
FSCALE is used mainly in scaling the gradient. In the absence of other information, set
FSCALE to 1.0.
Default: FSCALE = 1.0.

IPARAM — Parameter vector of length 7. (Input/Output)
Set IPARAM(1) to zero for default values of IPARAM and RPARAM. See Comment 4.
Default: IPARAM = 0.

RPARAM — Parameter vector of length 7.(Input/Output)
See Comment 4.

FVALUE — Scalar containing the value of the function at the computed solution. (Output)

FORTRAN 90 Interface
Generic: CALL UMINF (FCN, X [,…])

Specific: The specific interface names are S_UMINF and D_UMINF.

FORTRAN 77 Interface
Single: CALL UMINF (FCN, N, XGUESS, XSCALE, FSCALE, IPARAM, RPARAM,

X, FVALUE)

Double: The double precision name is DUMINF.

Example
The function

� � � � � �
2 22

2 1 1100 1f x x x x� � � �

is minimized.
 USE UMINF_INT
 USE U4INF_INT
 USE UMACH_INT
 INTEGER N
 PARAMETER (N=2)
!
 INTEGER IPARAM(7), L, NOUT
 REAL F, RPARAM(7), X(N), XGUESS(N), &
 XSCALE(N)
 EXTERNAL ROSBRK
!
 DATA XGUESS/-1.2E0, 1.0E0/
!
! Relax gradient tolerance stopping
! criterion
 CALL U4INF (IPARAM, RPARAM)

1198 � Chapter 8: Optimization IMSL MATH/LIBRARY

 RPARAM(1) = 10.0E0*RPARAM(1)
! Minimize Rosenbrock function using
! initial guesses of -1.2 and 1.0

CALL UMINF (ROSBRK, X, XGUESS=XGUESS, IPARAM=IPARAM, RPARAM=RPARAM, &
FVALUE=F)

! Print results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) X, F, (IPARAM(L),L=3,5)
!
99999 FORMAT (’ The solution is ’, 6X, 2F8.3, //, ’ The function ’, &
 ’value is ’, F8.3, //, ’ The number of iterations is ’, &
 10X, I3, /, ’ The number of function evaluations is ’, &
 I3, /, ’ The number of gradient evaluations is ’, I3)
!
 END
!
 SUBROUTINE ROSBRK (N, X, F)
 INTEGER N
 REAL X(N), F
!
 F = 1.0E2*(X(2)-X(1)*X(1))**2 + (1.0E0-X(1))**2
!
 RETURN
 END

Output
The solution is 1.000 1.000

The function value is 0.000

The number of iterations is 15
The number of function evaluations is 40
The number of gradient evaluations is 19

Comments
1. Workspace may be explicitly provided, if desired, by use of U2INF/DU2INF. The

reference is:

CALL U2INF (FCN, N, XGUESS, XSCALE, FSCALE, IPARAM,
RPARAM, X,FVALUE, WK)

The additional argument is:

WK — Work vector of length N(N + 8). WK contains the following information on
output: The second N locations contain the last step taken. The third N locations
contain the last Newton step. The fourth N locations contain an estimate of the
gradient at the solution. The final N� locations contain the Cholesky
factorization of a BFGS approximation to the Hessian at the solution.

2. Informational errors

Type Code

IMSL MATH/LIBRARY Chapter 8: Optimization � 1199

 3 1 Both the actual and predicted relative reductions in the function are
less than or equal to the relative function convergence tolerance.

 4 2 The iterates appear to be converging to a noncritical point.
 4 3 Maximum number of iterations exceeded.
 4 4 Maximum number of function evaluations exceeded.
 4 5 Maximum number of gradient evaluations exceeded.
 4 6 Five consecutive steps have been taken with the maximum step

length.
 2 7 Scaled step tolerance satisfied; the current point may be an

approximate local solution, or the algorithm is making very slow
progress and is not near a solution, or STEPTL is too big.

 3 8 The last global step failed to locate a lower point than the current X
value.

3. The first stopping criterion for UMINF occurs when the infinity norm of the scaled
gradient is less than the given gradient tolerance (RPARAM(1)). The second stopping
criterion for UMINF occurs when the scaled distance between the last two steps is less
than the step tolerance (RPARAM(2)).

4. If the default parameters are desired for UMINF, then set IPARAM(1) to zero and call the
routine UMINF. Otherwise, if any nondefault parameters are desired for IPARAM or
RPARAM, then the following steps should be taken before calling UMINF:

CALL U4INF (IPARAM, RPARAM)
Set nondefault values for desired IPARAM, RPARAM elements.

Note that the call to U4INF will set IPARAM and RPARAM to their default values so only
nondefault values need to be set above.

The following is a list of the parameters and the default values:

IPARAM — Integer vector of length 7.
IPARAM(1) = Initialization flag.

IPARAM(2) = Number of good digits in the function.
Default: Machine dependent.

IPARAM(3) = Maximum number of iterations.
Default: 100.

IPARAM(4) = Maximum number of function evaluations.
Default: 400.

IPARAM(5) = Maximum number of gradient evaluations.
Default: 400.

1200 � Chapter 8: Optimization IMSL MATH/LIBRARY

IPARAM(6) = Hessian initialization parameter.
If IPARAM(6) = 0, the Hessian is initialized to the identity matrix; otherwise, it is
initialized to a diagonal matrix containing

� �� � 2max , s if t f s�

on the diagonal where t = XGUESS, fs = FSCALE, and s = XSCALE.
Default: 0.

IPARAM(7) = Maximum number of Hessian evaluations.
Default: Not used in UMINF.

RPARAM — Real vector of length 7.
RPARAM(1) = Scaled gradient tolerance.
The i-th component of the scaled gradient at
x is calculated as

� �

� �� �

*max ,1/

max ,
i i i

s

g x s

f x f

where g = �f (x), s = XSCALE, and fs = FSCALE.
Default:

3,� �

in double where � is the machine precision.

RPARAM(2) = Scaled step tolerance. (STEPTL)
The i-th component of the scaled step between two points x and y is computed as

� �max ,1/
i i

i i

x y
x s
�

where s = XSCALE.
Default: ��� where � is the machine precision.

RPARAM(3) = Relative function tolerance.
Default: max(10���, ����), max(10���, ����) in double where � is the machine
precision.

RPARAM(4) = Absolute function tolerance.
Default: Not used in UMINF.

RPARAM(5) = False convergence tolerance.
Default: Not used in UMINF.

IMSL MATH/LIBRARY Chapter 8: Optimization � 1201

RPARAM(6) = Maximum allowable step size.
Default: 1000 max(��, ��) where

� �
2

1 2 21
XSCALE XGUESS, , , and n

i ii
s t s s t� �

�

� � � ��

RPARAM(7) = Size of initial trust region radius.
Default: Not used in UMINF.

If double precision is required, then DU4INF is called, and RPARAM is declared double
precision.

5. Users wishing to override the default print/stop attributes associated with error
messages issued by this routine are referred to “Error Handling” in the Introduction.

Description
The routine UMINF uses a quasi-Newton method to find the minimum of a function f(x) of n
variables. Only function values are required. The problem is stated as follows:

� �min
nx

f x
�R

Given a starting point xc, the search direction is computed according to the formula

d = �B�� gc

where B is a positive definite approximation of the Hessian and gc is the gradient evaluated at
xc. A line search is then used to find a new point

xn = xc + �d, � > 0

such that

f(xn) � f(xc) + �gT d, � � (0, 0.5)

Finally, the optimality condition ||g(x)|| = � is checked where � is a gradient tolerance.

When optimality is not achieved, B is updated according to the BFGS formula
T T

T T

Bss B yyB B
s Bs y s

� � �

where s = xn � xc and y = gn � gc. Another search direction is then computed to begin the next
iteration. For more details, see Dennis and Schnabel (1983, Appendix A).

Since a finite-difference method is used to estimate the gradient, for some single precision
calculations, an inaccurate estimate of the gradient may cause the algorithm to terminate at a
noncritical point. In such cases, high precision arithmetic is recommended. Also, whenever the
exact gradient can be easily provided, IMSL routine UMING (page 1202) should be used instead.

1202 � Chapter 8: Optimization IMSL MATH/LIBRARY

UMING
Minimizes a function of N variables using a quasi-Newton method and a user-supplied gradient.

Required Arguments
FCN — User-supplied SUBROUTINE to evaluate the function to be minimized. The usage is

CALL FCN (N, X, F), where

N – Length of X. (Input)

X – Vector of length N at which point the function is evaluated. (Input)
X should not be changed by FCN.

F – The computed function value at the point X. (Output)

FCN must be declared EXTERNAL in the calling program.

GRAD — User-supplied SUBROUTINE to compute the gradient at the point X. The usage is
CALL GRAD (N, X, G), where

N – Length of X and G. (Input)
X – Vector of length N at which point the function is evaluated. (Input)
X should not be changed by GRAD .
G – The gradient evaluated at the point X. (Output)

GRAD must be declared EXTERNAL in the calling program.

X — Vector of length N containing the computed solution. (Output)

Optional Arguments
N — Dimension of the problem. (Input)

Default: N = size (X,1).

XGUESS — Vector of length N containing the initial guess of the minimum. (Input)
Default: XGUESS = 0.0.

XSCALE — Vector of length N containing the diagonal scaling matrix for the variables.
(Input)
XSCALE is used mainly in scaling the gradient and the distance between two points. In
the absence of other information, set all entries to 1.0.
Default: XSCALE = 1.0.

FSCALE — Scalar containing the function scaling. (Input)
FSCALE is used mainly in scaling the gradient. In the absence of other information, set

IMSL MATH/LIBRARY Chapter 8: Optimization � 1203

FSCALE to 1.0.
Default: FSCALE = 1.0.

IPARAM — Parameter vector of length 7. (Input/Output)
Set IPARAM(1) to zero for default values of IPARAM and RPARAM. See Comment 4.
Default: IPARAM = 0.

RPARAM — Parameter vector of length 7. (Input/Output)
See Comment 4.

FVALUE — Scalar containing the value of the function at the computed solution. (Output)

FORTRAN 90 Interface
Generic: CALL UMING (FCN, GRAD, X [,…])

Specific: The specific interface names are S_UMING and D_UMING.

FORTRAN 77 Interface
Single: CALL UMING (FCN, GRAD, N, XGUESS, XSCALE, FSCALE, IPARAM,

RPARAM, X, FVALUE)

Double: The double precision name is DUMING.

Example
The function

� � � � � �
2 22

2 1 1100 1f x x x x� � � �

is minimized. Default values for parameters are used.
 USE UMING_INT
 USE UMACH_INT
 INTEGER N
 PARAMETER (N=2)
!
 INTEGER IPARAM(7), L, NOUT
 REAL F, X(N), XGUESS(N)
 EXTERNAL ROSBRK, ROSGRD
!
 DATA XGUESS/-1.2E0, 1.0E0/
!
 IPARAM(1) = 0
! Minimize Rosenbrock function using
! initial guesses of -1.2 and 1.0
 CALL UMING (ROSBRK, ROSGRD, X, XGUESS=XGUESS, IPARAM=IPARAM, FVALUE=F)
! Print results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) X, F, (IPARAM(L),L=3,5)

1204 � Chapter 8: Optimization IMSL MATH/LIBRARY

!
99999 FORMAT (’ The solution is ’, 6X, 2F8.3, //, ’ The function ’, &
 ’value is ’, F8.3, //, ’ The number of iterations is ’, &
 10X, I3, /, ’ The number of function evaluations is ’, &
 I3, /, ’ The number of gradient evaluations is ’, I3)
!
 END
!
 SUBROUTINE ROSBRK (N, X, F)
 INTEGER N
 REAL X(N), F
!
 F = 1.0E2*(X(2)-X(1)*X(1))**2 + (1.0E0-X(1))**2
!
 RETURN
 END
!
 SUBROUTINE ROSGRD (N, X, G)
 INTEGER N
 REAL X(N), G(N)
!
 G(1) = -4.0E2*(X(2)-X(1)*X(1))*X(1) - 2.0E0*(1.0E0-X(1))
 G(2) = 2.0E2*(X(2)-X(1)*X(1))
!
 RETURN
 END

Output
The solution is 1.000 1.000

The function value is 0.000

The number of iterations is 18
The number of function evaluations is 31
The number of gradient evaluations is 22

Comments
1. Workspace may be explicitly provided, if desired, by use of U2ING/DU2ING. The

reference is:

CALL U2ING (FCN, GRAD, N, XGUESS, XSCALE, FSCALE, IPARAM,
RPARAM, X, FVALUE, WK)

The additional argument is

WK — Work vector of length N * (N + 8). WK contains the following information on
output: The second N locations contain the last step taken. The third N locations
contain the last Newton step. The fourth N locations contain an estimate of the
gradient at the solution. The final N� locations contain the Cholesky factorization
of a BFGS approximation to the Hessian at the solution.

2. Informational errors

IMSL MATH/LIBRARY Chapter 8: Optimization � 1205

Type Code
 3 1 Both the actual and predicted relative reductions in the function are

less than or equal to the relative function convergence tolerance.
 4 2 The iterates appear to be converging to a noncritical point.
 4 3 Maximum number of iterations exceeded.
 4 4 Maximum number of function evaluations exceeded.
 4 5 Maximum number of gradient evaluations exceeded.
 4 6 Five consecutive steps have been taken with the maximum step

length.
 2 7 Scaled step tolerance satisfied; the current point may be an

approximate local solution, or the algorithm is making very slow
progress and is not near a solution, or STEPTL is too big.

 3 8 The last global step failed to locate a lower point than the current X
value.

3. The first stopping criterion for UMING occurs when the infinity norm of the scaled
gradient is less than the given gradient tolerance (RPARAM(1)). The second stopping
criterion for UMING occurs when the scaled distance between the last two steps is less
than the step tolerance (RPARAM(2)).

4. If the default parameters are desired for UMING, then set IPARAM(1) to zero and call
routine UMING (page 1202). Otherwise, if any nondefault parameters are desired for
IPARAM or RPARAM, then the following steps should be taken before calling UMING:

 CALL U4INF (IPARAM, RPARAM)
Set nondefault values for desired IPARAM, RPARAM elements.

Note that the call to U4INF will set IPARAM and RPARAM to their default values so only
nondefault values need to be set above.

The following is a list of the parameters and the default values:

IPARAM — Integer vector of length 7.

IPARAM(1) = Initialization flag.

IPARAM(2) = Number of good digits in the function.
Default: Machine dependent.

IPARAM(3) = Maximum number of iterations.
Default: 100.

IPARAM(4) = Maximum number of function evaluations.
Default: 400.

IPARAM(5) = Maximum number of gradient evaluations.
Default: 400.

1206 � Chapter 8: Optimization IMSL MATH/LIBRARY

IPARAM(6) = Hessian initialization parameter
If IPARAM(6) = 0, the Hessian is initialized to the identity matrix; otherwise, it is
initialized to a diagonal matrix containing

 � �� � 2max , s if t f s�

on the diagonal where t = XGUESS, fs = FSCALE, and s = XSCALE.
Default: 0.

IPARAM(7) = Maximum number of Hessian evaluations.
Default: Not used in UMING.

RPARAM — Real vector of length 7.
RPARAM(1) = Scaled gradient tolerance.
The i-th component of the scaled gradient at
x is calculated as

� �

� �� �

* max ,1/

max ,
i i i

s

g x s

f x f

where g = �f (x), s = XSCALE, and fs = FSCALE.
Default:

3,� �

in double where � is the machine precision.

RPARAM(2) = Scaled step tolerance. (STEPTL)
The i-th component of the scaled step between two points x and y is computed as

� �max ,1/
i i

i i

x y
x s
�

where s = XSCALE.
Default: ���� where � is the machine precision.

RPARAM(3) = Relative function tolerance.
Default: max(10���, ����), max(10���, ����) in double where � is the machine
precision.

RPARAM(4) = Absolute function tolerance.
Default: Not used in UMING.

IMSL MATH/LIBRARY Chapter 8: Optimization � 1207

RPARAM(5) = False convergence tolerance.
Default: Not used in UMING.

RPARAM(6) = Maximum allowable step size.
Default: 1000 max(��, ��) where

� �
2

1 1

n
i ii

s t�
�

� �

�� = || s ||�, s = XSCALE, and t = XGUESS.

RPARAM(7) = Size of initial trust region radius.
Default: Not used in UMING.

If double precision is required, then DU4INF is called, and RPARAM is declared double
precision.

5. Users wishing to override the default print/stop attributes associated with error
messages issued by this routine are referred to “Error Handling” in the Introduction.

Description
The routine UMING uses a quasi-Newton method to find the minimum of a function f(x) of n
variables. Function values and first derivatives are required. The problem is stated as follows:

� �min
nx

f x
�R

Given a starting point xc, the search direction is computed according to the formula

d = �B�� gc

where B is a positive definite approximation of the Hessian and gc is the gradient evaluated at
xc. A line search is then used to find a new point

xn = xc + �d, � > 0

such that

f(xn) � f(xc) + �gT d, � � (0, 0.5)

Finally, the optimality condition ||g(x)|| = � is checked where � is a gradient tolerance.

When optimality is not achieved, B is updated according to the BFGS formula
T T

T T

Bss B yyB B
s Bs y s

� � �

where s = xn � xc and y = gn � gc. Another search direction is then computed to begin the next
iteration. For more details, see Dennis and Schnabel (1983, Appendix A).

1208 � Chapter 8: Optimization IMSL MATH/LIBRARY

UMIDH
Minimizes a function of N variables using a modified Newton method and a finite-difference
Hessian.

Required Arguments
FCN — User-supplied SUBROUTINE to evaluate the function to be minimized. The usage is

CALL FCN (N, X, F), where

N – Length of X. (Input)

X – Vector of length N at which point the function is evaluated. (Input)
X should not be changed by FCN.

F – The computed function value at the point X. (Output)

FCN must be declared EXTERNAL in the calling program.

GRAD — User-supplied SUBROUTINE to compute the gradient at the point X. The usage is
CALL GRAD (N, X, G), where

N – Length of X and G. (Input)

X – The point at which the gradient is evaluated. (Input)
X should not be changed by GRAD.

G – The gradient evaluated at the point X. (Output)

GRAD must be declared EXTERNAL in the calling program.

X — Vector of length N containing the computed solution. (Output)

Optional Arguments
N — Dimension of the problem. (Input)

Default: N = size (X,1).

XGUESS — Vector of length N containing initial guess. (Input)
Default: XGUESS = 0.0.

XSCALE — Vector of length N containing the diagonal scaling matrix for the variables.
(Input)
XSCALE is used mainly in scaling the gradient and the distance between two points. In
the absence of other information, set all entries to 1.0.
Default: XSCALE = 1.0.

IMSL MATH/LIBRARY Chapter 8: Optimization � 1209

FSCALE — Scalar containing the function scaling. (Input)
FSCALE is used mainly in scaling the gradient. In the absence of other information, set
FSCALE to 1.0.
Default: FSCALE = 1.0.

IPARAM — Parameter vector of length 7. (Input/Output)
Set IPARAM(1) to zero for default values of IPARAM and RPARAM. See Comment 4.
Default: IPARAM = 0.

RPARAM — Parameter vector of length 7. (Input/Output)
See Comment 4.

FVALUE — Scalar containing the value of the function at the computed solution. (Output)

FORTRAN 90 Interface
Generic: CALL UMIDH (FCN, GRAD, X [,…])

Specific: The specific interface names are S_UMIDH and D_UMIDH.

FORTRAN 77 Interface
Single: CALL UMIDH (FCN, GRAD, N, XGUESS, XSCALE, FSCALE, IPARAM,

RPARAM, X, FVALUE)

Double: The double precision name is DUMIDH.

Example
The function

� � � � � �
2 22

2 1 1100 1f x x x x� � � �

is minimized. Default values for parameters are used.
 USE UMIDH_INT
 USE UMACH_INT
 INTEGER N
 PARAMETER (N=2)
!
 INTEGER IPARAM(7), L, NOUT
 REAL F, X(N), XGUESS(N)
 EXTERNAL ROSBRK, ROSGRD
!
 DATA XGUESS/-1.2E0, 1.0E0/
!
 IPARAM(1) = 0
! Minimize Rosenbrock function using
! initial guesses of -1.2 and 1.0
 CALL UMIDH (ROSBRK, ROSGRD, X, XGUESS=XGUESS, IPARAM=IPARAM, FVALUE=F)
! Print results

1210 � Chapter 8: Optimization IMSL MATH/LIBRARY

 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) X, F, (IPARAM(L),L=3,5), IPARAM(7)
!
99999 FORMAT (’ The solution is ’, 6X, 2F8.3, //, ’ The function ’, &
 ’value is ’, F8.3, //, ’ The number of iterations is ’, &
 10X, I3, /, ’ The number of function evaluations is ’, &
 I3, /, ’ The number of gradient evaluations is ’, I3, /, &
 ’ The number of Hessian evaluations is ’, I3)
!
 END
!
 SUBROUTINE ROSBRK (N, X, F)
 INTEGER N
 REAL X(N), F
!
 F = 1.0E2*(X(2)-X(1)*X(1))**2 + (1.0E0-X(1))**2
!
 RETURN
 END
!
 SUBROUTINE ROSGRD (N, X, G)
 INTEGER N
 REAL X(N), G(N)
!
 G(1) = -4.0E2*(X(2)-X(1)*X(1))*X(1) - 2.0E0*(1.0E0-X(1))
 G(2) = 2.0E2*(X(2)-X(1)*X(1))
!
 RETURN
 END

Output
The solution is 1.000 1.000

The function value is 0.000

The number of iterations is 21
The number of function evaluations is 30
The number of gradient evaluations is 22
The number of Hessian evaluations is 21

Comments
1. Workspace may be explicitly provided, if desired, by use of U2IDH/DU2IDH. The

reference is:

1CALL U2IDH (FCN, GRAD, N, XGUESS, XSCALE, FSCALE, IPARAM,
RPARAM, X, FVALUE, WK)

The additional argument is:

WK — Work vector of length N * (N + 9). WK contains the following information on
output: The second N locations contain the last step taken. The third N locations
contain the last Newton step. The fourth N locations contain an estimate of the

IMSL MATH/LIBRARY Chapter 8: Optimization � 1211

gradient at the solution. The final N� locations contain the Hessian at the
approximate solution.

2. Informational errors

Type Code
 3 1 Both the actual and predicted relative reductions in the function are

less than or equal to the relative function convergence tolerance.
 4 2 The iterates appear to be converging to a noncritical point.
 4 3 Maximum number of iterations exceeded.
 4 4 Maximum number of function evaluations exceeded.
 4 5 Maximum number of gradient evaluations exceeded.
 4 6 Five consecutive steps have been taken with the maximum step

length.
 2 7 Scaled step tolerance satisfied; the current point may be an

approximate local solution, or the algorithm is making very slow
progress and is not near a solution, or STEPTL is too big.

 4 7 Maximum number of Hessian evaluations exceeded.
 3 8 The last global step failed to locate a lower point than the current X

value.

3. The first stopping criterion for UMIDH occurs when the norm of the gradient is less than
the given gradient tolerance (RPARAM(1)). The second stopping criterion for UMIDH
occurs when the scaled distance between the last two steps is less than the step
tolerance (RPARAM(2)).

4. If the default parameters are desired for UMIDH, then set IPARAM(1) to zero and call
routine UMIDH. Otherwise, if any nondefault parameters are desired for IPARAM or
RPARAM, then the following steps should be taken before calling UMIDH:

CALL U4INF (IPARAM, RPARAM)

Set nondefault values for desired IPARAM, RPARAM elements.

Note that the call to U4INF will set IPARAM and RPARAM to their default values so only
nondefault values need to be set above.

The following is a list of the parameters and the default values:

IPARAM — Integer vector of length 7.
IPARAM(1) = Initialization flag.

 IPARAM(2) = Number of good digits in the function.
Default: Machine dependent.

IPARAM(3) = Maximum number of iterations.
Default: 100.

1212 � Chapter 8: Optimization IMSL MATH/LIBRARY

IPARAM(4) = Maximum number of function evaluations.
Default: 400.

IPARAM(5) = Maximum number of gradient evaluations.
Default: 400.

IPARAM(6) = Hessian initialization parameter
Default: Not used in UMIDH.

IPARAM(7) = Maximum number of Hessian evaluations.
Default:100

RPARAM — Real vector of length 7.

RPARAM(1) = Scaled gradient tolerance.
The i-th component of the scaled gradient at x is calculated as

� �

� �� �

* max ,1/

max ,
i i i

s

g x s

f x f

where g = �f (x), s = XSCALE, and fs = FSCALE.
Default:

3,� �

in double where � is the machine precision.

 RPARAM(2) = Scaled step tolerance. (STEPTL)

The i-th component of the scaled step between two points x and y is computed as

� �max ,1/
i i

i i

x y
x s
�

 where s = XSCALE.
Default: ���� where � is the machine precision.

 RPARAM(3) = Relative function tolerance.

 Default: max(10���, ����), max(10���, ����) in double where � is the machine
 precision.

 RPARAM(4) = Absolute function tolerance.

 Default: Not used in UMIDH.

IMSL MATH/LIBRARY Chapter 8: Optimization � 1213

 RPARAM(5) = False convergence tolerance.

 Default: 100� where � is the machine precision.

 RPARAM(6) = Maximum allowable step size.

 Default: 1000 max(��, ��) where

� �
2

1 1

n
i ii

s t�
�

� �

 �� = || s ||�, s = XSCALE, and t = XGUESS.

 RPARAM(7) = Size of initial trust region radius.

 Default: Based on initial scaled Cauchy step.

If double precision is required, then DU4INF is called, and RPARAM is declared double
precision.

5. Users wishing to override the default print/stop attributes associated with error
messages issued by this routine are referred to “Error Handling” in the Introduction.

Description
The routine UMIDH uses a modified Newton method to find the minimum of a function f (x) of n
variables. First derivatives must be provided by the user. The algorithm computes an optimal
locally constrained step (Gay 1981) with a trust region restriction on the step. It handles the case
that the Hessian is indefinite and provides a way to deal with negative curvature. For more
details, see Dennis and Schnabel (1983, Appendix A) and Gay (1983).

Since a finite-difference method is used to estimate the Hessian for some single precision
calculations, an inaccurate estimate of the Hessian may cause the algorithm to terminate at a
noncritical point. In such cases, high precision arithmetic is recommended. Also, whenever the
exact Hessian can be easily provided, IMSL routine UMIAH (page 1213) should be used instead.

UMIAH
Minimizes a function of N variables using a modified Newton method and a user-supplied
Hessian.

Required Arguments
FCN — User-supplied SUBROUTINE to evaluate the function to be minimized. The usage is

CALL FCN (N, X, F), where

N – Length of X. (Input)

1214 � Chapter 8: Optimization IMSL MATH/LIBRARY

X – Vector of length N at which point the function is evaluated. (Input)
X should not be changed by FCN.

F – The computed function value at the point X. (Output)

FCN must be declared EXTERNAL in the calling program.

GRAD — User-supplied SUBROUTINE to compute the gradient at the point X. The usage is
CALL GRAD (N, X, G), where

N – Length of X and G. (Input)

X – Vector of length N at which point the gradient is evaluated. (Input)
X should not be changed by GRAD.

G – The gradient evaluated at the point X. (Output)

GRAD must be declared EXTERNAL in the calling program.

HESS — User-supplied SUBROUTINE to compute the Hessian at the point X. The usage is
CALL HESS (N, X, H, LDH), where

N – Length of X. (Input)

X – Vector of length N at which point the Hessian is evaluated. (Input)
X should not be changed by HESS.

H – The Hessian evaluated at the point X. (Output)

LDH – Leading dimension of H exactly as specified in the dimension statement of the
calling program. LDH must be equal to N in this routine. (Input)

HESS must be declared EXTERNAL in the calling program.

X — Vector of length N containing the computed solution. (Output)

Optional Arguments
N — Dimension of the problem. (Input)

Default: N = size (X,1).

XGUESS — Vector of length N containing initial guess. (Input)
Default: XGUESS = 0.0.

XSCALE — Vector of length N containing the diagonal scaling matrix for the variables.
(Input)
XSCALE is used mainly in scaling the gradient and the distance between two points. In

IMSL MATH/LIBRARY Chapter 8: Optimization � 1215

the absence of other information, set all entries to 1.0.
Default: XSCALE = 1.0.

FSCALE — Scalar containing the function scaling. (Input)
FSCALE is used mainly in scaling the gradient. In the absence of other information, set
FSCALE to 1.0.
Default: FSCALE = 1.0.

IPARAM — Parameter vector of length 7. (Input/Output)
Set IPARAM(1) to zero for default values of IPARAM and RPARAM. See Comment 4.
Default: IPARAM = 0.

RPARAM — Parameter vector of length 7. (Input/Output)
See Comment 4.

FVALUE — Scalar containing the value of the function at the computed solution. (Output)

FORTRAN 90 Interface
Generic: CALL UMIAH (FCN, GRAD, HESS, X, [,…])

Specific: The specific interface names are S_UMIAH and D_UMIAH.

FORTRAN 77 Interface
Single: CALL UMIAH (FCN, GRAD, HESS, N, XGUESS, XSCALE, FSCALE,

IPARAM, RPARAM, X, FVALUE)

Double: The double precision name is DUMIAH.

Example
The function

� � � � � �
2 22

2 1 1100 1f x x x x� � � �

is minimized. Default values for parameters are used.
 USE UMIAH_INT
 USE UMACH_INT
 INTEGER N
 PARAMETER (N=2)
!
 INTEGER IPARAM(7), L, NOUT
 REAL F, FSCALE, RPARAM(7), X(N), &
 XGUESS(N), XSCALE(N)
 EXTERNAL ROSBRK, ROSGRD, ROSHES
!
 DATA XGUESS/-1.2E0, 1.0E0/, XSCALE/1.0E0, 1.0E0/, FSCALE/1.0E0/
!

1216 � Chapter 8: Optimization IMSL MATH/LIBRARY

 IPARAM(1) = 0
! Minimize Rosenbrock function using
! initial guesses of -1.2 and 1.0

CALL UMIAH (ROSBRK, ROSGRD, ROSHES, X, XGUESS=XGUESS, IPARAM=IPARAM, &
FVALUE=F)

! Print results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) X, F, (IPARAM(L),L=3,5), IPARAM(7)
!
99999 FORMAT (’ The solution is ’, 6X, 2F8.3, //, ’ The function ’, &
 ’value is ’, F8.3, //, ’ The number of iterations is ’, &
 10X, I3, /, ’ The number of function evaluations is ’, &
 I3, /, ’ The number of gradient evaluations is ’, I3, /, &
 ’ The number of Hessian evaluations is ’, I3)
!
 END
!
 SUBROUTINE ROSBRK (N, X, F)
 INTEGER N
 REAL X(N), F
!
 F = 1.0E2*(X(2)-X(1)*X(1))**2 + (1.0E0-X(1))**2
!
 RETURN
 END
!
 SUBROUTINE ROSGRD (N, X, G)
 INTEGER N
 REAL X(N), G(N)
!
 G(1) = -4.0E2*(X(2)-X(1)*X(1))*X(1) - 2.0E0*(1.0E0-X(1))
 G(2) = 2.0E2*(X(2)-X(1)*X(1))
!
 RETURN
 END
!
 SUBROUTINE ROSHES (N, X, H, LDH)
 INTEGER N, LDH
 REAL X(N), H(LDH,N)
!
 H(1,1) = -4.0E2*X(2) + 1.2E3*X(1)*X(1) + 2.0E0
 H(2,1) = -4.0E2*X(1)
 H(1,2) = H(2,1)
 H(2,2) = 2.0E2
!
 RETURN
 END

Output
The solution is 1.000 1.000

The function value is 0.000

The number of iterations is 21
The number of function evaluations is 31

IMSL MATH/LIBRARY Chapter 8: Optimization � 1217

The number of gradient evaluations is 22
The number of Hessian evaluations is 21

Comments
1. Workspace may be explicitly provided, if desired, by use of U2IAH/DU2IAH. The

reference is:

CALL U2IAH (FCN, GRAD, HESS, N, XGUESS, XSCALE, FSCALE, IPARAM,
RPARAM, X, FVALUE, WK)

The additional argument is:

WK — Work vector of length N * (N + 9). WK contains the following information on
output: The second N locations contain the last step taken. The third N locations
contain the last Newton step. The fourth N locations contain an estimate of the
gradient at the solution. The final N� locations contain the Hessian at the
approximate solution.

2. Informational errors

Type Code
 3 1 Both the actual and predicted relative reductions in the function are

less than or equal to the relative function convergence tolerance.
 4 2 The iterates appear to be converging to a noncritical point.
 4 3 Maximum number of iterations exceeded.
 4 4 Maximum number of function evaluations exceeded.
 4 5 Maximum number of gradient evaluations exceeded.
 4 6 Five consecutive steps have been taken with the maximum step

length.
 2 7 Scaled step tolerance satisfied; the current point may be an

approximate local solution, or the algorithm is making very slow
progress and is not near a solution, or STEPTL is too big.

 4 7 Maximum number of Hessian evaluations exceeded.
 3 8 The last global step failed to locate a lower point than the current X

value.

3. The first stopping criterion for UMIAH occurs when the norm of the gradient is less than
the given gradient tolerance (RPARAM(1)). The second stopping criterion for UMIAH
occurs when the scaled distance between the last two steps is less than the step
tolerance (RPARAM(2)).

4. If the default parameters are desired for UMIAH, then set IPARAM(1) to zero and call the
routine UMIAH. Otherwise, if any nondefault parameters are desired for IPARAM or
RPARAM, then the following steps should be taken before calling UMIAH:

CALL U4INF (IPARAM, RPARAM)
Set nondefault values for desired IPARAM, RPARAM elements.

1218 � Chapter 8: Optimization IMSL MATH/LIBRARY

Note that the call to U4INF will set IPARAM and RPARAM to their default values so only
nondefault values need to be set above.

The following is a list of the parameters and the default values:

IPARAM — Integer vector of length 7.
IPARAM(1) = Initialization flag.

IPARAM(2) = Number of good digits in the function.
Default: Machine dependent.

IPARAM(3) = Maximum number of iterations.
Default: 100.

IPARAM(4) = Maximum number of function evaluations.
Default: 400.

IPARAM(5) = Maximum number of gradient evaluations.
Default: 400.

IPARAM(6) = Hessian initialization parameter
Default: Not used in UMIAH.

IPARAM(7) = Maximum number of Hessian evaluations.
Default: 100.

RPARAM — Real vector of length 7.
RPARAM(1) = Scaled gradient tolerance.
The i-th component of the scaled gradient at x is calculated as

� �

� �� �

max ,1/

max ,
i i i

s

g x s

f x f

�

 where g = �f (x), s = XSCALE, and fs = FSCALE.
Default:

3,� �

 in double where � is the machine precision.

RPARAM(2) = Scaled step tolerance. (STEPTL)
The i-th component of the scaled step between two points x and y is computed as

� �max ,1/
i i

i i

x y
x s
�

IMSL MATH/LIBRARY Chapter 8: Optimization � 1219

 where s = XSCALE.
Default: ���� where � is the machine precision.

RPARAM(3) = Relative function tolerance.
Default: max(10���, ����), max(10���, ����) in double where � is the machine
precision.

RPARAM(4) = Absolute function tolerance.
Default: Not used in UMIAH.

RPARAM(5) = False convergence tolerance.
Default: 100� where � is the machine precision.

RPARAM(6) = Maximum allowable step size.
Default: 1000 max(��, ��) where

� �
2

1 1

n
i ii

s t�
�

� �

 �� = || s ||�, s = XSCALE, and t = XGUESS.

RPARAM(7) = Size of initial trust region radius.
Default: based on the initial scaled Cauchy step.

If double precision is required, then DU4INF is called, and RPARAM is declared double
precision.

5. Users wishing to override the default print/stop attributes associated with error
messages issued by this routine are referred to “Error Handling” in the Introduction.

Description
The routine UMIAH uses a modified Newton method to find the minimum of a function f(x) of n
variables. First and second derivatives must be provided by the user. The algorithm computes an
optimal locally constrained step (Gay 1981) with a trust region restriction on the step. This
algorithm handles the case where the Hessian is indefinite and provides a way to deal with
negative curvature. For more details, see Dennis and Schnabel (1983, Appendix A) and Gay
(1983).

UMCGF
Minimizes a function of N variables using a conjugate gradient algorithm and a finite-difference
gradient.

1220 � Chapter 8: Optimization IMSL MATH/LIBRARY

Required Arguments
FCN — User-supplied SUBROUTINE to evaluate the function to be minimized. The usage is

CALL FCN (N, X, F), where

N – Length of X. (Input)

X – The point at which the function is evaluated. (Input)
X should not be changed by FCN.

F – The computed function value at the point X. (Output)

FCN must be declared EXTERNAL in the calling program.

DFPRED — A rough estimate of the expected reduction in the function. (Input)
DFPRED is used to determine the size of the initial change to X.

X — Vector of length N containing the computed solution. (Output)

Optional Arguments
N — Dimension of the problem. (Input)

Default: N = size (X,1).

XGUESS — Vector of length N containing the initial guess of the minimum. (Input)
Default: XGUESS = 0.0.

XSCALE — Vector of length N containing the diagonal scaling matrix for the variables.
(Input)
Default: XSCALE = 1.0.

GRADTL — Convergence criterion. (Input)
The calculation ends when the sum of squares of the components of G is less than
GRADTL.
Default: GRADTL = 1.e-4.

MAXFN — Maximum number of function evaluations. (Input)
If MAXFN is set to zero, then no restriction on the number of function evaluations is set.
Default: MAXFN = 0.

G — Vector of length N containing the components of the gradient at the final parameter
estimates. (Output)

FVALUE — Scalar containing the value of the function at the computed solution. (Output)

FORTRAN 90 Interface
Generic: CALL UMCGF (FCN, DFPRED, X [,…])

IMSL MATH/LIBRARY Chapter 8: Optimization � 1221

Specific: The specific interface names are S_UMCGF and D_UMCGF.

FORTRAN 77 Interface
Single: CALL UMCGF (FCN, N, XGUESS, XSCALE, GRADTL, MAXFN, DFPRED,

X, G, FVALUE)

Double: The double precision name is DUMCGF.

Example
The function

� � � � � �
2 22

2 1 1100 1f x x x x� � � �

is minimized and the solution is printed.
 USE UMCGF_INT
 USE UMACH_INT
! Declaration of variables
 INTEGER N
 PARAMETER (N=2)
!
 INTEGER I, MAXFN, NOUT
 REAL DFPRED, FVALUE, G(N), GRADTL, X(N), XGUESS(N)
 EXTERNAL ROSBRK
!
 DATA XGUESS/-1.2E0, 1.0E0/
!
 DFPRED = 0.2
 GRADTL = 1.0E-6
 MAXFN = 100
! Minimize the Rosenbrock function
 CALL UMCGF (ROSBRK, DFPRED, X, XGUESS=XGUESS, GRADTL=GRADTL, &
 G=G, FVALUE=FVALUE)
! Print the results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) (X(I),I=1,N), FVALUE, (G(I),I=1,N)
99999 FORMAT (’ The solution is ’, 2F8.3, //, ’ The function ’, &
 ’evaluated at the solution is ’, F8.3, //, ’ The ’, &
 ’gradient is ’, 2F8.3, /)
!
 END
!
 SUBROUTINE ROSBRK (N, X, F)
 INTEGER N
 REAL X(N), F
!
 F = 1.0E2*(X(2)-X(1)*X(1))**2 + (1.0E0-X(1))**2
 RETURN
 END

1222 � Chapter 8: Optimization IMSL MATH/LIBRARY

Output
The solution is 0.999 0.998

The function evaluated at the solution is 0.000

The gradient is -0.001 0.000

Comments
1. Workspace may be explicitly provided, if desired, by use of U2CGF/DU2CGF. The

reference is:

CALL U2CGF (FCN, N, XGUESS, XSCALE, GRADTL, MAXFN, DFPRED, X, G,
FVALUE, S, RSS, RSG, GINIT, XOPT, GOPT)

The additional arguments are as follows:

S — Vector of length N used for the search direction in each iteration.

RSS — Vector of length N containing conjugacy information.

RSG — Vector of length N containing conjugacy information.

GINIT — Vector of length N containing the gradient values at the start of an iteration.

XOPT — Vector of length N containing the parameter values that yield the least
calculated value for FVALUE.

GOPT — Vector of length N containing the gradient values that yield the least
calculated value for FVALUE.

2. Informational errors

Type Code
 4 1 The line search of an integration was abandoned. This error may be

caused by an error in gradient.
 4 2 The calculation cannot continue because the search is uphill.
 4 3 The iteration was terminated because MAXFN was exceeded.
 3 4 The calculation was terminated because two consecutive iterations

failed to reduce the function.

3. Because of the close relation between the conjugate-gradient method and the method of
steepest descent, it is very helpful to choose the scale of the variables in a way that
balances the magnitudes of the components of a typical gradient vector. It can be
particularly inefficient if a few components of the gradient are much larger than the
rest.

4. If the value of the parameter GRADTL in the argument list of the routine is set to zero,
then the subroutine will continue its calculation until it stops reducing the objective
function. In this case, the usual behavior is that changes in the objective function
become dominated by computer rounding errors before precision is lost in the gradient

IMSL MATH/LIBRARY Chapter 8: Optimization � 1223

vector. Therefore, because the point of view has been taken that the user requires the
least possible value of the function, a value of the objective function that is small due
to computer rounding errors can prevent further progress. Hence, the precision in the
final values of the variables may be only about half the number of significant digits in
the computer arithmetic, but the least value of FVALUE is usually found to be quite
accurate.

Description
The routine UMCGF uses a conjugate gradient method to find the minimum of a function f (x) of
n variables. Only function values are required.

The routine is based on the version of the conjugate gradient algorithm described in Powell
(1977). The main advantage of the conjugate gradient technique is that it provides a fast rate of
convergence without the storage of any matrices. Therefore, it is particularly suitable for
unconstrained minimization calculations where the number of variables is so large that matrices
of dimension n cannot be stored in the main memory of the computer. For smaller problems,
however, a routine such as routine UMINF (page 1196), is usually more efficient because each
iteration makes use of additional information from previous iterations.

Since a finite-difference method is used to estimate the gradient for some single precision
calculations, an inaccurate estimate of the gradient may cause the algorithm to terminate at a
noncritical point. In such cases, high precision arithmetic is recommended. Also, whenever the
exact gradient can be easily provided, routine UMCGG (page 1223) should be used instead.

UMCGG
Minimizes a function of N variables using a conjugate gradient algorithm and a user-supplied
gradient.

Required Arguments
FCN — User-supplied SUBROUTINE to evaluate the function to be minimized. The usage is

CALL FCN (N, X, F), where

N – Length of X. (Input)

X – The point at which the function is evaluated. (Input)
X should not be changed by FCN.

F – The computed function value at the point X. (Output)

FCN must be declared EXTERNAL in the calling program.

GRAD — User-supplied SUBROUTINE to compute the gradient at the point X. The usage is
CALL GRAD (N, X, G), where

N – Length of X and G. (Input)

1224 � Chapter 8: Optimization IMSL MATH/LIBRARY

X – The point at which the gradient is evaluated. (Input)
X should not be changed by GRAD.

G – The gradient evaluated at the point X. (Output)

GRAD must be declared EXTERNAL in the calling program.

DFPRED — A rough estimate of the expected reduction in the function. (Input) DFPRED is
used to determine the size of the initial change to X.

X — Vector of length N containing the computed solution. (Output)

Optional Arguments
N — Dimension of the problem. (Input)

Default: N = size (X,1).

XGUESS — Vector of length N containing the initial guess of the minimum. (Input)
Default: XGUESS = 0.0.

GRADTL — Convergence criterion. (Input)
The calculation ends when the sum of squares of the components of G is less than
GRADTL.
Default: GRADTL = 1.e-4.

MAXFN — Maximum number of function evaluations. (Input)
Default: MAXFN = 100.

G — Vector of length N containing the components of the gradient at the final parameter
estimates. (Output)

FVALUE — Scalar containing the value of the function at the computed solution. (Output)

FORTRAN 90 Interface
Generic: CALL UMCGG (FCN, GRAD, DFPRED, X [,…])

Specific: The specific interface names are S_UMCGG and D_UMCGG.

FORTRAN 77 Interface
Single: CALL UMCGG (FCN, GRAD, N, XGUESS, GRADTL, MAXFN, DFPRED, X,

G, FVALUE)

Double: The double precision name is DUMCGG.

IMSL MATH/LIBRARY Chapter 8: Optimization � 1225

Example
The function

� � � � � �
2 22

2 1 1100 1f x x x x� � � �

is minimized and the solution is printed.
 USE UMCGG_INT
 USE UMACH_INT
! Declaration of variables
 INTEGER N
 PARAMETER (N=2)
!
 INTEGER I, NOUT
 REAL DFPRED, FVALUE, G(N), GRADTL, X(N), &
 XGUESS(N)
 EXTERNAL ROSBRK, ROSGRD
!
 DATA XGUESS/-1.2E0, 1.0E0/
!
 DFPRED = 0.2
 GRADTL = 1.0E-7
! Minimize the Rosenbrock function
 CALL UMCGG (ROSBRK, ROSGRD, DFPRED, X, XGUESS=XGUESS, &
 GRADTL=GRADTL, G=G, FVALUE=FVALUE)
! Print the results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) (X(I),I=1,N), FVALUE, (G(I),I=1,N)
99999 FORMAT (’ The solution is ’, 2F8.3, //, ’ The function ’, &
 ’evaluated at the solution is ’, F8.3, //, ’ The ’, &
 ’gradient is ’, 2F8.3, /)
!
 END
!
 SUBROUTINE ROSBRK (N, X, F)
 INTEGER N
 REAL X(N), F
!
 F = 1.0E2*(X(2)-X(1)*X(1))**2 + (1.0E0-X(1))**2
 RETURN
 END
!
 SUBROUTINE ROSGRD (N, X, G)
 INTEGER N
 REAL X(N), G(N)
!
 G(1) = -4.0E2*(X(2)-X(1)*X(1))*X(1) - 2.0E0*(1.0E0-X(1))
 G(2) = 2.0E2*(X(2)-X(1)*X(1))
!
 RETURN
 END

1226 � Chapter 8: Optimization IMSL MATH/LIBRARY

Output
The solution is 1.000 1.000

The function evaluated at the solution is 0.000

The gradient is 0.000 0.000

Comments
1. Workspace may be explicitly provided, if desired, by use of U2CGG/DU2CGG. The

reference is:

CALL U2CGG (FCN, GRAD, N, XGUESS, GRADTL, MAXFN, DFPRED, X, G,
FVALUE, S, RSS, RSG, GINIT, XOPT, GOPT)

The additional arguments are as follows:

S — Vector of length N used for the search direction in each iteration.

RSS — Vector of length N containing conjugacy information.

RSG — Vector of length N containing conjugacy information.

GINIT — Vector of length N containing the gradient values at the start on an iteration.

XOPT — Vector of length N containing the parameter values which yield the least
calculated value for FVALUE.

GOPT — Vector of length N containing the gradient values which yield the least
calculated value for FVALUE.

2. Informational errors

Type Code
 4 1 The line search of an integration was abandoned. This error may be

caused by an error in gradient.
 4 2 The calculation cannot continue because the search is uphill.
 4 3 The iteration was terminated because MAXFN was exceeded.
 3 4 The calculation was terminated because two consecutive iterations

failed to reduce the function.

3. The routine includes no thorough checks on the part of the user program that calculates
the derivatives of the objective function. Therefore, because derivative calculation is a
frequent source of error, the user should verify independently the correctness of the
derivatives that are given to the routine.

4. Because of the close relation between the conjugate-gradient method and the method of
steepest descent, it is very helpful to choose the scale of the variables in a way that
balances the magnitudes of the components of a typical gradient vector. It can be
particularly inefficient if a few components of the gradient are much larger than the
rest.

IMSL MATH/LIBRARY Chapter 8: Optimization � 1227

5. If the value of the parameter GRADTL in the argument list of the routine is set to zero,
then the subroutine will continue its calculation until it stops reducing the objective
function. In this case, the usual behavior is that changes in the objective function
become dominated by computer rounding errors before precision is lost in the gradient
vector. Therefore, because the point of view has been taken that the user requires the
least possible value of the function, a value of the objective function that is small due
to computer rounding errors can prevent further progress. Hence, the precision in the
final values of the variables may be only about half the number of significant digits in
the computer arithmetic, but the least value of FVALUE is usually found to be quite
accurate.

Description
The routine UMCGG uses a conjugate gradient method to find the minimum of a function f (x) of
n variables. Function values and first derivatives are required.

The routine is based on the version of the conjugate gradient algorithm described in Powell
(1977). The main advantage of the conjugate gradient technique is that it provides a fast rate of
convergence without the storage of any matrices. Therefore, it is particularly suitable for
unconstrained minimization calculations where the number of variables is so large that matrices
of dimension n cannot be stored in the main memory of the computer. For smaller problems,
however, a subroutine such as IMSL routine UMING (page 1202), is usually more efficient
because each iteration makes use of additional information from previous iterations.

UMPOL
Minimizes a function of N variables using a direct search polytope algorithm.

Required Arguments
FCN — User-supplied SUBROUTINE to evaluate the function to be minimized. The usage is

CALL FCN (N, X, F), where

N – Length of X. (Input)

X – Vector of length N at which point the function is evaluated. (Input)
X should not be changed by FCN.

F – The computed function value at the point X. (Output)

FCN must be declared EXTERNAL in the calling program.

X — Real vector of length N containing the best estimate of the minimum found. (Output)

Optional Arguments
N — Dimension of the problem. (Input)

Default: N = size (X,1).

1228 � Chapter 8: Optimization IMSL MATH/LIBRARY

XGUESS — Real vector of length N which contains an initial guess to the minimum. (Input)
Default: XGUESS = 0.0.

S — On input, real scalar containing the length of each side of the initial simplex.
(Input/Output)
If no reasonable information about S is known, S could be set to a number less than or
equal to zero and UMPOL will generate the starting simplex from the initial guess with a
random number generator. On output, the average distance from the vertices to the
centroid that is taken to be the solution; see Comment 4.
Default: S = 0.0.

FTOL — First convergence criterion. (Input)
The algorithm stops when a relative error in the function values is less than FTOL, i.e.
when (F(worst) � F(best)) < FTOL * (1 + ABS(F(best))) where F(worst) and F(best) are
the function values of the current worst and best points, respectively. Second
convergence criterion. The algorithm stops when the standard deviation of the function
values at the N + 1 current points is less than FTOL. If the subroutine terminates
prematurely, try again with a smaller value for FTOL.
Default: FTOL = 1.e-7.

MAXFCN — On input, maximum allowed number of function evaluations. (Input/ Output)
On output, actual number of function evaluations needed.
Default: MAXFCN = 200.

FVALUE — Function value at the computed solution. (Output)

FORTRAN 90 Interface
Generic: CALL UMPOL (FCN, X [,…])

Specific: The specific interface names are S_UMPOL and D_UMPOL.

FORTRAN 77 Interface
Single: CALL UMPOL (FCN, N, XGUESS, S, FTOL, MAXFCN, X, FVALUE)

Double: The double precision name is DUMPOL.

Example
The function

� � � � � �
2 22

2 1 1100 1f x x x x� � � �

is minimized and the solution is printed.
 USE UMPOL_INT
 USE UMACH_INT
! Variable declarations

IMSL MATH/LIBRARY Chapter 8: Optimization � 1229

 INTEGER N
 PARAMETER (N=2)
!
 INTEGER K, NOUT
 REAL FTOL, FVALUE, S, X(N), XGUESS(N)
 EXTERNAL FCN
!
! Initializations
! XGUESS = (-1.2, 1.0)
!
 DATA XGUESS/-1.2, 1.0/
!
 FTOL = 1.0E-10
 S = 1.0
!
 CALL UMPOL (FCN, X, XGUESS=XGUESS, S=S, FTOL=FTOL,&
 FVALUE=FVALUE)
!
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) (X(K),K=1,N), FVALUE
99999 FORMAT (’ The best estimate for the minimum value of the’, /, &
 ’ function is X = (’, 2(2X,F4.2), ’)’, /, ’ with ’, &
 ’function value FVALUE = ’, E12.6)
!
 END
! External function to be minimized
 SUBROUTINE FCN (N, X, F)
 INTEGER N
 REAL X(N), F
!
 F = 100.0*(X(1)*X(1)-X(2))**2 + (1.0-X(1))**2
 RETURN
 END

Output
The best estimate for the minimum value of the
function is X = (1.00 1.00)
with function value FVALUE = 0.502496E-10

Comments
1. Workspace may be explicitly provided, if desired, by use of U2POL/DU2POL. The

reference is:

CALL U2POL (FCN, N, XGUESS, S, FTOL, MAXFCN, X,
FVALUE, WK)

The additional argument is:

WK — Real work vector of length N**2 + 5 * N + 1.

2. Informational error

Type Code

1230 � Chapter 8: Optimization IMSL MATH/LIBRARY

 4 1 Maximum number of function evaluations exceeded.

3. Since UMPOL uses only function value information at each step to determine a new
approximate minimum, it could be quite ineficient on smooth problems compared to
other methods such as those implemented in routine UMINF that takes into account
derivative information at each iteration. Hence, routine UMPOL should only be used as a
last resort. Briefly, a set of N + 1 points in an N-dimensional space is called a simplex.
The minimization process iterates by replacing the point with the largest function value
by a new point with a smaller function value. The iteration continues until all the points
cluster sufficiently close to a minimum.

4. The value returned in S is useful for assessing the flatness of the function near the
computed minimum. The larger its value for a given value of FTOL, the flatter the
function tends to be in the neighborhood of the returned point.

Description
The routine UMPOL uses the polytope algorithm to find a minimum point of a function f(x) of n
variables. The polytope method is based on function comparison; no smoothness is assumed. It
starts with n + 1 points x�, x�, �, xn + 1. At each iteration, a new point is generated to replace the
worst point xj, which has the largest function value among these n + 1 points. The new point is
constructed by the following formula:

xk = c + �(c � xj)

where

1
i j ic x

n �
� �

and � (� > 0) is the reflection coefficient.

When xk is a best point, that is f(xk) � f(xi) for i = 1, �, n + 1, an expansion point is computed
xe = c + �(xk � c) where �(� > 1) is called the expansion coefficient. If the new point is a worst
point, then the polytope would be contracted to get a better new point. If the contraction step is
unsuccessful, the polytope is shrunk by moving the vertices halfway toward current best point.
This procedure is repeated until one of the following stopping criteria is satisfied:

Criterion 1:

fbest � fworst � �f (1. + |fbest|)

Criterion 2:
1

1
1 2

1
()

1

n
n jj

i f
i

f
f

n
�

�

�

�

�

� �

�

�
�

where fi = f (xi), fj = f (xj), and �f is a given tolerance. For a complete description, see Nelder and
Mead (1965) or Gill et al. (1981).

IMSL MATH/LIBRARY Chapter 8: Optimization � 1231

UNLSF
Solves a nonlinear least-squares problem using a modified Levenberg-Marquardt algorithm and a
finite-difference Jacobian.

Required Arguments
FCN — User-supplied SUBROUTINE to evaluate the function that defines the least-squares

problem. The usage is CALL FCN (M, N, X, F), where

M – Length of F. (Input)

N – Length of X. (Input)

X – Vector of length N at which point the function is evaluated. (Input)
X should not be changed by FCN.

F – Vector of length M containing the function values at X. (Output)

FCN must be declared EXTERNAL in the calling program.

M — Number of functions. (Input)

X — Vector of length N containing the approximate solution. (Output)

Optional Arguments
N — Number of variables. N must be less than or equal to M. (Input)

Default: N = size (X,1).

XGUESS — Vector of length N containing the initial guess. (Input)
Default: NDEG = size (COEFF,1) – 1.

XSCALE — Vector of length N containing the diagonal scaling matrix for the variables.
(Input)
XSCALE is used mainly in scaling the gradient and the distance between two points. By
default, the values for XSCALE are set internally. See IPARAM(6) in Comment 4.
Default: XSCALE = 1.0.

FSCALE — Vector of length M containing the diagonal scaling matrix for the functions.
(Input)
FSCALE is used mainly in scaling the gradient. In the absence of other information, set
all entries to 1.0.
Default: FSCALE = 1.0.

1232 � Chapter 8: Optimization IMSL MATH/LIBRARY

IPARAM — Parameter vector of length 6. (Input/Output)
Set IPARAM(1) to zero for default values of IPARAM and RPARAM. See Comment 4.
Default: IPARAM = 0.

RPARAM — Parameter vector of length 7. (Input/Output)
See Comment 4.

FVEC — Vector of length M containing the residuals at the approximate solution. (Output)

FJAC — M by N matrix containing a finite difference approximate Jacobian at the
approximate solution. (Output)

LDFJAC — Leading dimension of FJAC exactly as specified in the dimension statement of
the calling program. (Input)
Default: LDFJAC = size (FJAC,1).

FORTRAN 90 Interface
Generic: CALL UNLSF (FCN, M, X [,…])

Specific: The specific interface names are S_UNLSF and D_UNLSF.

FORTRAN 77 Interface
Single: CALL UNLSF (FCN, M, N, XGUESS, XSCALE, FSCALE, IPARAM,

RPARAM, X, FVEC, FJAC, LDFJAC)

Double: The double precision name is DUNLSF.

Example
The nonlinear least squares problem

� �
2

2
2

1

1min
2 i

x i
f x

�
�

�
R

where

� � � � � � � �2
1 2 1 2 110 and 1f x x x f x x� � � �

is solved. RPARAM(4) is changed to a non-default value.
 USE UNLSF_INT
 USE UMACH_INT
 USE U4LSF_INT
! Declaration of variables
 INTEGER LDFJAC, M, N
 PARAMETER (LDFJAC=2, M=2, N=2)
!
 INTEGER IPARAM(6), NOUT

IMSL MATH/LIBRARY Chapter 8: Optimization � 1233

 REAL FVEC(M), RPARAM(7),X(N), XGUESS(N)
 EXTERNAL ROSBCK
! Compute the least squares for the
! Rosenbrock function.
 DATA XGUESS/-1.2E0, 1.0E0/
!
! Relax the first stopping criterion by
! calling U4LSF and scaling the
! absolute function tolerance by 10.
 CALL U4LSF (IPARAM, RPARAM)
 RPARAM(4) = 10.0E0*RPARAM(4)
!

CALL UNLSF (ROSBCK, M, X,XGUESS=XGUESS, IPARAM=IPARAM, &
RPARAM=RPARAM, FVEC=FVEC)

! Print results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) X, FVEC, IPARAM(3), IPARAM(4)
!
99999 FORMAT (’ The solution is ’, 2F9.4, //, ’ The function ’, &
 ’evaluated at the solution is ’, /, 18X, 2F9.4, //, &
 ’ The number of iterations is ’, 10X, I3, /, ’ The ’, &
 ’number of function evaluations is ’, I3, /)
 END
!
 SUBROUTINE ROSBCK (M, N, X, F)
 INTEGER M, N
 REAL X(N), F(M)
!
 F(1) = 10.0E0*(X(2)-X(1)*X(1))
 F(2) = 1.0E0 - X(1)
 RETURN
 END

Output
The solution is 1.0000 1.0000

The function evaluated at the solution is
0.0000 0.0000

The number of iterations is 24
The number of function evaluations is 33

Comments
1. Workspace may be explicitly provided, if desired, by use of U2LSF/DU2LSF. The

reference is:

CALL U2LSF (FCN, M, N, XGUESS, XSCALE, FSCALE, IPARAM, RPARAM,
X, FVEC, FJAC, LDFJAC, WK, IWK)

The additional arguments are as follows:

WK — Real work vector of length 9 * N + 3 * M � 1. WK contains the following
information on output: The second N locations contain the last step taken. The

1234 � Chapter 8: Optimization IMSL MATH/LIBRARY

third N locations contain the last Gauss-Newton step. The fourth N locations
contain an estimate of the gradient at the solution.

IWK — Integer work vector of length N containing the permutations used in the QR
factorization of the Jacobian at the solution.

2. Informational errors

Type Code
 3 1 Both the actual and predicted relative reductions in the function are

less than or equal to the relative function convergence tolerance.
 3 2 The iterates appear to be converging to a noncritical point.
 4 3 Maximum number of iterations exceeded.
 4 4 Maximum number of function evaluations exceeded.
 3 6 Five consecutive steps have been taken with the maximum step

length.
 2 7 Scaled step tolerance satisfied; the current point may be an

approximate local solution, or the algorithm is making very slow
progress and is not near a solution, or STEPTL is too big.

3. The first stopping criterion for UNLSF occurs when the norm of the function is less than
the absolute function tolerance (RPARAM(4)). The second stopping criterion occurs
when the norm of the scaled gradient is less than the given gradient tolerance
(RPARAM(1)). The third stopping criterion for UNLSF occurs when the scaled distance
between the last two steps is less than the step tolerance (RPARAM(2)).

4. If the default parameters are desired for UNLSF, then set IPARAM(1) to zero and call the
routine UNLSF. Otherwise, if any nondefault parameters are desired for IPARAM or
RPARAM, then the following steps should be taken before calling UNLSF:

CALL U4LSF (IPARAM, RPARAM)
Set nondefault values for desired IPARAM, RPARAM elements.

Note that the call to U4LSF will set IPARAM and RPARAM to their default values so only
nondefault values need to be set above.

The following is a list of the parameters and the default values:

IPARAM — Integer vector of length 6.

IPARAM(1) = Initialization flag.

IPARAM(2) = Number of good digits in the function.
Default: Machine dependent.

IPARAM(3) = Maximum number of iterations.
Default: 100.

IMSL MATH/LIBRARY Chapter 8: Optimization � 1235

IPARAM(4) = Maximum number of function evaluations.
Default: 400.

IPARAM(5) = Maximum number of Jacobian evaluations.
Default: Not used in UNLSF.

IPARAM(6) = Internal variable scaling flag.
If IPARAM(6) = 1, then the values for XSCALE are set internally.
Default: 1.

RPARAM — Real vector of length 7.
RPARAM(1) = Scaled gradient tolerance.
The i-th component of the scaled gradient at x is calculated as

� �

� �
2

2

max ,1/i i ig x s

F x

�

 where

� � � �� � � �
2T

i s ii
g J x F x f� �

 J(x) is the Jacobian, s = XSCALE, and fs = FSCALE.
Default:

3,� �

 in double where � is the machine precision.

RPARAM(2) = Scaled step tolerance. (STEPTL)
The i-th component of the scaled step between two points x and y is computed as

� �max ,1/
i i

i i

x y
x s
�

 where s = XSCALE.
Default: ���� where � is the machine precision.

RPARAM(3) = Relative function tolerance.
Default: max(10���, ����), max (10���, ����) in double where � is the machine
precision.

RPARAM(4) = Absolute function tolerance.
Default: max (10���, ��), max(10���, ��) in double where � is the machine
precision.

1236 � Chapter 8: Optimization IMSL MATH/LIBRARY

RPARAM(5) = False convergence tolerance.
Default: 100� where � is the machine precision.

RPARAM(6) = Maximum allowable step size.
Default: 1000 max(��, ��) where

� �
2

1 1

n
i ii

s t�
�

� �

 �� = || s ||�, s = XSCALE, and t = XGUESS.

RPARAM(7) = Size of initial trust region radius.
Default: based on the initial scaled Cauchy step.

If double precision is desired, then DU4LSF is called and RPARAM is declared double
 precision.

5. Users wishing to override the default print/stop attributes associated with error
messages issued by this routine are referred to “Error Handling” in the Introduction.

Description
The routine UNLSF is based on the MINPACK routine LMDIF by Moré et al. (1980). It uses a
modified Levenberg-Marquardt method to solve nonlinear least squares problems. The problem
is stated as follows:

� � � � � �
2

1

1 1min
2 2n

m
T

i
x i

F x F x f x
�

�

� �
R

where m � n, F : Rn� Rm, and fi(x) is the i-th component function of F(x). From a current
point, the algorithm uses the trust region approach:

� � � �� �
2

min
n

n
c c n c

x
F x J x x x

�

� �

R

subject to ||xn � xc||� � 	c

to get a new point xn, which is computed as

� � � �� � � � � �
1T T

n c c c c c cx x J x J x I J x F x�

�

� � �

where �c = 0 if 	c � ||(J(xc)T J(xc))�� J(xc)T F(xc)||� and �c > 0 otherwise. F(xc) and J(xc) are the
function values and the Jacobian evaluated at the current point xc. This procedure is repeated
until the stopping criteria are satisfied. For more details, see Levenberg (1944), Marquardt
(1963), or Dennis and Schnabel (1983, Chapter 10).

Since a finite-difference method is used to estimate the Jacobian for some single precision
calculations, an inaccurate estimate of the Jacobian may cause the algorithm to terminate at a

IMSL MATH/LIBRARY Chapter 8: Optimization � 1237

noncritical point. In such cases, high precision arithmetic is recommended. Also, whenever the
exact Jacobian can be easily provided, routine UNLSJ (page 1237) should be used instead.

UNLSJ
Solves a nonlinear least squares problem using a modified Levenberg-Marquardt algorithm and a
user-supplied Jacobian.

Required Arguments
FCN — User-supplied SUBROUTINE to evaluate the function which defines the least-squares

problem. The usage is CALL FCN (M, N, X, F), where

M – Length of F. (Input)
N – Length of X. (Input)
X – Vector of length N at which point the function is evaluated. (Input)
X should not be changed by FCN.
F – Vector of length M containing the function values at X. (Output)

FCN must be declared EXTERNAL in the calling program.

JAC — User-supplied SUBROUTINE to evaluate the Jacobian at a point X. The usage is CALL
JAC (M, N, X, FJAC, LDFJAC), where

M – Length of F. (Input)
N – Length of X. (Input)
X – Vector of length N at which point the Jacobian is evaluated. (Input)
X should not be changed by JAC.
FJAC – The computed M by N Jacobian at the point X. (Output)
LDFJAC – Leading dimension of FJAC. (Input)

JAC must be declared EXTERNAL in the calling program.

M — Number of functions. (Input)

X — Vector of length N containing the approximate solution. (Output)

Optional Arguments
N — Number of variables. N must be less than or equal to M. (Input)

Default: N = size (X,1).

XGUESS — Vector of length N containing the initial guess. (Input)
Default: XGUESS = 0.0.

XSCALE — Vector of length N containing the diagonal scaling matrix for the variables.
(Input)
XSCALE is used mainly in scaling the gradient and the distance between two points. By
default, the values for XSCALE are set internally. See IPARAM(6) in Comment 4.
Default: XSCALE = 1.0.

1238 � Chapter 8: Optimization IMSL MATH/LIBRARY

FSCALE — Vector of length M containing the diagonal scaling matrix for the functions.
(Input)
FSCALE is used mainly in scaling the gradient. In the absence of other information, set
all entries to 1.0.
Default: FSCALE = 1.0.

IPARAM — Parameter vector of length 6. (Input/Output)
Set IPARAM(1) to zero for default values of IPARAM and RPARAM. See Comment 4.
Default: IPARAM = 0.

RPARAM — Parameter vector of length 7. (Input/Output)
See Comment 4.

FVEC — Vector of length M containing the residuals at the approximate solution. (Output)

FJAC — M by N matrix containing a finite-difference approximate Jacobian at the
approximate solution. (Output)

LDFJAC — Leading dimension of FJAC exactly as specified in the dimension statement of
the calling program. (Input)
Default: LDFJAC = size (FJAC,1).

FORTRAN 90 Interface
Generic: CALL UNLSJ (FCN, JAC, M, X [,…])

Specific: The specific interface names are S_UNLSJ and D_UNLSJ.

FORTRAN 77 Interface
Single: CALL UNLSJ (FCN, JAC, M, N, XGUESS, XSCALE, FSCALE, IPARAM,

RPARAM, X, FVEC, FJAC, LDFJAC)

Double: The double precision name is DUNLSJ.

Example

The nonlinear least-squares problem

� �
2

2
2

1

1min
2 i

x i

f x
�

�

�
R

where

� � � � � � � �2
1 2 1 2 110 and 1f x x x f x x� � � �

is solved; default values for parameters are used.

IMSL MATH/LIBRARY Chapter 8: Optimization � 1239

 USE UNLSJ_INT
 USE UMACH_INT
! Declaration of variables
 INTEGER LDFJAC, M, N
 PARAMETER (LDFJAC=2, M=2, N=2)
!
 INTEGER IPARAM(6), NOUT
 REAL FVEC(M), X(N), XGUESS(N)
 EXTERNAL ROSBCK, ROSJAC
! Compute the least squares for the
! Rosenbrock function.
 DATA XGUESS/-1.2E0, 1.0E0/
 IPARAM(1) = 0
!
 CALL UNLSJ (ROSBCK, ROSJAC, M, X, XGUESS=XGUESS, &
 IPARAM=IPARAM, FVEC=FVEC)
! Print results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) X, FVEC, IPARAM(3), IPARAM(4), IPARAM(5)
!
99999 FORMAT (’ The solution is ’, 2F9.4, //, ’ The function ’, &
 ’evaluated at the solution is ’, /, 18X, 2F9.4, //, &
 ’ The number of iterations is ’, 10X, I3, /, ’ The ’, &
 ’number of function evaluations is ’, I3, /, ’ The ’, &
 ’number of Jacobian evaluations is ’, I3, /)
 END
!
 SUBROUTINE ROSBCK (M, N, X, F)
 INTEGER M, N
 REAL X(N), F(M)
!
 F(1) = 10.0E0*(X(2)-X(1)*X(1))
 F(2) = 1.0E0 - X(1)
 RETURN
 END
!
 SUBROUTINE ROSJAC (M, N, X, FJAC, LDFJAC)
 INTEGER M, N, LDFJAC
 REAL X(N), FJAC(LDFJAC,N)
!
 FJAC(1,1) = -20.0E0*X(1)
 FJAC(2,1) = -1.0E0
 FJAC(1,2) = 10.0E0
 FJAC(2,2) = 0.0E0
 RETURN
 END

Output
The solution is 1.0000 1.0000

The function evaluated at the solution is
0.0000 0.0000

The number of iterations is 23

1240 � Chapter 8: Optimization IMSL MATH/LIBRARY

The number of function evaluations is 32
The number of Jacobian evaluations is 24

Comments
1. Workspace may be explicitly provided, if desired, by use of U2LSJ/DU2LSJ. The

reference is:

CALL U2LSJ (FCN, JAC, M, N, XGUESS, XSCALE, FSCALE, IPARAM,
RPARAM, X, FVEC, FJAC, LDFJAC, WK, IWK)

The additional arguments are as follows:

WK — Work vector of length 9 * N + 3 * M � 1. WK contains the following information
on output: The second N locations contain the last step taken. The third N
locations contain the last Gauss-Newton step. The fourth N locations contain an
estimate of the gradient at the solution.

IWK — Work vector of length N containing the permutations used in the QR
factorization of the Jacobian at the solution.

2. Informational errors

Type Code
 3 1 Both the actual and predicted relative reductions in the function are

less than or equal to the relative function convergence tolerance.
 3 2 The iterates appear to be converging to a noncritical point.
 4 3 Maximum number of iterations exceeded.
 4 4 Maximum number of function evaluations exceeded.
 4 5 Maximum number of Jacobian evaluations exceeded.
 3 6 Five consecutive steps have been taken with the maximum step

length.
 2 7 Scaled step tolerance satisfied; the current point may be an

approximate local solution, or the algorithm is making very slow
progress and is not near a solution, or STEPTL is too big.

3. The first stopping criterion for UNLSJ occurs when the norm of the function is less than
the absolute function tolerance (RPARAM(4)). The second stopping criterion occurs
when the norm of the scaled gradient is less than the given gradient tolerance
(RPARAM(1)). The third stopping criterion for UNLSJ occurs when the scaled distance
between the last two steps is less than the step tolerance (RPARAM(2)).

4. If the default parameters are desired for UNLSJ, then set IPARAM(1) to zero and call the
routine UNLSJ. Otherwise, if any nondefault parameters are desired for IPARAM or
RPARAM, then the following steps should be taken before calling UNLSJ:

CALL U4LSF (IPARAM, RPARAM)
Set nondefault values for desired IPARAM, RPARAM elements.

IMSL MATH/LIBRARY Chapter 8: Optimization � 1241

Note that the call to U4LSF will set IPARAM and RPARAM to their default values, so only
nondefault values need to be set above.

The following is a list of the parameters and the default values:

IPARAM — Integer vector of length 6.
IPARAM(1) = Initialization flag.

IPARAM(2) = Number of good digits in the function.
Default: Machine dependent.

IPARAM(3) = Maximum number of iterations.
Default: 100.

IPARAM(4) = Maximum number of function evaluations.
Default: 400.

IPARAM(5) = Maximum number of Jacobian evaluations.
Default: 100.

IPARAM(6) = Internal variable scaling flag.
If IPARAM(6) = 1, then the values for XSCALE are set internally.
Default: 1.

RPARAM — Real vector of length 7.

RPARAM(1) = Scaled gradient tolerance.
The i-th component of the scaled gradient at x is calculated as

� �

� �
2

2

max ,1/i i ig x s

F x

�

 where

� � � �� � � �
2T

i s ii
g J x F x f� �

 J(x) is the Jacobian, s = XSCALE, and fs = FSCALE.
Default:

3,� �

 in double where � is the machine precision.

RPARAM(2) = Scaled step tolerance. (STEPTL)
The i-th component of the scaled step between two points x and y is computed as

1242 � Chapter 8: Optimization IMSL MATH/LIBRARY

� �max ,1/
i i

i i

x y
x s
�

 where s = XSCALE.
Default: ���� where � is the machine precision.

RPARAM(3) = Relative function tolerance.
Default: max(10���, ����), max (10���, ����) in double where � is the machine
precision.

RPARAM(4) = Absolute function tolerance.
Default: max (10���, ��), max(10���, ��) in double where � is the machine
precision.

RPARAM(5) = False convergence tolerance.
Default: 100� where � is the machine precision.

RPARAM(6) = Maximum allowable step size.
Default: 1000 max(��, ��) where

� �
2

1 1

n
i ii

s t�
�

�

 �� = || s ||�, s = XSCALE, and t = XGUESS.

RPARAM(7) = Size of initial trust region radius.
Default: based on the initial scaled Cauchy step.

If double precision is desired, then DU4LSF is called and RPARAM is declared double
 precision.

5. Users wishing to override the default print/stop attributes associated with error
messages issued by this routine are referred to “Error Handling” in the Introduction.

Description
The routine UNLSJ is based on the MINPACK routine LMDER by Moré et al. (1980). It uses a
modified Levenberg-Marquardt method to solve nonlinear least squares problems. The problem
is stated as follows:

� � � � � �
2

1

1 1min
2 2n

m
T

i
x i

F x F x f x
�

�

� �
R

where m � n, F : Rn� Rm, and fi(x) is the i-th component function of F(x). From a current
point, the algorithm uses the trust region approach:

IMSL MATH/LIBRARY Chapter 8: Optimization � 1243

� � � �� �
2

min
n

n
c c n c

x
F x J x x x

�

� �

R

subject to ||xn � xc||� � 	c

to get a new point xn, which is computed as

� � � �� � � � � �
1T T

n c c c c c cx x J x J x I J x F x�

�

� � �

where �c = 0 if 	c � ||(J(xc)T J(xc))�� J(xc)T F (xc)||� and �c > 0 otherwise. F(xc) and J(xc) are the
function values and the Jacobian evaluated at the current point xc. This procedure is repeated
until the stopping criteria are satisfied. For more details, see Levenberg (1944),
Marquardt(1963), or Dennis and Schnabel (1983, Chapter 10).

BCONF
Minimizes a function of N variables subject to bounds on the variables using a quasi-Newton
method and a finite-difference gradient.

Required Arguments
FCN — User-supplied SUBROUTINE to evaluate the function to be minimized. The usage is

CALL FCN (N, X, F), where

N – Length of X. (Input)

X – Vector of length N at which point the function is evaluated. (Input)
X should not be changed by FCN.

F – The computed function value at the point X. (Output)

FCN must be declared EXTERNAL in the calling program.

IBTYPE — Scalar indicating the types of bounds on variables. (Input)

IBTYPE Action

0 User will supply all the bounds.

1 All variables are nonnegative.

2 All variables are nonpositive.

3 User supplies only the bounds on 1st variable, all other variables will have
 the same bounds.

XLB — Vector of length N containing the lower bounds on variables. (Input, if IBTYPE = 0;
output, if IBTYPE = 1 or 2; input/output, if IBTYPE = 3)

1244 � Chapter 8: Optimization IMSL MATH/LIBRARY

XUB — Vector of length N containing the upper bounds on variables. (Input, if IBTYPE = 0;
output, if IBTYPE = 1 or 2; input/output, if IBTYPE = 3)

X — Vector of length N containing the computed solution. (Output)

Optional Arguments
N — Dimension of the problem. (Input)

Default: N = size (X,1).

XGUESS — Vector of length N containing an initial guess of the computed solution. (Input)
Default: XGUESS = 0.0.

XSCALE — Vector of length N containing the diagonal scaling matrix for the variables.
(Input)
XSCALE is used mainly in scaling the gradient and the distance between two points. In
the absence of other information, set all entries to 1.0.
Default: XSCALE = 1.0.

FSCALE — Scalar containing the function scaling. (Input)
FSCALE is used mainly in scaling the gradient. In the absence of other information, set
FSCALE to 1.0.
Default: FSCALE = 1.0.

IPARAM — Parameter vector of length 7. (Input/Output)
Set IPARAM(1) to zero for default values of IPARAM and RPARAM. See Comment 4.
Default: IPARAM = 0.

RPARAM — Parameter vector of length 7. (Input/Output)
See Comment 4.

FVALUE — Scalar containing the value of the function at the computed solution. (Output)

FORTRAN 90 Interface
Generic: CALL BCONF (FCN, IBTYPE, XLB, XUB, X [,…])

Specific: The specific interface names are S_BCONF and D_BCONF.

FORTRAN 77 Interface
Single: CALL BCONF (FCN, N, XGUESS, IBTYPE, XLB, XUB, XSCALE,

FSCALE, IPARAM, RPARAM, X, FVALUE)

Double: The double precision name is DBCONF.

IMSL MATH/LIBRARY Chapter 8: Optimization � 1245

Example
The problem

� � � � � �
2 22

2 1 1

1

2

min 100 1

subject to 2 0.5
1 2

f x x x x

x
x

� � � �

� � �

� � �

is solved with an initial guess (�1.2, 1.0) and default values for parameters.
 USE BCONF_INT
 USE UMACH_INT
 INTEGER N
 PARAMETER (N=2)
!
 INTEGER IPARAM(7), ITP, L, NOUT
 REAL F, FSCALE, RPARAM(7), X(N), XGUESS(N), &
 XLB(N), XSCALE(N), XUB(N)
 EXTERNAL ROSBRK
!
 DATA XGUESS/-1.2E0, 1.0E0/
 DATA XLB/-2.0E0, -1.0E0/, XUB/0.5E0, 2.0E0/
! All the bounds are provided
 ITP = 0
! Default parameters are used
 IPARAM(1) = 0
! Minimize Rosenbrock function using
! initial guesses of -1.2 and 1.0
 CALL BCONF (ROSBRK, ITP, XLB, XUB, X, XGUESS=XGUESS, &
 IPARAM=IPARAM, FVALUE=F)
! Print results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) X, F, (IPARAM(L),L=3,5)
!
99999 FORMAT (’ The solution is ’, 6X, 2F8.3, //, ’ The function ’, &
 ’value is ’, F8.3, //, ’ The number of iterations is ’, &
 10X, I3, /, ’ The number of function evaluations is ’, &
 I3, /, ’ The number of gradient evaluations is ’, I3)
!
 END
!
 SUBROUTINE ROSBRK (N, X, F)
 INTEGER N
 REAL X(N), F
!
 F = 1.0E2*(X(2)-X(1)*X(1))**2 + (1.0E0-X(1))**2
!
 RETURN
 END

Output
The solution is 0.500 0.250

The function value is 0.250

1246 � Chapter 8: Optimization IMSL MATH/LIBRARY

The number of iterations is 24
The number of function evaluations is 34
The number of gradient evaluations is 26

Comments
1. Workspace may be explicitly provided, if desired, by use of B2ONF/DB2ONF. The

reference is:

CALL B2ONF (FCN, N, XGUESS, IBTYPE, XLB, XUB,
 XSCALE, FSCALE, IPARAM, RPARAM, X, FVALUE, WK, IWK)

The additional arguments are as follows:

WK — Real work vector of length N * (2 * N + 8). WK contains the following
information on output: The second N locations contain the last step taken. The
third N locations contain the last Newton step. The fourth N locations contain an
estimate of the gradient at the solution. The final N� locations contain a BFGS
approximation to the Hessian at the solution.

IWK — Work vector of length N stored in column order. Only the lower triangular
portion of the matrix is stored in WK. The values returned in the upper triangle
should be ignored.

2. Informational errors

Type Code
 3 1 Both the actual and predicted relative reductions in the function are

less than or equal to the relative function convergence tolerance.
 4 2 The iterates appear to be converging to a noncritical point.
 4 3 Maximum number of iterations exceeded.
 4 4 Maximum number of function evaluations exceeded.
 4 5 Maximum number of gradient evaluations exceeded.
 4 6 Five consecutive steps have been taken with the maximum step

length.
 2 7 Scaled step tolerance satisfied; the current point may be an

approximate local solution, or the algorithm is making very slow
progress and is not near a solution, or STEPTL is too big.

 3 8 The last global step failed to locate a lower point than the current X
value.

3. The first stopping criterion for BCONF occurs when the norm of the gradient is less than
the given gradient tolerance (RPARAM(1)). The second stopping criterion for BCONF
occurs when the scaled distance between the last two steps is less than the step
tolerance (RPARAM(2)).

4. If the default parameters are desired for BCONF, then set IPARAM(1) to zero and call the
routine BCONF. Otherwise, if any nondefault parameters are desired for IPARAM or
RPARAM, then the following steps should be taken before calling BCONF:

IMSL MATH/LIBRARY Chapter 8: Optimization � 1247

CALL U4INF (IPARAM, RPARAM)

Set nondefault values for desired IPARAM, RPARAM elements.

Note that the call to U4INF will set IPARAM and RPARAM to their default values so only
nondefault values need to be set above.

The following is a list of the parameters and the default values:

IPARAM — Integer vector of length 7.
IPARAM(1) = Initialization flag.

IPARAM(2) = Number of good digits in the function.
Default: Machine dependent.

IPARAM(3) = Maximum number of iterations.
Default: 100.

IPARAM(4) = Maximum number of function evaluations.
Default: 400.

IPARAM(5) = Maximum number of gradient evaluations.
Default: 400.

IPARAM(6) = Hessian initialization parameter.
If IPARAM(6) = 0, the Hessian is initialized to the identity matrix; otherwise,
it is initialized to a diagonal matrix containing

� �� � 2max , s if t f s�

 on the diagonal where t = XGUESS, fs = FSCALE, and s = XSCALE.
Default: 0.

IPARAM(7) = Maximum number of Hessian evaluations.
Default: Not used in BCONF.

RPARAM — Real vector of length 7.
RPARAM(1) = Scaled gradient tolerance.
The i-th component of the scaled gradient at x is calculated as

� �

� �� �

max ,1/

max ,
i i i

s

g x s

f x f

�

 where g = �f(x), s = XSCALE, and fs = FSCALE.
Default:

1248 � Chapter 8: Optimization IMSL MATH/LIBRARY

3,� �

 in double where � is the machine precision.

RPARAM(2) = Scaled step tolerance. (STEPTL)
The i-th component of the scaled step between two points x and y is computed as

� �max ,1/
i i

i i

x y
x s
�

 where s = XSCALE.
Default: ���� where � is the machine precision.

RPARAM(3) = Relative function tolerance.
Default: max(10���, ����), max (10���, ����) in double where � is the machine
precision.

RPARAM(4) = Absolute function tolerance.
Default: Not used in BCONF.

RPARAM(5) = False convergence �	
�����.
Default: 100� where � is the machine precision.

RPARAM(6) = Maximum allowable step size.
Default: 1000 max(��, ��) where

� �
2

1 1

n
i ii

s t�
�

�

 �� = || s ||�, s = XSCALE, and t = XGUESS.

RPARAM(7) = Size of initial trust region radius.
Default: based on the initial scaled Cauchy step.

If double precision is required, then DU4INF is called and RPARAM is declared double
precision.

5. Users wishing to override the default print/stop attributes associated with error
messages issued by this routine are referred to “Error Handling” in the Introduction.

Description
The routine BCONF uses a quasi-Newton method and an active set strategy to solve minimization
problems subject to simple bounds on the variables. The problem is stated as follows:

� �min
nx

f x
�R

IMSL MATH/LIBRARY Chapter 8: Optimization � 1249

subject to l � x � u

From a given starting point xc, an active set IA, which contains the indices of the variables at
their bounds, is built. A variable is called a “free variable” if it is not in the active set. The
routine then computes the search direction for the free variables according to the formula

d = �B�� gc

where B is a positive definite approximation of the Hessian and gc is the gradient evaluated at
xc; both are computed with respect to the free variables. The search direction for the variables in
IA is set to zero. A line search is used to find a new point xn ,

xn = xc + �d, � � (0, 1]

such that

f (xn) � f (xc) + �gT d, � � (0, 0.5)

Finally, the optimality conditions

||g(xi)|| � �, li < xi< ui

g(xi) < 0, xi = ui

g(xi) > 0, xi = li

are checked, where � is a gradient tolerance. When optimality is not achieved, B is updated
according to the BFGS formula:

T T

T T

Bss B yyB B
s Bs y s

� � �

where s = xn � xc and y = gn � gc. Another search direction is then computed to begin the next
iteration.

The active set is changed only when a free variable hits its bounds during an iteration or the
optimality condition is met for the free variables but not for all variables in IA, the active set. In
the latter case, a variable that violates the optimality condition will be dropped out of IA. For
more details on the quasi-Newton method and line search, see Dennis and Schnabel (1983). For
more detailed information on active set strategy, see Gill and Murray (1976).

Since a finite-difference method is used to estimate the gradient for some single precision
calculations, an inaccurate estimate of the gradient may cause the algorithm to terminate at a
noncritical point. In such cases, high precision arithmetic is recommended. Also, whenever the
exact gradient can be easily provided, routine BCONG (page 1249) should be used instead.

BCONG
Minimizes a function of N variables subject to bounds on the variables using a quasi-Newton
method and a user-supplied gradient.

1250 � Chapter 8: Optimization IMSL MATH/LIBRARY

Required Arguments
FCN — User-supplied SUBROUTINE to evaluate the function to be minimized. The usage is

CALL FCN (N, X, F), where

N – Length of X. (Input)

X – Vector of length N at which point the function is evaluated. (Input)
X should not be changed by FCN.

F – The computed function value at the point X. (Output)

FCN must be declared EXTERNAL in the calling program.

GRAD — User-supplied SUBROUTINE to compute the gradient at the point X. The usage is
CALL GRAD (N, X, G), where

N – Length of X and G. (Input)

X – Vector of length N at which point the gradient is evaluated. (Input)
X should not be changed by GRAD.

G – The gradient evaluated at the point X. (Output)

GRAD must be declared EXTERNAL in the calling program.

IBTYPE — Scalar indicating the types of bounds on variables. (Input)

IBTYPE Action

0 User will supply all the bounds.

1 All variables are nonnegative.

2 All variables are nonpositive.

3 User supplies only the bounds on 1st variable, all other variables
 will have the same bounds.

XLB — Vector of length N containing the lower bounds on variables. (Input, if IBTYPE = 0;
output, if IBTYPE = 1 or 2; input/output, if IBTYPE = 3)

XUB — Vector of length N containing the upper bounds on variables. (Input, if IBTYPE = 0;
output, if IBTYPE = 1 or 2; input/output, if IBTYPE = 3)

X — Vector of length N containing the computed solution. (Output)

IMSL MATH/LIBRARY Chapter 8: Optimization � 1251

Optional Arguments
N — Dimension of the problem. (Input)

Default: N = size (X,1).

XGUESS — Vector of length N containing the initial guess of the minimum. (Input)
Default: XGUESS = 0.0.

XSCALE — Vector of length N containing the diagonal scaling matrix for the variables.
(Input)
XSCALE is used mainly in scaling the gradient and the distance between two points. In
the absence of other information, set all entries to 1.0.
Default: XSCALE = 1.0.

FSCALE — Scalar containing the function scaling. (Input)
FSCALE is used mainly in scaling the gradient. In the absence of other information, set
FSCALE to 1.0.
Default: FSCALE = 1.0.

IPARAM — Parameter vector of length 7. (Input/Output)
Set IPARAM(1) to zero for default values of IPARAM and RPARAM. See Comment 4.
Default: IPARAM = 0.

RPARAM — Parameter vector of length 7. (Input/Output)
See Comment 4.

FVALUE — Scalar containing the value of the function at the computed solution. (Output)

FORTRAN 90 Interface
Generic: CALL BCONG (FCN, GRAD, IBTYPE, XLB, XUB, X [,…])

Specific: The specific interface names are S_BCONG and D_BCONG.

FORTRAN 77 Interface
Single: CALL BCONG (FCN, GRAD, N, XGUESS, IBTYPE, XLB, XUB, XSCALE,

FSCALE, IPARAM, RPARAM, X, FVALUE)

Double: The double precision name is DBCONG.

Example
The problem

1252 � Chapter 8: Optimization IMSL MATH/LIBRARY

� � � � � �
2 22

2 1 1

1

2

min 100 1

subject to 2 0.5
1 2

f x x x x

x
x

� � � �

� � �

� � �

is solved with an initial guess (�1.2, 1.0), and default values for parameters.
 USE BCONG_INT
 USE UMACH_INT
 INTEGER N
 PARAMETER (N=2)
!
 INTEGER IPARAM(7), ITP, L, NOUT
 REAL F, X(N), XGUESS(N), XLB(N), XUB(N)
 EXTERNAL ROSBRK, ROSGRD
!
 DATA XGUESS/-1.2E0, 1.0E0/
 DATA XLB/-2.0E0, -1.0E0/, XUB/0.5E0, 2.0E0/
! All the bounds are provided
 ITP = 0
! Default parameters are used
 IPARAM(1) = 0
! Minimize Rosenbrock function using
! initial guesses of -1.2 and 1.0
 CALL BCONG (ROSBRK, ROSGRD, ITP, XLB, XUB, X, XGUESS=XGUESS, &
 IPARAM=IPARAM, FVALUE=F)
! Print results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) X, F, (IPARAM(L),L=3,5)
!
99999 FORMAT (’ The solution is ’, 6X, 2F8.3, //, ’ The function ’, &
 ’value is ’, F8.3, //, ’ The number of iterations is ’, &
 10X, I3, /, ’ The number of function evaluations is ’, &
 I3, /, ’ The number of gradient evaluations is ’, I3)
!
 END
!
 SUBROUTINE ROSBRK (N, X, F)
 INTEGER N
 REAL X(N), F
!
 F = 1.0E2*(X(2)-X(1)*X(1))**2 + (1.0E0-X(1))**2
!
 RETURN
 END
!
 SUBROUTINE ROSGRD (N, X, G)
 INTEGER N
 REAL X(N), G(N)
!
 G(1) = -4.0E2*(X(2)-X(1)*X(1))*X(1) - 2.0E0*(1.0E0-X(1))
 G(2) = 2.0E2*(X(2)-X(1)*X(1))
!
 RETURN
 END

IMSL MATH/LIBRARY Chapter 8: Optimization � 1253

Output
The solution is 0.500 0.250

The function value is 0.250

The number of iterations is 22
The number of function evaluations is 32
The number of gradient evaluations is 23

Comments
1. Workspace may be explicitly provided, if desired, by use of B2ONG/DB2ONG. The

reference is:

 CALL B2ONG (FCN, GRAD, N, XGUESS, IBTYPE, XLB, XUB, XSCALE,
FSCALE, IPARAM, RPARAM, X, FVALUE, WK, IWK)

The additional arguments are as follows:

WK — Real work vector of length N * (2 * N + 8). WK contains the following
information on output: The second N locations contain the last step taken. The
third N locations contain the last Newton step. The fourth N locations contain an
estimate of the gradient at the solution. The final N� locations contain a BFGS
approximation to the Hessian at the solution.

IWK — Work vector of length N stored in column order. Only the lower triangular
portion of the matrix is stored in WK. The values returned in the upper triangle
should be ignored.

2. Informational errors

Type Code

 3 1 Both the actual and predicted relative reductions in the function are less
than or equal to the relative function convergence tolerance.

 4 2 The iterates appear to be converging to a noncritical point.

 4 3 Maximum number of iterations exceeded.

 4 4 Maximum number of function evaluations exceeded.

 4 5 Maximum number of gradient evaluations exceeded.

 4 6 Five consecutive steps have been taken with the maximum step length.

 2 7 Scaled step tolerance satisfied; the current point may be an approximate
local solution, or the algorithm is making very slow progress and is not near a solution,
or STEPTL is too big.

1254 � Chapter 8: Optimization IMSL MATH/LIBRARY

3 8 The last global step failed to locate a lower point than the current X value.

3. The first stopping criterion for BCONG occurs when the norm of the gradient is less than
the given gradient tolerance (RPARAM(1)). The second stopping criterion for BCONG
occurs when the scaled distance between the last two steps is less than the step
tolerance (RPARAM(2)).

4. If the default parameters are desired for BCONG, then set IPARAM (1) to zero and call
the routine BCONG. Otherwise, if any nondefault parameters are desired for IPARAM or
RPARAM, then the following steps should be taken before calling BCONG:

CALL U4INF (IPARAM, RPARAM)

Set nondefault values for desired IPARAM, RPARAM elements.

Note that the call to U4INF will set IPARAM and RPARAM to their default values so only
nondefault values need to be set above.

The following is a list of the parameters and the default values:

IPARAM — Integer vector of length 7.
IPARAM(1) = Initialization flag.

IPARAM(2) = Number of good digits in the function.
Default: Machine dependent.

IPARAM(3) = Maximum number of iterations.
Default: 100.

IPARAM(4) = Maximum number of function evaluations.
Default: 400.

IPARAM(5) = Maximum number of gradient evaluations.
Default: 400.

IPARAM(6) = Hessian initialization parameter.
If IPARAM(6) = 0, the Hessian is initialized to the identity matrix; otherwise, it
is initialized to a diagonal matrix containing

� �� � 2max , s if t f s�

on the diagonal where t = XGUESS, fs = FSCALE, and s = XSCALE.
Default: 0.

IPARAM(7) = Maximum number of Hessian evaluations.
Default: Not used in BCONG.

IMSL MATH/LIBRARY Chapter 8: Optimization � 1255

RPARAM — Real vector of length 7.
RPARAM(1) = Scaled gradient tolerance.
The i-th component of the scaled gradient at x is calculated as

� �

� �� �

max ,1/

max ,
i i i

s

g x s

f x f

�

where g = �f (x), s = XSCALE, and fs = FSCALE.
Default:

3,� �

in double where � is the machine precision.

RPARAM(2) = Scaled step tolerance. (STEPTL)
The i-th component of the scaled step between two points x and y is computed as

� �max ,1/
i i

i i

x y
x s
�

where s = XSCALE.
Default: ���� where � is the machine precision.

RPARAM(3) = Relative function tolerance.
Default: max(10���, ����), max (10���, ����) in double where � is the machine precision.

RPARAM(4) = Absolute function tolerance.
Default: Not used in BCONG.

RPARAM(5) = False convergence tolerance.
Default: 100� where � is the machine precision.

RPARAM(6) = Maximum allowable step size.
Default: 1000 max(��, ��) where

� �
2

1 1

n
i ii

s t�
�

�

�� = || s ||�, s = XSCALE, and t = XGUESS.

RPARAM(7) = Size of initial trust region radius.
Default: based on the initial scaled Cauchy step.

If double precision is required, then DU4INF is called and RPARAM is declared double
precision.

1256 � Chapter 8: Optimization IMSL MATH/LIBRARY

5. Users wishing to override the default print/stop attributes associated with error
messages issued by this routine are referred to “Error Handling” in the Introduction.

Description
The routine BCONG uses a quasi-Newton method and an active set strategy to solve minimization
problems subject to simple bounds on the variables. The problem is stated as follows:

� �min
nx

f x
�R

subject to l � x � u

From a given starting point xc, an active set IA, which contains the indices of the variables at
their bounds, is built. A variable is called a “free variable” if it is not in the active set. The
routine then computes the search direction for the free variables according to the formula

d = �B�� gc

where B is a positive definite approximation of the Hessian and gc is the gradient evaluated at
xc; both are computed with respect to the free variables. The search direction for the variables in
IA is set to zero. A line search is used to find a new point xn ,

xn = xc + �d, � � (0, 1]

such that

f (xn) � f (xc) + �gT d, � � (0, 0.5)

Finally, the optimality conditions

||g(xi)|| � �, li < xi< ui

g(xi) < 0, xi = ui

g(xi) > 0, xi = li

are checked, where � is a gradient tolerance. When optimality is not achieved, B is updated
according to the BFGS formula:

T T

T T

Bss B yyB B
s Bs y s

� � �

where s = xn � xc and y = gn � gc. Another search direction is then computed to begin the next
iteration.

The active set is changed only when a free variable hits its bounds during an iteration or the
optimality condition is met for the free variables but not for all variables in IA, the active set. In
the latter case, a variable that violates the optimality condition will be dropped out of IA. For
more details on the quasi-Newton method and line search, see Dennis and Schnabel (1983). For
more detailed information on active set strategy, see Gill and Murray (1976).

IMSL MATH/LIBRARY Chapter 8: Optimization � 1257

BCODH
Minimizes a function of N variables subject to bounds on the variables using a modified Newton
method and a finite-difference Hessian.

Required Arguments
FCN — User-supplied SUBROUTINE to evaluate the function to be minimized. The usage is

CALL FCN (N, X, F), where

N – Length of X. (Input)

X – Vector of length N at which point the function is evaluated. (Input)
X should not be changed by FCN.

F – The computed function value at the point X. (Output)

FCN must be declared EXTERNAL in the calling program.

GRAD — User-supplied SUBROUTINE to compute the gradient at the point X. The usage is
CALL GRAD (N, X, G), where

N – Length of X and G. (Input)

X – Vector of length N at which point the gradient is evaluated. (Input)
X should not be changed by GRAD.

G – The gradient evaluated at the point X. (Output)

GRAD must be declared EXTERNAL in the calling program.

IBTYPE — Scalar indicating the types of bounds on variables. (Input)

IBTYPE Action

 0 User will supply all the bounds.

 1 All variables are nonnegative.

 2 All variables are nonpositive.

 3 User supplies only the bounds on 1st variable, all other variables will have
 the same bounds.

XLB — Vector of length N containing the lower bounds on the variables. (Input)

XUB — Vector of length N containing the upper bounds on the variables. (Input)

1258 � Chapter 8: Optimization IMSL MATH/LIBRARY

X — Vector of length N containing the computed solution. (Output)

Optional Arguments
N — Dimension of the problem. (Input)

Default: N = size (X,1).

XGUESS — Vector of length N containing the initial guess of the minimum. (Input)
Default: XGUESS = 0.0.

XSCALE — Vector of length N containing the diagonal scaling matrix for the variables.
(Input)
XSCALE is used mainly in scaling the gradient and the distance between two points. In
the absence of other information, set all entries to 1.0.
Default: XSCALE = 1.0.

FSCALE — Scalar containing the function scaling. (Input)
FSCALE is used mainly in scaling the gradient. In the absence of other information, set
FSCALE to 1.0.
Default: FSCALE = 1.0.

IPARAM — Parameter vector of length 7. (Input/Output)
Set IPARAM(1) to zero for default values of IPARAM and RPARAM. See Comment 4.
Default: IPARAM = 0.

RPARAM — Parameter vector of length 7. (Input/Output)
See Comment 4.

FVALUE — Scalar containing the value of the function at the computed solution. (Output)

FORTRAN 90 Interface
Generic: CALL BCODH (FCN, GRAD, IBTYPE, XLB, XUB, X [,…])

Specific: The specific interface names are S_BCODH and D_BCODH.

FORTRAN 77 Interface
Single: CALL BCODH (FCN, GRAD, N, XGUESS, IBTYPE, XLB, XUB, XSCALE,

FSCALE, IPARAM, RPARAM, X, FVALUE)

Double: The double precision name is DBCODH.

Example

The problem

IMSL MATH/LIBRARY Chapter 8: Optimization � 1259

� � � � � �
2 22

2 1 1

1

2

min 100 1

subject to 2 0.5
1 2

f x x x x

x
x

� � � �

� � �

� � �

is solved with an initial guess (�1.2, 1.0), and default values for parameters.
 USE BCODH_INT
 USE UMACH_INT
 INTEGER N
 PARAMETER (N=2)
!
 INTEGER IP, IPARAM(7), L, NOUT
 REAL F, X(N), XGUESS(N), XLB(N), XUB(N)
 EXTERNAL ROSBRK, ROSGRD
!
 DATA XGUESS/-1.2E0, 1.0E0/
 DATA XLB/-2.0E0, -1.0E0/, XUB/0.5E0, 2.0E0/
!
 IPARAM(1) = 0
 IP = 0
! Minimize Rosenbrock function using
! initial guesses of -1.2 and 1.0
 CALL BCODH (ROSBRK, ROSGRD, IP, XLB, XUB, X, XGUESS=XGUESS, &
 IPARAM=IPARAM, FVALUE=F)
! Print results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) X, F, (IPARAM(L),L=3,5)
!
99999 FORMAT (’ The solution is ’, 6X, 2F8.3, //, ’ The function ’, &
 ’value is ’, F8.3, //, ’ The number of iterations is ’, &
 10X, I3, /, ’ The number of function evaluations is ’, &
 I3, /, ’ The number of gradient evaluations is ’, I3)
!
 END
!
 SUBROUTINE ROSBRK (N, X, F)
 INTEGER N
 REAL X(N), F
!
 F = 1.0E2*(X(2)-X(1)*X(1))**2 + (1.0E0-X(1))**2
!
 RETURN
 END
 SUBROUTINE ROSGRD (N, X, G)
 INTEGER N
 REAL X(N), G(N)
!
 G(1) = -4.0E2*(X(2)-X(1)*X(1))*X(1) - 2.0E0*(1.0E0-X(1))
 G(2) = 2.0E2*(X(2)-X(1)*X(1))
!
 RETURN
 END

1260 � Chapter 8: Optimization IMSL MATH/LIBRARY

Output
The solution is 0.500 0.250

The function value is 0.250

The number of iterations is 17
The number of function evaluations is 26
The number of gradient evaluations is 18

Comments
1. Workspace may be explicitly provided, if desired, by use of B2ODH/DB2ODH. The

reference is:

CALL B2ODH (FCN, GRAD, N, XGUESS, IBTYPE, XLB, XUB, XSCALE,
FSCALE, IPARAM, RPARAM, X, FVALUE, WK, IWK)

The additional arguments are as follows:

WK — Real work vector of length N * (N + 8). WK contains the following
information on output: The second N locations contain the last step taken. The
third N locations contain the last Newton step. The fourth N locations contain an
estimate of the gradient at the solution. The final N� locations contain the
Hessian at the approximate solution.

IWK — Integer work vector of length N.

2. Informational errors

Type Code
 3 1 Both the actual and predicted relative reductions in the function are

less than or equal to the relative function convergence tolerance.
 4 2 The iterates appear to be converging to a noncritical point.
 4 3 Maximum number of iterations exceeded.
 4 4 Maximum number of function evaluations exceeded.
 4 5 Maximum number of gradient evaluations exceeded.
 4 6 Five consecutive steps have been taken with the maximum step

length.
 2 7 Scaled step tolerance satisfied; the current point may be an

approximate local solution, or the algorithm is making very slow
progress and is not near a solution, or STEPTL is too big.

 4 7 Maximum number of Hessian evaluations exceeded.

3. The first stopping criterion for BCODH occurs when the norm of the gradient is less than
the given gradient tolerance (RPARAM(1)). The second stopping criterion for BCODH
occurs when the scaled distance between the last two steps is less than the step
tolerance (RPARAM(2)).

4. If the default parameters are desired for BCODH, then set IPARAM(1) to zero and call the
routine BCODH. Otherwise, if any nondefault parameters are desired for IPARAM or
RPARAM; then the following steps should be taken before calling BCODH:

IMSL MATH/LIBRARY Chapter 8: Optimization � 1261

CALL U4INF (IPARAM, RPARAM)
Set nondefault values for desired IPARAM, RPARAM elements.

Note that the call to U4INF will set IPARAM and RPARAM to their default values so only
nondefault values need to be set above.

The following is a list of the parameters and the default values:

IPARAM — Integer vector of length 7.
IPARAM(1) = Initialization flag.

IPARAM(2) = Number of good digits in the function.
Default: Machine dependent.

IPARAM(3) = Maximum number of iterations.
Default: 100.

IPARAM(4) = Maximum number of function evaluations.
Default: 400.

IPARAM(5) = Maximum number of gradient evaluations.
Default: 400.

IPARAM(6) = Hessian initialization parameter.
Default: Not used in BCODH.

IPARAM(7) = Maximum number of Hessian evaluations.
Default: 100.

RPARAM — Real vector of length 7.
RPARAM(1) = Scaled gradient tolerance.
The i-th component of the scaled gradient at x is calculated as

� �

� �� �

max ,1/

max ,
i i i

s

g x s

f x f

�

where g = �f (x), s = XSCALE, and fs = FSCALE.
Default:

3,� �

in double where � is the machine precision.

RPARAM(2) = Scaled step tolerance. (STEPTL)
The i-th component of the scaled step between two points x and y is computed as

1262 � Chapter 8: Optimization IMSL MATH/LIBRARY

� �max ,1/
i i

i i

x y
x s
�

where s = XSCALE.
Default: ���� where � is the machine precision.

RPARAM(3) = Relative function tolerance.
Default: max(10���, ����), max (10���, ����) in double where � is the machine precision.

RPARAM(4) = Absolute function tolerance.
Default: Not used in BCODH.

RPARAM(5) = False convergence tolerance.
Default: 100� where � is the machine precision.

RPARAM(6) = Maximum allowable step size.
Default: 1000 max(��, ��) where

� �
2

1 1

n
i ii

s t�
�

�

�� = || s ||�, s = XSCALE, and t = XGUESS.

RPARAM(7) = Size of initial trust region radius.
Default: based on the initial scaled Cauchy step.

If double precision is required, then DU4INF is called and RPARAM is declared double
precision.

5. Users wishing to override the default print/stop attributes associated with error
messages issued by this routine are referred to “Error Handling” in the Introduction.

Description
The routine BCODH uses a modified Newton method and an active set strategy to solve
minimization problems subject to simple bounds on the variables. The problem is stated as

� �min
nx

f x
�R

subject to l � x � u

From a given starting point xc, an active set IA, which contains the indices of the variables at
their bounds, is built. A variable is called a “free variable” if it is not in the active set. The
routine then computes the search direction for the free variables according to the formula

d = �H�� gc

IMSL MATH/LIBRARY Chapter 8: Optimization � 1263

where H is the Hessian and gc is the gradient evaluated at xc; both are computed with respect to
the free variables. The search direction for the variables in IA is set to zero. A line search is used
to find a new point xn ,

xn = xc + �d, � � (0, 1]

such that

f (xn) � f (xc) + �gT d, � � (0, 0.5)

Finally, the optimality conditions

||g(xi)|| � �, li < xi < ui

g(xi) < 0, xi = ui

g(xi) > 0, xi = li

are checked where � is a gradient tolerance. When optimality is not achieved, another search
direction is computed to begin the next iteration. This process is repeated until the optimality
criterion is met.

The active set is changed only when a free variable hits its bounds during an iteration or the
optimality condition is met for the free variables but not for all variables in IA, the active set. In
the latter case, a variable that violates the optimality condition will be dropped out of IA. For
more details on the modified Newton method and line search, see Dennis and Schnabel (1983).
For more detailed information on active set strategy, see Gill and Murray (1976).

Since a finite-difference method is used to estimate the Hessian for some single precision
calculations, an inaccurate estimate of the Hessian may cause the algorithm to terminate at a
noncritical point. In such cases, high precision arithmetic is recommended. Also, whenever the
exact Hessian can be easily provided, routine BCOAH (page 1263) should be used instead.

BCOAH
Minimizes a function of N variables subject to bounds on the variables using a modified Newton
method and a user-supplied Hessian.

Required Arguments
FCN — User-supplied SUBROUTINE to evaluate the function to be minimized. The usage is

CALL FCN (N, X, F), where

N – Length of X. (Input)

X – Vector of length N at which point the function is evaluated. (Input)
X should not be changed by FCN.

F – The computed function value at the point X. (Output)

FCN must be declared EXTERNAL in the calling program.

1264 � Chapter 8: Optimization IMSL MATH/LIBRARY

GRAD — User-supplied SUBROUTINE to compute the gradient at the point X. The usage is
CALL GRAD (N, X, G), where

N – Length of X and G. (Input)

X – Vector of length N at which point the gradient is evaluated. (Input)
X should not be changed by GRAD.

G – The gradient evaluated at the point X. (Output)

GRAD must be declared EXTERNAL in the calling program.

HESS — User-supplied SUBROUTINE to compute the Hessian at the point X. The usage is
CALL HESS (N, X, H, LDH), where

N – Length of X. (Input)

X – Vector of length N at which point the Hessian is evaluated. (Input)
X should not be changed by HESS.

H – The Hessian evaluated at the point X. (Output)

LDH – Leading dimension of H exactly as specified in the dimension statement of the
calling program. (Input)

HESS must be declared EXTERNAL in the calling program.

IBTYPE — Scalar indicating the types of bounds on variables. (Input)

IBTYPE Action

0 User will supply all the bounds.

1 All variables are nonnegative.

2 All variables are nonpositive.

3 User supplies only the bounds on 1st variable, all other variables will have
 the same bounds.

XLB — Vector of length N containing the lower bounds on the variables. (Input)

XUB — Vector of length N containing the upper bounds on the variables. (Input)

X — Vector of length N containing the computed solution. (Output)

IMSL MATH/LIBRARY Chapter 8: Optimization � 1265

Optional Arguments
N — Dimension of the problem. (Input)

Default: N = size (X,1).

XGUESS — Vector of length N containing the initial guess. (Input)
Default: XGUESS = 0.0.

XSCALE — Vector of length N containing the diagonal scaling matrix for the variables.
(Input)
XSCALE is used mainly in scaling the gradient and the distance between two points. In
the absence of other information, set all entries to 1.0.
Default: XSCALE = 1.0.

FSCALE — Scalar containing the function scaling. (Input)
FSCALE is used mainly in scaling the gradient. In the absence of other information, set
FSCALE to 1.0.
Default: FSCALE = 1.0.

IPARAM — Parameter vector of length 7. (Input/Output)
Set IPARAM(1) to zero for default values of IPARAM and RPARAM. See Comment 4.
Default: IPARAM = 0.

RPARAM — Parameter vector of length 7. (Input/Output)
See Comment 4.

FVALUE — Scalar containing the value of the function at the computed solution. (Output)

FORTRAN 90 Interface
Generic: CALL BCOAH (FCN, GRAD, HESS, IBTYPE, XLB, XUB, X [,…])

Specific: The specific interface names are S_BCOAH and D_BCOAH.

FORTRAN 77 Interface
Single: CALL BCOAH (FCN, GRAD, HESS, N, XGUESS, IBTYPE, XLB, XUB,

XSCALE, FSCALE, IPARAM, RPARAM, X, FVALUE)

Double: The double precision name is DBCOAH.

Example
The problem

1266 � Chapter 8: Optimization IMSL MATH/LIBRARY

� � � � � �
2 22

2 1 1

1

2

min 100 1

subject to 2 0.5
1 2

f x x x x

x
x

� � � �

� � �

� � �

is solved with an initial guess (�1.2, 1.0), and default values for parameters.
 USE BCOAH_INT
 USE UMACH_INT
 INTEGER N
 PARAMETER (N=2)
!
 INTEGER IP, IPARAM(7), L, NOUT
 REAL F, X(N), XGUESS(N), XLB(N), XUB(N)
 EXTERNAL ROSBRK, ROSGRD, ROSHES
!
 DATA XGUESS/-1.2E0, 1.0E0/
 DATA XLB/-2.0E0, -1.0E0/, XUB/0.5E0, 2.0E0/
!
 IPARAM(1) = 0
 IP = 0
! Minimize Rosenbrock function using
! initial guesses of -1.2 and 1.0
 CALL BCOAH (ROSBRK, ROSGRD, ROSHES, IP, XLB, XUB, X, &
 XGUESS=XGUESS,IPARAM=IPARAM, FVALUE=F)
! Print results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) X, F, (IPARAM(L),L=3,5), IPARAM(7)
!
99999 FORMAT (’ The solution is ’, 6X, 2F8.3, //, ’ The function ’, &
 ’value is ’, F8.3, //, ’ The number of iterations is ’, &
 10X, I3, /, ’ The number of function evaluations is ’, &
 I3, /, ’ The number of gradient evaluations is ’, I3, /, &
 ’ The number of Hessian evaluations is ’, I3)
!
 END
!
 SUBROUTINE ROSBRK (N, X, F)
 INTEGER N
 REAL X(N), F
!
 F = 1.0E2*(X(2)-X(1)*X(1))**2 + (1.0E0-X(1))**2
!
 RETURN
 END
!
 SUBROUTINE ROSGRD (N, X, G)
 INTEGER N
 REAL X(N), G(N)
!
 G(1) = -4.0E2*(X(2)-X(1)*X(1))*X(1) - 2.0E0*(1.0E0-X(1))
 G(2) = 2.0E2*(X(2)-X(1)*X(1))
!
 RETURN
 END

IMSL MATH/LIBRARY Chapter 8: Optimization � 1267

!
 SUBROUTINE ROSHES (N, X, H, LDH)
 INTEGER N, LDH
 REAL X(N), H(LDH,N)
!
 H(1,1) = -4.0E2*X(2) + 1.2E3*X(1)*X(1) + 2.0E0
 H(2,1) = -4.0E2*X(1)
 H(1,2) = H(2,1)
 H(2,2) = 2.0E2
!
 RETURN
 END

Output
The solution is 0.500 0.250

The function value is 0.250

The number of iterations is 18
The number of function evaluations is 29
The number of gradient evaluations is 19
The number of Hessian evaluations is 18

Comments
1. Workspace may be explicitly provided, if desired, by use of B2OAH/DB2OAH. The

reference is:

CALL B2OAH (FCN, GRAD, HESS, N, XGUESS, IBTYPE, XLB,
 XUB, XSCALE, FSCALE, IPARAM, RPARAM, X,
 FVALUE, WK, IWK)

The additional arguments are as follows:

WK — Work vector of length N * (N + 8). WK contains the following information on
output: The second N locations contain the last step taken. The third N locations
contain the last Newton step. The fourth N locations contain an estimate of the
gradient at the solution. The final N� locations contain the Hessian at the
approximate solution.

IWK — Work vector of length N.

2. Informational errors

Type Code
 3 1 Both the actual and predicted relative reductions in the function are

less than or equal to the relative function convergence tolerance.
 4 2 The iterates appear to be converging to a noncritical point.

1268 � Chapter 8: Optimization IMSL MATH/LIBRARY

 4 3 Maximum number of iterations exceeded.
 4 4 Maximum number of function evaluations exceeded.
 4 5 Maximum number of gradient evaluations exceeded.
 4 6 Five consecutive steps have been taken with the maximum step

length.
 2 7 Scaled step tolerance satisfied; the current point may be an

approximate local solution, or the algorithm is making very slow
progress and is not near a solution, or STEPTL is too big.

 4 7 Maximum number of Hessian evaluations exceeded.
 3 8 The last global step failed to locate a lower point than the current X

value.

3. The first stopping criterion for BCOAH occurs when the norm of the gradient is less than
the given gradient tolerance (RPARAM(1)). The second stopping criterion for BCOAH
occurs when the scaled distance between the last two steps is less than the step
tolerance (RPARAM(2)).

4. If the default parameters are desired for BCOAH, then set IPARAM(1) to zero and call the
routine BCOAH. Otherwise, if any nondefault parameters are desired for IPARAM or
RPARAM, then the following steps should be taken before calling BCOAH:

CALL U4INF (IPARAM, RPARAM)
Set nondefault values for desired IPARAM, RPARAM elements.

Note that the call to U4INF will set IPARAM and RPARAM to their default values so only
nondefault values need to be set above.

The following is a list of the parameters and the default values:

IPARAM — Integer vector of length 7.
IPARAM(1) = Initialization flag.

IPARAM(2) = Number of good digits in the function.
Default: Machine dependent.

IPARAM(3) = Maximum number of iterations.
Default: 100.

IPARAM(4) = Maximum number of function evaluations.
Default: 400.

IPARAM(5) = Maximum number of gradient evaluations.
Default: 400.

IPARAM(6) = Hessian initialization parameter.
Default: Not used in BCOAH.

IMSL MATH/LIBRARY Chapter 8: Optimization � 1269

IPARAM(7) = Maximum number of Hessian evaluations.
Default: 100.

RPARAM — Real vector of length 7.
RPARAM(1) = Scaled gradient tolerance.
The i-th component of the scaled gradient at x is calculated as

� �

� �� �

max ,1/

max ,
i i i

s

g x s

f x f

�

where g = �f(x), s = XSCALE, and fs = FSCALE.
Default:

3,� �

in double where � is the machine precision.

RPARAM(2) = Scaled step tolerance. (STEPTL)
The i-th component of the scaled step between two points x and y is computed as

� �max ,1/
i i

i i

x y
x s
�

where s = XSCALE.
Default: ���� where � is the machine precision.

RPARAM(3) = Relative function tolerance.
Default: max(10���, ����), max (10���, ����) in double where � is the machine precision.

RPARAM(4) = Absolute function tolerance.
Default: Not used in BCOAH.

RPARAM(5) = False convergence tolerance.
Default: 100� where � is the machine precision.

RPARAM(6) = Maximum allowable step size.
Default: 1000 max(��, ��) where

� �
2

1 1

n
i ii

s t�
�

�

�� = || s ||�, s = XSCALE, and t = XGUESS.

RPARAM(7) = Size of initial trust region radius.
Default: based on the initial scaled Cauchy step.

1270 � Chapter 8: Optimization IMSL MATH/LIBRARY

If double precision is required, then DU4INF is called and RPARAM is declared double
precision.

5. Users wishing to override the default print/stop attributes associated with error
messages issued by this routine are referred to “Error Handling” in the Introduction.

Description
The routine BCOAH uses a modified Newton method and an active set strategy to solve
minimization problems subject to simple bounds on the variables. The problem is stated as
follows:

� �min
nx

f x
�R

subject to l � x � u

From a given starting point xc, an active set IA, which contains the indices of the variables at
their bounds, is built. A variable is called a “free variable” if it is not in the active set. The
routine then computes the search direction for the free variables according to the formula

d = �H�� gc

where H is the Hessian and gc is the gradient evaluated at xc; both are computed with respect to
the free variables. The search direction for the variables in IA is set to zero. A line search is used
to find a new point xn ,

xn = xc + �d, � � (0, 1]

such that

f(xn) � f(xc) + �gT d, � � (0, 0.5)

Finally, the optimality conditions

||g(xi)|| � �, li < xi< ui

g(xi) < 0, xi = ui

g(xi) > 0, xi = li

are checked where � is a gradient tolerance. When optimality is not achieved, another search
direction is computed to begin the next iteration. This process is repeated until the optimality
criterion is met.

The active set is changed only when a free variable hits its bounds during an iteration or the
optimality condition is met for the free variables but not for all variables in IA, the active set. In
the latter case, a variable that violates the optimality condition will be dropped out of IA. For
more details on the modified Newton method and line search, see Dennis and Schnabel (1983).
For more detailed information on active set strategy, see Gill and Murray (1976).

IMSL MATH/LIBRARY Chapter 8: Optimization � 1271

BCPOL
Minimizes a function of N variables subject to bounds on the variables using a direct search
complex algorithm.

Required Arguments
FCN — User-supplied SUBROUTINE to evaluate the function to be minimized. The usage is

CALL FCN (N, X, F), where

N – Length of X. (Input)

X – Vector of length N at which point the function is evaluated. (Input)
X should not be changed by FCN.

F – The computed function value at the point X. (Output)

FCN must be declared EXTERNAL in the calling program.

IBTYPE — Scalar indicating the types of bounds on variables. (Input)

IBTYPE Action

0 User will supply all the bounds.

1 All variables are nonnegative.

2 All variables are nonpositive.

3 User supplies only the bounds on the first, variable. All other variables will
have the same bounds.

XLB — Vector of length N containing the lower bounds on the variables. (Input, if IBTYPE
= 0; output, if IBTYPE = 1 or 2; input/output, if IBTYPE = 3)

XUB — Vector of length N containing the upper bounds on the variables. (Input, if IBTYPE
= 0; output, if IBTYPE = 1 or 2; input/output, if IBTYPE = 3)

X — Real vector of length N containing the best estimate of the minimum found. (Output)

Optional Arguments
N — The number of variables. (Input)

Default: N = size (XGUESS,1).

XGUESS — Real vector of length N that contains an initial guess to the minimum. (Input)
Default: XGUESS = 0.0.

1272 � Chapter 8: Optimization IMSL MATH/LIBRARY

FTOL — First convergence criterion. (Input)
The algorithm stops when a relative error in the function values is less than FTOL, i.e.
when (F(worst) � F(best)) < FTOL * (1 + ABS(F(best))) where F(worst) and F(best) are
the function values of the current worst and best point, respectively. Second
convergence criterion. The algorithm stops when the standard deviation of the function
values at the 2 * N current points is less than FTOL. If the subroutine terminates
prematurely, try again with a smaller value FTOL.
Default: FTOL = 1.0e-4 for single and 1.0d-8 for double precision.

MAXFCN — On input, maximum allowed number of function evaluations. (Input/ Output)
On output, actual number of function evaluations needed.
Default: MAXFCN = 300.

FVALUE — Function value at the computed solution. (Output)

FORTRAN 90 Interface
Generic: CALL BCPOL (FCN, IBTYPE, XLB, XUB, X [,…])

Specific: The specific interface names are S_BCPOL and D_BCPOL.

FORTRAN 77 Interface
Single: CALL BCPOL (FCN, N, XGUESS, IBTYPE, XLB, XUB, FTOL, MAXFCN,

X, FVALUE)

Double: The double precision name is DBCPOL.

Example
The problem

� � � � � �
2 22

2 1 1

1

2

min 100 1

subject to 2 0.5
1 2

f x x x x

x
x

� � � �

� � �

� � �

is solved with an initial guess (�1.2, 1.0), and the solution is printed.
 USE BCPOL_INT
 USE UMACH_INT
! Variable declarations
 INTEGER N
 PARAMETER (N=2)
!
 INTEGER IBTYPE, K, NOUT
 REAL FTOL, FVALUE, X(N), XGUESS(N), XLB(N), XUB(N)
 EXTERNAL FCN

IMSL MATH/LIBRARY Chapter 8: Optimization � 1273

!
! Initializations
! XGUESS = (-1.2, 1.0)
! XLB = (-2.0, -1.0)
! XUB = (0.5, 2.0)
 DATA XGUESS/-1.2, 1.0/, XLB/-2.0E0, -1.0E0/, XUB/0.5E0, 2.0E0/
!
 FTOL = 1.0E-5
 IBTYPE = 0
!
 CALL BCPOL (FCN, IBTYPE, XLB, XUB, X, XGUESS=XGUESS, FTOL=FTOL, &
 FVALUE=FVALUE)
!
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) (X(K),K=1,N), FVALUE
99999 FORMAT (’ The best estimate for the minimum value of the’, /, &
 ’ function is X = (’, 2(2X,F4.2), ’)’, /, ’ with ’, &
 ’function value FVALUE = ’, E12.6)
!
 END
! External function to be minimized
 SUBROUTINE FCN (N, X, F)
 INTEGER N
 REAL X(N), F
!
 F = 100.0*(X(2)-X(1)*X(1))**2 + (1.0-X(1))**2
 RETURN
 END

Output
The best estimate for the minimum value of the
function is X = (0.50 0.25)
with function value FVALUE = 0.250002E+00

Comments
1. Workspace may be explicitly provided, if desired, by use of B2POL/DB2POL. The

reference is:

CALL B2POL (FCN, N, XGUESS, IBTYPE, XLB, XUB, FTOL,
 MAXFCN, X, FVALUE, WK)

The additional argument is:

WK — Real work vector of length 2 * N**2 + 5 * N

2. Informational error

Type Code
 3 1 The maximum number of function evaluations is exceeded.

3. Since BCPOL uses only function-value information at each step to determine a new
approximate minimum, it could be quite inefficient on smooth problems compared to
other methods such as those implemented in routine BCONF (page 1243), which takes

1274 � Chapter 8: Optimization IMSL MATH/LIBRARY

into account derivative information at each iteration. Hence, routine BCPOL should only
be used as a last resort. Briefly, a set of 2 * N points in an N-dimensional space is called
a complex. The minimization process iterates by replacing the point with the largest
function value by a new point with a smaller function value. The iteration continues
until all the points cluster sufficiently close to a minimum.

Description
The routine BCPOL uses the complex method to find a minimum point of a function of n
variables. The method is based on function comparison; no smoothness is assumed. It starts with
2n points x�, x�, �, x�n. At each iteration, a new point is generated to replace the worst point xj,
which has the largest function value among these 2n points. The new point is constructed by the
following formula:

xk = c + �(c � xj)

where

1
2 1 i j ic x

n �
�

�

�

and � (� > 0) is the reflection coefficient.

When xk is a best point, that is, when f (xk) � f (xi) for i = 1, �, 2n, an expansion point is
computed xe = c + �(xk � c), where �(� > 1) is called the expansion coefficient. If the new point
is a worst point, then the complex would be contracted to get a better new point. If the
contraction step is unsuccessful, the complex is shrunk by moving the vertices halfway toward
the current best point. Whenever the new point generated is beyond the bound, it will be set to
the bound. This procedure is repeated until one of the following stopping criteria is satisfied:

Criterion 1:

fbest � fworst � �f(1. + |fbest|)

Criterion 2:
2

2
1 2

1
()

2

n
n jj

i f
i

f
f

n
�

�

�

� �
�

�

where fi = f(xi), fj = f(xj), and �f is a given tolerance. For a complete description, see Nelder and
Mead (1965) or Gill et al. (1981).

BCLSF
Solves a nonlinear least squares problem subject to bounds on the variables using a modified
Levenberg-Marquardt algorithm and a finite-difference Jacobian.

IMSL MATH/LIBRARY Chapter 8: Optimization � 1275

Required Arguments
FCN — User-supplied SUBROUTINE to evaluate the function to be minimized. The usage is

CALL FCN (M, N, X, F), where

M – Length of F. (Input)

N – Length of X. (Input)

X – The point at which the function is evaluated. (Input)
X should not be changed by FCN.

F – The computed function at the point X. (Output)

FCN must be declared EXTERNAL in the calling program.

M — Number of functions. (Input)

IBTYPE — Scalar indicating the types of bounds on variables. (Input)

IBTYPE Action

0 User will supply all the bounds.

1 All variables are nonnegative.

2 All variables are nonpositive.

3 User supplies only the bounds on 1st variable, all other variables will have
 the same bounds.

XLB — Vector of length N containing the lower bounds on variables. (Input, if IBTYPE = 0;
output, if IBTYPE = 1 or 2; input/output, if IBTYPE = 3)

XUB — Vector of length N containing the upper bounds on variables. (Input, if IBTYPE = 0;
output, if IBTYPE = 1 or 2; input/output, if IBTYPE = 3)

X — Vector of length N containing the approximate solution. (Output)

Optional Arguments
N — Number of variables. (Input)

N must be less than or equal to M.
Default: N = size (X,1).

XGUESS — Vector of length N containing the initial guess. (Input)
Default: XGUESS = 0.0.

1276 � Chapter 8: Optimization IMSL MATH/LIBRARY

XSCALE — Vector of length N containing the diagonal scaling matrix for the variables.
(Input)
XSCALE is used mainly in scaling the gradient and the distance between two points. By
default, the values for XSCALE are set internally. See IPARAM(6) in Comment 4.

FSCALE — Vector of length M containing the diagonal scaling matrix for the functions.
(Input)
FSCALE is used mainly in scaling the gradient. In the absence of other information, set
all entries to 1.0.
Default: FSCALE = 1.0.

IPARAM — Parameter vector of length 6. (Input/Output)
Set IPARAM(1) to zero for default values of IPARAM and RPARAM. See Comment 4.
Default: IPARAM= 0.

RPARAM — Parameter vector of length 7. (Input/Output)
See Comment 4.

FVEC — Vector of length M containing the residuals at the approximate solution. (Output)

FJAC — M by N matrix containing a finite difference approximate Jacobian at the
approximate solution. (Output)

LDFJAC — Leading dimension of FJAC exactly as specified in the dimension statement of
the calling program. (Input)
Default: LDFJAC = size (FJAC ,1).

FORTRAN 90 Interface
Generic: CALL BCLSF (FCN, M, IBTYPE, XLB, XUB, X [,…])

Specific: The specific interface names are S_BCLSF and D_BCLSF.

FORTRAN 77 Interface
Single: CALL BCLSF (FCN, M, N, XGUESS, IBTYPE, XLB, XUB, XSCALE,

FSCALE, IPARAM, RPARAM, X, FVEC, FJAC, LDFJAC)

Double: The double precision name is DBCLSF.

Example
The nonlinear least squares problem

� �
2

2
2

1

1min
2 i

x i
f x

�
�

�
R

subject to �2 � x� � 0.5

IMSL MATH/LIBRARY Chapter 8: Optimization � 1277

 �1 � x� � 2

where

� � � � � � � �2
1 2 1 2 110 and 1f x x x f x x� � � �

is solved with an initial guess (�1.2, 1.0) and default values for parameters.
 USE BCLSF_INT
 USE UMACH_INT
! Declaration of variables
 INTEGER M, N
 PARAMETER (M=2, N=2)
!
 INTEGER IPARAM(7), ITP, NOUT
 REAL FSCALE(M), FVEC(M), X(N), XGUESS(N), XLB(N), XS(N), XUB(N)
 EXTERNAL ROSBCK
! Compute the least squares for the
! Rosenbrock function.
 DATA XGUESS/-1.2E0, 1.0E0/
 DATA XLB/-2.0E0, -1.0E0/, XUB/0.5E0, 2.0E0/
! All the bounds are provided
 ITP = 0
! Default parameters are used
 IPARAM(1) = 0
!
 CALL BCLSF (ROSBCK, M, ITP, XLB, XUB, X, XGUESS=XGUESS, &
 IPARAM=IPARAM, FVEC=FVEC)
! Print results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) X, FVEC, IPARAM(3), IPARAM(4)
!
99999 FORMAT (’ The solution is ’, 2F9.4, //, ’ The function ’, &
 ’evaluated at the solution is ’, /, 18X, 2F9.4, //, &
 ’ The number of iterations is ’, 10X, I3, /, ’ The ’, &
 ’number of function evaluations is ’, I3, /)
 END
!
 SUBROUTINE ROSBCK (M, N, X, F)
 INTEGER M, N
 REAL X(N), F(M)
!
 F(1) = 1.0E1*(X(2)-X(1)*X(1))
 F(2) = 1.0E0 - X(1)
 RETURN
 END

Output
The solution is 0.5000 0.2500

The function evaluated at the solution is
0.0000 0.5000

The number of iterations is 15
The number of function evaluations is 20

1278 � Chapter 8: Optimization IMSL MATH/LIBRARY

Comments
1. Workspace may be explicitly provided, if desired, by use of B2LSF/DB2LSF. The

reference is:

CALL B2LSF (FCN, M, N, XGUESS, IBTYPE, XLB, XUB, XSCALE, FSCALE,
IPARAM, RPARAM, X, FVEC, FJAC, LDFJAC, WK, IWK)

The additional arguments are as follows:

WK — Work vector of length 11 * N + 3 * M � 1. WK contains the following
information on output: The second N locations contain the last step taken. The
third N locations contain the last Gauss-Newton step. The fourth N locations
contain an estimate of the gradient at the solution.

IWK — Work vector of length 2 * N containing the permutations used in the QR
factorization of the Jacobian at the solution.

2. Informational errors

Type Code
 3 1 Both the actual and predicted relative reductions in the function are

less than or equal to the relative function convergence tolerance.
 3 2 The iterates appear to be converging to a noncritical point.
 4 3 Maximum number of iterations exceeded.
 4 4 Maximum number of function evaluations exceeded.
 3 6 Five consecutive steps have been taken with the maximum step

length.
 2 7 Scaled step tolerance satisfied; the current point may be an

approximate local solution, or the algorithm is making very slow
progress and is not near a solution, or STEPTL is too big.

3. The first stopping criterion for BCLSF occurs when the norm of the function is less than
the absolute function tolerance. The second stopping criterion occurs when the norm of
the scaled gradient is less than the given gradient tolerance. The third stopping criterion
for BCLSF occurs when the scaled distance between the last two steps is less than the
step tolerance.

4. If the default parameters are desired for BCLSF, then set IPARAM(1) to zero and call the
routine BCLSF. Otherwise, if any nondefault parameters are desired for IPARAM or
RPARAM, then the following steps should be taken before calling BCLSF:

CALL U4LSF (IPARAM, RPARAM)
Set nondefault values for desired IPARAM, RPARAM elements.

Note that the call to U4LSF will set IPARAM and RPARAM to their default values so only
nondefault values need to be set above.

The following is a list of the parameters and the default values:

IMSL MATH/LIBRARY Chapter 8: Optimization � 1279

IPARAM — Integer vector of length 6.
IPARAM(1) = Initialization flag.

IPARAM(2) = Number of good digits in the function.
Default: Machine dependent.

IPARAM(3) = Maximum number of iterations.
Default: 100.

IPARAM(4) = Maximum number of function evaluations.
Default: 400.

IPARAM(5) = Maximum number of Jacobian evaluations.
Default: 100.

IPARAM(6) = Internal variable scaling flag.
If IPARAM(6) = 1, then the values for XSCALE are set internally.
Default: 1.

RPARAM — Real vector of length 7.
RPARAM(1) = Scaled gradient tolerance.
The i-th component of the scaled gradient at x is calculated as

� �

� �
2

2

max ,1/i i ig x s

F x

�

where

� � � �� � � �
2T

i s ii
g J x F x f� �

J(x) is the Jacobian, s = XSCALE, and fs = FSCALE.
Default:

3,� �

in double where � is the machine precision.

RPARAM(2) = Scaled step tolerance. (STEPTL)
The i-th component of the scaled step between two points x and y is computed as

� �max ,1/
i i

i i

x y
x s
�

where s = XSCALE.

1280 � Chapter 8: Optimization IMSL MATH/LIBRARY

Default: ���� where � is the machine precision.

RPARAM(3) = Relative function tolerance.
Default: max(10���� ������ max(10���, ����) in double where � is the machine precision.

RPARAM(4) = Absolute function tolerance.
Default: max (10���, ��), max(10�	�, ��) in double where � is the machine precision.

RPARAM(5) = False convergence tolerance.
Default: 100 � where � is the machine precision.

RPARAM(6) = Maximum allowable step size.
Default: 1000 max(��, ��) where

� �
2

1 1

n
i ii

s t�
�

� �

�2 = ||s||2, s = XSCALE, and t = XGUESS.

RPARAM(7) = Size of initial trust region radius.
Default: based on the initial scaled Cauchy step.

If double precision is desired, then DU4LSF is called and RPARAM is declared double
precision.

5. Users wishing to override the default print/stop attributes associated with error
messages issued by this routine are referred to “Error Handling” in the Introduction.

Description
The routine BCLSF uses a modified Levenberg-Marquardt method and an active set strategy to
solve nonlinear least squares problems subject to simple bounds on the variables. The problem
is stated as follows:

� � � � � �
2

1

1 1min
2 2n

m
T

i
x i

F x F x f x
�

�

� �
R

subject to l � x � u

where m � n, F : Rn� Rm, and fi(x) is the i-th component function of F(x). From a given
starting point, an active set IA, which contains the indices of the variables at their bounds, is
built. A variable is called a “free variable” if it is not in the active set. The routine then
computes the search direction for the free variables according to the formula

d = � (JT J + �I)�� JT F

where � is the Levenberg-Marquardt parameter, F = F (x), and J is the Jacobian with respect to
the free variables. The search direction for the variables in IA is set to zero. The trust region

IMSL MATH/LIBRARY Chapter 8: Optimization � 1281

approach discussed by Dennis and Schnabel (1983) is used to find the new point. Finally, the
optimality conditions are checked. The conditions are

||g(xi)|| � �, li < xi< ui

g(xi) < 0, xi = ui

g(xi) > 0, xi = li

where � is a gradient tolerance. This process is repeated until the optimality criterion is
achieved.

The active set is changed only when a free variable hits its bounds during an iteration or the
optimality condition is met for the free variables but not for all variables in IA, the active set. In
the latter case, a variable that violates the optimality condition will be dropped out of IA. For
more detail on the Levenberg-Marquardt method, see Levenberg (1944), or Marquardt (1963).
For more detailed information on active set strategy, see Gill and Murray (1976).

Since a finite-difference method is used to estimate the Jacobian for some single precision
calculations, an inaccurate estimate of the Jacobian may cause the algorithm to terminate at a
noncritical point. In such cases, high precision arithmetic is recommended. Also, whenever the
exact Jacobian can be easily provided, routine BCLSJ (page 1281) should be used instead.

BCLSJ
Solves a nonlinear least squares problem subject to bounds on the variables using a modified
Levenberg-Marquardt algorithm and a user-supplied Jacobian.

Required Arguments
FCN — User-supplied SUBROUTINE to evaluate the function to be minimized. The usage is

CALL FCN (M, N, X, F), where

M – Length of F. (Input)

N – Length of X. (Input)

X – The point at which the function is evaluated. (Input)
X should not be changed by FCN.

F – The computed function at the point X. (Output)

FCN must be declared EXTERNAL in the calling program.

JAC — User-supplied SUBROUTINE to evaluate the Jacobian at a point X. The usage is CALL
JAC (M, N, X, FJAC, LDFJAC), where

M – Length of F. (Input)

N – Length of X. (Input)

1282 � Chapter 8: Optimization IMSL MATH/LIBRARY

X – The point at which the function is evaluated. (Input)
X should not be changed by FCN.

FJAC – The computed M by N Jacobian at the point X. (Output)

LDFJAC – Leading dimension of FJAC. (Input)

JAC must be declared EXTERNAL in the calling program.

M — Number of functions. (Input)

IBTYPE — Scalar indicating the types of bounds on variables. (Input)

IBTYPE Action

0 User will supply all the bounds.

1 All variables are nonnegative.

2 All variables are nonpositive.

3 User supplies only the bounds on 1st variable, all other variables will have
the same bounds.

XLB — Vector of length N containing the lower bounds on variables. (Input, if IBTYPE = 0;
output, if IBTYPE = 1 or 2; input/output, if IBTYPE = 3)

XUB — Vector of length N containing the upper bounds on variables. (Input, if IBTYPE = 0;
output, if IBTYPE = 1 or 2; input/output, if IBTYPE = 3)

X — Vector of length N containing the approximate solution. (Output)

Optional Arguments
N — Number of variables. (Input)

N must be less than or equal to M.
Default: N = size (X,1).

XGUESS — Vector of length N containing the initial guess. (Input)
Default: XGUESS = 0.0.

XSCALE — Vector of length N containing the diagonal scaling matrix for the variables.
(Input)
XSCALE is used mainly in scaling the gradient and the distance between two points. By
default, the values for XSCALE are set internally. See IPARAM(6) in Comment 4.

IMSL MATH/LIBRARY Chapter 8: Optimization � 1283

FSCALE — Vector of length M containing the diagonal scaling matrix for the functions.
(Input)
FSCALE is used mainly in scaling the gradient. In the absence of other information, set
all entries to 1.0.
Default: FSCALE = 1.0.

IPARAM — Parameter vector of length 6. (Input/Output)
Set IPARAM(1) to zero for default values of IPARAM and RPARAM. See Comment 4.
Default: IPARAM= 0.

RPARAM — Parameter vector of length 7. (Input/Output)
See Comment 4.

FVEC — Vector of length M containing the residuals at the approximate solution. (Output)

FJAC — M by N matrix containing a finite difference approximate Jacobian at the
approximate solution. (Output)

LDFJAC — Leading dimension of FJAC exactly as specified in the dimension statement of
the calling program. (Input)
Default: LDFJAC size = (FJAC,1).

FORTRAN 90 Interface
Generic: CALL BCLSJ (FCN, JAC, M, IBTYPE, XLB, XUB, X [,…])

Specific: The specific interface names are S_BCLSJ and D_BCLSJ.

FORTRAN 77 Interface
Single: CALL BCLSJ (FCN, JAC, M, N, XGUESS, IBTYPE, XLB, XUB,

XSCALE, FSCALE, IPARAM, RPARAM, X, FVEC, FJAC,
LDFJAC)

Double: The double precision name is DBCLSJ.

Example
The nonlinear least squares problem

� �
2

2
2

1

1min
2 i

x i
f x

�
�

�
R

subject to �2 � x� � 0.5

 �1 � x� � 2

where

1284 � Chapter 8: Optimization IMSL MATH/LIBRARY

� � � � � � � �2
1 2 1 2 110 and 1f x x x f x x� � � �

is solved with an initial guess (�1.2, 1.0) and default values for parameters.
 USE BCLSJ_INT
 USE UMACH_INT
! Declaration of variables
 INTEGER LDFJAC, M, N
 PARAMETER (LDFJAC=2, M=2, N=2)
!
 INTEGER IPARAM(7), ITP, NOUT
 REAL FVEC(M), RPARAM(7), X(N), XGUESS(N), XLB(N), XUB(N)
 EXTERNAL ROSBCK, ROSJAC
! Compute the least squares for the
! Rosenbrock function.
 DATA XGUESS/-1.2E0, 1.0E0/
 DATA XLB/-2.0E0, -1.0E0/, XUB/0.5E0, 2.0E0/
! All the bounds are provided
 ITP = 0
! Default parameters are used
 IPARAM(1) = 0
!
 CALL BCLSJ (ROSBCK,ROSJAC,M,ITP,XLB,XUB,X,XGUESS=XGUESS, &
 IPARAM=IPARAM, FVEC=FVEC)
! Print results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) X, FVEC, IPARAM(3), IPARAM(4)
!
99999 FORMAT (’ The solution is ’, 2F9.4, //, ’ The function ’, &
 ’evaluated at the solution is ’, /, 18X, 2F9.4, //, &
 ’ The number of iterations is ’, 10X, I3, /, ’ The ’, &
 ’number of function evaluations is ’, I3, /)
 END
!
 SUBROUTINE ROSBCK (M, N, X, F)
 INTEGER M, N
 REAL X(N), F(M)
!
 F(1) = 1.0E1*(X(2)-X(1)*X(1))
 F(2) = 1.0E0 - X(1)
 RETURN
 END
!
 SUBROUTINE ROSJAC (M, N, X, FJAC, LDFJAC)
 INTEGER M, N, LDFJAC
 REAL X(N), FJAC(LDFJAC,N)
!
 FJAC(1,1) = -20.0E0*X(1)
 FJAC(2,1) = -1.0E0
 FJAC(1,2) = 10.0E0
 FJAC(2,2) = 0.0E0
 RETURN
 END

IMSL MATH/LIBRARY Chapter 8: Optimization � 1285

Output
The solution is 0.5000 0.2500

The function evaluated at the solution is
0.0000 0.5000

The number of iterations is 13
The number of function evaluations is 21

Comments
1. Workspace may be explicitly provided, if desired, by use of B2LSJ/DB2LSJ. The

reference is:

CALL B2LSJ (FCN, JAC, M, N, XGUESS, IBTYPE, XLB, XUB, XSCALE,
FSCALE, IPARAM, RPARAM, X, FVEC, FJAC, LDFJAC, WK, IWK)

The additional arguments are as follows:

WK — Work vector of length 11 * N + 3 * M � 1. WK contains the following
information on output: The second N locations contain the last step taken. The
third N locations contain the last Gauss-Newton step. The fourth N locations
contain an estimate of the gradient at the solution.

IWK — Work vector of length 2 * N containing the permutations used in the QR
factorization of the Jacobian at the solution.

2. Informational errors

Type Code
 3 1 Both the actual and predicted relative reductions in the function are

less than or equal to the relative function convergence tolerance.
 3 2 The iterates appear to be converging to a noncritical point.
 4 3 Maximum number of iterations exceeded.
 4 4 Maximum number of function evaluations exceeded.
 3 6 Five consecutive steps have been taken with the maximum step

length.
 4 5 Maximum number of Jacobian evaluations exceeded.
 2 7 Scaled step tolerance satisfied; the current point may be an

approximate local solution, or the algorithm is making very slow
progress and is not near a solution, or STEPTL is too big.

3. The first stopping criterion for BCLSJ occurs when the norm of the function is less than
the absolute function tolerance. The second stopping criterion occurs when the norm of
the scaled gradient is less than the given gradient tolerance. The third stopping criterion
for BCLSJ occurs when the scaled distance between the last two steps is less than the
step tolerance.

4. If the default parameters are desired for BCLSJ, then set IPARAM(1) to zero and call the
routine BCLSJ. Otherwise, if any nondefault parameters are desired for IPARAM or
RPARAM, then the following steps should be taken before calling BCLSJ:

1286 � Chapter 8: Optimization IMSL MATH/LIBRARY

CALL U4LSF (IPARAM, RPARAM)
Set nondefault values for desired IPARAM, RPARAM elements.

Note that the call to U4LSF will set IPARAM and RPARAM to their default values so only
nondefault values need to be set above.

The following is a list of the parameters and the default values:

IPARAM — Integer vector of length 6.
IPARAM(1) = Initialization flag.

IPARAM(2) = Number of good digits in the function.
Default: Machine dependent.

IPARAM(3) = Maximum number of iterations.
Default: 100.

IPARAM(4) = Maximum number of function evaluations.
Default: 400.

IPARAM(5) = Maximum number of Jacobian evaluations.
Default: 100.

IPARAM(6) = Internal variable scaling flag.

If IPARAM(6) = 1, then the values for XSCALE are set internally.
Default: 1.

RPARAM — Real vector of length 7.
RPARAM(1) = Scaled gradient tolerance.
The i-th component of the scaled gradient at x is calculated as

� �

� �
2

2

max ,1/i i ig x s

F x

�

where

� � � �� � � �
2T

i s ii
g J x F x f� �

J(x) is the Jacobian, s = XSCALE, and fs = FSCALE.
Default:

3,� �

in double where � is the machine precision.

IMSL MATH/LIBRARY Chapter 8: Optimization � 1287

RPARAM(2) = Scaled step tolerance. (STEPTL)
The i-th component of the scaled step
between two points x and y is computed as

� �max ,1/
i i

i i

x y
x s
�

where s = XSCALE.

Default: ���� where � is the machine precision.

RPARAM(3) = Relative function tolerance.
Default: max(10���, ����), max(10���, ����) in double where � is the machine precision.

RPARAM(4) = Absolute function tolerance.
Default: max (10���, ��), max(10���, ��) in double where � is the machine precision.

RPARAM(5) = False convergence tolerance.
Default: 100� where � is the machine precision.

RPARAM(6) = Maximum allowable step size.
Default: 1000 max(��, ��) where

� �
2

1 1

n
i ii

s t�
�

� �

�2 = ||s||2, s = XSCALE, and t = XGUESS.

RPARAM(7) = Size of initial trust region radius.
Default: based on the initial scaled Cauchy step.

If double precision is desired, then DU4LSF is called and RPARAM is declared double
precision.

5. Users wishing to override the default print/stop attributes associated with error
messages issued by this routine are referred to ERROR HANDLING in the Introduction.

Description
The routine BCLSJ uses a modified Levenberg-Marquardt method and an active set strategy to
solve nonlinear least squares problems subject to simple bounds on the variables. The problem
is stated as follows:

� � � � � �
2

1

1 1min
2 2n

m
T

i
x i

F x F x f x
�

�

� �
R

subject to l � x � u

1288 � Chapter 8: Optimization IMSL MATH/LIBRARY

where m � n, F : Rn� Rm, and fi(x) is the i-th component function of F(x). From a given
starting point, an active set IA, which contains the indices of the variables at their bounds, is
built. A variable is called a “free variable” if it is not in the active set. The routine then
computes the search direction for the free variables according to the formula

d = � (JT J + �I)�� JT F

where is the Levenberg-Marquardt parameter, F = F (x), and J is the Jacobian with respect to the
free variables. The search direction for the variables in IA is set to zero. The trust region
approach discussed by Dennis and Schnabel (1983) is used to find the new point. Finally, the
optimality conditions are checked. The conditions are

||g(xi)|| � �, li < xi< ui

g(xi) < 0, xi = ui

g(xi) > 0, xi = li

where � is a gradient tolerance. This process is repeated until the optimality criterion is
achieved.

The active set is changed only when a free variable hits its bounds during an iteration or the
optimality condition is met for the free variables but not for all variables in IA, the active set. In
the latter case, a variable that violates the optimality condition will be dropped out of IA. For
more detail on the Levenberg-Marquardt method, see Levenberg (1944) or Marquardt (1963).
For more detailed information on active set strategy, see Gill and Murray (1976).

BCNLS
Solves a nonlinear least-squares problem subject to bounds on the variables and general linear
constraints.

Required Arguments
FCN — User-supplied SUBROUTINE to evaluate the function to be minimized. The usage is

CALL FCN (M, N, X, F), where
M � Number of functions. (Input)
N � Number of variables. (Input)
X � Array of length N containing the point at which the function will be evaluated.
(Input)
F � Array of length M containing the computed function at the point X. (Output)
The routine FCN must be declared EXTERNAL in the calling program.

M — Number of functions. (Input)

C — MCON � N matrix containing the coefficients of the MCON general linear constraints.
(Input)

BL — Vector of length MCON containing the lower limit of the general constraints. (Input).

IMSL MATH/LIBRARY Chapter 8: Optimization � 1289

BU — Vector of length MCON containing the upper limit of the general constraints. (Input).

IRTYPE — Vector of length MCON indicating the types of general constraints in the matrix C.
(Input)
Let R(I) = C(I, 1)*X(1) + � + C(I, N)*X(N). Then the value of IRTYPE(I)
signifies the following:

 IRTYPE(I) I-th CONSTRAINT
 0 BL(I).EQ.R(I).EQ.BU(I)
 1 R(I).LE.BU(I)
 2 R(I).GE.BL(I)
 3 BL(I).LE.R(I).LE.BU(I)

XLB — Vector of length N containing the lower bounds on variables; if there is no lower
bound on a variable, then 1.0E30 should be set as the lower bound. (Input)

XUB — Vector of length N containing the upper bounds on variables; if there is no upper
bound on a variable, then �1.0E30 should be set as the upper bound. (Input)

X — Vector of length N containing the approximate solution. (Output)

Optional Arguments
N — Number of variables. (Input)

Default: N = size (C,2).

MCON — The number of general linear constraints for the system, not including simple
bounds. (Input)
Default: MCON = size (C,1).

LDC — Leading dimension of C exactly as specified in the dimension statement of the calling
program. (Input)
LDC must be at least MCON.
Default: LDC = size (C,1).

XGUESS — Vector of length N containing the initial guess. (Input)
Default: XGUESS = 0.0.

RNORM — The Euclidean length of components of the function f (x) after the approximate
solution has been found. (Output).

ISTAT — Scalar indicating further information about the approximate solution X. (Output)
See the Comments section for a description of the tolerances and the vectors IPARAM
and RPARAM.

ISTAT Meaning

1290 � Chapter 8: Optimization IMSL MATH/LIBRARY

1 The function f (x) has a length less than TOLF = RPARAM(1). This is the expected
value for ISTAT when an actual zero value of f (x) is anticipated.

2 The function f (x) has reached a local minimum. This is the expected value for
ISTAT when a nonzero value of f (x) is anticipated.

3 A small change (absolute) was noted for the vector x. A full model problem step
was taken. The condition for ISTAT = 2 may also be satisfied, so that a
minimum has been found. However, this test is made before the test for
ISTAT = 2.

4 A small change (relative) was noted for the vector x. A full model problem step
was taken. The condition for ISTAT = 2 may also be satisfied, so that a
minimum has been found. However, this test is made before the test for
ISTAT = 2.

5 The number of terms in the quadratic model is being restricted by the amount of
storage allowed for that purpose. It is suggested, but not required, that
additional storage be given for the quadratic model parameters. This is
accessed through the vector
IPARAM, documented below.

6 Return for evaluation of function and Jacobian if reverse
communication is desired. See the Comments below.

FORTRAN 90 Interface
Generic: CALL BCNLS (FCN, M, C, BL, BU, IRTYPE, XLB, XUB, X [,…])

Specific: The specific interface names are S_BCNLS and D_BCNLS.

FORTRAN 77 Interface
Single: CALL BCNLS (FCN, M, N, MCON, C, LDC, BL, BU, IRTYPE,

XLB, XUB, XGUESS, X, RNORM, ISTAT)

Double: The double precision name is DBCNLS.

Example 1
This example finds the four variables x1, x2, x3, x4 that are in the model function

� � 2 4
1 3

x t x th t x e x e� �

There are values of h(t) at five values of t.
h(0.05) = 2.206

h(0.1) = 1.994

IMSL MATH/LIBRARY Chapter 8: Optimization � 1291

h(0.4) = 1.35

h(0.5) = 1.216

h(1.0) = 0.7358

There are also the constraints that x2, x4 � 0, x1, x3 � 0, and x2 and x4 must be separated by at
least 0.05. Nothing more about the values of the parameters is known so the initial guess is 0.

 USE BCNLS_INT
 USE UMACH_INT
 USE WRRRN_INT
 INTEGER MCON, N
 PARAMETER (MCON=1, N=4)
! SPECIFICATIONS FOR PARAMETERS
 INTEGER LDC, M
 PARAMETER (M=5, LDC=MCON)
! SPECIFICATIONS FOR LOCAL VARIABLES
 INTEGER IRTYPE(MCON), NOUT
 REAL BL(MCON), C(MCON,N), RNORM, X(N), XLB(N), &
 XUB(N)
! SPECIFICATIONS FOR SUBROUTINES
! SPECIFICATIONS FOR FUNCTIONS
 EXTERNAL FCN
!
 CALL UMACH (2, NOUT)
! Define the separation between x(2)
! and x(4)
 C(1,1) = 0.0
 C(1,2) = 1.0
 C(1,3) = 0.0
 C(1,4) = -1.0
 BL(1) = 0.05
 IRTYPE(1) = 2
! Set lower bounds on variables
 XLB(1) = 0.0
 XLB(2) = 1.0E30
 XLB(3) = 0.0
 XLB(4) = 1.0E30
! Set upper bounds on variables
 XUB(1) = -1.0E30
 XUB(2) = 0.0
 XUB(3) = -1.0E30
 XUB(4) = 0.0
!
 CALL BCNLS (FCN, M, C, BL, BL, IRTYPE, XLB, XUB, X, RNORM=RNORM)

 CALL WRRRN ('X', X, 1, N, 1)
 WRITE (NOUT,99999) RNORM
99999 FORMAT (/, 'rnorm = ', E10.5)
 END
!
 SUBROUTINE FCN (M, N, X, F)
! SPECIFICATIONS FOR ARGUMENTS
 INTEGER M, N
 REAL X(*), F(*)
! SPECIFICATIONS FOR LOCAL VARIABLES

1292 � Chapter 8: Optimization IMSL MATH/LIBRARY

 INTEGER I
! SPECIFICATIONS FOR SAVE VARIABLES
 REAL H(5), T(5)
 SAVE H, T
! SPECIFICATIONS FOR INTRINSICS
 INTRINSIC EXP
 REAL EXP
!
 DATA T/0.05, 0.1, 0.4, 0.5, 1.0/
 DATA H/2.206, 1.994, 1.35, 1.216, 0.7358/
!
 DO 10 I=1, M
 F(I) = X(1)*EXP(X(2)*T(I)) + X(3)*EXP(X(4)*T(I)) - H(I)
 10 CONTINUE
 RETURN
 END

Output
 X
 1 2 3 4
 1.999 -1.000 0.500 -9.954
rnorm = .42425E-03

Comments
1. Workspace may be explicitly provided, if desired, by use of B2NLS/DB2NLS. The

reference is:

CALL B2NLS (FCN, M, N, MCON, C, LDC, BL, BU, IRTYPE, XLB, XUB,
XGUESS, X, RNORM,ISTAT, IPARAM, RPARAM, JAC, F, FJ, LDFJ,
IWORK, LIWORK, WORK, LWORK)

The additional arguments are as follows:

IPARAM — Integer vector of length six used to change certain default attributes of
BCNLS. (Input).
If the default parameters are desired for BCNLS, set IPARAM(1) to zero.
Otherwise, if any nondefault parameters are desired for IPARAM or RPARAM, the
following steps should be taken before calling B2NLS:

CALL B7NLS (IPARAM, RPARAM)
Set nondefault values for IPARAM and RPARAM.

If double precision is being used, DB7NLS should be called instead. Following is a list
of parameters and the default values.

IPARAM(1) = Initialization flag.

IPARAM(2) = ITMAX, the maximum number of iterations allowed.
Default: 75

IMSL MATH/LIBRARY Chapter 8: Optimization � 1293

IPARAM(3) = a flag that suppresses the use of the quadratic model in the inner loop. If
set to one, then the quadratic model is never used. Otherwise use the quadratic model
where appropriate. This option decreases the amount of workspace as well as the
computing overhead required. A user may wish to determine if the application really
requires the use of the quadratic model.
Default: 0

IPARAM(4) = NTERMS, one more than the maximum number of terms used in the
quadratic model.
Default: 5

IPARAM(5) = RCSTAT, a flag that determines whether forward or reverse
communication is used. If set to zero, forward communication through functions FCN
and JAC is used. If set to one, reverse communication is used, and the dummy routines
B10LS/DB10LS and B11LS/DB11LS may be used in place of FCN and JAC,
respectively. When BCNLS returns with ISTAT = 6, arrays F and FJ are filled with f(x)
and the Jacobian of f(x), respectively. BCNLS is then called again.
Default: 0

IPARAM(6) = a flag that determines whether the analytic Jacobian, as supplied in JAC,
is used, or if a finite difference approximation is computed. If set to zero, JAC is not
accessed and finite differences are used. If set to one, JAC is used to compute the
Jacobian.
Default: 0

RPARAM — Real vector of length 7 used to change certain default attributes of
BCNLS. (Input)

For the description of RPARAM, we make the following definitions:
FC current value of the length of f (x)
FB best value of length of f (x)
FL value of length of f (x) at the previous step
PV predicted value of length of f (x), after the step is taken, using
 the approximating model
� machine epsilon = amach(4)

The conditions |FB � PV| � TOLSNR*FB and |FC � PV| � TOLP*FB and |FC � FL| �
TOLSNR*FB together with taking a full model step, must be satisfied before the
condition ISTAT = 2 is returned. (Decreasing any of the values for TOLF, TOLD, TOLX,
TOLSNR, or TOLP will likely increase the number of iterations required for
convergence.)
RPARAM(1) = TOLF, tolerance used for stopping when FC � TOLF.
Default : min(1.E 5,)��

1294 � Chapter 8: Optimization IMSL MATH/LIBRARY

RPARAM(2) = TOLX, tolerance for stopping when change to x values has length less than
or equal to TOLX*length of x values.
Default : min(1.E 5,)��

RPARAM(3) = TOLD, tolerance for stopping when change to x values has length less than
pr equal to TOLD.
Default : min(1.E 5,)��

RPARAM(4) = TOLSNR, tolerance used in stopping condition ISTAT = 2.
Default: 1.E�5

RPARAM(5) = TOLP, tolerance used in stopping condition ISTAT = 2.
Default: 1.E�5

RPARAM(6) = TOLUSE, tolerance used to avoid values of x in the quadratic model's
interpolation of previous points. Decreasing this value may result in more terms being
included in the quadratic model.
Default : �

RPARAM(7) = COND, largest condition number to allow when solving for the quadratic
model coefficients. Increasing this value may result in more terms being included in
the quadratic model.
Default: 30

JAC — User-supplied SUBROUTINE to evaluate the Jacobian. The usage is
CALL JAC(M, N, X, FJAC, LDFJAC), where
M � Number of functions. (Input)
N � Number of variables. (Input)
X � Array of length N containing the point at which the Jacobian will be evaluated.
(Input)
FJAC � The computed M � N Jacobian at the point X. (Output)
LDFJAC � Leading dimension of the array FJAC. (Input)
The routine JAC must be declared EXTERNAL in the calling program.

F — Real vector of length N used to pass f(x) if reverse communication
(IPARAM(4)) is enabled. (Input)

FJ — Real array of size M � N used to store the Jacobian matrix of f(x) if reverse
communication (IPARAM(4)) is enabled. (Input)
Specifically,

� �, i

j

f
FJ i j

x
�

�
�

IMSL MATH/LIBRARY Chapter 8: Optimization � 1295

LDFJ — Leading dimension of FJ exactly as specified in the dimension statement of the
calling program. (Input)

IWORK — Integer work vector of length LIWORK.

LIWORK — Length of work vector IWORK. LIWORK must be at least
5MCON + 12N + 47 + MAX(M, N)

WORK — Real work vector of length LWORK

LWORK — Length of work vector WORK. LWORK must be at least 41N + 6M + 11MCON + (M +
MCON)(N + 1) + NA(NA + 7) + 8 MAX(M, N) + 99. Where NA = MCON +
2N + 6.

2. Informational errors

Type Code
 3 1 The function f (x) has reached a value that may be a local minimum.

However, the bounds on the trust region defining the size of the step
are being hit at each step. Thus, the situation is suspect. (Situations of
this type can occur when the solution is at infinity at some of the
components of the unknowns, x).

 3 2 The model problem solver has noted a value for the linear or
quadratic model problem residual vector length that is greater than or
equal to the current value of the function, i.e. the Euclidean length of
f (x). This situation probably means that the evaluation of f (x) has
more uncertainty or noise than is possible to account for in the
tolerances used to not a local minimum. The value of x is suspect, but
a minimum has probably been found.

 3 3 More than ITMAX iterations were taken to obtain the solution. The
value obtained for x is suspect, although it is the best set of x values
that occurred in the entire computation. The value of ITMAX can be
increased though the IPARAM vector.

Description
The routine BCNLS solves the nonlinear least squares problem

� �
2

1
min

m

i
i

f x
�

�

subject to

l u

l u

b Cx b
x x x
� �

� �

BCNLS is based on the routine DQED by R.J. Hanson and F.T. Krogh. The section of BCNLS that
approximates, using finite differences, the Jacobian of f(x) is a modification of JACBF by D.E.
Salane.

1296 � Chapter 8: Optimization IMSL MATH/LIBRARY

Example 2
This example solves the same problem as the last example, but reverse communication is used
to evaluate f(x) and the Jacobian of f(x). The use of the quadratic model is turned off.

 USE B2NLS_INT
 USE UMACH_INT
 USE WRRRN_INT
 INTEGER LDC, LDFJ, M, MCON, N
 PARAMETER (M=5, MCON=1, N=4, LDC=MCON, LDFJ=M)
! Specifications for local variables
 INTEGER I, IPARAM(6), IRTYPE(MCON), ISTAT, IWORK(1000), &
 LIWORK, LWORK, NOUT
 REAL BL(MCON), C(MCON,N), F(M), FJ(M,N), RNORM, RPARAM(7), &
 WORK(1000), X(N), XGUESS(N), XLB(N), XUB(N)
 REAL H(5), T(5)
 SAVE H, T
 INTRINSIC EXP
 REAL EXP
! Specifications for subroutines
 EXTERNAL B7NLS
! Specifications for functions
 EXTERNAL B10LS, B11LS
!
 DATA T/0.05, 0.1, 0.4, 0.5, 1.0/
 DATA H/2.206, 1.994, 1.35, 1.216, 0.7358/
!
 CALL UMACH (2, NOUT)
! Define the separation between x(2)
! and x(4)
 C(1,1) = 0.0
 C(1,2) = 1.0
 C(1,3) = 0.0
 C(1,4) = -1.0
 BL(1) = 0.05
 IRTYPE(1) = 2
! Set lower bounds on variables
 XLB(1) = 0.0
 XLB(2) = 1.0E30
 XLB(3) = 0.0
 XLB(4) = 1.0E30
! Set upper bounds on variables
 XUB(1) = -1.0E30
 XUB(2) = 0.0
 XUB(3) = -1.0E30
 XUB(4) = 0.0
! Set initial guess to 0.0
 XGUESS = 0.0E0
! Call B7NLS to set default parameters
 CALL B7NLS (IPARAM, RPARAM)
! Suppress the use of the quadratic
! model, evaluate functions and
! Jacobian by reverse communication
 IPARAM(3) = 1
 IPARAM(5) = 1

IMSL MATH/LIBRARY Chapter 8: Optimization � 1297

 IPARAM(6) = 1
 LWORK = 1000
 LIWORK = 1000
! Specify dummy routines for FCN
! and JAC since we are using reverse
! communication
 10 CONTINUE
 CALL B2NLS (B10LS, M, N, MCON, C, LDC, BL, BL, IRTYPE, XLB, &
 XUB, XGUESS, X, RNORM, ISTAT, IPARAM, RPARAM, &
 B11LS, F, FJ, LDFJ, IWORK, LIWORK, WORK, LWORK)
!
! Evaluate functions if the routine
! returns with ISTAT = 6
 IF (ISTAT .EQ. 6) THEN
 DO 20 I=1, M
 FJ(I,1) = EXP(X(2)*T(I))
 FJ(I,2) = T(I)*X(1)*FJ(I,1)
 FJ(I,3) = EXP(X(4)*T(I))
 FJ(I,4) = T(I)*X(3)*FJ(I,3)
 F(I) = X(1)*FJ(I,1) + X(3)*FJ(I,3) - H(I)
 20 CONTINUE
 GO TO 10
 END IF
!
 CALL WRRRN ('X', X, 1, N, 1)
 WRITE (NOUT,99999) RNORM
99999 FORMAT (/, 'rnorm = ', E10.5)
 END

 Output
 X
 1 2 3 4
 1.999 -1.000 0.500 -9.954
rnorm = .42413E-03

DLPRS
Solves a linear programming problem via the revised simplex algorithm.

Required Arguments
A — M by NVAR matrix containing the coefficients of the M constraints. (Input)

BL — Vector of length M containing the lower limit of the general constraints; if there is no
lower limit on the I-th constraint, then BL(I) is not referenced. (Input)

BU — Vector of length M containing the upper limit of the general constraints; if there is no
upper limit on the I-th constraint, then BU(I) is not referenced; if there are no range
constraints, BL and BU can share the same storage locations. (Input)

1298 � Chapter 8: Optimization IMSL MATH/LIBRARY

C — Vector of length NVAR containing the coefficients of the objective function. (Input)

IRTYPE — Vector of length M indicating the types of general constraints in the matrix A.
(Input)
Let R(I) = A(I, 1) * XSOL(1) + � + A(I, NVAR) * XSOL(NVAR). Then, the value of
IRTYPE(I) signifies the following:

IRTYPE(I) I-th Constraint

0 BL(I).EQ.R(I).EQ.BU(I)

1 R(I).LE.BU(I)

2 R(I).GE.BL(I)

3 BL(I).LE.R(I).LE.BU(I)

OBJ — Value of the objective function. (Output)

XSOL — Vector of length NVAR containing the primal solution. (Output)

DSOL — Vector of length M containing the dual solution. (Output)

Optional Arguments
M — Number of constraints. (Input)

Default: M = size (A,1).

NVAR — Number of variables. (Input)
Default: NVAR = size (A,2).

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling
program. (Input)
LDA must be at least M.
Default: LDA = size (A,1).

XLB — Vector of length NVAR containing the lower bound on the variables; if there is no
lower bound on a variable, then 1.0E30 should be set as the lower bound. (Input)
Default: XLB = 0.0.

XUB — Vector of length NVAR containing the upper bound on the variables; if there is no
upper bound on a variable, then �1.0E30 should be set as the upper bound. (Input)
Default: XUB = 3.4e38 for single precision and 1.79d + 308 for double precision.

FORTRAN 90 Interface
Generic: CALL DLPRS (A, BL, BU, C, IRTYPE, OBJ, XSOL, DSOL [,…])

IMSL MATH/LIBRARY Chapter 8: Optimization � 1299

Specific: The specific interface names are S_DLPRS and D_DLPRS.

FORTRAN 77 Interface
Single: CALL DLPRS (M, NVAR, A, LDA, BL, BU, C, IRTYPE, XLB, XUB,

 OBJ, XSOL, DSOL)

Double: The double precision name is DDLPRS.

Example
A linear programming problem is solved.

 USE DLPRS_INT
 USE UMACH_INT
 USE SSCAL_INT
 INTEGER LDA, M, NVAR
 PARAMETER (M=2, NVAR=2, LDA=M)
! M = number of constraints
! NVAR = number of variables
!
 INTEGER I, IRTYPE(M), NOUT
 REAL A(LDA,NVAR), B(M), C(NVAR), DSOL(M), OBJ, XLB(NVAR), &
 XSOL(NVAR), XUB(NVAR)
!
! Set values for the following problem
!
! Max 1.0*XSOL(1) + 3.0*XSOL(2)
!
! XSOL(1) + XSOL(2) .LE. 1.5
! XSOL(1) + XSOL(2) .GE. 0.5
!
! 0 .LE. XSOL(1) .LE. 1
! 0 .LE. XSOL(2) .LE. 1
!
 DATA XLB/2*0.0/, XUB/2*1.0/
 DATA A/4*1.0/, B/1.5, .5/, C/1.0, 3.0/
 DATA IRTYPE/1, 2/
! To maximize, C must be multiplied by
! -1.
 CALL SSCAL (NVAR, -1.0E0, C, 1)
! Solve the LP problem. Since there is
! no range constraint, only B is
! needed.
 CALL DLPRS (A, B, B, C, IRTYPE, OBJ, XSOL, DSOL, &
 XUB=XUB)
! OBJ must be multiplied by -1 to get
! the true maximum.
 OBJ = -OBJ
! DSOL must be multiplied by -1 for
! maximization.
 CALL SSCAL (M, -1.0E0, DSOL, 1)
! Print results
 CALL UMACH (2, NOUT)

1300 � Chapter 8: Optimization IMSL MATH/LIBRARY

 WRITE (NOUT,99999) OBJ, (XSOL(I),I=1,NVAR), (DSOL(I),I=1,M)
!
99999 FORMAT (//, ’ Objective = ’, F9.4, //, ’ Primal ’,&
 ’Solution =’, 2F9.4, //, ’ Dual solution =’, 2F9.4)
!
 END

Output
Objective = 3.5000

Primal Solution = 0.5000 1.0000

Dual solution = 1.0000 0.0000

Comments
1. Workspace may be explicitly provided, if desired, by use of D2PRS/DD2PRS. The

reference is:

CALL D2PRS (M, NVAR, A, LDA, BL, BU, C, IRTYPE, XLB, XUB, OBJ,
XSOL, DSOL, AWK, LDAWK, WK, IWK)

The additional arguments are as follows:

AWK — Real work array of dimension 1 by 1. (AWK is not used in the new
implementation of the revised simplex algorithm. It is retained merely for
calling sequence consistency.)

LDAWK — Leading dimension of AWK exactly as specified in the dimension statement
of the calling program. LDAWK should be 1. (LDAWK is not used in the new
implementation of the revised simplex algorithm. It is retained merely for
calling sequence consistency.)

WK — Real work vector of length M * (M + 28).

IWK — Integer work vector of length 29 * M + 3 * NVAR.

2. Informational errors

Type Code
 3 1 The problem is unbounded.
 4 2 Maximum number of iterations exceeded.
 3 3 The problem is infeasible.
 4 4 Moved to a vertex that is poorly conditioned; using double precision

may help.
 4 5 The bounds are inconsistent.

IMSL MATH/LIBRARY Chapter 8: Optimization � 1301

Description
The routine DLPRS uses a revised simplex method to solve linear programming problems, i.e.,
problems of the form

min
n

T

x
c x

�R

subject to bl � Ax � bu

xl � x � xu

where c is the objective coefficient vector, A is the coefficient matrix, and the vectors bl, bu, xl
and xu are the lower and upper bounds on the constraints and the variables, respectively.

For a complete description of the revised simplex method, see Murtagh (1981) or Murty (1983).

SLPRS
Solves a sparse linear programming problem via the revised simplex algorithm.

Required Arguments
A — Vector of length NZ containing the coefficients of the M constraints. (Input)

IROW — Vector of length NZ containing the row numbers of the corresponding element in A.
(Input)

JCOL — Vector of length NZ containing the column numbers of the corresponding elements
in A. (Input)

BL — Vector of length M containing the lower limit of the general constraints; if there is no
lower limit on the I-th constraint, then BL(I) is not referenced. (Input)

BU — Vector of length M containing the upper lower limit of the general constraints; if there
is no upper limit on the I-th constraint, then BU(I) is not referenced. (Input)

C — Vector of length NVAR containing the coefficients of the objective function. (Input)

IRTYPE — Vector of length M indicating the types of general constraints in the matrix A.
(Input)
Let R(I) = A(I, 1)*XSOL(1) + � + A(I, NVAR)*XSOL(NVAR)

IRTYPE(I) I-th CONSTRAINT
 0 BL(I) = R(I) = BU(I)
 1 R(I) � BU(I)
 2 R(I) � BL(I)
 3 BL(I) � R(I) � BU(I)

OBJ — Value of the objective function. (Output)

1302 � Chapter 8: Optimization IMSL MATH/LIBRARY

XSOL — Vector of length NVAR containing the primal solution. (Output)

DSOL — Vector of length M containing the dual solution. (Output)

Optional Arguments
M — Number of constraints. (Input)

Default: M = size (IRTYPE,1).

NVAR — Number of variables. (Input)
Default: NVAR = size (C,1).

NZ — Number of nonzero coefficients in the matrix A. (Input)
Default: NZ = size (A,1).

XLB — Vector of length NVAR containing the lower bound on the variables; if there is no
lower bound on a variable, then 1.0E30 should be set as the lower bound. (Input)
Default: XLB = 0.0.

XUB — Vector of length NVAR containing the upper bound on the variables; if there is no
upper bound on a variable, then �1.0E30 should be set as the upper bound. (Input)
Default: XLB = 3.4e38 for single precision and 1.79d + 308 for double precision.

FORTRAN 90 Interface
Generic: CALL SLPRS (A, IROW, JCOL, BL, BU, C, IRTYPE,

OBJ, XSOL, DSOL [,…])

Specific: The specific interface names are S_SLPRS and D_SLPRS.

FORTRAN 77 Interface
Single: CALL SLPRS (M, NVAR, NZ, A, IROW, JCOL, BL, BU, C, IRTYPE,

XLB, XUB, OBJ, XSOL, DSOL)

Double: The double precision name is DSLPRS.

Example
Solve a linear programming problem, with

0 0.5
1 0.5

1
0.5
1

A

� �
� �
� �
� ��
� �
� �
� �� �

�

�

IMSL MATH/LIBRARY Chapter 8: Optimization � 1303

defined in sparse coordinate format.
 USE SLPRS_INT
 USE UMACH_INT
 INTEGER M, NVAR
 PARAMETER (M=200, NVAR=200)
! Specifications for local variables
 INTEGER INDEX, IROW(3*M), J, JCOL(3*M), NOUT, NZ
 REAL A(3*M), DSOL(M), OBJ, XSOL(NVAR)
 INTEGER IRTYPE(M)
 REAL B(M), C(NVAR), XL(NVAR), XU(NVAR)
! Specifications for subroutines
 DATA B/199*1.7, 1.0/
 DATA C/-1.0, -2.0, -3.0, -4.0, -5.0, -6.0, -7.0, -8.0, -9.0, &
 -10.0, 190*-1.0/
 DATA XL/200*0.1/
 DATA XU/200*2.0/
 DATA IRTYPE/200*1/
!
 CALL UMACH (2, NOUT)
! Define A
 INDEX = 1
 DO 10 J=2, M
! Superdiagonal element
 IROW(INDEX) = J - 1
 JCOL(INDEX) = J
 A(INDEX) = 0.5
! Diagonal element
 IROW(INDEX+1) = J
 JCOL(INDEX+1) = J
 A(INDEX+1) = 1.0
 INDEX = INDEX + 2
 10 CONTINUE
 NZ = INDEX - 1
!
!
 XL(4) = 0.2
 CALL SLPRS (A, IROW, JCOL, B, B, C, IRTYPE, OBJ, XSOL, DSOL, &
 NZ=NZ, XLB=XL, XUB=XU)
!
 WRITE (NOUT,99999) OBJ
!
99999 FORMAT (/, 'The value of the objective function is ', E12.6)
!
 END

Output
The value of the objective function is -.280971E+03

Comments
Workspace may be explicitly provided, if desired, by use of S2PRS/DS2PRS. The

reference is:

1304 � Chapter 8: Optimization IMSL MATH/LIBRARY

CALL S2PRS (M, NVAR, NZ, A, IROW, JCOL, BL, BU, C,
 IRTYPE, XLB, XUB, OBJ, XSOL, DSOL,
 IPARAM, RPARAM, COLSCL, ROWSCL, WORK,
 LW, IWORK, LIW)

The additional arguments are as follows:

IPARAM — Integer parameter vector of length 12. If the default parameters are
desired for SLPRS, then set IPARAM(1) to zero and call the routine SLPRS.
Otherwise, if any nondefault parameters are desired for IPARAM or RPARAM, then
the following steps should be taken before calling SLPRS:

CALL S5PRS (IPARAM, RPARAM)
Set nondefault values for IPARAM and RPARAM.

Note that the call to S5PRS will set IPARAM and RPARAM to their default values so only
nondefault values need to be set above.

IPARAM(1) = 0 indicates that a minimization problem is solved. If set to 1, a
maximization problem is solved.
Default: 0

IPARAM(2) = switch indicating the maximum number of iterations to be taken before
returning to the user. If set to zero, the maximum number of iterations taken is set to
3*(NVARS+M). If positive, that value is used as the iteration limit.
Default: IPARAM(2) = 0

IPARAM(3) = indicator for choosing how columns are selected to enter the basis. If set
to zero, the routine uses the steepest edge pricing strategy which is the best local move.
If set to one, the minimum reduced cost pricing strategy is used. The steepest edge
pricing strategy generally uses fewer iterations than the minimum reduced cost pricing,
but each iteration costs more in terms of the amount of calculation performed.
However, this is very problem-dependent.
Default: IPARAM(3) = 0

IPARAM(4) = MXITBR, the number of iterations between recalculating the error in the
primal solution is used to monitor the error in solving the linear system. This is an
expensive calculation and every tenth iteration is generally enough.
Default: IPARAM(4) = 10

IPARAM(5) = NPP, the number of negative reduced costs (at most) to be found at each
iteration of choosing a variable to enter the basis. If set to zero, NPP = NVARS will be
used, implying that all of the reduced costs are computed at each such step. This
“Partial pricing” may increase the total number of iterations required. However, it
decreases the number of calculation required at each iteration. The effect on overall
efficiency is very problem-dependent. If set to some positive number, that value is used
as NPP.
Default: IPARAM(5) = 0

IMSL MATH/LIBRARY Chapter 8: Optimization � 1305

IPARAM(6) = IREDFQ, the number of steps between basis matrix redecompositions.
Redecompositions also occur whenever the linear systems for the primal and dual
systems have lost half their working precision.
Default: IPARAM(6) = 50

IPARAM(7) = LAMAT, the length of the portion of WORK that is allocated to sparse matrix
storage and decomposition. LAMAT must be greater than NZ + NVARS + 4.
Default: LAMAT = NZ + NVARS + 5

IPARAM(8) = LBM, then length of the portion of IWORK that is allocated to sparse matrix
storage and decomposition. LBM must be positive.
Default: LBM = 8*M

IPARAM(9) = switch indicating that partial results should be saved after the maximum
number of iterations, IPARAM(2), or at the optimum. If IPARAM(9) is not zero, data
essential to continuing the calculation is saved to a file, attached to unit number
IPARAM(9). The data saved includes all the information about the sparse matrix A and
information about the current basis. If IPARAM(9) is set to zero, partial results are not
saved. It is the responsibility of the calling program to open the output file.

IPARAM(10) = switch indicating that partial results have been computed and stored on
unit number IPARAM(10), if greater than zero. If IPARAM(10) is zero, a new problem is
started.
Default: IPARAM(10) = 0

IPARAM(11) = switch indicating that the user supplies scale factors for the columns of
the matrix A. If IPARAM(11) = 0, SLPRS computes the scale factors as the reciprocals of
the max norm of each column. If IPARAM(11) is set to one, element I of the vector
COLSCL is used as the scale factor for column I of the matrix A. The scaling is implicit,
so no input data is actually changed.
Default: IPARAM(11) = 0

IPARAM(12) = switch indicating that the user supplied scale factors for the rows of the
matrix A. If IPARAM(12) is set to zero, no row scaling is one. If IPARAM(12) is set to 1,
element I of the vector ROWSCL is used as the scale factor for row I of the matrix A.
The scaling is implicit, so no input data is actually changed.
Default: IPARAM(12) = 0

RPARAM — Real parameter vector of length 7.
RPARAM(1) = COSTSC, a scale factor for the vector of costs. Normally
SLPRS computes this scale factor to be the reciprocal of the max norm if the
vector costs after the column scaling has been applied. If RPARAM(1) is zero,
SLPRS compute COSTSC.
Default: RPARAM(1) = 0.0

RPARAM(2) = ASMALL, the smallest magnitude of nonzero entries in the matrix A. If
RPARAM(2) is nonzero, checking is done to ensure that all elements of A are at least as

1306 � Chapter 8: Optimization IMSL MATH/LIBRARY

large as RPARAM(2). Otherwise, no checking is done.
Default: RPARAM(2) = 0.0

RPARAM(3) = ABIG, the largest magnitude of nonzero entries in the matrix A. If
RPARAM(3) is nonzero, checking is done to ensure that all elements of A are no larger
than RPARAM(3). Otherwise, no checking is done.
Default: RPARAM(3) = 0.0

RPARAM(4) = TOLLS, the relative tolerance used in checking if the residuals are
feasible. RPARAM(4) is nonzero, that value is used as TOLLS, otherwise the default
value is used.
Default: TOLLS = 1000.0*amach(4)

RPARAM(5) = PHI, the scaling factor used to scale the reduced cost error estimates. In
some environments, it may be necessary to reset PHI to the range [0.01, 0.1],
particularly on machines with short word length and working precision when solving a
large problem. If RPARAM(5) is nonzero, that value is used as PHI, otherwise the default
value is used.
Default: PHI = 1.0

RPARAM(6) = TOLABS, an absolute error test on feasibility. Normally a relative test is
used with TOLLS (see RPARAM(4)). If this test fails, an absolute test will be applied
using the value TOLABS.
Default: TOLABS = 0.0

RPARAM(7) = pivot tolerance of the underlying sparse factorization routine. If
RPARAM(7) is set to zero, the default pivot tolerance is used, otherwise, the RPARAM(7)
is used.
Default: RPARAM(7) = 0.1

COLSCL — Array of length NVARS containing column scale factors for the matrix A.
(Input).
COLSCL is not used if IPARAM(11) is set to zero.

ROWSCL — Array of length M containing row scale factors for the matrix A. (Input)
ROWSCL is not used if IPARAM(12) is set to zero.

WORK — Work array of length LW.

LW — Length of real work array. LW must be at least
2 + 2NZ + 9NVAR + 27M + MAX(NZ + NVAR + 8, 4NVAR + 7).

IWORK — Integer work array of length LIW.

LIW — Length of integer work array. LIW must be at least
1 + 3NVAR + 41M + MAX(NZ + NVAR + 8, 4NVAR + 7).

IMSL MATH/LIBRARY Chapter 8: Optimization � 1307

Description
This subroutine solves problems of the form

min cTx

subject to

,l u

l u

b Ax b
x x x
� �

� �

where c is the objective coefficient vector, A is the coefficient matrix, and the vectors bl, bu, xl,
and xu are the lower and upper bounds on the constraints and the variables, respectively. SLPRS
is designed to take advantage of sparsity in A. The routine is based on DPLO by Hanson and
Hiebert.

QPROG
Solves a quadratic programming problem subject to linear equality/inequality constraints.

Required Arguments
NEQ — The number of linear equality constraints. (Input)

A — NCON by NVAR matrix. (Input)
The matrix contains the equality contraints in the first NEQ rows followed by the
inequality constraints.

B — Vector of length NCON containing right-hand sides of the linear constraints. (Input)

G — Vector of length NVAR containing the coefficients of the linear term of the objective
function. (Input)

H — NVAR by NVAR matrix containing the Hessian matrix of the objective function. (Input)
H should be symmetric positive definite; if H is not positive definite, the algorithm
attempts to solve the QP problem with H replaced by a H + DIAGNL * I such that H +
DIAGNL * I is positive definite. See Comment 3.

SOL — Vector of length NVAR containing solution. (Output)

Optional Arguments
NVAR — The number of variables. (Input)

Default: NVAR = size (A,2).

NCON — The number of linear constraints. (Input)
Default: NCON = size (A,1).

1308 � Chapter 8: Optimization IMSL MATH/LIBRARY

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling
program. (Input)
Default: LDA = size (A,1).

LDH — Leading dimension of H exactly as specified in the dimension statement of the calling
program. (Input)
Default: LDH = size (H,1).

DIAGNL — Scalar equal to the multiple of the identity matrix added to H to give a positive
definite matrix. (Output)

NACT — Final number of active constraints. (Output)

IACT — Vector of length NVAR containing the indices of the final active constraints in the
first NACT positions. (Output)

ALAMDA — Vector of length NVAR containing the Lagrange multiplier estimates of the final
active constraints in the first NACT positions. (Output)

FORTRAN 90 Interface
Generic: CALL QPROG (NEQ, A, B, G, H, SOL [,…])

Specific: The specific interface names are S_QPROG and D_QPROG.

FORTRAN 77 Interface
Single: CALL QPROG (NVAR, NCON, NEQ, A, LDA, B, G, H, LDH, DIAGNL,

SOL, NACT, IACT, ALAMDA)

Double: The double precision name is DQPROG.

Example
The quadratic programming problem

min f x x x x x x x x x x x
x x x x x
x x x

b g � � � � � � � �

� � � � �

� � � �

1
2

2
2

3
2

4
2

5
2

2 3 4 5 1

1 2 3 4 5

3 4 5

2 2 2
5

2 2 3
subject to

is solved.

 USE QPROG_INT
 USE UMACH_INT
! Declare variables
 INTEGER LDA, LDH, NCON, NEQ, NVAR
 PARAMETER (NCON=2, NEQ=2, NVAR=5, LDA=NCON, LDH=NVAR)

IMSL MATH/LIBRARY Chapter 8: Optimization � 1309

!
 INTEGER K, NACT, NOUT
 REAL A(LDA,NVAR), ALAMDA(NVAR), B(NCON), G(NVAR), &
 H(LDH,LDH), SOL(NVAR)
!
! Set values of A, B, G and H.
! A = (1.0 1.0 1.0 1.0 1.0)
! (0.0 0.0 1.0 -2.0 -2.0)
!
! B = (5.0 -3.0)
!
! G = (-2.0 0.0 0.0 0.0 0.0)
!
! H = (2.0 0.0 0.0 0.0 0.0)
! (0.0 2.0 -2.0 0.0 0.0)
! (0.0 -2.0 2.0 0.0 0.0)
! (0.0 0.0 0.0 2.0 -2.0)
! (0.0 0.0 0.0 -2.0 2.0)
!
 DATA A/1.0, 0.0, 1.0, 0.0, 1.0, 1.0, 1.0, -2.0, 1.0, -2.0/
 DATA B/5.0, -3.0/
 DATA G/-2.0, 4*0.0/
 DATA H/2.0, 5*0.0, 2.0, -2.0, 3*0.0, -2.0, 2.0, 5*0.0, 2.0, &
 -2.0, 3*0.0, -2.0, 2.0/
!
 CALL QPROG (NEQ, A, B, G, H, SOL)
!
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) (SOL(K),K=1,NVAR)
99999 FORMAT (’ The solution vector is’, /, ’ SOL = (’, 5F6.1, &
 ’)’)
!
 END

Output
The solution vector is
SOL = (1.0 1.0 1.0 1.0 1.0)

Comments
1. Workspace may be explicitly provided, if desired, by use of Q2ROG/DQ2ROG. The

reference is:

CALL Q2ROG (NVAR, NCON, NEQ, A, LDA, B, G, H, LDH,
 DIAGNL, SOL, NACT, IACT, ALAMDA, WK)

The additional argument is:

WK — Work vector of length (3 * NVAR**2 + 11 * NVAR)/2 + NCON.

2. Informational errors

Type Code

1310 � Chapter 8: Optimization IMSL MATH/LIBRARY

 3 1 Due to the effect of computer rounding error, a change in the
variables fail to improve the objective function value; usually the
solution is close to optimum.

 4 2 The system of equations is inconsistent. There is no solution.

3. If a perturbation of H, H + DIAGNL * I, was used in the QP problem, then H + DIAGNL *
I should also be used in the definition of the Lagrange multipliers.

Description
The routine QPROG is based on M.J.D. Powell’s implementation of the Goldfarb and Idnani
(1983) dual quadratic programming (QP) algorithm for convex QP problems subject to general
linear equality/inequality constraints, i.e., problems of the form

1min
2n

T T

x
g x x Hx

�

�

R

subject to A�x = b�

 A�x � b�

given the vectors b�, b�, and g and the matrices H, A�, and A�. H is required to be positive
definite. In this case, a unique x solves the problem or the constraints are inconsistent. If H is not
positive definite, a positive definite perturbation of H is used in place of H. For more details, see
Powell (1983, 1985).

LCONF
Minimizes a general objective function subject to linear equality/inequality constraints.

Required Arguments
FCN — User-supplied SUBROUTINE to evaluate the function to be minimized. The usage is

CALL FCN (N, X, F), where

N – Value of NVAR. (Input)

X – Vector of length N at which point the function is evaluated. (Input)
X should not be changed by FCN.

F – The computed function value at the point X. (Output)

FCN must be declared EXTERNAL in the calling program.

NEQ — The number of linear equality constraints. (Input)

A — NCON by NVAR matrix. (Input)
The matrix contains the equality constraint gradients in the first NEQ rows, followed by
the inequality constraint gradients.

IMSL MATH/LIBRARY Chapter 8: Optimization � 1311

B — Vector of length NCON containing right-hand sides of the linear constraints. (Input)
Specifically, the constraints on the variables X(I), I = 1, �, NVAR are A(K, 1) * X(1) +
� + A(K, NVAR) * X(NVAR).EQ.B(K), K = 1, �, NEQ.A(K, 1) * X(1) + � + A(K, NVAR)
* X(NVAR).LE.B(K), K = NEQ + 1, �, NCON. Note that the data that define the equality
constraints come before the data of the inequalities.

XLB — Vector of length NVAR containing the lower bounds on the variables; choose a very
large negative value if a component should be unbounded below or set
XLB(I) = XUB(I) to freeze the I-th variable. (Input)
Specifically, these simple bounds are XLB(I).LE.X(I), I = 1, �, NVAR.

XUB — Vector of length NVAR containing the upper bounds on the variables; choose a very
large positive value if a component should be unbounded above. (Input)
Specifically, these simple bounds are X(I).LE.XUB(I), I = 1, �, NVAR.

SOL — Vector of length NVAR containing solution. (Output)

Optional Arguments
NVAR — The number of variables. (Input)

Default: NVAR = size (A,2).

NCON — The number of linear constraints (excluding simple bounds). (Input)
Default: NCON = size (A,1).

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling
program. (Input)
Default: LDA = size (A,1).

XGUESS — Vector of length NVAR containing the initial guess of the minimum. (Input)
Default: XGUESS = 0.0.

ACC — The nonnegative tolerance on the first order conditions at the calculated solution.
(Input)
Default: ACC = 1.e-4 for single precision and 1.d-8 for double precision.

MAXFCN — On input, maximum number of function evaluations allowed. (Input/ Output)
On output, actual number of function evaluations needed.
Default: MAXFCN = 400.

OBJ — Value of the objective function. (Output)

NACT — Final number of active constraints. (Output)

IACT — Vector containing the indices of the final active constraints in the first NACT
positions. (Output)
Its length must be at least NCON + 2 * NVAR.

1312 � Chapter 8: Optimization IMSL MATH/LIBRARY

ALAMDA — Vector of length NVAR containing the Lagrange multiplier estimates of the final
active constraints in the first NACT positions. (Output)

FORTRAN 90 Interface
Generic: CALL LCONF (FCN, NEQ, A, B, XLB, XUB, SOL [,…])

Specific: The specific interface names are S_LCONF and D_LCONF.

FORTRAN 77 Interface
Single: CALL LCONF (FCN, NVAR, NCON, NEQ, A, LDA, B, XLB, XUB,

XGUESS, ACC, MAXFCN, SOL, OBJ, NACT, IACT,
ALAMDA)

Double: The double precision name is DLCONF.

Example
The problem from Schittkowski (1987)

min f(x) = �x�x�x�

subject to �x� � 2x� � 2x� � 0

 x� +2x� + 2x� � 72

 0 � x� � 20

 0 � x� � 11

 0 � x� � 42

is solved with an initial guess x� = 10, x� = 10 and x� = 10.
 USE LCONF_INT
 USE UMACH_INT
! Declaration of variables
 INTEGER NCON, NEQ, NVAR
 PARAMETER (NCON=2, NEQ=0, NVAR=3)
!
 INTEGER MAXFCN, NOUT
 REAL A(NCON,NVAR), ACC, B(NCON), OBJ, &
 SOL(NVAR), XGUESS(NVAR), XLB(NVAR), XUB(NVAR)
 EXTERNAL FCN
!
! Set values for the following problem.
!
! Min -X(1)*X(2)*X(3)
!
! -X(1) - 2*X(2) - 2*X(3) .LE. 0
! X(1) + 2*X(2) + 2*X(3) .LE. 72
!

IMSL MATH/LIBRARY Chapter 8: Optimization � 1313

! 0 .LE. X(1) .LE. 20
! 0 .LE. X(2) .LE. 11
! 0 .LE. X(3) .LE. 42
!
 DATA A/-1.0, 1.0, -2.0, 2.0, -2.0, 2.0/, B/0.0, 72.0/
 DATA XLB/3*0.0/, XUB/20.0, 11.0, 42.0/, XGUESS/3*10.0/
 DATA ACC/0.0/, MAXFCN/400/
!
 CALL UMACH (2, NOUT)
!
 CALL LCONF (FCN, NEQ, A, B, XLB, XUB, SOL, XGUESS=XGUESS, &
 MAXFCN=MAXFCN, ACC=ACC, OBJ=OBJ)
!
 WRITE (NOUT,99998) ’Solution:’
 WRITE (NOUT,99999) SOL
 WRITE (NOUT,99998) ’Function value at solution:’
 WRITE (NOUT,99999) OBJ
 WRITE (NOUT,99998) ’Number of function evaluations:’, MAXFCN
 STOP
99998 FORMAT (//, ’ ’, A, I4)
99999 FORMAT (1X, 5F16.6)
 END
!
 SUBROUTINE FCN (N, X, F)
 INTEGER N
 REAL X(*), F
!
 F = -X(1)*X(2)*X(3)
 RETURN
 END

Output
Solution:
 20.000000 11.000000 15.000000

Function value at solution:
-3300.000000

Number of function evaluations: 5

Comments
1. Workspace may be explicitly provided, if desired, by use of L2ONF/DL2ONF. The

reference is:

CALL L2ONF (FCN, NVAR, NCON, NEQ, A, LDA, B, XLB, XUB, XGUESS,
ACC, MAXFCN, SOL, OBJ, NACT, IACT, ALAMDA, IPRINT, INFO, WK)

The additional arguments are as follows:

IPRINT — Print option (see Comment 3). (Input)

INFO — Informational flag (see Comment 3). (Output)

1314 � Chapter 8: Optimization IMSL MATH/LIBRARY

WK — Real work vector of length NVAR**2 + 11 * NVAR + NCON.

2. Informational errors

Type Code
 4 4 The equality constraints are inconsistent.
 4 5 The equality constraints and the bounds on the variables are found to

be inconsistent.
 4 6 No vector X satisfies all of the constraints. In particular, the current

active constraints prevent any change in X that reduces the sum of
constraint violations.

 4 7 Maximum number of function evaluations exceeded.
 4 9 The variables are determined by the equality constraints.

3. The following are descriptions of the arguments IPRINT and INFO:

IPRINT — This argument must be set by the user to specify the frequency of printing during
the execution of the routine LCONF. There is no printed output if IPRINT = 0.
Otherwise, after ensuring feasibility, information is given every IABS(IPRINT)
iterations and whenever a parameter called TOL is reduced. The printing provides the
values of X(.), F(.) and G(.) = GRAD(F) if IPRINT is positive. If IPRINT is negative,
this information is augmented by the current values of IACT(K) K = 1, �, NACT,
PAR(K) K = 1, �, NACT and RESKT(I) I = 1, �, N. The reason for returning to the
calling program is also displayed when IPRINT is nonzero.

INFO — On exit from L2ONF, INFO will have one of the following integer values to indicate
the reason for leaving the routine:

INFO = 1 SOL is feasible, and the condition that depends on ACC is satisfied.

INFO = 2 SOL is feasible, and rounding errors are preventing further progress.

INFO = 3 SOL is feasible, but the objective function fails to decrease although a
decrease is predicted by the current gradient vector.

INFO = 4 In this case, the calculation cannot begin because LDA is less than NCON or
because the lower bound on a variable is greater than the upper bound.

INFO = 5 This value indicates that the equality constraints are inconsistent. These
constraints include any components of X(.) that are frozen by setting
XL(I) = XU(I).

INFO = 6 In this case there is an error return because the equality constraints and the
bounds on the variables are found to be inconsistent.

INFO = 7 This value indicates that there is no vector of variables that satisfies all of
the constraints. Specifically, when this return or an INFO = 6 return occurs, the
current active constraints (whose indices are IACT(K), K = 1, �, NACT) prevent

IMSL MATH/LIBRARY Chapter 8: Optimization � 1315

any change in X(.) that reduces the sum of constraint violations. Bounds are only
included in this sum if INFO = 6.

INFO = 8 Maximum number of function evaluations exceeded.

INFO = 9 The variables are determined by the equality constraints.

Description
The routine LCONF is based on M.J.D. Powell’s TOLMIN, which solves linearly constrained
optimization problems, i.e., problems of the form

� �min
nx

f x
�R

subject to A�x = b�

 A�x � b�

 xl � x � xu

given the vectors b�, b�, xl and xu and the matrices A�, and A�.

The algorithm starts by checking the equality constraints for inconsistency and redundancy. If
the equality constraints are consistent, the method will revise x�, the initial guess provided by
the user, to satisfy

A�x = b�

Next, x� is adjusted to satisfy the simple bounds and inequality constraints. This is done by
solving a sequence of quadratic programming subproblems to minimize the sum of the
constraint or bound violations.

Now, for each iteration with a feasible xk, let Jk be the set of indices of inequality constraints
that have small residuals. Here, the simple bounds are treated as inequality constraints. Let Ik be
the set of indices of active constraints. The following quadratic programming problem

� � � �
1min
2

k T k T kf x d f x d B d� � �

subject to ajd = 0 j � Ik

 ajd � 0 j � Jk

is solved to get (dk, �k) where aj is a row vector representing either a constraint in A�or A� or a
bound constraint on x. In the latter case, the aj = ei for the bound constraint xi � (xu)i and aj = �ei
for the constraint �xi � (�xl)i. Here, ei is a vector with a 1 as the i-th component, and zeroes

elsewhere. �k are the Lagrange multipliers, and Bk is a positive definite approximation to the
second derivative ��f(xk).

1316 � Chapter 8: Optimization IMSL MATH/LIBRARY

After the search direction dk is obtained, a line search is performed to locate a better point. The
new point xk+1= xk + �kdk has to satisfy the conditions

� � � � � � � �0.1
Tk k k k k k kf x d f x d f x� �� � � �

and

� � � � � � � �0.7
T Tk k k k k kd f x d d f x�� � � �

The main idea in forming the set Jk is that, if any of the inequality constraints restricts the step-

length �k, then its index is not in Jk. Therefore, small steps are likely to be avoided.

Finally, the second derivative approximation, Bk , is updated by the BFGS formula, if the
condition

� � � � � � 0
Tk k k k kd f x d f x�� � �� �

holds. Let xk
 xk+�, and start another iteration.

The iteration repeats until the stopping criterion

� �
2

k k kf x A � �� � �

is satisfied; here, � is a user-supplied tolerance. For more details, see Powell (1988, 1989).

Since a finite-difference method is used to estimate the gradient for some single precision
calculations, an inaccurate estimate of the gradient may cause the algorithm to terminate at a
noncritical point. In such cases, high precision arithmetic is recommended. Also, whenever the
exact gradient can be easily provided, routine LCONG (page 1316) should be used instead.

LCONG
Minimizes a general objective function subject to linear equality/inequality constraints.

Required Arguments
FCN — User-supplied SUBROUTINE to evaluate the function to be minimized. The usage is

CALL FCN (N, X, F), where

N – Value of NVAR. (Input)

X – Vector of length N at which point the function is evaluated. (Input)
X should not be changed by FCN.

F – The computed function value at the point X. (Output)

FCN must be declared EXTERNAL in the calling program.

IMSL MATH/LIBRARY Chapter 8: Optimization � 1317

GRAD — User-supplied SUBROUTINE to compute the gradient at the point X. The usage is
CALL GRAD (N, X, G), where

N – Value of NVAR. (Input)

X – Vector of length N at which point the function is evaluated. (Input)
X should not be changed by GRAD.

G – Vector of length N containing the values of the gradient of the objective function
evaluated at the point X. (Output)

GRAD must be declared EXTERNAL in the calling program.

NEQ — The number of linear equality constraints. (Input)

A — NCON by NVAR matrix. (Input)
The matrix contains the equality constraint gradients in the first NEQ rows, followed by
the inequality constraint gradients.

B — Vector of length NCON containing right-hand sides of the linear constraints. (Input)
Specifically, the constraints on the variables X(I), I = 1, �, NVAR are A(K, 1) * X(1) +
� + A(K, NVAR) * X(NVAR).EQ.B(K), K = 1, �, NEQ.A(K, 1) * X(1) + � + A(K, NVAR)
* X(NVAR).LE.B(K), K = NEQ + 1, �, NCON. Note that the data that define the equality
constraints come before the data of the inequalities.

XLB — Vector of length NVAR containing the lower bounds on the variables; choose a very
large negative value if a component should be unbounded below or set XLB(I) =
XUB(I) to freeze the I-th variable. (Input)
Specifically, these simple bounds are XLB(I).LE.X(I), I = 1, �, NVAR.

XUB — Vector of length NVAR containing the upper bounds on the variables; choose a very
large positive value if a component should be unbounded above. (Input)
Specifically, these simple bounds are X(I).LE. XUB(I), I = 1, �, NVAR.

SOL — Vector of length NVAR containing solution. (Output)

Optional Arguments
NVAR — The number of variables. (Input)

Default: NVAR = size (A,2).

NCON — The number of linear constraints (excluding simple bounds). (Input)
Default: NCON = size (A,1).

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling
program. (Input)
Default: LDA = size (A,1).

1318 � Chapter 8: Optimization IMSL MATH/LIBRARY

XGUESS — Vector of length NVAR containing the initial guess of the minimum. (Input)
Default: XGUESS = 0.0.

ACC — The nonnegative tolerance on the first order conditions at the calculated solution.
(Input)
Default: ACC = 1.e-4 for single precision and 1.d-8 for double precision.

MAXFCN — On input, maximum number of function evaluations allowed.(Input/ Output)
On output, actual number of function evaluations needed.
Default: MAXFCN = 400.

OBJ — Value of the objective function. (Output)

NACT — Final number of active constraints. (Output)

IACT — Vector containing the indices of the final active constraints in the first NACT
positions. (Output)
Its length must be at least NCON + 2 * NVAR.

ALAMDA — Vector of length NVAR containing the Lagrange multiplier estimates of the final
active constraints in the first NACT positions. (Output)

FORTRAN 90 Interface
Generic: CALL LCONG (FCN, GRAD, NEQ, A, B, XLB, XUB, SOL [,…])

Specific: The specific interface names are S_LCONG and D_LCONG.

FORTRAN 77 Interface
Single: CALL LCONG (FCN, GRAD, NVAR, NCON, NEQ, A, LDA, B, XLB,

XUB, XGUESS, ACC, MAXFCN, SOL, OBJ, NACT, IACT,
ALAMDA)

Double: The double precision name is DLCONG.

Example
The problem from Schittkowski (1987)

min f(x) = �x�x�x�

subject to �x� � 2x� � 2x� � 0

 x� +2x� + 2x� � 72

 0 � x� � 20

 0 � x� � 11

IMSL MATH/LIBRARY Chapter 8: Optimization � 1319

 0 � x� � 42

is solved with an initial guess x� = 10, x� = 10 and x� = 10.
 USE LCONG_INT
 USE UMACH_INT
! Declaration of variables
 INTEGER NCON, NEQ, NVAR
 PARAMETER (NCON=2, NEQ=0, NVAR=3)
!
 INTEGER MAXFCN, NOUT
 REAL A(NCON,NVAR), ACC, B(NCON), OBJ, &
 SOL(NVAR), XGUESS(NVAR), XLB(NVAR), XUB(NVAR)
 EXTERNAL FCN, GRAD
!
! Set values for the following problem.
!
! Min -X(1)*X(2)*X(3)
!
! -X(1) - 2*X(2) - 2*X(3) .LE. 0
! X(1) + 2*X(2) + 2*X(3) .LE. 72
!
! 0 .LE. X(1) .LE. 20
! 0 .LE. X(2) .LE. 11
! 0 .LE. X(3) .LE. 42
!
 DATA A/-1.0, 1.0, -2.0, 2.0, -2.0, 2.0/, B/0.0, 72.0/
 DATA XLB/3*0.0/, XUB/20.0, 11.0, 42.0/, XGUESS/3*10.0/
 DATA ACC/0.0/, MAXFCN/400/
!
 CALL UMACH (2, NOUT)
!
 CALL LCONG (FCN, GRAD, NEQ, A, B, XLB, XUB, SOL, XGUESS=XGUESS, &
 ACC=ACC, MAXFCN=MAXFCN, OBJ=OBJ)
!
 WRITE (NOUT,99998) ’Solution:’
 WRITE (NOUT,99999) SOL
 WRITE (NOUT,99998) ’Function value at solution:’
 WRITE (NOUT,99999) OBJ
 WRITE (NOUT,99998) ’Number of function evaluations:’, MAXFCN
 STOP
99998 FORMAT (//, ’ ’, A, I4)
99999 FORMAT (1X, 5F16.6)
 END
!
 SUBROUTINE FCN (N, X, F)
 INTEGER N
 REAL X(*), F
!
 F = -X(1)*X(2)*X(3)
 RETURN
 END
!
 SUBROUTINE GRAD (N, X, G)
 INTEGER N
 REAL X(*), G(*)

1320 � Chapter 8: Optimization IMSL MATH/LIBRARY

!
 G(1) = -X(2)*X(3)
 G(2) = -X(1)*X(3)
 G(3) = -X(1)*X(2)
 RETURN
 END

Output
Solution:
20.000000 11.000000 15.000000

Function value at solution:
-3300.000000

Number of function evaluations: 5

Comments
1. Workspace may be explicitly provided, if desired, by use of L2ONG/DL2ONG. The

reference is:

CALL L2ONG (FCN, GRAD, NVAR, NCON, NEQ, A, LDA, B, XLB, XUB,
XGUESS, ACC, MAXFCN, SOL, OBJ, NACT, IACT, ALAMDA, IPRINT,
INFO, WK)

The additional arguments are as follows:

IPRINT — Print option (see Comment 3). (Input)

INFO — Informational flag (see Comment 3). (Output)

WK — Real work vector of length NVAR**2 + 11 * NVAR + NCON.

2. Informational errors

Type Code
 4 4 The equality constraints are inconsistent.
 4 5 The equality constraints and the bounds on the variables are found to

be inconsistent.
 4 6 No vector X satisfies all of the constraints. In particular, the current

active constraints prevent any change in X that reduces the sum of
constraint violations.

 4 7 Maximum number of function evaluations exceeded.
 4 9 The variables are determined by the equality constraints.

3. The following are descriptions of the arguments IPRINT and INFO:

IPRINT — This argument must be set by the user to specify the frequency of printing
during the execution of the routine LCONG. There is no printed output if IPRINT
= 0. Otherwise, after ensuring feasibility, information is given every
IABS(IPRINT) iterations and whenever a parameter called TOL is reduced. The
printing provides the values of X(.), F(.) and G(.) = GRAD(F) if IPRINT is

IMSL MATH/LIBRARY Chapter 8: Optimization � 1321

positive. If IPRINT is negative, this information is augmented by the current
values of IACT(K) K = 1, �,
NACT, PAR(K) K = 1, �, NACT and RESKT(I) I = 1, �, N. The reason for
returning to the calling program is also displayed when IPRINT is nonzero.

INFO — On exit from L2ONG, INFO will have one of the following integer
 values to indicate the reason for leaving the routine:

INFO = 1 SOL is feasible and the condition that depends on ACC is satisfied.

INFO = 2 SOL is feasible and rounding errors are preventing further progress.

INFO = 3 SOL is feasible but the objective function fails to decrease although
 a decrease is predicted by the current gradient vector.

INFO = 4 In this case, the calculation cannot begin because LDA is less than
 NCON or because the lower bound on a variable is greater than the
 upper bound.

INFO = 5 This value indicates that the equality constraints are inconsistent.
 These constraints include any components of X(.) that are frozen
 by setting XL(I) = XU(I).

INFO = 6 In this case, there is an error return because the equality constraints
 and the bounds on the variables are found to be inconsistent.

INFO = 7 This value indicates that there is no vector of variables that
 satisfies all of the constraints. Specifically, when this return or an
 INFO = 6 return occurs, the current active constraints (whose
 indices are IACT(K), K = 1, �, NACT) prevent any change in X(.)
 that reduces the sum of constraint violations, where only bounds
 are included in this sum if INFO = 6.

INFO = 8 Maximum number of function evaluations exceeded.

INFO = 9 The variables are determined by the equality constraints.

Description
The routine LCONG is based on M.J.D. Powell’s TOLMIN, which solves linearly constrained
optimization problems, i.e., problems of the form

� �min
nx

f x
�R

subject to A�x = b�

 A�x � b�

1322 � Chapter 8: Optimization IMSL MATH/LIBRARY

 xl � x � xu

given the vectors b�, b�, xl and xu and the matrices A�, and A�.

The algorithm starts by checking the equality constraints for inconsistency and redundancy. If
the equality constraints are consistent, the method will revise x�, the initial guess provided by
the user, to satisfy

A�x = b�

Next, x� is adjusted to satisfy the simple bounds and inequality constraints. This is done by
solving a sequence of quadratic programming subproblems to minimize the sum of the
constraint or bound violations.

Now, for each iteration with a feasible xk, let Jk be the set of indices of inequality constraints
that have small residuals. Here, the simple bounds are treated as inequality constraints. Let Ik be
the set of indices of active constraints. The following quadratic programming problem

� � � �
1min
2

k T k T kf x d f x d B d� � �

subject to ajd = 0 j � Ik

 ajd � 0 j � Jk

is solved to get (dk, �k) where aj is a row vector representing either a constraint in A�or A� or a
bound constraint on x. In the latter case, the aj = ei for the bound constraint xi � (xu)i and
aj = � ei for the constraint � xi � (� xl)i. Here, ei is a vector with a 1 as the i-th component, and

zeroes elsewhere. �k are the Lagrange multipliers, and Bk is a positive definite approximation to
the second derivative ��f(xk).

After the search direction dk is obtained, a line search is performed to locate a better point. The
new point xk+1= xk + �kdk has to satisfy the conditions

� � � � � � � �0.1
Tk k k k k k kf x d f x d f x� �� � � �

and

� � � � � � � �0.7
T Tk k k k k kd f x d d f x�� � � �

The main idea in forming the set Jk is that, if any of the inequality constraints restricts the step-

length �k, then its index is not in Jk. Therefore, small steps are likely to be avoided.

Finally, the second derivative approximation, Bk, is updated by the BFGS formula, if the
condition

� � � � � � 0
Tk k k k kd f x d f x�� � �� �

holds. Let xk
 xk+1, and start another iteration.

IMSL MATH/LIBRARY Chapter 8: Optimization � 1323

The iteration repeats until the stopping criterion

� �
2

k k kf x A � �� � �

is satisfied; here, � is a user-supplied tolerance. For more details, see Powell (1988, 1989).

NNLPF
Solves a general nonlinear programming problem using a sequential equality constrained quadratic
programming method.

Required Arguments
FCN — User-supplied SUBROUTINE to evaluate the objective function and constraints at a

given point. The internal usage is CALL FCN (X, IACT, RESULT, IERR),
where

 X – The point at which the objective function or constraint is evaluated. (Input)

IACT – Integer indicating whether evaluation of the objective function is requested or
evaluation of a constraint is requested. If IACT is zero, then an objective
function evaluation is requested. If IACT is nonzero then the value if IACT
indicates the index of the constraint to evaluate. (Input)

RESULT – If IACT is zero, then RESULT is the computed function value at the point
X. If IACT is nonzero, then RESULT is the computed constraint value at the
point X. (Output)

IERR – Logical variable. On input IERR is set to .FALSE. If an error or other
undesirable condition occurs during evaluation, then IERR should be set to
.TRUE. Setting IERR to .TRUE. will result in the step size being reduced and
the step being tried again. (If IERR is set to .TRUE. for XGUESS, then an error is
issued.)

The routine FCN must be use-associated in a user module that uses NNLPF_INT, or else
declared EXTERNAL in the calling program. If FCN is a separately compiled routine, not
in a module, then it must be declared EXTERNAL.

M — Total number of constraints. (Input)

ME — Number of equality constraints. (Input)

IBTYPE — Scalar indicating the types of bounds on variables. (Input)

IBTYPE Action

0 User will supply all the bounds.

1324 � Chapter 8: Optimization IMSL MATH/LIBRARY

1 All variables are nonnegative.

2 All variables are nonpositive.

3 User supplies only the bounds on 1st variable; all other variables will have
 the same bounds.

XLB — Vector of length N containing the lower bounds on variables. (Input, if IBTYPE = 0;
output, if IBTYPE = 1 or 2; input/output, if IBTYPE = 3)
If there is no lower bound for a variable, then the corresponding XLB value should be
set to �Huge(X(1)).

XUB — Vector of length N containing the upper bounds on variables. (Input, if IBTYPE = 0;
output, if IBTYPE = 1 or 2; input/output, if IBTYPE = 3).
If there is no upper bound for a variable, then the corresponding XUB value should be
set to Huge(X(1)).

X — Vector of length N containing the computed solution. (Output)

Optional Arguments
N — Number of variables. (Input)

Default: N = size(X).

XGUESS — Vector of length N containing an initial guess of the solution. (Input)
Default: XGUESS = X, (with the smallest value of

2
X) that satisfies the bounds.

XSCALE — Vector of length N setting the internal scaling of the variables. The initial value
given and the objective function and gradient evaluations however are always in the
original unscaled variables. The first internal variable is obtained by dividing values
X(I) by XSCALE(I). (Input)
In the absence of other information, set all entries to 1.0.
Default: XSCALE(:) = 1.0.

IPRINT — Parameter indicating the desired output level. (Input)

IPRINT Action

0 No output printed.

1 One line of intermediate results is printed in each iteration.

2 Lines of intermediate results summarizing the most important data for each
step are printed.

IMSL MATH/LIBRARY Chapter 8: Optimization � 1325

3 Lines of detailed intermediate results showing all primal and dual variables,
the relevant values from the working set, progress in the backtracking and
etc are printed

4 Lines of detailed intermediate results showing all primal and dual variables,
the relevant values from the working set, progress in the backtracking, the
gradients in the working set, the quasi-Newton updated and etc are printed.

 Default: IPRINT = 0.

MAXITN — Maximum number of iterations allowed. (Input)
Default: MAXITN = 200.

EPSDIF — Relative precision in gradients. (Input)
Default: EPSDIF = epsilon(x(1))

TAU0 — A universal bound describing how much the unscaled penalty-term may deviate
from zero. (Input)
NNLPF assumes that within the region described by

� � � �� �
1 1

min 0,
e

e

M M

i i
i i M

g x g x
� � �

� �� � TAU0

all functions may be evaluated safely. The initial guess, however, may violate these
requirements. In that case an initial feasibility improvement phase is run by NNLPF
until such a point is found. A small TAU0 diminishes the efficiency of NNLPF, because
the iterates then will follow the boundary of the feasible set closely. Conversely, a large
TAU0 may degrade the reliability of the code.
Default TAU0 = 1.E0

DEL0 — In the initial phase of minimization a constraint is considered binding if

� �

� �� �max 1,
i

i

g x

g x
�

�

DEL0 1, ,ei M M� � �

Good values are between .01 and 1.0. If DEL0 is chosen too small then identification
of the correct set of binding constraints may be delayed. Contrary, if DEL0 is too large,
then the method will often escape to the full regularized SQP method, using individual
slack variables for any active constraint, which is quite costly. For well-scaled
problems DEL0=1.0 is reasonable. (Input)
Default: DEL0 = .5*TAU0

EPSFCN – Relative precision of the function evaluation routine. (Input)
Default: EPSFCN = epsilon(x(1))

IDTYPE – Type of numerical differentiation to be used. (Input)
Default: IDTYPE = 1

1326 � Chapter 8: Optimization IMSL MATH/LIBRARY

IDTYPE Action

1 Use a forward difference quotient with discretization stepsize
 0.1(EPSFCN���� componentwise relative.

2 Use the symmetric difference quotient with discretization stepsize
 0.1(EPSFCN���) componentwise relative

3 Use the sixth order approximation computing a Richardson extrapolation of
 three symmetric difference quotient values. This uses a discretization
 stepsize 0.01(EPSFCN���)

TAUBND – Amount by which bounds may be violated during numerical differentiation.
Bounds are violated by TAUBND (at most) only if a variable is on a bound and finite
differences are taken for gradient evaluations. (Input)
Default: TAUBND = 1.E0

SMALLW — Scalar containing the error allowed in the multipliers. For example, a negative
multiplier of an inequality constraint is accepted (as zero) if its absolute value is less
than SMALLW. (Input)
Default: SMALLW = exp(2*log(epsilon(x(1)/3)))

DELMIN — Scalar which defines allowable constraint violations of the final accepted result.
Constraints are satisfied if |gi(x)| � DELMIN , and gj(x) � (-DELMIN) respectively.
(Input)
Default: DELMIN = min(DEL0/10, max(EPSDIF, min(DEL0/10,
max(1.E-6*DEL0, SMALLW))

SCFMAX — Scalar containing the bound for the internal automatic scaling of the objective
function. (Intput)
Default: SCFMAX = 1.0E4

FVALUE — Scalar containing the value of the objective function at the computed solution.
(Output)

FORTRAN 90 Interface
Generic: CALL NNLPF (FCN, M, ME, IBTYPE, XLB, XUB, X [,…])

Specific: The specific interface names are S_NNLPF and D_NNLPF .

Example
The problem

IMSL MATH/LIBRARY Chapter 8: Optimization � 1327

� � � � � �

� �

� �

2 2
1 2

1 1 2

2 2
2 1 2

min 2 1

subject to 2 1 0

/ 4 1 0

F x x x

g x x x

g x x x

� � � �

� � � �

� � � � �

is solved.
 USE NNLPF_INT
 USE WRRRN_INT
 INTEGER IBTYPE, M, ME
 PARAMETER (IBTYPE=0, M=2, ME=1)
!
 REAL(KIND(1E0)) FVALUE, X(2), XGUESS(2), XLB(2), XUB(2)
 EXTERNAL FCN, GRAD
!
 XLB = -HUGE(X(1))
 XUB = HUGE(X(1))
!
 CALL NNLPF (FCN, M, ME, IBTYPE, XLB, XUB, X)
!
 CALL WRRRN ('The solution is', X)
 END

 SUBROUTINE FCN (X, IACT, RESULT, IERR)
 INTEGER IACT
 REAL(KIND(1E0)) X(*), RESULT
 LOGICAL IERR
!
 SELECT CASE (IACT)
 CASE(0)
 RESULT = (X(1)-2.0E0)**2 + (X(2)-1.0E0)**2
 CASE(1)
 RESULT = X(1) - 2.0E0*X(2) + 1.0E0
 CASE(2)
 RESULT = -(X(1)**2)/4.0E0 - X(2)**2 + 1.0E0
 END SELECT
 RETURN
 END

Output
The solution is
 1 0.8229
 2 0.9114

Comments
1. Informational errors

Type Code
 4 1 Constraint evaluation returns an error with current point.
 4 2 Objective evaluation returns an error with current point.
 4 3 Working set is singular in dual extended QP.
 4 4 QP problem is seemingly infeasible.
 4 5 A stationary point located.

1328 � Chapter 8: Optimization IMSL MATH/LIBRARY

 4 6 A stationary point located or termination criteria too strong.
 4 7 Maximum number of iterations exceeded.
 4 8 Stationary point not feasible.
 4 9 Very slow primal progress.
 4 10 The problem is singular.
 4 11 Matrix of gradients of binding constraints is singular or very ill-

conditioned.
 4 12 Small changes in the penalty function.

Description
The routine NNLPF provides an interface to a licensed version of subroutine DONLP2, a
FORTRAN code developed by Peter Spellucci (1998). It uses a sequential equality constrained
quadratic programming method with an active set technique, and an alternative usage of a fully
regularized mixed constrained subproblem in case of nonregular constraints (i.e. linear
dependent gradients in the “working sets”). It uses a slightly modified version of the Pantoja-
Mayne update for the Hessian of the Lagrangian, variable dual scaling and an improved
Armjijo-type stepsize algorithm. Bounds on the variables are treated in a gradient-projection
like fashion. Details may be found in the following two papers:

P. Spellucci: An SQP method for general nonlinear programs using only equality constrained
subproblems. Math. Prog. 82, (1998), 413-448.

P. Spellucci: A new technique for inconsistent problems in the SQP method. Math. Meth. of
Oper. Res. 47, (1998), 355-500. (published by Physica Verlag, Heidelberg, Germany).

The problem is stated as follows:

� �min
nx

f x
�R

� �

� �

subject to 0, for 1, ,

0, for 1, ,
j e

j e

l u

g x j m

g x j m m

x x x

� �

� � �

� �

�

�

Although default values are provided for optional input arguments, it may be necessary to adjust
these values for some problems. Through the use of optional arguments, NNLPF allows for
several parameters of the algorithm to be adjusted to account for specific characteristics of
problems. The DONLP2 Users Guide provides detailed descriptions of these parameters as
well as strategies for maximizing the perfomance of the algorithm. The DONLP2 Users Guide
is available in the “help” subdirectory of the main IMSL product installation directory. In
addition, the following are a number of guidelines to consider when using NNLPF.

�� A good initial starting point is very problem specific and should be provided by the
calling program whenever possible. See optional argument XGUESS.

�� Gradient approximation methods can have an effect on the success of NNLPF.
Selecting a higher order appoximation method may be necessary for some problems.
See optional argument IDTYPE.

IMSL MATH/LIBRARY Chapter 8: Optimization � 1329

�� If a two sided constraint ()i i il g x u� � is transformed into two constraints 2 () 0ig x �
and 2 1() 0ig x

�
� , then choose � �1

2DEL0 () / {1, }i i iu l max g x� � � , or at least try to
provide an estimate for that value. This will increase the efficiency of the algorithm.
See optional argument DEL0.

�� The parameter IERR provided in the interface to the user supplied function FCN can be
very useful in cases when evaluation is requested at a point that is not possible or
reasonable. For example, if evaluation at the requested point would result in a floating
point exception, then setting IERR to .TRUE. and returning without performing the
evaluation will avoid the exception. NNLPF will then reduce the stepsize and try the
step again. Note, if IERR is set to .TRUE. for the initial guess, then an error is issued.

NNLPG
Solves a general nonlinear programming problem using a sequential equality constrained quadratic
programming method with user supplied gradients.

Required Arguments
FCN — User-supplied SUBROUTINE to evaluate the objective function and constraints at a

given point. The internal usage is CALL FCN (X, IACT, RESULT, IERR),
where

 X – The point at which the objective function or constraint is evaluated. (Input)

IACT – Integer indicating whether evaluation of the objective function is requested or
evaluation of a constraint is requested. If IACT is zero, then an objective
function evaluation is requested. If IACT is nonzero then the value if IACT
indicates the index of the constraint to evaluate. (Input)

RESULT – If IACT is zero, then RESULT is the computed objective function value at
the point X. If IACT is nonzero, then RESULT is the computed constraint value
at the point X. (Output)

IERR – Logical variable. On input IERR is set to .FALSE. If an error or other
undesirable condition occurs during evaluation, then IERR should be set to
.TRUE. Setting IERR to .TRUE. will result in the step size being reduced and
the step being tried again. (If IERR is set to .TRUE. for XGUESS, then an error is
issued.)

The routine FCN must be use-associated in a user module that uses NNLPG_INT, or else
declared EXTERNAL in the calling program. If FCN is a separately compiled routine, not
in a module, then it must be declared EXTERNAL.

GRAD — User-supplied SUBROUTINE to evaluate the gradients at a given point. The usage is
CALL GRAD (X, IACT, RESULT), where

1330 � Chapter 8: Optimization IMSL MATH/LIBRARY

 X – The point at which the gradient of the objective function or gradient of a constraint
is evaluated. (Input)

IACT – Integer indicating whether evaluation of the function gradient is requested or
evaluation of a constraint gradient is requested. If IACT is zero, then an
objective function gradient evaluation is requested. If IACT is nonzero then the
value if IACT indicates the index of the constraint gradient to evaluate.
(Input)RESULT – If IACT is zero, then RESULT is the computed gradient of the
objective function at the point X. If IACT is nonzero, then RESULT is the
computed gradient of the requested constraint value at the point X. (Output)

The routine GRAD must be use-associated in a user module that uses NNLPG_INT, or
else declared EXTERNAL in the calling program. If GRAD is a separately compiled
routine, not in a module, then is must be declared EXTERNAL

M — Total number of constraints. (Input)

ME — Number of equality constraints. (Input)

IBTYPE — Scalar indicating the types of bounds on variables. (Input)

IBTYPE Action

0 User will supply all the bounds.

1 All variables are nonnegative.

2 All variables are nonpositive.

3 User supplies only the bounds on 1st variable, all other variables will have
 the same bounds.

XLB — Vector of length N containing the lower bounds on the variables. (Input, if
IBTYPE = 0; output, if IBTYPE = 1 or 2; input/output, if IBTYPE = 3) If there is no
lower bound on a variable, then the corresponding XLB value should be set to
�huge(x(1)).

XUB — Vector of length N containing the upper bounds on the variables. (Input, if IBTYPE
= 0; output, if IBTYPE = 1 or 2; input/output, if IBTYPE = 3) If there is no upper bound
on a variable, then the corresponding XUB value should be set to huge(x(1)).

X — Vector of length N containing the computed solution. (Output)

Optional Arguments
N — Number of variables. (Input)

Default: N = size(X).

IMSL MATH/LIBRARY Chapter 8: Optimization � 1331

IPRINT — Parameter indicating the desired output level. (Input)

IPRINT Action

0 No output printed.

1 One line of intermediate results is printed in each iteration.

2 Lines of intermediate results summarizing the most important data for each
step are printed.

 3 Lines of detailed intermediate results showing all primal and dual variables,
the relevant values from the working set, progress in the backtracking and
etc are printed

4 Lines of detailed intermediate results showing all primal and dual variables,
the relevant values from the working set, progress in the backtracking, the
gradients in the working set, the quasi-Newton updated and etc are printed.

 Default: IPRINT = 0.

MAXITN — Maximum number of iterations allowed. (Input)
Default: MAXITN = 200.

XGUESS — Vector of length N containing an initial guess of the solution. (Input)
Default: XGUESS = X, (with the smallest value of

2
X) that satisfies the bounds.

TAU0 — A universal bound describing how much the unscaled penalty-term may deviate
from zero. (Input)
NNLPG assumes that within the region described by

� � � �� �
1 1

min 0,
e

e

M M

i i
i i M

g x g x
� � �

� �� � TAU0

all functions may be evaluated safely. The initial guess however, may violate these
requirements. In that case an initial feasibility improvement phase is run by NNLPG
until such a point is found. A small TAU0 diminishes the efficiency of NNLPG, because
the iterates then will follow the boundary of the feasible set closely. Conversely, a large
TAU0 may degrade the reliability of the code.
Default: TAU0 = 1.E0

DEL0 — In the initial phase of minimization a constraint is considered binding if

� �

� �� �max 1,
i

i

g x

g x
�

�

DEL0 1, ,ei M M� � �

1332 � Chapter 8: Optimization IMSL MATH/LIBRARY

Good values are between .01 and 1.0. If DEL0 is chosen too small then identification
of the correct set of binding constraints may be delayed. Contrary, if DEL0 is too large,
then the method will often escape to the full regularized SQP method, using individual
slack variables for any active constraint, which is quite costly. For well-scaled
problems DEL0=1.0 is reasonable. (Input)
Default: DEL0 = .5*TAU0

SMALLW — Scalar containing the error allowed in the multipliers. For example, a negative
multiplier of an inequality constraint is accepted (as zero) if its absolute value is less
than SMALLW. (Input)
Default: SMALLW = exp(2*log(epsilon(x(1)/3)))

DELMIN — Scalar which defines allowable constraint violations of the final accepted result.
Constraints are satisfied if |gi(x)| � DELMIN , and gj(x) � (-DELMIN) respectively.
(Input)
Default: DELMIN = min(DEL0/10, max(EPSDIF, min(DEL0/10,
max(1.E-6*DEL0, SMALLW))

SCFMAX — Scalar containing the bound for the internal automatic scaling of the objective
function. (Intput)
Default: SCFMAX = 1.0E4

FVALUE — Scalar containing the value of the objective function at the computed solution.
(Output)

FORTRAN 90 Interface
Generic: CALL NNLPG (FCN, GRAD, M, ME, IBTYPE, XLB, XUB, X [,…])

Specific: The specific interface names are S_NNLPG and D_NNLPG.

Example 1

The problem

� � � � � �

� �

� �

2 2
1 2

1 1 2

2 2
2 1 2

min 2 1

subject to 2 1 0

/ 4 1 0

F x x x

g x x x

g x x x

� � � �

� � � �

� � � � �

is solved.
 USE NNLPG_INT
 USE WRRRN_INT
 INTEGER IBTYPE, M, ME
 PARAMETER (IBTYPE=0, M=2, ME=1)
!
 REAL(KIND(1E0)) FVALUE, X(2), XGUESS(2), XLB(2), XUB(2)
 EXTERNAL FCN, GRAD
!

IMSL MATH/LIBRARY Chapter 8: Optimization � 1333

 XLB = -HUGE(X(1))
 XUB = HUGE(X(1))
!
 CALL NNLPG (FCN, GRAD, M, ME, IBTYPE, XLB, XUB, X)
!
 CALL WRRRN ('The solution is', X)
 END

 SUBROUTINE FCN (X, IACT, RESULT, IERR)
 INTEGER IACT
 REAL(KIND(1E0)) X(*), RESULT
 LOGICAL IERR
!
 SELECT CASE (IACT)
 CASE(0)
 RESULT = (X(1)-2.0E0)**2 + (X(2)-1.0E0)**2
 CASE(1)
 RESULT = X(1) - 2.0E0*X(2) + 1.0E0
 CASE(2)
 RESULT = -(X(1)**2)/4.0E0 - X(2)**2 + 1.0E0
 END SELECT
 RETURN
 END

 SUBROUTINE GRAD (X, IACT, RESULT)
 INTEGER IACT
 REAL(KIND(1E0)) X(*),RESULT(*)
!
 SELECT CASE (IACT)
 CASE(0)
 RESULT (1) = 2.0E0*(X(1)-2.0E0)
 RESULT (2) = 2.0E0*(X(2)-1.0E0)
 CASE(1)
 RESULT (1) = 1.0E0
 RESULT (2) = -2.0E0
 CASE(2)
 RESULT (1) = -0.5E0*X(1)
 RESULT (2) = -2.0E0*X(2)
 END SELECT
 RETURN
 END

Output
 The solution is
 1 0.8229
 2 0.9114

Comments
1. Informational errors

Type Code
 4 1 Constraint evaluation returns an error with current point.
 4 2 Objective evaluation returns an error with current point.

1334 � Chapter 8: Optimization IMSL MATH/LIBRARY

 4 3 Working set is singular in dual extended QP.
 4 4 QP problem is seemingly infeasible.
 4 5 A stationary point located.
 4 6 A stationary point located or termination criteria too strong.
 4 7 Maximum number of iterations exceeded.
 4 8 Stationary point not feasible.
 4 9 Very slow primal progress.
 4 10 The problem is singular.
 4 11 Matrix of gradients of binding constraints is singular or very ill-

conditioned.
 4 12 Small changes in the penalty function.

.

Description
The routine NNLPG provides an interface to a licensed version of subroutine DONLP2, a
FORTRAN code developed by Peter Spellucci (1998). It uses a sequential equality constrained
quadratic programming method with an active set technique, and an alternative usage of a fully
regularized mixed constrained subproblem in case of nonregular constraints (i.e. linear
dependent gradients in the “working sets”). It uses a slightly modified version of the Pantoja-
Mayne update for the Hessian of the Lagrangian, variable dual scaling and an improved
Armjijo-type stepsize algorithm. Bounds on the variables are treated in a gradient-projection
like fashion. Details may be found in the following two papers:

P. Spellucci: An SQP method for general nonlinear programs using only equality constrained
subproblems. Math. Prog. 82, (1998), 413-448.

P. Spellucci: A new technique for inconsistent problems in the SQP method. Math. Meth. of
Oper. Res. 47, (1998), 355-500. (published by Physica Verlag, Heidelberg, Germany).

The problem is stated as follows:

� �min
nx

f x
�R

� �

� �

subject to 0, for 1, ,

0, for 1, ,
j e

j e

l u

g x j m

g x j m m

x x x

� �

� � �

� �

�

�

Although default values are provided for optional input arguments, it may be necessary to adjust
these values for some problems. Through the use of optional arguments, NNLPG allows for
several parameters of the algorithm to be adjusted to account for specific characteristics of
problems. The DONLP2 Users Guide provides detailed descriptions of these parameters as
well as strategies for maximizing the perfomance of the algorithm. The DONLP2 Users Guide
is available in the “help” subdirectory of the main IMSL product installation directory. In
addition, the following are a number of guidelines to consider when using NNLPG.

�� A good initial starting point is very problem specific and should be provided by the
calling program whenever possible. See optional argument XGUESS.

IMSL MATH/LIBRARY Chapter 8: Optimization � 1335

�� If a two sided constraint ()i i il g x u� � is transformed into two constraints 2 () 0ig x �
and 2 1() 0ig x

�
� , then choose � �1

2DEL0 () / {1, }i i iu l max g x� � � , or at least try to
provide an estimate for that value. This will increase the efficiency of the algorithm.
See optional argument DEL0.

�� The parameter IERR provided in the interface to the user supplied function FCN can be
very useful in cases when evaluation is requested at a point that is not possible or
reasonable. For example, if evaluation at the requested point would result in a floating
point exception, then setting IERR to .TRUE. and returning without performing the
evaluation will avoid the exception. NNLPG will then reduce the stepsize and try the
step again. Note, if IERR is set to .TRUE. for the initial guess, then an error is issued.

Example 2

The same problem from Example 1 is solved, but here we use central differences to compute the
gradient of the first constraint. This example demonstrates how NNLPG can be used in cases
when analytic gradients are known for only a portion of the constraints and/or objective
function. The subroutine CDGRD is used to compute an approximation to the gradient of the
first constraint.

 USE NNLPG_INT
 USE CDGRD_INT
 USE WRRRN_INT
 INTEGER IBTYPE, M, ME
 PARAMETER (IBTYPE=0, M=2, ME=1)
!
 REAL(KIND(1E0)) FVALUE, X(2), XGUESS(2), XLB(2), XUB(2)
 EXTERNAL FCN, GRAD
!
 XLB = -HUGE(X(1))
 XUB = HUGE(X(1))
!
 CALL NNLPG (FCN, GRAD, M, ME, IBTYPE, XLB, XUB, X)
!
 CALL WRRRN ('The solution is', X)
 END

 SUBROUTINE FCN (X, IACT, RESULT, IERR)
 INTEGER IACT
 REAL(KIND(1E0)) X(2), RESULT
 LOGICAL IERR
 EXTERNAL CONSTR1
!
 SELECT CASE (IACT)
 CASE(0)
 RESULT = (X(1)-2.0E0)**2 + (X(2)-1.0E0)**2
 CASE(1)
 CALL CONSTR1(2, X, RESULT)
 CASE(2)
 RESULT = -(X(1)**2)/4.0E0 - X(2)**2 + 1.0E0
 END SELECT
 RETURN

1336 � Chapter 8: Optimization IMSL MATH/LIBRARY

 END

 SUBROUTINE GRAD (X, IACT, RESULT)
 USE CDGRD_INT
 INTEGER IACT
 REAL(KIND(1E0)) X(2),RESULT(2)
 EXTERNAL CONSTR1
!
 SELECT CASE (IACT)
 CASE(0)
 RESULT (1) = 2.0E0*(X(1)-2.0E0)
 RESULT (2) = 2.0E0*(X(2)-1.0E0)
 CASE(1)
 CALL CDGRD(CONSTR1, X, RESULT)
 CASE(2)
 RESULT (1) = -0.5E0*X(1)
 RESULT (2) = -2.0E0*X(2)
 END SELECT
 RETURN
 END

 SUBROUTINE CONSTR1 (N, X, RESULT)
 INTEGER N
 REAL(KIND(1E0)) X(*), RESULT
 RESULT = X(1) - 2.0E0*X(2) + 1.0E0
 RETURN
 END

Output
 The solution is
 1 0.8229
 2 0.9114

CDGRD
Approximates the gradient using central differences.

Required Arguments
FCN — User-supplied SUBROUTINE to evaluate the function to be minimized. The usage is

CALL FCN (N, X, F), where

N – Length of X. (Input)

X – The point at which the function is evaluated. (Input)
X should not be changed by FCN.

F – The computed function value at the point X. (Output)

FCN must be declared EXTERNAL in the calling program.

IMSL MATH/LIBRARY Chapter 8: Optimization � 1337

XC — Vector of length N containing the point at which the gradient is to be estimated.
(Input)

GC — Vector of length N containing the estimated gradient at XC. (Output)

Optional Arguments
N — Dimension of the problem. (Input)

Default: N = size (XC,1).

XSCALE — Vector of length N containing the diagonal scaling matrix for the variables.
(Input)
In the absence of other information, set all entries to 1.0.
Default: XSCALE = 1.0.

EPSFCN — Estimate for the relative noise in the function. (Input)
EPSFCN must be less than or equal to 0.1. In the absence of other information, set
EPSFCN to 0.0.
Default: EPSFCN = 0.0.

FORTRAN 90 Interface
Generic: CALL CDGRD (FCN, XC, GC [,…])

Specific: The specific interface names are S_CDGRD and D_CDGRD.

FORTRAN 77 Interface
Single: CALL CDGRD (FCN, N, XC, XSCALE, EPSFCN, GC)

Double: The double precision name is DCDGRD.

Example
In this example, the gradient of f(x) = x��� x�x� � 2 is estimated by the finite-difference method
at the point (1.0, 1.0).

 USE CDGRD_INT
 USE UMACH_INT
 INTEGER I, N, NOUT
 PARAMETER (N=2)
 REAL EPSFCN, GC(N), XC(N)
 EXTERNAL FCN
! Initialization.
 DATA XC/2*1.0E0/
! Set function noise.
 EPSFCN = 0.01
!
 CALL CDGRD (FCN, XC, GC, EPSFCN=EPSFCN)

1338 � Chapter 8: Optimization IMSL MATH/LIBRARY

!
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) (GC(I),I=1,N)
99999 FORMAT (’ The gradient is’, 2F8.2, /)
!
 END
!
 SUBROUTINE FCN (N, X, F)
 INTEGER N
 REAL X(N), F
!
 F = X(1) - X(1)*X(2) - 2.0E0
!
 RETURN
 END

Output
The gradient is 0.00 -1.00

Comments
This is Description A5.6.4, Dennis and Schnabel, 1983, page 323.

Description
The routine CDGRD uses the following finite-difference formula to estimate the gradient of a
function of n variables at x:

� � � �
 for 1, ,

2
i i i i

i

f x h e f x h e
i n

h
� � �

� �

where hi = ���� max{|xi|, 1/si} sign(xi), � is the machine epsilon, si is the scaling factor of the i-th
variable, and ei is the i-th unit vector. For more details, see Dennis and Schnabel (1983).

Since the finite-difference method has truncation error, cancellation error, and rounding error,
users should be aware of possible poor performance. When possible, high precision arithmetic is
recommended.

FDGRD
Approximates the gradient using forward differences.

Required Arguments
FCN — User-supplied SUBROUTINE to evaluate the function to be minimized. The usage is

CALL FCN (N, X, F), where

N – Length of X. (Input)

X – The point at which the function is evaluated. (Input)
X should not be changed by FCN.

IMSL MATH/LIBRARY Chapter 8: Optimization � 1339

F – The computed function value at the point X. (Output)

FCN must be declared EXTERNAL in the calling program.

XC — Vector of length N containing the point at which the gradient is to be estimated.
(Input)

FC — Scalar containing the value of the function at XC. (Input)

GC — Vector of length N containing the estimated gradient at XC. (Output)

Optional Arguments
N — Dimension of the problem. (Input)

Default: N = size (XC,1).

XSCALE — Vector of length N containing the diagonal scaling matrix for the variables.
(Input)
In the absence of other information, set all entries to 1.0.
Default: XSCALE = 1.0.

EPSFCN — Estimate of the relative noise in the function. (Input)
EPSFCN must be less than or equal to 0.1. In the absence of other information, set
EPSFCN to 0.0.
Default: EPSFCN = 0.0.

FORTRAN 90 Interface
Generic: CALL FDGRD (FCN, XC, FC, GC [,…])

Specific: The specific interface names are S_FDGRD and D_FDGRD.

FORTRAN 77 Interface
Single: CALL FDGRD (FCN, XC, FC, GC, N, XSCALE, EPSFCN)

Double: The double precision name is DFDGRD.

Example
In this example, the gradient of f(x) = x� � x�x� � 2 is estimated by the finite-difference method
at the point (1.0, 1.0).

 USE FDGRD_INT
 USE UMACH_INT
 INTEGER I, N, NOUT
 PARAMETER (N=2)
 REAL EPSFCN, FC, GC(N), XC(N)

1340 � Chapter 8: Optimization IMSL MATH/LIBRARY

 EXTERNAL FCN
! Initialization.
 DATA XC/2*1.0E0/
! Set function noise.
 EPSFCN = 0.01
! Get function value at current
! point.
 CALL FCN (N, XC, FC)
!
 CALL FDGRD (FCN, XC, FC, GC, EPSFCN=EPSFCN)
!
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) (GC(I),I=1,N)
99999 FORMAT (’ The gradient is’, 2F8.2, /)
!
 END
!
 SUBROUTINE FCN (N, X, F)
 INTEGER N
 REAL X(N), F
!
 F = X(1) - X(1)*X(2) - 2.0E0
!
 RETURN
 END

Output
The gradient is 0.00 -1.00

Comments
This is Description A5.6.3, Dennis and Schnabel, 1983, page 322.

Description
The routine FDGRD uses the following finite-difference formula to estimate the gradient of a
function of n variables at x:

� � � �
 for 1, ,i i

i

f x h e f x
i n

h
� �

� �

where hi = ���� max{|xi|, 1/si} sign(xi), � is the machine epsilon, ei is the i-th unit vector, and si is
the scaling factor of the i-th variable. For more details, see Dennis and Schnabel (1983).

Since the finite-difference method has truncation error, cancellation error, and rounding error,
users should be aware of possible poor performance. When possible, high precision arithmetic is
recommended. When accuracy of the gradient is important, IMSL routine CDGRD (page 1336)
should be used.

FDHES
Approximates the Hessian using forward differences and function values.

IMSL MATH/LIBRARY Chapter 8: Optimization � 1341

Required Arguments
FCN — User-supplied SUBROUTINE to evaluate the function to be minimized. The usage is

CALL FCN (N, X, F), where

N – Length of X. (Input)

X – The point at which the function is evaluated. (Input)
X should not be changed by FCN.

F – The computed function value at the point X. (Output)

FCN must be declared EXTERNAL in the calling program.

XC — Vector of length N containing the point at which the Hessian is to be approximated.
(Input)

FC — Function value at XC. (Input)

H — N by N matrix containing the finite difference approximation to the Hessian in the lower
triangle. (Output)

Optional Arguments
N — Dimension of the problem. (Input)

Default: N = size (XC,1).

XSCALE — Vector of length N containing the diagonal scaling matrix for the variables.
(Input)
In the absence of other information, set all entries to 1.0.
Default: XSCALE = 1.0.

EPSFCN — Estimate of the relative noise in the function. (Input)
EPSFCN must be less than or equal to 0.1. In the absence of other information, set
EPSFCN to 0.0.
Default: EPSFCN = 0.0.

LDH — Row dimension of H exactly as specified in the dimension statement of the calling
program. (Input)
Default: LDH = size (H,1).

FORTRAN 90 Interface
Generic: CALL FDHES (FCN, XC, FC, H [,…])

Specific: The specific interface names are S_FDHES and D_FDHES.

1342 � Chapter 8: Optimization IMSL MATH/LIBRARY

FORTRAN 77 Interface
Single: CALL FDHES (FCN, N, XC, XSCALE, FC, EPSFCN, H, LDH)

Double: The double precision name is DFDHES.

Example
The Hessian is estimated for the following function at (1, �1)

� � 2
1 1 2 2f x x x x� � �

 USE FDHES_INT
 USE UMACH_INT

! Declaration of variables
 INTEGER N, LDHES, NOUT
 PARAMETER (N=2, LDHES=2)
 REAL XC(N), FVALUE, HES(LDHES,N), EPSFCN
 EXTERNAL FCN
! Initialization
 DATA XC/1.0E0,-1.0E0/
! Set function noise
 EPSFCN = 0.001
! Evaluate the function at
! current point
 CALL FCN (N, XC, FVALUE)
! Get Hessian forward difference
! approximation
 CALL FDHES (FCN, XC, FVALUE, HES, EPSFCN=EPSFCN)
!
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) ((HES(I,J),J=1,I),I=1,N)
99999 FORMAT (’ The lower triangle of the Hessian is’, /,&
 5X,F10.2,/,5X,2F10.2,/)
!
 END
!
 SUBROUTINE FCN (N, X, F)
! SPECIFICATIONS FOR ARGUMENTS
 INTEGER N
 REAL X(N), F
!
 F = X(1)*(X(1) - X(2)) - 2.0E0
!
 RETURN
 END

Output
 The lower triangle of the Hessian is
 2.00
 -1.00 0.00

IMSL MATH/LIBRARY Chapter 8: Optimization � 1343

Comments
1. Workspace may be explicitly provided, if desired, by use of F2HES/DF2HES. The

reference is:

CALL F2HES (FCN, N, XC, XSCALE, FC, EPSFCN, H, LDH, WK1, WK2)

The additional arguments are as follows:

WK1 — Real work vector of length N.

WK2 — Real work vector of length N.

2. This is Description A5.6.2 from Dennis and Schnabel, 1983; page 321.

Description
The routine FDHES uses the following finite-difference formula to estimate the Hessian matrix
of function f at x:

� � � � � � � �i i j j i i j j

i j

f x h e h e f x h e f x h e f x

h h

� � � � � � �

where hi = �����max{|xi|, 1/si} sign(xi), hj = ���� max{|xj|, 1/si} sign(xj), � is the machine epsilon or
user-supplied estimate of the relative noise, si and sj are the scaling factors of the i-th and j-th
variables, and ei and ej are the i-th and j-th unit vectors, respectively. For more details, see
Dennis and Schnabel (1983).

Since the finite-difference method has truncation error, cancellation error, and rounding error,
users should be aware of possible poor performance. When possible, high precision arithmetic is
recommended.

GDHES
Approximates the Hessian using forward differences and a user-supplied gradient.

Required Arguments
GRAD — User-supplied SUBROUTINE to compute the gradient at the point X. The usage is

CALL GRAD (N, X, G), where

N – Length of X and G. (Input)

X – The point at which the gradient is evaluated. (Input)
X should not be changed by GRAD.

G – The gradient evaluated at the point X. (Output)

1344 � Chapter 8: Optimization IMSL MATH/LIBRARY

GRAD must be declared EXTERNAL in the calling program.

XC — Vector of length N containing the point at which the Hessian is to be estimated.
(Input)

GC — Vector of length N containing the gradient of the function at XC. (Input)

H — N by N matrix containing the finite-difference approximation to the Hessian in the lower
triangular part and diagonal. (Output)

Optional Arguments
N — Dimension of the problem. (Input)

Default: N = size (XC,1).

XSCALE — Vector of length N containing the diagonal scaling matrix for the variables.
(Input)
In the absence of other information, set all entries to 1.0.
Default: XSCALE = 1.0.

EPSFCN — Estimate of the relative noise in the function. (Input)
EPSFCN must be less than or equal to 0.1. In the absence of other information, set
EPSFCN to 0.0.
Default: EPSFCN = 0.0.

LDH — Leading dimension of H exactly as specified in the dimension statement of the calling
program. (Input)
Default: LDH = size (H,1).

FORTRAN 90 Interface
Generic: CALL GDHES (GRAD, XC, GC, H [,…])

Specific: The specific interface names are S_GDHES and D_GDHES.

FORTRAN 77 Interface
Single: CALL GDHES (GRAD, N, XC, XSCALE, GC, EPSFCN, H, LDH)

Double: The double precision name is DGDHES.

Example
The Hessian is estimated by the finite-difference method at point (1.0, 1.0) from the following
gradient functions:

IMSL MATH/LIBRARY Chapter 8: Optimization � 1345

1 1 2

2 1 1

2 2
1

g x x
g x x

� �

� �

 USE GDHES_INT
 USE UMACH_INT
! Declaration of variables
 INTEGER N, LDHES, NOUT
 PARAMETER (N=2, LDHES=2)
 REAL XC(N), GC(N), HES(LDHES,N)
 EXTERNAL GRAD
!
 DATA XC/2*1.0E0/
! Set function noise
! Evaluate the gradient at the
! current point
 CALL GRAD (N, XC, GC)
! Get Hessian forward-difference
! approximation
 CALL GDHES (GRAD, XC, GC, HES)
!
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) ((HES(I,J),J=1,N),I=1,N)
99999 FORMAT (’ THE HESSIAN IS’, /, 2(5X,2F10.2,/),/)
!
 END
!
 SUBROUTINE GRAD (N, X, G)
! SPECIFICATIONS FOR ARGUMENTS
 INTEGER N
 REAL X(N), G(N)
!
 G(1) = 2.0E0*X(1)*X(2) - 2.0E0
 G(2) = X(1)*X(1) + 1.0E0
!
 RETURN
 END

Output
 THE HESSIAN IS
 2.00 2.00
 2.00 0.00

Comments
1. Workspace may be explicitly provided, if desired, by use of G2HES/DG2HES. The

reference is:

CALL G2HES (GRAD, N, XC, XSCALE, GC, EPSFCN, H, LDH, WK)

The additional argument is

WK — Work vector of length N.

2. This is Description A5.6.1, Dennis and Schnabel, 1983; page 320.

1346 � Chapter 8: Optimization IMSL MATH/LIBRARY

Description
The routine GDHES uses the following finite-difference formula to estimate the Hessian matrix
of function F at x:

� � � �j j

j

g x h e g x

h

� �

where hj = ���� max{|xj|, 1/sj} sign(xj), � is the machine epsilon, sj is the scaling factor of the j-th
variable, g is the analytic gradient of F at x, and ej is the j-th unit vector. For more details, see
Dennis and Schnabel (1983).

Since the finite-difference method has truncation error, cancellation error, and rounding error,
users should be aware of possible poor performance. When possible, high precision arithmetic is
recommended.

FDJAC
Approximates the Jacobian of M functions in N unknowns using forward differences.

Required Arguments
FCN — User-supplied SUBROUTINE to evaluate the function to be minimized. The usage is

CALL FCN (M, N, X, F), where

M – Length of F. (Input)

N – Length of X. (Input)

X – The point at which the function is evaluated. (Input)
X should not be changed by FCN.

F – The computed function at the point X. (Output)

FCN must be declared EXTERNAL in the calling program.

XC — Vector of length N containing the point at which the gradient is to be estimated.
(Input)

FC — Vector of length M containing the function values at XC. (Input)

FJAC — M by N matrix containing the estimated Jacobian at XC. (Output)

Optional Arguments
M — The number of functions. (Input)

Default: M = size (FC,1).

IMSL MATH/LIBRARY Chapter 8: Optimization � 1347

N — The number of variables. (Input)
Default: N = size (XC,1).

XSCALE — Vector of length N containing the diagonal scaling matrix for the variables.
(Input)
In the absence of other information, set all entries to 1.0.
Default: XSCALE = 1.0.

EPSFCN — Estimate for the relative noise in the function. (Input)
EPSFCN must be less than or equal to 0.1. In the absence of other information, set
EPSFCN to 0.0.
Default: EPSFCN = 0.0.

LDFJAC — Leading dimension of FJAC exactly as specified in the dimension statement of
the calling program. (Input)
Default: LDFJAC = size (FJAC,1).

FORTRAN 90 Interface
Generic: CALL FDJAC (FCN, XC, FC, FJAC [,…])

Specific: The specific interface names are S_FDJAC and D_FDJAC.

FORTRAN 77 Interface
Single: CALL FDJAC (FCN, M, N, XC, XSCALE, FC, EPSFCN, FJAC,

LDFJAC)

Double: The double precision name is DFDJAC.

Example
In this example, the Jacobian matrix of

� �

� �
1 1 2

2 1 1 2

2

1

f x x x

f x x x x

� �

� � �

is estimated by the finite-difference method at the point (1.0, 1.0).
 USE FDJAC_INT
 USE UMACH_INT
! Declaration of variables
 INTEGER N, M, LDFJAC, NOUT
 PARAMETER (N=2, M=2, LDFJAC=2)
 REAL FJAC(LDFJAC,N), XC(N), FC(M), EPSFCN
 EXTERNAL FCN
!
 DATA XC/2*1.0E0/
! Set function noise
 EPSFCN = 0.01

1348 � Chapter 8: Optimization IMSL MATH/LIBRARY

! Evaluate the function at the
! current point
 CALL FCN (M, N, XC, FC)
! Get Jacobian forward-difference
! approximation
 CALL FDJAC (FCN, XC, FC, FJAC, EPSFCN=EPFSCN)
! Print results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) ((FJAC(I,J),J=1,N),I=1,M)
99999 FORMAT (’ The Jacobian is’, /, 2(5X,2F10.2,/),/)
!
 END
!
 SUBROUTINE FCN (M, N, X, F)
! SPECIFICATIONS FOR ARGUMENTS
 INTEGER M, N
 REAL X(N), F(M)
!
 F(1) = X(1)*X(2) - 2.0E0
 F(2) = X(1) - X(1)*X(2) + 1.0E0
!
 RETURN
 END

Output
 The Jacobian is
 1.00 1.00
 0.00 -1.00

Comments
1. Workspace may be explicitly provided, if desired, by use of F2JAC/DF2JAC. The

reference is:

CALL F2JAC (FCN, M, N, XC, XSCALE, FC, EPSFCN, FJAC, LDFJAC, WK)

The additional argument is:

WK — Work vector of length M.

2. This is Description A5.4.1, Dennis and Schnabel, 1983, page 314.

Description
The routine FDJAC uses the following finite-difference formula to estimate the Jacobian matrix
of function f at x:

� � � �j j

j

f x h e f x

h

� �

where ej is the j-th unit vector, hj = ���� max{|xj|, 1/sj} sign(xj), � is the machine epsilon, and sj is
the scaling factor of the j-th variable. For more details, see Dennis and Schnabel (1983).

IMSL MATH/LIBRARY Chapter 8: Optimization � 1349

Since the finite-difference method has truncation error, cancellation error, and rounding error,
users should be aware of possible poor performance. When possible, high precision arithmetic is
recommended.

CHGRD
Checks a user-supplied gradient of a function.

Required Arguments
FCN — User-supplied SUBROUTINE to evaluate the function of which the gradient will be

checked. The usage is CALL FCN (N, X, F), where

N – Length of X. (Input)

X – The point at which the function is evaluated. (Input)
X should not be changed by FCN.

F – The computed function value at the point X. (Output)

FCN must be declared EXTERNAL in the calling program.

GRAD — Vector of length N containing the estimated gradient at X. (Input)

X — Vector of length N containing the point at which the gradient is to be checked. (Input)

INFO — Integer vector of length N. (Output)

INFO(I) = 0 means the user-supplied gradient is a poor estimate of the numerical
gradient at the point X(I).

INFO(I) = 1 means the user-supplied gradient is a good estimate of the numerical
gradient at the point X(I).

INFO(I) = 2 means the user-supplied gradient disagrees with the numerical gradient at
the point X(I), but it might be impossible to calculate the numerical gradient.

INFO(I) = 3 means the user-supplied gradient and the numerical gradient are both zero
at X(I), and, therefore, the gradient should be rechecked at a different point.

Optional Arguments
N — Dimension of the problem. (Input)

Default: N = size (X,1).

1350 � Chapter 8: Optimization IMSL MATH/LIBRARY

FORTRAN 90 Interface
Generic: CALL CHGRD (FCN, GRAD, X, INFO [,…])

Specific: The specific interface names are S_CHGRD and D_CHGRD.

FORTRAN 77 Interface
Single: CALL CHGRD (FCN, GRAD, N, X, INFO)

Double: The double precision name is DCHGRD.

Example
The user-supplied gradient of

� � � �3 42 /
2

t x x
if x x x e� �

� �

at (625, 1, 3.125, 0.25) is checked where t = 2.125.
 USE CHGRD_INT
 USE WRIRN_INT
! Declare variables
 INTEGER N
 PARAMETER (N=4)
!
 INTEGER INFO(N)
 REAL GRAD(N), X(N)
 EXTERNAL DRIV, FCN
!
! Input values for point X
! X = (625.0, 1.0, 3.125, .25)
!
 DATA X/625.0E0, 1.0E0, 3.125E0, 0.25E0/
!
 CALL DRIV (N, X, GRAD)
!
 CALL CHGRD (FCN, GRAD, X, INFO)
 CALL WRIRN (’The information vector’, INFO, 1, N, 1)
!
 END
!
 SUBROUTINE FCN (N, X, FX)
 INTEGER N
 REAL X(N), FX
!
 REAL EXP
 INTRINSIC EXP
!
 FX = X(1) + X(2)*EXP(-1.0E0*(2.125E0-X(3))**2/X(4))
 RETURN
 END
!
 SUBROUTINE DRIV (N, X, GRAD)

IMSL MATH/LIBRARY Chapter 8: Optimization � 1351

 INTEGER N
 REAL X(N), GRAD(N)
!
 REAL EXP
 INTRINSIC EXP
!
 GRAD(1) = 1.0E0
 GRAD(2) = EXP(-1.0E0*(2.125E0-X(3))**2/X(4))
 GRAD(3) = X(2)*EXP(-1.0E0*(2.125E0-X(3))**2/X(4))*2.0E0/X(4)* &
 (2.125-X(3))
 GRAD(4) = X(2)*EXP(-1.0E0*(2.125E0-X(3))**2/X(4))* &
 (2.125E0-X(3))**2/(X(4)*X(4))
 RETURN
 END

Output
 The information vector
 1 2 3 4
 1 1 1 1

Comments
1. Workspace may be explicitly provided, if desired, by use of C2GRD/DC2GRD. The

reference is:

CALL C2GRD (FCN, GRAD, N, X, INFO, FX, XSCALE, EPSFCN, XNEW)

The additional arguments are as follows:

FX — The functional value at X.

XSCALE — Real vector of length N containing the diagonal scaling matrix.

EPSFCN — The relative “noise” of the function FCN.

XNEW — Real work vector of length N.

2. Informational errors

Type Code
 4 1 The user-supplied gradient is a poor estimate of the numerical

gradient.

Description
The routine CHGRD uses the following finite-difference formula to estimate the gradient of a
function of n variables at x:

� �
� � � �

for =1, ,i i
i

i

f x h e f x
g x i n

h
� �

� �

1352 � Chapter 8: Optimization IMSL MATH/LIBRARY

where hi = ���� max{|xi|, 1/si} sign(xi), � is the machine epsilon, ei is the i-th unit vector, and si is
the scaling factor of the i-th variable.

The routine CHGRD checks the user-supplied gradient �f(x) by comparing it with the finite-
difference gradient g(x). If

� � � �� � � �� �i i i
g x f x f x�� � � �

where � = ����, then (�f(x))i, which is the i-th element of �f(x), is declared correct; otherwise,
CHGRD computes the bounds of calculation error and approximation error. When both bounds
are too small to account for the difference, (�f(x))i is reported as incorrect. In the case of a large
error bound, CHGRD uses a nearly optimal stepsize to recompute gi(x) and reports that (�f(x))i is
correct if

� � � �� � � �� �2i i i
g x f x f x�� � � �

Otherwise, (�f(x))i is considered incorrect unless the error bound for the optimal step is greater
than � |(�f(x))i|. In this case, the numeric gradient may be impossible to compute correctly. For
more details, see Schnabel (1985).

CHHES
Checks a user-supplied Hessian of an analytic function.

Required Arguments
GRAD — User-supplied SUBROUTINE to compute the gradient at the point X. The usage is

CALL GRAD (N, X, G), where

N – Length of X and G. (Input)

X – The point at which the gradient is evaluated. X should not be changed by GRAD.
(Input)

G – The gradient evaluated at the point X. (Output)

GRAD must be declared EXTERNAL in the calling program.

HESS — User-supplied SUBROUTINE to compute the Hessian at the point X. The usage is
CALL HESS (N, X, H, LDH), where

N – Length of X. (Input)

X – The point at which the Hessian is evaluated. (Input)
X should not be changed by HESS.

H – The Hessian evaluated at the point X. (Output)

IMSL MATH/LIBRARY Chapter 8: Optimization � 1353

LDH – Leading dimension of H exactly as specified in in the dimension statement of the
calling program. (Input)

HESS must be declared EXTERNAL in the calling program.

X — Vector of length N containing the point at which the Hessian is to be checked. (Input)

INFO — Integer matrix of dimension N by N. (Output)

INFO(I, J) = 0 means the Hessian is a poor estimate for function I at the point X(J).

INFO(I, J) = 1 means the Hessian is a good estimate for function I at the point X(J).

INFO(I, J) = 2 means the Hessian disagrees with the numerical Hessian for function I
at the point X(J), but it might be impossible to calculate the numerical Hessian.

INFO(I, J) = 3 means the Hessian for function I at the point X(J) and the numerical
Hessian are both zero, and, therefore, the gradient should be rechecked at a
different point.

Optional Arguments
N — Dimension of the problem. (Input)

Default: N = size (X,1).

LDINFO — Leading dimension of INFO exactly as specified in the dimension statement of
the calling program. (Input)
Default: LDINFO = size (INFO,1).

FORTRAN 90 Interface
Generic: CALL CHHES (GRAD, HESS, X, INFO [,…])

Specific: The specific interface names are S_CHHES and D_CHHES.

FORTRAN 77 Interface
Single: CALL CHHES (GRAD, HESS, N, X, INFO, LDINFO)

Double: The double precision name is DCHHES.

Example
The user-supplied Hessian of

� � � � � �
2 22

2 1 1100 1f x x x x� � � �

1354 � Chapter 8: Optimization IMSL MATH/LIBRARY

at (�1.2, 1.0) is checked, and the error is found.
 USE CHHES_INT
 INTEGER LDINFO, N
 PARAMETER (N=2, LDINFO=N)
!
 INTEGER INFO(LDINFO,N)
 REAL X(N)
 EXTERNAL GRD, HES
!
! Input values for X
! X = (-1.2, 1.0)
!
 DATA X/-1.2, 1.0/
!
 CALL CHHES (GRD, HES, X, INFO)
!
 END
!
 SUBROUTINE GRD (N, X, UG)
 INTEGER N
 REAL X(N), UG(N)
!
 UG(1) = -400.0*X(1)*(X(2)-X(1)*X(1)) + 2.0*X(1) - 2.0
 UG(2) = 200.0*X(2) - 200.0*X(1)*X(1)
 RETURN
 END
!
 SUBROUTINE HES (N, X, HX, LDHS)
 INTEGER N, LDHS
 REAL X(N), HX(LDHS,N)
!
 HX(1,1) = -400.0*X(2) + 1200.0*X(1)*X(1) + 2.0
 HX(1,2) = -400.0*X(1)
 HX(2,1) = -400.0*X(1)
! A sign change is made to HX(2,2)
!
 HX(2,2) = -200.0
 RETURN
 END

Output
*** FATAL ERROR 1 from CHHES. The Hessian evaluation with respect to
*** X(2) and X(2) is a poor estimate.

Comments
Workspace may be explicitly provided, if desired, by use of C2HES/DC2HES. The reference is

CALL C2HES (GRAD, HESS, N, X, INFO, LDINFO, G, HX, HS,
 XSCALE, EPSFCN, INFT, NEWX)

The additional arguments are as follows:

G — Vector of length N containing the value of the gradient GRD at X.

IMSL MATH/LIBRARY Chapter 8: Optimization � 1355

HX — Real matrix of dimension N by N containing the Hessian evaluated at X.

HS — Real work vector of length N.

XSCALE — Vector of length N used to store the diagonal scaling matrix for the
variables.

EPSFCN — Estimate of the relative noise in the function.

INFT — Vector of length N. For I = 1 through N, INFT contains information about the
Jacobian.

NEWX — Real work array of length N.

Description
The routine CHHES uses the following finite-difference formula to estimate the Hessian of a
function of n variables at x:

� � � � � �� � / for 1, ,ij i j j i jB x g x h e g x h j n� � � � �

where hj = ����max{|xj|, 1/sj} sign(xj), � is the machine epsilon, ej is the j-th unit vector, sj is the
scaling factor of the j-th variable, and gi(x) is the gradient of the function with respect to the i-th
variable.

Next, CHHES checks the user-supplied Hessian H(x) by comparing it with the finite difference
approximation B(x). If

|Bij(x) � Hij(x)| < � |Hij(x)|

where � = ����, then Hij(x) is declared correct; otherwise, CHHES computes the bounds of
calculation error and approximation error. When both bounds are too small to account for the
difference, Hij(x) is reported as incorrect. In the case of a large error bound, CHHES uses a nearly
optimal stepsize to recompute Bij(x) and reports that Bij(x) is correct if

|Bij(x) � Hij(x)| < 2� |Hij(x)|

Otherwise, Hij(x) is considered incorrect unless the error bound for the optimal step is greater
than � |Hij(x)|. In this case, the numeric approximation may be impossible to compute correctly.
For more details, see Schnabel (1985).

CHJAC
Checks a user-supplied Jacobian of a system of equations with M functions in N unknowns.

Required Arguments
FCN — User-supplied SUBROUTINE to evaluate the function to be minimized. The usage is

CALL FCN (M, N, X, F), where

1356 � Chapter 8: Optimization IMSL MATH/LIBRARY

M – Length of F. (Input)

N – Length of X. (Input)

X – The point at which the function is evaluated. (Input)
X should not be changed by FCN.

F – The computed function value at the point X. (Output)

FCN must be declared EXTERNAL in the calling program.

JAC — User-supplied SUBROUTINE to evaluate the Jacobian at a point X. The usage is CALL
JAC (M, N, X, FJAC, LDFJAC), where

M – Length of F. (Input)

N – Length of X. (Input)

X – The point at which the function is evaluated. (Input)
X should not be changed by FCN.

FJAC – The computed M by N Jacobian at the point X. (Output)

LDFJAC – Leading dimension of FJAC. (Input)

JAC must be declared EXTERNAL in the calling program.

X — Vector of length N containing the point at which the Jacobian is to be checked. (Input)

INFO — Integer matrix of dimension M by N. (Output)

INFO(I, J) = 0 means the user-supplied Jacobian is a poor estimate for function I at
the point X(J).

INFO(I, J) = 1 means the user-supplied Jacobian is a good estimate for function I at
the point X(J).

INFO(I, J) = 2 means the user-supplied Jacobian disagrees with the numerical Jacobian
for function I at the point X(J), but it might be impossible to calculate the
numerical Jacobian.

INFO(I, J) = 3 means the user-supplied Jacobian for function I at the point X(J) and
the numerical Jacobian are both zero. Therefore, the gradient should be
rechecked at a different point.

IMSL MATH/LIBRARY Chapter 8: Optimization � 1357

Optional Arguments
M — The number of functions in the system of equations. (Input)

Default: M = size (INFO,1).

N — The number of unknowns in the system of equations. (Input)
Default: N = size (X,1).

LDINFO — Leading dimension of INFO exactly as specified in the dimension statement of
the calling program. (Input)
Default: LDINFO = size (INFO,1).

FORTRAN 90 Interface
Generic: CALL CHJAC (FCN, JAC, X, INFO [,…])

Specific: The specific interface names are S_CHJAC and D_CHJAC.

FORTRAN 77 Interface
Single: CALL CHJAC (FCN, JAC, M, N, X, INFO, LDINFO)

Double: The double precision name is DCHJAC.

Example
The user-supplied Jacobian of

� �
1 1

2
2 2 1

1

10

f x

f x x

� �

� �

at (�1.2, 1.0) is checked.
 USE CHJAC_INT
 USE WRIRN_INT
 INTEGER LDINFO, N
 PARAMETER (M=2,N=2,LDINFO=M)
!
 INTEGER INFO(LDINFO,N)
 REAL X(N)
 EXTERNAL FCN, JAC
!
! Input value for X
! X = (-1.2, 1.0)
!
 DATA X/-1.2, 1.0/
!
 CALL CHJAC (FCN, JAC, X, INFO)
 CALL WRIRN (’The information matrix’, INFO)
!
 END

1358 � Chapter 8: Optimization IMSL MATH/LIBRARY

!
 SUBROUTINE FCN (M, N, X, F)
 INTEGER M, N
 REAL X(N), F(M)
!
 F(1) = 1.0 - X(1)
 F(2) = 10.0*(X(2)-X(1)*X(1))
 RETURN
 END
!
 SUBROUTINE JAC (M, N, X, FJAC, LDFJAC)
 INTEGER M, N, LDFJAC
 REAL X(N), FJAC(LDFJAC,N)
!
 FJAC(1,1) = -1.0
 FJAC(1,2) = 0.0
 FJAC(2,1) = -20.0*X(1)
 FJAC(2,2) = 10.0
 RETURN
 END

Output
*** WARNING ERROR 2 from C2JAC. The numerical value of the Jacobian
*** evaluation for function 1 at the point X(2) = 1.000000E+00 and
*** the user-supplied value are both zero. The Jacobian for this
*** function should probably be re-checked at another value for
*** this point.

The information matrix
 1 2
1 1 3
2 1 1

Comments
1. Workspace may be explicitly provided, if desired, by use of C2JAC/DC2JAC. The

reference is:

CALL C2JAC (FCN, JAC, N, X, INFO, LDINFO, FX, FJAC,
 GRAD, XSCALE, EPSFCN, INFT, NEWX)

The additional arguments are as follows:

FX — Vector of length M containing the value of each function in FCN at X.

FJAC — Real matrix of dimension M by N containing the Jacobian of FCN evaluated at
X.

GRAD — Real work vector of length N used to store the gradient of each function in
FCN.

XSCALE — Vector of length N used to store the diagonal scaling matrix for the
variables.

IMSL MATH/LIBRARY Chapter 8: Optimization � 1359

EPSFCN — Estimate of the relative noise in the function.

INFT — Vector of length N. For I = 1 through N, INFT contains information about the
Jacobian.

NEWX — Real work array of length N.

2. Informational errors

Type Code
 4 1 The user-supplied Jacobian is a poor estimate of the numerical

Jacobian.

Description
The routine CHJAC uses the following finite-difference formula to estimate the gradient of the i-
th function of n variables at x:

gij(x) = (fi(x + hjej) � fi(x))/hj for j = 1, �, n

where hj = ����max{|xj|, 1/sj} sign(xj), � is the machine epsilon, ej is the j-th unit vector, and sj is
the scaling factor of the j-th variable.

Next, CHJAC checks the user-supplied Jacobian J(x) by comparing it with the finite difference
gradient gi(x). If

|gij(x) � Jij(x)| < � |Jij(x)|

where � = ����, then Jij(x) is declared correct; otherwise, CHJAC computes the bounds of
calculation error and approximation error. When both bounds are too small to account for the
difference, Jij(x) is reported as incorrect. In the case of a large error bound, CHJAC uses a nearly
optimal stepsize to recompute gij(x) and reports that Jij(x) is correct if

|gij(x) � Jij(x)| < 2� |Jij(x)|

Otherwise, Jij(x) is considered incorrect unless the error bound for the optimal step is greater
than � |Jij(x)|. In this case, the numeric gradient may be impossible to compute correctly. For
more details, see Schnabel (1985).

GGUES
Generates points in an N-dimensional space.

Required Arguments
A — Vector of length N. (Input)

See B.

1360 � Chapter 8: Optimization IMSL MATH/LIBRARY

B — Real vector of length N. (Input)
A and B define the rectangular region in which the points will be generated, i.e.,
A(I) < S(I) < B(I) for I = 1, 2, �, N. Note that if B(I) < A(I), then B(I) < S(I) < A(I).

K — The number of points to be generated. (Input)

IDO — Initialization parameter. (Input/Output)
IDO must be set to zero for the first call. GGUES resets IDO to 1 and returns the first
generated point in S. Subsequent calls should be made with IDO = 1.

S — Vector of length N containing the generated point. (Output)
Each call results in the next generated point being stored in S.

Optional Arguments
N — Dimension of the space. (Input)

Default: N = size (B,1).

FORTRAN 90 Interface
Generic: CALL GGUES (A, B, K, IDO, S [,…])

Specific: The specific interface names are S_GGUES and D_GGUES.

FORTRAN 77 Interface
Single: CALL GGUES (N, A, B, K, IDO, S)

Double: The double precision name is DGGUES.

Example
We want to search the rectangle with vertices at coordinates (1, 1), (3, 1), (3, 2), and (1, 2) ten
times for a global optimum of a nonlinear function. To do this, we need to generate starting
points. The following example illustrates the use of GGUES in this process:

 USE GGUES_INT
 USE UMACH_INT
! Variable Declarations
 INTEGER N
 PARAMETER (N=2)
!
 INTEGER IDO, J, K, NOUT
 REAL A(N), B(N), S(N)
! Initializations
!
! A = (1.0, 1.0)
! B = (3.0, 2.0)
!
 DATA A/1.0, 1.0/

IMSL MATH/LIBRARY Chapter 8: Optimization � 1361

 DATA B/3.0, 2.0/
!
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99998)
99998 FORMAT (’ Point Number’, 7X, ’Generated Point’)
!
 K = 10
 IDO = 0
 DO 10 J=1, K
 CALL GGUES (A, B, K, IDO, S)
!
 WRITE (NOUT,99999) J, S(1), S(2)
99999 FORMAT (1X, I7, 14X, ’(’, F4.1, ’,’, F6.3, ’)’)
!
 10 CONTINUE
!
 END

Output
Point Number Generated Point

 1 (1.5, 1.125)
 2 (2.0, 1.500)
 3 (2.5, 1.750)
 4 (1.5, 1.375)
 5 (2.0, 1.750)
 6 (1.5, 1.625)
 7 (2.5, 1.250)
 8 (1.5, 1.875)
 9 (2.0, 1.250)
10 (2.5, 1.500)

Comments
1. Workspace may be explicitly provided, if desired, by use of G2UES/DG2UES. The

reference is:

CALL G2UES (N, A, B, K, IDO, S, WK, IWK)

The additional arguments are:

WK — Work vector of length N. WK must be preserved between calls to G2UES.

IWK — Work vector of length 10. IWK must be preserved between calls to G2UES.

2. Informational error

Type Code
 4 1 Attempt to generate more than K points.

3. The routine GGUES may be used with any nonlinear optimization routine that requires
starting points. The rectangle to be searched (defined by A, B, and N) must be
determined; and the number of starting points, K, must be chosen. One possible use for

1362 � Chapter 8: Optimization IMSL MATH/LIBRARY

GGUES would be to call GGUES to generate a point in the chosen rectangle. Then, call
the nonlinear optimization routine using this point as an initial guess for the solution.
Repeat this process K times. The number of iterations that the optimization routine is
allowed to perform should be quite small (5 to 10) during this search process. The best
(or best several) point(s) found during the search may be used as an initial guess to
allow the optimization routine to determine the optimum more accurately. In this
manner, an N dimensional rectangle may be effectively searched for a global optimum
of a nonlinear function. The choice of K depends upon the nonlinearity of the function
being optimized. A function with many local optima requires a larger value than a
function with only a few local optima.

Description
The routine GGUES generates starting points for algorithms that optimize functions of several
variables�or, almost equivalently�algorithms that solve simultaneous nonlinear equations.

The routine GGUES is based on systematic placement of points to optimize the dispersion of the
set. For more details, see Aird and Rice (1977).

IMSL MATH/LIBRARY Appendix B: Alphabetical Summary of Routines � B-1

Appendix B: Alphabetical Summary
of Routines

IMSL MATH/LIBRARY
ACBCB 1441 Adds two complex band matrices, both in band storage

mode.

ACHAR 1624 Returns a character given its ASCII value.

AMACH 1685 Retrieves single-precision machine constants.

ARBRB 1438 Adds two band matrices, both in band storage mode.

BCLSF 1274 Solves a nonlinear least squares problem subject to
bounds on the variables using a modified Levenberg-
Marquardt algorithm and a finite-difference Jacobian.

BCLSJ 1281 Solves a nonlinear least squares problem subject to
bounds on the variables using a modified Levenberg-
Marquardt algorithm and a user-supplied Jacobian.

BCNLS 1288 Solves a nonlinear least-squares problem subject to
bounds on the variables and general linear constraints.

BCOAH 1263 Minimizes a function of N variables subject to bounds the
variables using a modified Newton method and a user-
supplied Hessian.

BCODH 1257 Minimizes a function of N variables subject to bounds the
variables using a modified Newton method and a finite-
difference Hessian.

BCONF 1243 Minimizes a function of N variables subject to bounds the
variables using a quasi-Newton method and a finite-
difference gradient.

BCONG 1249 Minimizes a function of N variables subject to bounds the
variables using a quasi-Newton method and a user-
supplied gradient.

BCPOL 1271 Minimizes a function of N variables subject to bounds the
variables using a direct search complex algorithm.

B-2 � Appendix B: Alphabetical Summary of Routines IMSL MATH/LIBRARY

BLINF 1427 Computes the bilinear form xTAy.

BS1GD 656 Evaluates the derivative of a spline on a grid, given its B-
spline representation.

BS2DR 653 Evaluates the derivative of a two-dimensional tensor-
product spline, given its tensor-product B-spline
representation.

BS2GD 656 Evaluates the derivative of a two-dimensional tensor-
product spline, given its tensor-product B-spline
representation on a grid.

BS2IG 661 Evaluates the integral of a tensor-product spline on a
rectangular domain, given its tensor-product B-spline
representation.

BS2IN 631 Computes a two-dimensional tensor-product spline
interpolant, returning the tensor-product B-spline
coefficients.

BS2VL 651 Evaluates a two-dimensional tensor-product spline, given
its tensor-product B-spline representation.

BS3DR 666 Evaluates the derivative of a three-dimensional tensor-
product spline, given its tensor-product B-spline
representation.

BS3GD 670 Evaluates the derivative of a three-dimensional tensor-
product spline, given its tensor-product B-spline
representation on a grid.

BS3IG 676 Evaluates the integral of a tensor-product spline in three
dimensions over a three-dimensional rectangle, given its
tensorproduct B-spline representation.

BS3IN 635 Computes a three-dimensional tensor-product spline
interpolant, returning the tensor-product B-spline
coefficients.

BS3VL 664 Evaluates a three-dimensional tensor-product spline,
given its tensor-product B-spline representation.

BSCPP 680 Converts a spline in B-spline representation to piecewise
polynomial representation.

BSDER 643 Evaluates the derivative of a spline, given its B-spline
representation.

BSINT 622 Computes the spline interpolant, returning the B-spline
coefficients.

BSITG 649 Evaluates the integral of a spline, given its B-spline
representation.

IMSL MATH/LIBRARY Appendix B: Alphabetical Summary of Routines � B-3

BSLS2 743 Computes a two-dimensional tensor-product spline
approximant using least squares, returning the tensor-
product B-spline coefficients.

BSLS3 748 Computes a three-dimensional tensor-product spline
approximant using least squares, returning the tensor-
product B-spline coefficients.

BSLSQ 725 Computes the least-squares spline approximation, and
return the B-spline coefficients.

BSNAK 625 Computes the ‘not-a-knot’ spline knot sequence.

BSOPK 628 Computes the ‘optimal’ spline knot sequence.

BSVAL 641 Evaluates a spline, given its B-spline representation.

BSVLS 729 Computes the variable knot B-spline least squares
approximation to given data.

BVPFD 870 Solves a (parameterized) system of differential equations
with boundary conditions at two points, using a variable
order, variable step size finite-difference method with
deferred corrections.

BVPMS 882 Solves a (parameterized) system of differential equations
with boundary conditions at two points, using a multiple-
shooting method.

CADD 1319 Adds a scalar to each component of a vector, x � x + a,
all complex.

CAXPY 1320 Computes the scalar times a vector plus a vector, y � ax
+ y, all complex.

CCBCB 1393 Copies a complex band matrix stored in complex band
storage mode.

CCBCG 1400 Converts a complex matrix in band storage mode to a
complex matrix in full storage mode.

CCGCB 1398 Converts a complex general matrix to a matrix in
complex band storage mode.

CCGCG 1390 Copies a complex general matrix.

CCONV 1064 Computes the convolution of two complex vectors.

CCOPY 1319 Copies a vector x to a vector y, both complex.

CCORL 1073 Computes the correlation of two complex vectors.

CDGRD 1336 Approximates the gradient using central differences.

CDOTC 1320 Computes the complex conjugate dot product, x . yT

CDOTU 1320 Computes the complex dot product xTy.

B-4 � Appendix B: Alphabetical Summary of Routines IMSL MATH/LIBRARY

CGBMV 1330 Computes one of the matrix-vector operations:
y Ax y y A x y y AT T
� � � � � �� � � � � �, , or y ,

where A is a matrix stored in band storage mode.

CGEMM 1333 Computes one of the matrix-matrix operations:
C AB C C A B C C AB

C C A B C C AB C

C A B C C A B C

C A B C C A B C

T T

T T T

T T T

T T T T

� � � � �

� � � � �

� � � �

� � � �

� � � � �

� � � � �

� � � �

� � � �

, ,

, ,

, ,

,

 or

 or

,

CGEMV 1329 Computes one of the matrix-vector operations:
y Ax y y A x y y AT T
� � � � � �� � � � � �, , or y ,

CGERC 1384 Computes the rank-one update of a complex general
matrix:
A A xy T
� �� .

CGERU 1384 Computes the rank-one update of a complex general
matrix:

. A A xyT
� ��

CHBCB 1411 Copies a complex Hermitian band matrix stored in band
Hermitian storage mode to a complex band matrix stored
in band storage mode.

CHBMV 1381 Computes the matrix-vector operation
,

where A is an Hermitian band matrix in band Hermitian
storage.

y Ax� �� �y

C

y

CHEMM 1385 Computes one of the matrix-matrix operations:
,

where A is an Hermitian matrix and B and C are m by n
matrices.

C AB C C BA� � �� � � � or +

CHEMV 1381 Computes the matrix-vector operation
,

where A is an Hermitian matrix.
y Ax� �� �

CHER 1384 Computes the rank-one update of an Hermitian matrix:
A A xx T
� �� with x complex and � real.

CHER2 1384 Computes a rank-two update of an Hermitian matrix:
A A xy yxT T
� � �� � .

CHER2K 1387 Computes one of the Hermitian rank 2k operations:
C AB BA C C A B B AT T T T
� � � � � �� � � � � or C� ,

where C is an n by n Hermitian matrix and A and B are n

IMSL MATH/LIBRARY Appendix B: Alphabetical Summary of Routines � B-5

by k matrices in the first case and k by n matrices in the
second case.

CHERK 1386 Computes one of the Hermitian rank k operations:
C AA C C A AT T
� � � �� � � or C� ,

where C is an n by n Hermitian matrix and A is an n by k
matrix in the first case and a k by n matrix in the second
case.

CHFCG 1408 Extends a complex Hermitian matrix defined in its upper
triangle to its lower triangle.

CHGRD 1349 Checks a user-supplied gradient of a function.

CHHES 1352 Checks a user-supplied Hessian of an analytic function.

CHJAC 1355 Checks a user-supplied Jacobian of a system of equations
with M functions in N unknowns.

CHOL 1475 Computes the Cholesky factorization of a positive-
definite, symmetric or self-adjoint matrix, A.

COND 1476 Computes the condition number of a rectangular
matrix, A.

CONFT 734 Computes the least-squares constrained spline
approximation, returning the B-spline coefficients.

CONST 1669 Returns the value of various mathematical and physical
constants.

CPSEC 1631 Returns CPU time used in seconds.

CRBCB 1405 Converts a real matrix in band storage mode to a complex
matrix in band storage mode.

CRBRB 1392 Copies a real band matrix stored in band storage mode.

CRBRG 1397 Converts a real matrix in band storage mode to a real
general matrix.

CRGCG 1402 Copies a real general matrix to a complex general matrix.

CRGRB 1395 Converts a real general matrix to a matrix in band storage
mode.

CRGRG 1389 Copies a real general matrix.

CRRCR 1403 Copies a real rectangular matrix to a complex rectangular
matrix.

CS1GD 602 Evaluates the derivative of a cubic spline on a grid.

CSAKM 500 Computes the Akima cubic spline interpolant.

CSBRB 1409 Copies a real symmetric band matrix stored in band
symmetric storage mode to a real band matrix stored in
band storage mode.

B-6 � Appendix B: Alphabetical Summary of Routines IMSL MATH/LIBRARY

C

CSCAL 1319 Multiplies a vector by a scalar, y � ay, both complex.

CSCON 603 Computes a cubic spline interpolant that is consistent
with the concavity of the data.

CSDEC 593 Computes the cubic spline interpolant with specified
derivative endpoint conditions.

CSDER 610 Evaluates the derivative of a cubic spline.

CSET 1318 Sets the components of a vector to a scalar, all complex.

CSFRG 1406 Extends a real symmetric matrix defined in its upper
triangle to its lower triangle.

CSHER 597 Computes the Hermite cubic spline interpolant.

CSIEZ 587 Computes the cubic spline interpolant with the ‘not-a-
knot’ condition and return values of the interpolant at
specified points.

CSINT 590 Computes the cubic spline interpolant with the ‘not-a-
knot’ condition.

CSITG 616 Evaluates the integral of a cubic spline.

CSPER 506 Computes the cubic spline interpolant with periodic
boundary conditions.

CSROT 1325 Applies a complex Givens plane rotation.

CSROTM 1326 Applies a complex modified Givens plane rotation.

CSSCAL 1319 Multiplies a complex vector by a single-precision scalar,
y � ay.

CSSCV 761 Computes a smooth cubic spline approximation to noisy
data using cross-validation to estimate the smoothing
parameter.

CSSED 754 Smooths one-dimensional data by error detection.

CSSMH 758 Computes a smooth cubic spline approximation to noisy
data.

CSUB 1319 Subtracts each component of a vector from a scalar,
x � a � x, all complex.

CSVAL 609 Evaluates a cubic spline.

CSVCAL 1319 Multiplies a complex vector by a single-precision scalar
and store the result in another complex vector, y � ax.

CSWAP 1320 Interchanges vectors x and y, both complex.

CSYMM 1334 Computes one of the matrix-matrix operations:
,

where A is a symmetric matrix and B and C are m by n
matrices.

C AB C C BA� � �� � � � or +

IMSL MATH/LIBRARY Appendix B: Alphabetical Summary of Routines � B-7

C�

C�

CSYR2K 1335 Computes one of the symmetric rank 2k operations:
,

where C is an n by n symmetric matrix and A and B are n
by k matrices in the first case and k by n matrices in the
second case.

C AB BA C C A B B AT T T T
� � � � � �� � � � � or

CSYRK 1334 Computes one of the symmetric rank k operations:
,

where C is an n by n symmetric matrix and A is an n by k
matrix in the first case and a k by n matrix in the second
case.

C AA C C A AT T
� � � �� � � or

CTBMV 1331 Computes one of the matrix-vector operations:
x Ax x A x x AT T
� � �, , or x ,

where A is a triangular matrix in band storage mode.

CTBSV 1332 Solves one of the complex triangular systems:

x A x x A x x A
T T

� � �
� �

�1 1 1
 , or e j e j, ,x

where A is a triangular matrix in band storage mode.

CTRMM 1335 Computes one of the matrix-matrix operations:
B AB B A B B BA B BA

B A B B BA

T T

T T

� � � �

� �

� � � �

� �

, , ,

,or

,

where B is an m by n matrix and A is a triangular matrix.

CTRMV 1331 Computes one of the matrix-vector operations:
x Ax x A x x AT T
� � �, , or x ,

where A is a triangular matrix.

CTRSM 1336 Solves one of the complex matrix equations:

B A B B BA B A B B B A

B A B B B A

T T

T T

� � � �

� �

� � �

� �

� � � �

� �

1 1 1

1 1

, , ,

,

e j e j

e j e jor

�1 ,

where A is a traiangular matrix.

CTRSV 1331 Solves one of the complex triangular systems:

x A x x A x x A
T T

� � �
� �

�1 1 1
, ,e j e j or x ,

where A is a triangular matrix.

CUNIT 1672 Converts X in units XUNITS to Y in units YUNITS.

CVCAL 1319 Multiplies a vector by a scalar and store the result in
another vector, y � ax, all complex.

CVTSI 1630 Converts a character string containing an integer number
into the corresponding integer form.

B-8 � Appendix B: Alphabetical Summary of Routines IMSL MATH/LIBRARY

CZCDOT 1321 Computes the sum of a complex scalar plus a complex
conjugate dot product, a x , using a double-precision
accumulator.

yT
�

CZDOTA 1321 Computes the sum of a complex scalar, a complex dot
product and the double-complex accumulator, which is
set to the result ACC � ACC + a + xTy.

CZDOTC 1320 Computes the complex conjugate dot product, x , using
a double-precision accumulator.

yT

CZDOTI 1321 Computes the sum of a complex scalar plus a complex
dot product using a double-complex accumulator, which
is set to the result ACC � a + xTy.

CZDOTU 1320 Computes the complex dot product xTy using a double-
precision accumulator.

CZUDOT 1321 Computes the sum of a complex scalar plus a complex
dot product, a + xTy, using a double-precision
accumulator.

DASPG 889 Solves a first order differential-algebraic system of
equations, g(t, y, y�) = 0, using Petzold�Gear BDF
method.

DERIV 827 Computes the first, second or third derivative of a user-
supplied function.

DET 1477 Computes the determinant of a rectangular matrix, A.

DIAG 1479 Constructs a square diagonal matrix from a rank-1 array
or several diagonal matrices from a rank-2 array.

DIAGONALS 1479 Extracts a rank-1 array whose values are the diagonal
terms of a rank-2 array argument.

DISL1 1452 Computes the 1-norm distance between two points.

DISL2 1450 Computes the Euclidean (2-norm) distance between two
points.

DISLI 1454 Computes the infinity norm distance between two points.

DLPRS 1297 Solves a linear programming problem via the revised
simplex algorithm.

DMACH 1686 See AMACH.

DQADD 1460 Adds a double-precision scalar to the accumulator in
extended precision.

DQINI 1460 Initializes an extended-precision accumulator with a
double-precision scalar.

IMSL MATH/LIBRARY Appendix B: Alphabetical Summary of Routines � B-9

DQMUL 1460 Multiplies double-precision scalars in extended precision.

DQSTO 1460 Stores a double-precision approximation to an extended-
precision scalar.

DSDOT 1371 Computes the single-precision dot product xTy using a
double precision accumulator.

DUMAG 1664 This routine handles MATH/LIBRARY and
STAT/LIBRARY type DOUBLE PRECISION options.

EIG 1480 Computes the eigenvalue-eigenvector decomposition of
an ordinary or generalized eigenvalue problem.

EPICG 467 Computes the performance index for a complex
eigensystem.

EPIHF 518 Computes the performance index for a complex
Hermitian eigensystem.

EPIRG 460 Computes the performance index for a real eigensystem.

EPISB 501 Computes the performance index for a real symmetric
eigensystem in band symmetric storage mode.

EPISF 483 Computes the performance index for a real symmetric
eigensystem.

 ERROR_POST 1568 Prints error messages that are generated by IMSL routines
using EPACK

ERSET 1679 Sets error handler default print and stop actions.

EVAHF 508 Computes the largest or smallest eigenvalues of a
complex Hermitian matrix.

EVASB 490 Computes the largest or smallest eigenvalues of a real
symmetric matrix in band symmetric storage mode.

EVASF 473 Computes the largest or smallest eigenvalues of a real
symmetric matrix.

EVBHF 513 Computes the eigenvalues in a given range of a complex
Hermitian matrix.

EVBSB 495 Computes the eigenvalues in a given interval of a real
symmetric matrix stored in band symmetric storage
mode.

EVBSF 478 Computes selected eigenvalues of a real symmetric
matrix.

EVCCG 464 Computes all of the eigenvalues and eigenvectors of a
complex matrix.

EVCCH 526 Computes all of the eigenvalues and eigenvectors of a
complex upper Hessenberg matrix.

B-10 � Appendix B: Alphabetical Summary of Routines IMSL MATH/LIBRARY

EVCHF 505 Computes all of the eigenvalues and eigenvectors of a
complex Hermitian matrix.

EVCRG 457 Computes all of the eigenvalues and eigenvectors of a
real matrix.

EVCRH 522 Computes all of the eigenvalues and eigenvectors of a
real upper Hessenberg matrix.

EVCSB 487 Computes all of the eigenvalues and eigenvectors of a
real symmetric matrix in band symmetric storage mode.

EVCSF 471 Computes all of the eigenvalues and eigenvectors of a
real symmetric matrix.

EVEHF 510 Computes the largest or smallest eigenvalues and the
corresponding eigenvectors of a complex Hermitian
matrix.

EVESB 492 Computes the largest or smallest eigenvalues and the
corresponding eigenvectors of a real symmetric matrix in
band symmetric storage mode.

EVESF 475 Computes the largest or smallest eigenvalues and the
corresponding eigenvectors of a real symmetric matrix.

EVFHF 515 Computes the eigenvalues in a given range and the
corresponding eigenvectors of a complex Hermitian
matrix.

EVFSB 498 Computes the eigenvalues in a given interval and the
corresponding eigenvectors of a real symmetric matrix
stored in band symmetric storage mode.

EVFSF 480 Computes selected eigenvalues and eigenvectors of a real
symmetric matrix.

EVLCG 462 Computes all of the eigenvalues of a complex matrix.

EVLCH 525 Computes all of the eigenvalues of a complex upper
Hessenberg matrix.

EVLHF 502 Computes all of the eigenvalues of a complex Hermitian
matrix.

EVLRG 455 Computes all of the eigenvalues of a real matrix.

EVLRH 520 Computes all of the eigenvalues of a real upper
Hessenberg matrix.

EVLSB 485 Computes all of the eigenvalues of a real symmetric
matrix in band symmetric storage mode.

EVLSF 469 Computes all of the eigenvalues of a real symmetric
matrix.

EYE 1481 Creates a rank-2 square array whose diagonals are all the
value one.

IMSL MATH/LIBRARY Appendix B: Alphabetical Summary of Routines � B-11

FAURE_FREE 1655 Frees the structure containing information about the
Faure sequence.

FAURE_INIT 1655 Shuffled Faure sequence initialization.

FAURE_NEXT 1656 Computes a shuffled Faure sequence.

 FAST_DFT 992 Computes the Discrete Fourier Transform
of a rank-1 complex array, x.

 FAST_2DFT 1000 Computes the Discrete Fourier Transform (2DFT)
of a rank-2 complex array, x.

 FAST_3DFT 1006 Computes the Discrete Fourier Transform (2DFT)
of a rank-3 complex array, x.

FCOSI 1030 Computes parameters needed by FCOST.

FCOST 1028 Computes the discrete Fourier cosine transformation of
an even sequence.

FDGRD 1338 Approximates the gradient using forward differences.

FDHES 1340 Approximates the Hessian using forward differences and
function values.

FDJAC 1346 Approximates the Jacobian of M functions in N unknowns
using forward differences.

FFT 1482 The Discrete Fourier Transform of a complex sequence
and its inverse transform.

FFT_BOX 1482 The Discrete Fourier Transform of several complex or
real sequences.

FFT2B 1048 Computes the inverse Fourier transform of a complex
periodic two-dimensional array.

FFT2D 1045 Computes Fourier coefficients of a complex periodic two-
dimensional array.

FFT3B 1055 Computes the inverse Fourier transform of a complex
periodic three-dimensional array.

FFT3F 1051 Computes Fourier coefficients of a complex periodic
threedimensional array.

FFTCB 1019 Computes the complex periodic sequence from its Fourier
coefficients.

FFTCF 1017 Computes the Fourier coefficients of a complex periodic
sequence.

FFTCI 1022 Computes parameters needed by FFTCF and FFTCB.

FFTRB 1012 Computes the real periodic sequence from its Fourier
coefficients.

B-12 � Appendix B: Alphabetical Summary of Routines IMSL MATH/LIBRARY

FFTRF 1009 Computes the Fourier coefficients of a real periodic
sequence.

FFTRI 1015 Computes parameters needed by FFTRF and FFTRB.

FNLSQ 720 Computes a least-squares approximation with user-
supplied basis functions.

FPS2H 961 Solves Poisson’s or Helmholtz’s equation on a two-
dimensional rectangle using a fast Poisson solver based
on the HODIE finite-difference scheme on a uni mesh.

FPS3H 967 Solves Poisson’s or Helmholtz’s equation on a three-
dimensional box using a fast Poisson solver based on the
HODIE finite-difference scheme on a uniform mesh.

FQRUL 824 Computes a Fejér quadrature rule with various classical
weight functions.

FSINI 1026 Computes parameters needed by FSINT.

FSINT 1024 Computes the discrete Fourier sine transformation of an
odd sequence.

GDHES 1343 Approximates the Hessian using forward differences and
a user-supplied gradient.

GGUES 1359 Generates points in an N-dimensional space.

GMRES 368 Uses restarted GMRES with reverse communication to
generate an approximate solution of Ax = b.

GPICG 542 Computes the performance index for a generalized
complex eigensystem Az = �Bz.

GPIRG 535 Computes the performance index for a generalized real
eigensystem Az = �Bz.

GPISP 549 Computes the performance index for a generalized real
symmetric eigensystem problem.

GQRCF 815 Computes a Gauss, Gauss-Radau or Gauss-Lobatto
quadrature rule given the recurrence coefficients for the
monic polynomials orthogonal with respect to the weight
function.

GQRUL 811 Computes a Gauss, Gauss-Radau, or Gauss-Lobatto
quadrature rule with various classical weight functions.

GVCCG 540 Computes all of the eigenvalues and eigenvectors of a
generalized complex eigensystem Az = �Bz.

GVCRG 531 Computes all of the eigenvalues and eigenvectors of a
generalized real eigensystem Az = �Bz.

IMSL MATH/LIBRARY Appendix B: Alphabetical Summary of Routines � B-13

GVCSP 547 Computes all of the eigenvalues and eigenvectors of the
generalized real symmetric eigenvalue problem Az = �Bz,
with B symmetric positive definite.

GVLCG 537 Computes all of the eigenvalues of a generalized complex
eigensystem Az = �Bz.

GVLRG 529 Computes all of the eigenvalues of a generalized real
eigensystem Az = �Bz.

GVLSP 544 Computes all of the eigenvalues of the generalized real
symmetric eigenvalue problem Az = �Bz, with B
symmetric positive definite.

HRRRR 1425 Computes the Hadamard product of two real rectangular
matrices.

HYPOT 1675 Computes a without underflow or overflow. b2
�

2

IACHAR 1625 Returns the integer ASCII value of a character argument.

IADD 1319 Adds a scalar to each component of a vector, x � x + a,
all integer.

ICAMAX 1324 Finds the smallest index of the component of a complex
vector having maximum magnitude.

ICAMIN 1323 Finds the smallest index of the component of a complex
vector having minimum magnitude.

ICASE 1626 Returns the ASCII value of a character converted to
uppercase.

ICOPY 1319 Copies a vector x to a vector y, both integer.

IDYWK 1637 Computes the day of the week for a given date.

IERCD 1680 Retrieves the code for an informational error.

IFFT 1483 The inverse of the Discrete Fourier Transform of a
complex sequence.

IFFT_BOX 1484 The inverse Discrete Fourier Transform of several
complex or real sequences.

IFNAN(X) 1686 Checks if a value is NaN (not a number).

IICSR 1627 Compares two character strings using the ASCII collating
sequence but without regard to case.

IIDEX 1629 Determines the position in a string at which a given
character sequence begins without regard to case.

IIMAX 1323 Finds the smallest index of the maximum component of a
integer vector.

IIMIN 1323 Finds the smallest index of the minimum of an integer
vector.

B-14 � Appendix B: Alphabetical Summary of Routines IMSL MATH/LIBRARY

IMACH 1683 Retrieves integer machine constants.

INLAP 1078 Computes the inverse Laplace transform of a complex
function.

ISAMAX 1374 Finds the smallest index of the component of a single-
precision vector having maximum absolute value.

ISAMIN 1374 Finds the smallest index of the component of a single-
precision vector having minimum absolute value.

ISET 1318 Sets the components of a vector to a scalar, all integer.

ISMAX 1374 Finds the smallest index of the component of a single-
precision vector having maximum value.

ISMIN 1374 Finds the smallest index of the component of a single-
precision vector having minimum value.

ISNAN 1485 This is a generic logical function used to test scalars or
arrays for occurrence of an IEEE 754 Standard format of
floating point (ANSI/IEEE 1985) NaN, or not-a-number.

ISRCH 1620 Searches a sorted integer vector for a given integer and
return its index.

ISUB 1319 Subtracts each component of a vector from a scalar,
x � a � x, all integer.

ISUM 1322 Sums the values of an integer vector.

ISWAP 1320 Interchanges vectors x and y, both integer.

IUMAG 1658 Sets or retrieves MATH/LIBRARY integer options.

IVMRK 844 Solves an initial-value problem y� = f(t, y) for ordinary
differential equations using Runge-Kutta pairs of various
orders.

IVPAG 854 Solves an initial-value problem for ordinary differential
equations using either Adams-Moulton’s or Gear’s BDF
method.

IVPRK 837 Solves an initial-value problem for ordinary differential
equations using the Runge-Kutta-Verner fifth-order and
sixth-order method.

IWKCIN 1701 Initializes bookkeeping locations describing the character
workspace stack.

IWKIN 1700 Initializes bookkeeping locations describing the
workspace stack.

JCGRC 365 Solves a real symmetric definite linear system using the
Jacobi preconditioned conjugate gradient method with
reverse communication.

IMSL MATH/LIBRARY Appendix B: Alphabetical Summary of Routines � B-15

LCHRG 406 Computes the Cholesky decomposition of a symmetric
positive semidefinite matrix with optional column
pivoting.

LCLSQ 388 Solves a linear least-squares problem with linear
constraints.

LCONF 1310 Minimizes a general objective function subject to linear
equality/inequality constraints.

LCONG 1316 Minimizes a general objective function subject to linear
equality/inequality constraints.

LDNCH 412 Downdates the RTR Cholesky factorization of a real
symmetric positive definite matrix after a rank-one matrix
is removed.

LFCCB 262 Computes the LU factorization of a complex matrix in
band storage mode and estimate its L� condition number.

LFCCG 108 Computes the LU factorization of a complex general
matrix and estimate its L� condition number.

LFCCT 132 Estimates the condition number of a complex triangular
matrix.

LFCDH 179 Computes the RH R factorization of a complex Hermitian
positive definite matrix and estimate its L� condition
number.

LFCDS 143 Computes the RT R Cholesky factorization of a real
symmetric positive definite matrix and estimate its
L�condition number.

LFCHF 197 Computes the U DUH factorization of a complex
Hermitian matrix and estimate its L� condition number.

LFCQH 284 Computes the RH R factorization of a complex Hermitian
positive definite matrix in band Hermitian storage mode
and estimate its L� condition number.

LFCQS 240 Computes the RT R Cholesky factorization of a real
symmetric positive definite matrix in band symmetric
storage mode and estimate its L� condition number.

LFCRB 219 Computes the LU factorization of a real matrix in band
storage mode and estimate its L� condition number.

LFCRG 89 Computes the LU factorization of a real general matrix
and estimate its L� condition number.

LFCRT 125 Estimates the condition number of a real triangular
matrix.

B-16 � Appendix B: Alphabetical Summary of Routines IMSL MATH/LIBRARY

LFCSF 162 Computes the U DUT factorization of a real symmetric
matrix and estimate its L� condition number.

LFDCB 274 Computes the determinant of a complex matrix given the
LU factorization of the matrix in band storage mode.

LFDCG 119 Computes the determinant of a complex general matrix
given the LU factorization of the matrix.

LFDCT 134 Computes the determinant of a complex triangular matrix.

LFDDH 190 Computes the determinant of a complex Hermitian
positive definite matrix given the RH R Cholesky
factorization of the matrix.

LFDDS 153 Computes the determinant of a real symmetric positive
definite matrix given the RH R Cholesky factorization of
the matrix.

LFDHF 207 Computes the determinant of a complex Hermitian matrix
given the U DUH factorization of the matrix.

LFDQH 295 Computes the determinant of a complex Hermitian
positive definite matrix given the RH R Cholesky
factorization in band Hermitian storage mode.

LFDQS 250 Computes the determinant of a real symmetric positive
definite matrix given the RT R Cholesky factorization of
the band symmetric storage mode.

LFDRB 230 Computes the determinant of a real matrix in band
storage mode given the LU factorization of the matrix.

LFDRG 99 Computes the determinant of a real general matrix given
the LU factorization of the matrix.

LFDRT 127 Computes the determinant of a real triangular matrix.

LFDSF 172 Computes the determinant of a real symmetric matrix
given the U DUT factorization of the matrix.

LFICB 270 Uses iterative refinement to improve the solution of a
complex system of linear equations in band storage mode.

LFICG 116 Uses iterative refinement to improve the solution of a
complex general system of linear equations.

LFIDH 187 Uses iterative refinement to improve the solution of a
complex Hermitian positive definite system of linear
equations.

LFIDS 150 Uses iterative refinement to improve the solution of a real
symmetric positive definite system of linear equations.

IMSL MATH/LIBRARY Appendix B: Alphabetical Summary of Routines � B-17

LFIHF 204 Uses iterative refinement to improve the solution of a
complex Hermitian system of linear equations.

LFIQH 292 Uses iterative refinement to improve the solution of a
complex Hermitian positive definite system of linear
equations in band Hermitian storage mode.

LFIQS 247 Uses iterative refinement to improve the solution of a real
symmetric positive definite system of linear equations in
band symmetric storage mode.

LFIRB 227 Uses iterative refinement to improve the solution of a real
system of linear equations in band storage mode.

LFIRG 96 Uses iterative refinement to improve the solution of a real
general system of linear equations.

LFISF 169 Uses iterative refinement to improve the solution of a real
symmetric system of linear equations.

LFSCB 268 Solves a complex system of linear equations given the LU
factorization of the coefficient matrix in band storage
mode.

LFSCG 114 Solves a complex general system of linear equations
given the LU factorization of the coefficient matrix.

LFSDH 184 Solves a complex Hermitian positive definite system of
linear equations given the RH R factorization of the
coefficient matrix.

LFSDS 148 Solves a real symmetric positive definite system of linear
equations given the RT R Choleksy factorization of the
coefficient matrix.

LFSHF 202 Solves a complex Hermitian system of linear equations
given the U DUH factorization of the coefficient matrix.

LFSQH 290 Solves a complex Hermitian positive definite system of
linear equations given the factorization of the coefficient
matrix in band Hermitian storage mode.

LFSQS 245 Solves a real symmetric positive definite system of linear
equations given the factorization of the coefficient matrix
in band symmetric storage mode.

LFSRB 225 Solves a real system of linear equations given the LU
factorization of the coefficient matrix in band storage
mode.

LFSRG 94 Solves a real general system of linear equations given the
LU factorization of the coefficient matrix.

LFSSF 167 Solves a real symmetric system of linear equations given
the U DUT factorization of the coefficient matrix.

B-18 � Appendix B: Alphabetical Summary of Routines IMSL MATH/LIBRARY

LFSXD 336 Solves a real sparse symmetric positive definite system of
linear equations, given the Cholesky factorization of the
coefficient matrix.

LFSXG 306 Solves a sparse system of linear equations given the LU
factorization of the coefficient matrix.

LFSZD 349 Solves a complex sparse Hermitian positive definite
system of linear equations, given the Cholesky
factorization of the coefficient matrix.

LFSZG 319 Solves a complex sparse system of linear equations given
the LU factorization of the coefficient matrix.

LFTCB 265 Computes the LU factorization of a complex matrix in
band storage mode.

LFTCG 111 Computes the LU factorization of a complex general
matrix.

LFTDH 182 Computes the RH R factorization of a complex Hermitian
positive definite matrix.

LFTDS 146 Computes the RT R Cholesky factorization of a real
symmetric positive definite matrix.

LFTHF 200 Computes the U DUH factorization of a complex
Hermitian matrix.

LFTQH 288 Computes the RH R factorization of a complex Hermitian
positive definite matrix in band Hermitian storage mode.

LFTQS 243 Computes the RT R Cholesky factorization of a real
symmetric positive definite matrix in band symmetric
storage mode.

LFTRB 222 Computes the LU factorization of a real matrix in band
storage mode.

LFTRG 92 Computes the LU factorization of a real general matrix.

LFTSF 164 Computes the U DUT factorization of a real symmetric
matrix.

LFTXG 301 Computes the LU factorization of a real general sparse
matrix.

LFTZG 314 Computes the LU factorization of a complex general
sparse matrix.

LINCG 121 Computes the inverse of a complex general matrix.

LINCT 136 Computes the inverse of a complex triangular matrix.

LINDS 154 Computes the inverse of a real symmetric positive
definite matrix.

IMSL MATH/LIBRARY Appendix B: Alphabetical Summary of Routines � B-19

LINRG 101 Computes the inverse of a real general matrix.

LINRT 128 Computes the inverse of a real triangular matrix.

 LIN_EIG_GEN 439 Computes the eigenvalues of a self-adjoint
matrix, A.

 LIN_EIG_SELF 432 Computes the eigenvalues of a self-adjoint
matrix, A.

 LIN_GEIG_SELF 448 Computes the generalized eigenvalues of an n � n
matrix pencil, Av = �Bv.

 LIN_SOL_GEN 9 Solves a general system of linear equations Ax = b.

 LIN_SOL_LSQ 27 Solves a rectangular system of linear equations Ax � b,
in a least-squares sense.

 LIN_SOL_SELF 17 Solves a system of linear equations Ax = b, where A is a
self-adjoint matrix.

 LIN_SOL_SVD 36 Solves a rectangular least-squares system of linear
equations Ax � b using singular value decomposition.

 LIN_SOL_TRI 44 Solves multiple systems of linear equations.

 LIN_SVD 57 Computes the singular value decomposition (SVD) of a
rectangular matrix, A.

LNFXD 331 Computes the numerical Cholesky factorization of a
sparse symmetrical matrix A.

LNFZD 344 Computes the numerical Cholesky factorization of a
sparse Hermitian matrix A.

LQERR 396 Accumulates the orthogonal matrix Q from its factored
form given the QR factorization of a rectangular matrix A.

LQRRR 392 Computes the QR decomposition, AP = QR, using
Householder transformations.

LQRRV 381 Computes the least-squares solution using Householder
transformations applied in blocked form.

LQRSL 398 Computes the coordinate transformation, projection, and
complete the solution of the least-squares problem Ax = b.

LSACB 257 Solves a complex system of linear equations in band
storage mode with iterative refinement.

LSACG 103 Solves a complex general system of linear equations with
iterative refinement.

LSADH 173 Solves a Hermitian positive definite system of linear
equations with iterative refinement.

LSADS 138 Solves a real symmetric positive definite system of linear
equations with iterative refinement.

B-20 � Appendix B: Alphabetical Summary of Routines IMSL MATH/LIBRARY

LSAHF 191 Solves a complex Hermitian system of linear equations
with iterative refinement.

LSAQH 276 Solves a complex Hermitian positive definite system of
linear equations in band Hermitian storage mode with
iterative refinement.

LSAQS 232 Solves a real symmetric positive definite system of linear
equations in band symmetric storage mode with iterative
refinement.

LSARB 213 Solves a real system of linear equations in band storage
mode with iterative refinement.

LSARG 83 Solves a real general system of linear equations with
iterative refinement.

LSASF 156 Solves a real symmetric system of linear equations with
iterative refinement.

LSBRR 385 Solves a linear least-squares problem with iterative
refinement.

LSCXD 327 Performs the symbolic Cholesky factorization for a sparse
symmetric matrix using a minimum degree ordering or a
userspecified ordering, and set up the data structure for
the numerical Cholesky factorization.

LSGRR 424 Computes the generalized inverse of a real matrix.

LSLCB 259 Solves a complex system of linear equations in band
storage mode without iterative refinement.

LSLCC 356 Solves a complex circulant linear system.

LSLCG 106 Solves a complex general system of linear equations
without iterative refinement.

LSLCQ 253 Computes the LDU factorization of a complex tridiagonal
matrix A using a cyclic reduction algorithm.

LSLCR 211 Computes the LDU factorization of a real tridiagonal
matrix A using a cyclic reduction algorithm.

LSLCT 130 Solves a complex triangular system of linear equations.

LSLDH 176 Solves a complex Hermitian positive definite system of
linear equations without iterative refinement.

LSLDS 140 Solves a real symmetric positive definite system of linear
equations without iterative refinement.

LSLHF 194 Solves a complex Hermitian system of linear equations
without iterative refinement.

IMSL MATH/LIBRARY Appendix B: Alphabetical Summary of Routines � B-21

LSLPB 237 Computes the RT DR Cholesky factorization of a real
symmetric positive definite matrix A in codiagonal band
symmetric storage mode. Solve a system Ax = b.

LSLQB 281 Computes the RH DR Cholesky factorization of a
complex hermitian positive-definite matrix A in
codiagonal band hermitian storage mode. Solve a system
Ax = b.

LSLQH 279 Solves a complex Hermitian positive definite system of
linearequations in band Hermitian storage mode without
iterative refinement.

LSLQS 234 Solves a real symmetric positive definite system of linear
equations in band symmetric storage mode without
iterative refinement.

LSLRB 216 Solves a real system of linear equations in band storage
mode without iterative refinement.

LSLRG 85 Solves a real general system of linear equations without
iterative refinement.

LSLRT 123 Solves a real triangular system of linear equations.

LSLSF 159 Solves a real symmetric system of linear equations
without iterative refinement.

LSLTC 354 Solves a complex Toeplitz linear system.

LSLTO 352 Solves a real Toeplitz linear system.

LSLTQ 252 Solves a complex tridiagonal system of linear equations.

LSLTR 209 Solves a real tridiagonal system of linear equations.

LSLXD 323 Solves a sparse system of symmetric positive definite
linear algebraic equations by Gaussian elimination.

LSLXG 297 Solves a sparse system of linear algebraic equations by
Gaussian elimination.

LSLZD 340 Solves a complex sparse Hermitian positive definite
system of linear equations by Gaussian elimination.

LSLZG 309 Solves a complex sparse system of linear equations by
Gaussian elimination.

LSQRR 378 Solves a linear least-squares problem without iterative
refinement.

LSVCR 419 Computes the singular value decomposition of a complex
matrix.

LSVRR 415 Computes the singular value decomposition of a real
matrix.

B-22 � Appendix B: Alphabetical Summary of Routines IMSL MATH/LIBRARY

LUPCH 409 Updates the RTR Cholesky factorization of a real
symmetric positive definite matrix after a rank-one matrix
is added.

LUPQR 402 Computes an updated QR factorization after the rank-one
matrix �xyT is added.

MCRCR 1423 Multiplies two complex rectangular matrices, AB.

MOLCH 946 Solves a system of partial differential equations of the
form ut = f(x, t, u, ux, uxx) using the method of lines. The
solution is represented with cubic Hermite polynomials.

MRRRR 1421 Multiplies two real rectangular matrices, AB.

MUCBV 1436 Multiplies a complex band matrix in band storage mode
by a complex vector.

MUCRV 1435 Multiplies a complex rectangular matrix by a complex
vector.

MURBV 1433 Multiplies a real band matrix in band storage mode by a
real vector.

MURRV 1431 Multiplies a real rectangular matrix by a vector.

MXTXF 1415 Computes the transpose product of a matrix, ATA.

MXTYF 1416 Multiplies the transpose of matrix A by matrix B, ATB.

MXYTF 1418 Multiplies a matrx A by the transpose of a matrix B, ABT.

NAN 1486 Returns, as a scalar function, a value corresponding to the
IEEE 754 Standard format of floating point (ANSI/IEEE
1985) for NaN. .

N1RTY 1680 Retrieves an error type for the most recently called IMSL
routine.

NDAYS 1634 Computes the number of days from January 1, 1900, to
the given date.

NDYIN 1636 Gives the date corresponding to the number of days since
January 1, 1900.

NEQBF 1169 Solves a system of nonlinear equations using factored
secant update with a finite-difference approximation to
the Jacobian.

NEQBJ 1174 Solves a system of nonlinear equations using factored
secant update with a user-supplied Jacobian.

NEQNF 1162 Solves a system of nonlinear equations using a modified
Powell hybrid algorithm and a finite-difference
approximation to the Jacobian.

IMSL MATH/LIBRARY Appendix B: Alphabetical Summary of Routines � B-23

NEQNJ 1165 Solves a system of nonlinear equations using a modified
Powell hybrid algorithm with a user-supplied Jacobian.

NNLPF 1323 Uses a sequential equality constrained QP method.

NNLPG 1329 Uses a sequential equality constrained QP method.

NORM 1487 Computes the norm of a rank-1 or rank-2 array. For rank-
3 arrays, the norms of each rank-2 array, in dimension 3,
are computed.

NR1CB 1449 Computes the 1-norm of a complex band matrix in band
storage mode.

NR1RB 1447 Computes the 1-norm of a real band matrix in band
storage mode.

NR1RR 1444 Computes the 1-norm of a real matrix.

NR2RR 1446 Computes the Frobenius norm of a real rectangular
matrix.

NRIRR 1443 Computes the infinity norm of a real matrix.

 OPERATOR: .h. 1472 Computes transpose and conjugate transpose of a matrix.

OPERATOR: .hx. 1471 Computes matrix-vector and matrix-matrix products.

OPERATOR:.i. 1473 Computes the inverse matrix, for square non-singular
matrices.

 OPERATOR:.ix. 1474 Computes the inverse matrix times a vector or matrix for
square non-singular matrices.

 OPERATOR:..t. 1472 Computes transpose and conjugate transpose of a matrix.

 OPERATOR:.tx. 1471 Computes matrix-vector and matrix-matrix products.

 OPERATOR:.x. 1471 Computes matrix-vector and matrix-matrix products..

 OPERATOR:..xh. 1471 Computes matrix-vector and matrix-matrix products.

 OPERATOR:..xi. 1474 Computes the inverse matrix times a vector or matrix for
square non-singular matrices.

 OPERATORS:.xt. 1471 Computes matrix-vector and matrix-matrix products.

ORTH 1488 Orthogonalizes the columns of a rank-2 or rank-3 array.

PCGRC 359 Solves a real symmetric definite linear system using a
preconditioned conjugate gradient method with reverse
communication.

PARALLEL_NONNEGATIVE_LSQ 67 Solves a linear, non-negative constrained least-squares
system.

 PARALLEL_BOUNDED_LSQ 75 Solves a linear least-squares system with bounds on
the unknowns.

 PDE_1D_MG 913 Method of lines with Variable Griddings.

B-24 � Appendix B: Alphabetical Summary of Routines IMSL MATH/LIBRARY

PERMA 1602 Permutes the rows or columns of a matrix.

PERMU 1600 Rearranges the elements of an array as specified by a
permutation.

PGOPT 1599 Sets or retrieves page width and length for printing.

PLOTP 1664 Prints a plot of up to 10 sets of points.

POLRG 1429 Evaluates a real general matrix polynomial.

PP1GD 687 Evaluates the derivative of a piecewise polynomial on a
grid.

PPDER 684 Evaluates the derivative of a piecewise polynomial.

PPITG 690 Evaluates the integral of a piecewise polynomial.

PPVAL 681 Evaluates a piecewise polynomial.

PRIME 1668 Decomposes an integer into its prime factors.

QAND 806 Integrates a function on a hyper-rectangle.

QCOSB 1041 Computes a sequence from its cosine Fourier coefficients
with only odd wave numbers.

QCOSF 1039 Computes the coefficients of the cosine Fourier transform
with only odd wave numbers.

QCOSI 1043 Computes parameters needed by QCOSF and QCOSB.

QD2DR 699 Evaluates the derivative of a function defined on a
rectangular grid using quadratic interpolation.

QD2VL 696 Evaluates a function defined on a rectangular grid using
quadratic interpolation.

QD3DR 705 Evaluates the derivative of a function defined on a
rectangular three-dimensional grid using quadratic
interpolation.

QD3VL 702 Evaluates a function defined on a rectangular three-
dimensional grid using quadratic interpolation.

QDAG 775 Integrates a function using a globally adaptive scheme
based on Gauss-Kronrod rules.

QDAGI 782 Integrates a function over an infinite or semi-infinite
interval.

QDAGP 779 Integrates a function with singularity points given.

QDAGS 772 Integrates a function (which may have endpoint
singularities).

QDAWC 796 Integrates a function F(X)/(X � C) in the Cauchy principal
value sense.

QDAWF 789 Computes a Fourier integral.

IMSL MATH/LIBRARY Appendix B: Alphabetical Summary of Routines � B-25

QDAWO 785 Integrates a function containing a sine or a cosine.

QDAWS 793 Integrates a function with algebraic-logarithmic
singularities.

QDDER 694 Evaluates the derivative of a function defined on a set of
points using quadratic interpolation.

QDNG 799 Integrates a smooth function using a nonadaptive rule.

QDVAL 692 Evaluates a function defined on a set of points using
quadratic interpolation.

QMC 809 Integrates a function over a hyperrectangle using a
quasi-Monte Carlo method.

 QPROG 1307 Solves a quadratic programming problem subject to linear
equality/inequality constraints.

 QSINB 1034 Computes a sequence from its sine Fourier coefficients
with only odd wave numbers.

 QSINF 1032 Computes the coefficients of the sine Fourier transform
with only odd wave numbers.

 QSINI 1037 Computes parameters needed by QSINF and QSINB.

 RAND 1489 Computes a scalar, rank-1, rank-2 or rank-3 array of
random numbers.

 RAND_GEN 1639 Generates a rank-1 array of random numbers.

 RANK 1490 Computes the mathematical rank of a rank-2 or rank-3
array.

RATCH 764 Computes a rational weighted Chebyshev approximation
to a continuous function on an interval.

RCONV 1059 Computes the convolution of two real vectors.

RCORL 1068 Computes the correlation of two real vectors.

RCURV 716 Fits a polynomial curve using least squares.

RECCF 818 Computes recurrence coefficients for various monic
polynomials.

RECQR 821 Computes recurrence coefficients for monic polynomials
given a quadrature rule.

RLINE 713 Fits a line to a set of data points using least squares.

RNGET 1648 Retrieves the current value of the seed used in the IMSL
random number generators.

RNOPT 1650 Selects the uniform (0, 1) multiplicative congruential
pseudorandom number generator.

RNSET 1649 Initializes a random seed for use in the IMSL random
number generators.

B-26 � Appendix B: Alphabetical Summary of Routines IMSL MATH/LIBRARY

y

RNUN 1653 Generates pseudorandom numbers from a uniform (0, 1)
distribution.

RNUNF 1651 Generates a pseudorandom number from a uniform (0, 1)
distribution.

SADD 1370 Adds a scalar to each component of a vector, x � x + a,
all single precision.

SASUM 1373 Sums the absolute values of the components of a single-
precision vector.

SAXPY 1370 Computes the scalar times a vector plus a vector,
y � ax + y, all single precision.

ScaLaPACK_READ 1545 Reads matrix data from a file and transmits it into the
two-dimensional block-cyclic form required by
ScaLAPACK routines.

ScaLaPACK_WRITE 1547 Writes the matrix data to a file.

SCASUM 1322 Sums the absolute values of the real part together with the
absolute values of the imaginary part of the components
of a complex vector.

SCNRM2 1322 Computes the Euclidean norm of a complex vector.

SCOPY 1369 Copies a vector x to a vector y, both single precision.

SDDOTA 1321 Computes the sum of a single-precision scalar, a single-
precision dot product and the double-precision
accumulator, which is set to the result ACC � ACC + a +
xTy.

SDDOTI 1372 Computes the sum of a single-precision scalar plus a
singleprecision dot product using a double-precision
accumulator, which is set to the result ACC � a + xTy.

SDOT 1370 Computes the single-precision dot product xTy.

SDSDOT 1371 Computes the sum of a single-precision scalar and a
single precision dot product, a + xTy, using a double-
precision accumulator.

SGBMV 1381 Computes one of the matrix-vector operations:
,

where A is a matrix stored in band storage mode.
y Ax y y A xT
� � � �� � � �, or

SGEMM 1385 Computes one of the matrix-matrix operations:

.
C AB C C A B C C AB

C C A B C

T T

T T

� � � � �

� � �

� � � � �

� � �

, ,

, or

IMSL MATH/LIBRARY Appendix B: Alphabetical Summary of Routines � B-27

y
SGEMV 1381 Computes one of the matrix-vector operations:

, y Ax y y A xT
� � � �� � � �, or

SGER 1383 Computes the rank-one update of a real general matrix:
. A A xyT

� ��

SHOW 1571 Prints rank-1 or rank-2 arrays of numbers in a readable
format.

SHPROD 1372 Computes the Hadamard product of two single-precision
vectors.

SINLP 1081 Computes the inverse Laplace transform of a complex
function.

SLCNT 986 Calculates the indices of eigenvalues of a Sturm-Liouville
problem with boundary conditions (at regular points) in a
specified subinterval of the real line, [�, �].

SLEIG 973 Determines eigenvalues, eigenfunctions and/or spectral
density functions for Sturm-Liouville problems in the
form with boundary conditions (at regular points).

SLPRS 1301 Solves a sparse linear programming problem via the
revised simplex algorithm.

SNRM2 1373 Computes the Euclidean length or L� norm of a single-
precision vector.

 SORT_REAL 1604 Sorts a rank-1 array of real numbers x so the y results are
algebraically nondecreasing, y1 � y2 � � yn.

SPLEZ 618 Computes the values of a spline that either interpolates or
fits user-supplied data.

 SPLINE_CONSTRAINTS 562 Returns the derived type array result.

 SPLINE_FITTING 564 Weighted least-squares fitting by B-splines to discrete
One-Dimensional data is performed.

 SPLINE_VALUES 563 Returns an array result, given an array
of input

SPRDCT 1373 Multiplies the components of a single-precision vector.

 SRCH 1618 Searches a sorted vector for a given scalar and return its
index.

 SROT 1375 Applies a Givens plane rotation in single precision.

SROTG 1374 Constructs a Givens plane rotation in single precision.

SROTM 1377 Applies a modified Givens plane rotation in single
precision.

SROTMG 1376 Constructs a modified Givens plane rotation in single
precision.

B-28 � Appendix B: Alphabetical Summary of Routines IMSL MATH/LIBRARY

y

C

y

SSBMV 1382 Computes the matrix-vector operation
,

where A is a symmetric matrix in band symmetric storage
mode.

y Ax� �� �

SSCAL 1369 Multiplies a vector by a scalar, y � ay, both single
precision.

 SSET 1369 Sets the components of a vector to a scalar, all single
precision.

 SSRCH 1622 Searches a character vector, sorted in ascending ASCII
order, for a given string and return its index.

SSUB 1370 Subtracts each component of a vector from a scalar,
x � a � x, all single precision.

SSUM 1372 Sums the values of a single-precision vector.

SSWAP 1370 Interchanges vectors x and y, both single precision.

SSYMM 1385 Computes one of the matrix-matrix operations:
,

where A is a symmetric matrix and B and C are m by n
matrices.

C AB C C BA� � �� � � � or +

SSYMV 1382 Computes the matrix-vector operation
,

where A is a symmetric matrix.
y Ax� �� �

SSYR 1384 Computes the rank-one update of a real symmetric
matrix:
A A xxT
� �� .

SSYR2 1384 Computes the rank-two update of a real symmetric
matrix:

. A A xy yxT T
� � �� �

SSYR2K 1386 Computes one of the symmetric rank 2k operations:
,

where C is an n by n symmetric matrix and A and B are n
by k matrices in the first case and k by n matrices in the
second case.

C AB BA C C A B B AT T T T
� � � � � �� � � � � or C�

C�

x

SSYRK 1386 Computes one of the symmetric rank k operations:
,

where C is an n by n symmetric matrix and A is an n by k
matrix in the first case and a k by n matrix in the second
case.

C AA C C A AT T
� � � �� � � or

STBMV 1382 Computes one of the matrix-vector operations:

where A is a triangular matrix in band storage mode.
x Ax x AT
� �or ,

IMSL MATH/LIBRARY Appendix B: Alphabetical Summary of Routines � B-29

x

x

B1 ,

x

STBSV 1383 Solves one of the triangular systems:

,

where A is a triangular matrix in band storage mode.

x A x x A
T

� �
� �1 1 or e j

STRMM 1387 Computes one of the matrix-matrix operations:
,

where B is an m by n matrix and A is a triangular matrix.
B AB B A B B BA B BAT T
� � � �� � � �, , or

STRMV 1382 Computes one of the matrix-vector operations:

where A is a triangular matrix.
x Ax x AT
� �or ,

STRSM 1387 Solves one of the matrix equations:

where B is an m by n matrix and A is a triangular matrix.

B A B B BA B A

B B A

T

T

� � �

�

� � �

�

� � �

�

1 1

1

, , e j

e jor

STRSV 1383 Solves one of the triangular linear systems:

where A is a triangular matrix.

x A x x A
T

� �
� �1 1 or e j

SUMAG 1664 Sets or retrieves MATH/LIBRARY single-precision
options.

 SURF 710 Computes a smooth bivariate interpolant to scattered data
that is locally a quintic polynomial in two variables.

SURFACE_CONSTRAINTS 574 Returns the derived type array result given
optional input.

 SURFACE_FITTING 577 Weighted least-squares fitting by tensor product
B-splines to discrete two-dimensional data
is performed.

 SURFACE_VALUES 575 Returns a tensor product array result, given two arrays of
independent variable values.

SVCAL 1369 Multiplies a vector by a scalar and store the result in
another vector, y � ax, all single precision.

SVD 1491 Computes the singular value decomposition of a rank-2 or
rank-3 array, TA USV� .

SVIBN 1615 Sorts an integer array by nondecreasing absolute value.

SVIBP 1617 Sorts an integer array by nondecreasing absolute value
and returns the permutation that rearranges the array.

SVIGN 1610 Sorts an integer array by algebraically increasing value.

B-30 � Appendix B: Alphabetical Summary of Routines IMSL MATH/LIBRARY

SVIGP 1611 Sorts an integer array by algebraically increasing value
and returns the permutation that rearranges the array.

SVRBN 1612 Sorts a real array by nondecreasing absolute value.

SVRBP 1614 Sorts a real array by nondecreasing absolute value and
returns the permutation that rearranges the array.

SVRGN 1607 Sorts a real array by algebraically increasing value.

SVRGP 1608 Sorts a real array by algebraically increasing value and
returns the permutation that rearranges the array.

SXYZ 1372 Computes a single-precision xyz product.

TDATE 1633 Gets today’s date.

TIMDY 1632 Gets time of day.

TRNRR 1413 Transposes a rectangular matrix.

TWODQ 801 Computes a two-dimensional iterated integral.

UMACH 1688 Sets or retrieves input or output device unit numbers.

UMAG 1661 Handles MATH/LIBRARY and STAT/LIBRARY type
REAL and double precision options.

UMCGF 1219 Minimizes a function of N variables using a conjugate
gradient algorithm and a finite-difference gradient.

UMCGG 1223 Minimizes a function of N variables using a conjugate
gradient algorithm and a user-supplied gradient.

UMIAH 1213 Minimizes a function of N variables using a modified
Newton method and a user-supplied Hessian.

UMIDH 1208 Minimizes a function of N variables using a modified
Newton method and a finite-difference Hessian.

UMINF 1196 Minimizes a function of N variables using a quasi-New
method and a finite-difference gradient.

UMING 1202 Minimizes a function of N variables using a quasi-New
method and a user-supplied gradient.

UMPOL 1227 Minimizes a function of N variables using a direct search
polytope algorithm.

UNIT 1492 Normalizes the columns of a rank-2 or rank-3 array so
each has Euclidean length of value one.

UNLSF 1231 Solves a nonlinear least squares problem using a modified
Levenberg-Marquardt algorithm and a finite-difference
Jacobian.

UNLSJ 1237 Solves a nonlinear least squares problem using a modified
Levenberg-Marquardt algorithm and a user-supplied
Jacobian.

IMSL MATH/LIBRARY Appendix B: Alphabetical Summary of Routines � B-31

UVMGS 1193 Finds the minimum point of a nonsmooth function of a
single variable.

UVMID 1189 Finds the minimum point of a smooth function of a single
variable using both function evaluations and first
derivative evaluations.

UVMIF 1186 Finds the minimum point of a smooth function of a single
variable using only function evaluations.

VCONC 1457 Computes the convolution of two complex vectors.

VCONR 1455 Computes the convolution of two real vectors.

VERML 1638 Obtains IMSL MATH/LIBRARY-related version, system
and license numbers.

WRCRL 1588 Prints a complex rectangular matrix with a given format
and labels.

WRCRN 1586 Prints a complex rectangular matrix with integer row and
column labels.

WRIRL 1583 Prints an integer rectangular matrix with a given format
and labels.

WRIRN 1581 Prints an integer rectangular matrix with integer row and
column labels.

WROPT 1591 Sets or retrieves an option for printing a matrix.

WRRRL 1577 Prints a real rectangular matrix with a given format and
labels.

WRRRN 1575 Prints a real rectangular matrix with integer row and
column labels.

ZANLY 1153 Finds the zeros of a univariate complex function using
Müller’s method.

ZBREN 1156 Finds a zero of a real function that changes sign in a
given interval.

ZPLRC 1148 Finds the zeros of a polynomial with real coefficients
using Laguerre’s method.

ZPOCC 1152 Finds the zeros of a polynomial with complex coefficients
using the Jenkins-Traub three-stage algorithm.

ZPORC 1150 Finds the zeros of a polynomial with real coefficients
using the Jenkins-Traub three-stage algorithm.

ZQADD 1460 Adds a double complex scalar to the accumulator in
extended precision.

ZQINI 1460 Initializes an extended-precision complex accumulator to
a double complex scalar.

B-32 � Appendix B: Alphabetical Summary of Routines IMSL MATH/LIBRARY

ZQMUL 1460 Multiplies double complex scalars using extended
precision.

ZQSTO 1460 Stores a double complex approximation to an extended-
precision complex scalar.

ZREAL 1159 Finds the real zeros of a real function using Müller’s
method.

IMSL MATH/LIBRARY Appendix C: References � C-1

Appendix C: References

Aird and Howell
Aird, Thomas J., and Byron W. Howell (1991), IMSL Technical Report 9103, IMSL, Houston.

Aird and Rice
Aird, T.J., and J.R. Rice (1977), Systematic search in high dimensional sets, SIAM Journal on
Numerical Analysis, 14, 296�312.

Akima
Akima, H. (1970), A new method of interpolation and smooth curve fitting based on local
procedures, Journal of the ACM, 17, 589�602.

Akima, H. (1978), A method of bivariate interpolation and smooth surface fitting for irregularly
distributed data points, ACM Transactions on Mathematical Software, 4, 148�159.

Arushanian et al.
Arushanian, O.B., M.K. Samarin, V.V. Voevodin, E.E. Tyrtyshikov, B.S. Garbow, J.M. Boyle,
W.R. Cowell, and K.W. Dritz (1983), The TOEPLITZ Package Users’ Guide, Argonne National
Laboratory, Argonne, Illinois.

Ashcraft
Ashcraft, C. (1987), A vector implementation of the multifrontal method for large sparse,
symmetric positive definite linear systems, Technical Report ETA-TR-51, Engineering
Technology Applications Division, Boeing Computer Services, Seattle, Washington.

Ashcraft et al.
Ashcraft, C., R.Grimes, J. Lewis, B. Peyton, and H. Simon (1987), Progress in sparse matrix
methods for large linear systems on vector supercomputers. Intern. J. Supercomputer Applic.,
1(4), 10�29.

Atkinson
Atkinson, Ken (1978), An Introduction to Numerical Analysis, John Wiley & Sons, New York.

C-2 � Appendix C: References IMSL MATH/LIBRARY

Atchison and Hanson
Atchison, M.A., and R.J. Hanson (1991), An Options Manager for the IMSL Fortran 77 Libraries,
Technical Report 9101, IMSL, Houston.

Bischof et al.
Bischof, C., J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling, D. Sorensen
(1988), LAPACK Working Note #5: Provisional Contents, Argonne National Laboratory Report
ANL-88-38, Mathematics and Computer Science.

Bjorck
Bjorck, Ake (1967), Iterative refinement of linear least squares solutions I, BIT, 7, 322�337.

Bjorck, Ake (1968), Iterative refinement of linear least squares solutions II, BIT, 8, 8�30.

Boisvert (1984)
Boisvert, Ronald (1984), A fourth order accurate fast direct method for the Helmholtz equation,
Elliptic Problem Solvers II, (edited by G. Birkhoff and A. Schoenstadt), Academic Press, Orlando,
Florida, 35�44.

Boisvert, Howe, and Kahaner
Boisvert, Ronald F., Sally E. Howe, and David K. Kahaner (1985), GAMS: A framework for the
management of scientific software, ACM Transactions on Mathematical Software, 11, 313�355.

Boisvert, Howe, Kahaner, and Springmann
Boisvert, Ronald F., Sally E. Howe, David K. Kahaner, and Jeanne L. Springmann (1990), Guide
to Available Mathematical Software, NISTIR 90-4237, National Institute of Standards and Tech-
nology, Gaithersburg, Maryland.

Brankin et al.
Brankin, R.W., I. Gladwell, and L.F. Shampine, RKSUITE: a Suite of Runge-Kutta Codes for the
Initial Value Problem for ODEs, Softreport 91-1, Mathematics Department, Southern Methodist
University, Dallas, Texas, 1991.

Brenan, Campbell, and Petzold
Brenan, K.E., S.L. Campbell, L.R. Petzold (1989), Numerical Solution of Initial-Value Problems
in Differential-Algebraic Equations, Elseview Science Publ. Co.

Brenner
Brenner, N. (1973), Algorithm 467: Matrix transposition in place [F1], Communication of ACM,
16, 692�694.

IMSL MATH/LIBRARY Appendix C: References � C-3

Brent
Brent, R.P. (1971), An algorithm with guaranteed convergence for finding a zero of a function,
The Computer Journal, 14, 422�425.

Brent, Richard P. (1973), Algorithms for Minimization without Derivatives, Prentice-Hall, Inc.,
Englewood Cliffs, New Jersey.

Brigham
Brigham, E. Oran (1974), The Fast Fourier Transform, Prentice-Hall, Englewood Cliffs, New
Jersey.

Cheney
Cheney, E.W. (1966), Introduction to Approximation Theory, McGraw-Hill, New York.

Cline et al.
Cline, A.K., C.B. Moler, G.W. Stewart, and J.H. Wilkinson (1979), An estimate for the condition
number of a matrix, SIAM Journal of Numerical Analysis, 16, 368�375.

Cody, Fraser, and Hart
Cody, W.J., W. Fraser, and J.F. Hart (1968), Rational Chebyshev approximation using linear
equations, Numerische Mathematik, 12, 242�251.

Cohen and Taylor
Cohen, E. Richard, and Barry N. Taylor (1986), The 1986 Adjustment of the Fundamental
Physical Constants, Codata Bulletin, Pergamon Press, New York.

Cooley and Tukey
Cooley, J.W., and J.W. Tukey (1965), An algorithm for the machine computation of complex
Fourier series, Mathematics of Computation, 19, 297�301.

Courant and Hilbert
Courant, R., and D. Hilbert (1962), Methods of Mathematical Physics, Volume II, John Wiley &
Sons, New York, NY.

Craven and Wahba
Craven, Peter, and Grace Wahba (1979), Smoothing noisy data with spline functions, Numerische
Mathematik, 31, 377�403.

Crowe et al.
Crowe, Keith, Yuan-An Fan, Jing Li, Dale Neaderhouser, and Phil Smith (1990), A direct sparse
linear equation solver using linked list storage, IMSL Technical Report 9006, IMSL, Houston.

C-4 � Appendix C: References IMSL MATH/LIBRARY

Crump
Crump, Kenny S. (1976), Numerical inversion of Laplace transforms using a Fourier series
approximation, Journal of the Association for Computing Machinery, 23, 89�96.

Davis and Rabinowitz
Davis, Philip F., and Philip Rabinowitz (1984), Methods of Numerical Integration, Academic
Press, Orlando, Florida.

de Boor
de Boor, Carl (1978), A Practical Guide to Splines, Springer-Verlag, New York.

de Hoog, Knight, and Stokes
de Hoog, F.R., J.H. Knight, and A.N. Stokes (1982), An improved method for numerical inversion
of Laplace transforms. SIAM Journal on Scientific and Statistical Computing, 3, 357�366.

Dennis and Schnabel
Dennis, J.E., Jr., and Robert B. Schnabel (1983), Numerical Methods for Unconstrained
Optimization and Nonlinear Equations, Prentice-Hall, Englewood Cliffs, New Jersey.

Dongarra et al.
Dongarra, J.J., and C.B. Moler, (1977) EISPACK � A package for solving matrix eigenvalue
problems, Argonne National Laboratory, Argonne, Illinois.

Dongarra, J.J., J.R. Bunch, C.B. Moler, and G.W. Stewart (1979), LINPACK Users’ Guide, SIAM,
Philadelphia.

Dongarra, J.J., J. DuCroz, S. Hammarling, R. J. Hanson (1988), An Extended Set of Fortran basic
linear algebra subprograms, ACM Transactions on Mathematical Software, 14 , 1�17.

Dongarra, J.J., J. DuCroz, S. Hammarling, I. Duff (1990), A set of level 3 basic linear algebra
subprograms, ACM Transactions on Mathematical Software, 16 , 1�17.

Draper and Smith
Draper, N.R., and H. Smith (1981), Applied Regression Analysis, second edition, John Wiley &
Sons, New York.

Du Croz et al.
Du Croz, Jeremy, P. Mayes, G. and Radicati (1990), Factorization of band matrices using Level-3
BLAS, Proceedings of CONPAR 90 VAPP IV, Lecture Notes in Computer Science, Springer,
Berlin, 222.

Duff and Reid
Duff, I.S., and J.K. Reid (1983), The multifrontal solution of indefinite sparse symmetric linear
equations. ACM Transactions on Mathematical Software, 9, 302�325.

IMSL MATH/LIBRARY Appendix C: References � C-5

Duff, I.S., and J.K. Reid (1984), The multifrontal solution of unsymmetric sets of linear equations.
SIAM Journal on Scientific and Statistical Computing, 5, 633�641.

Duff et al.
Duff, I.S., A.M. Erisman, and J.K. Reid (1986), Direct Methods for Sparse Matrices, Clarendon
Press, Oxford.

Enright and Pryce
Enright, W.H., and J.D. Pryce (1987), Two FORTRAN packages for assessing initial value
methods, ACM Transactions on Mathematical Software, 13, 1�22.

Forsythe
Forsythe, G.E. (1957), Generation and use of orthogonal polynomials for fitting data with a digital
computer, SIAM Journal on Applied Mathematics, 5, 74�88.

Fox, Hall, and Schryer
Fox, P.A., A.D. Hall, and N.L. Schryer (1978), The PORT mathematical subroutine library, ACM
Transactions on Mathematical Software, 4, 104�126.

Garbow
Garbow, B.S. (1978) CALGO Algorithm 535: The QZ algorithm to solve the generalized eigenvalue
problem for complex matrices, ACM Transactions on Mathematical Software, 4, 404�410.

Garbow et al.
Garbow, B.S., J.M. Boyle, J.J. Dongarra, and C.B. Moler (1972), Matrix eigensystem Routines:
EISPACK Guide Extension, Springer-Verlag, New York.

Garbow, B.S., J.M. Boyle, J.J. Dongarra, and C.B. Moler (1977), Matrix Eigensystem Routines�
EISPACK Guide Extension, Springer-Verlag, New York.

Garbow, B.S., G. Giunta, J.N. Lyness, and A. Murli (1988), Software for an implementation of
Weeks’ method for the inverse Laplace transform problem, ACM Transactions of Mathematical
Software, 14, 163�170.

Gautschi
Gautschi, Walter (1968), Construction of Gauss-Christoffel quadrature formulas, Mathematics of
Computation, 22, 251�270.

Gautschi and Milovanofic
Gautschi, Walter, and Gradimir V. Milovanofic (1985), Gaussian quadrature involving Einstein
and Fermi functions with an application to summation of series, Mathematics of Computation, 44,
177�190.

C-6 � Appendix C: References IMSL MATH/LIBRARY

Gay
Gay, David M. (1981), Computing optimal locally constrained steps, SIAM Journal on Scientific
and Statistical Computing, 2, 186�197.

Gay, David M. (1983), Algorithm 611: Subroutine for unconstrained minimization using a
model/trust-region approach, ACM Transactions on Mathematical Software, 9, 503� 524.

Gear
Gear, C.W. (1971), Numerical Initial Value Problems in Ordinary Differential Equations,
Prentice-Hall, Englewood Cliffs, New Jersey.

Gear and Petzold
Gear, C.W., and Linda R. Petzold (1984), ODE methods for the solutions of differential/algebraic
equations, SIAM Journal Numerical Analysis, 21, #4, 716.

George and Liu
George, A., and J.W.H. Liu (1981), Computer Solution of Large Sparse Positive-definite Systems,
Prentice-Hall, Englewood Cliffs, New Jersey.

Gill et al.
Gill, Philip E., and Walter Murray (1976), Minimization subject to bounds on the variables, NPL
Report NAC 72, National Physical Laboratory, England.

Gill, Philip E., Walter Murray, and Margaret Wright (1981), Practical Optimization, Academic
Press, New York.

Gill, P.E., W. Murray, M.A. Saunders, and M.H. Wright (1985), Model building and practical
aspects of nonlinear programming, in Computational Mathematical Programming, (edited by K.
Schittkowski), NATO ASI Series, 15, Springer-Verlag, Berlin, Germany.

Goldfarb and Idnani
Goldfarb, D., and A. Idnani (1983), A numerically stable dual method for solving strictly convex
quadratic programs, Mathematical Programming, 27, 1�33.

Golub
Golub, G.H. (1973), Some modified matrix eigenvalue problems, SIAM Review, 15, 318�334.

Golub and Van Loan
Golub, Gene H., and Charles F. Van Loan (1983), Matrix Computations, Johns Hopkins
University Press, Baltimore, Maryland.

Golub, Gene H., and Charles F. Van Loan (1989), Matrix Computations, 2d ed., Johns Hopkins
University Press, Baltimore, Maryland.

IMSL MATH/LIBRARY Appendix C: References � C-7

Golub and Welsch
Golub, G.H., and J.H. Welsch (1969), Calculation of Gaussian quadrature rules, Mathematics of
Computation, 23, 221�230.

Gregory and Karney
Gregory, Robert, and David Karney (1969), A Collection of Matrices for Testing Computational
Algorithms, Wiley-Interscience, John Wiley & Sons, New York.

Griffin and Redish
Griffin, R., and K.A. Redish (1970), Remark on Algorithm 347: An efficient algorithm for sorting
with minimal storage, Communications of the ACM, 13, 54.

Grosse
Grosse, Eric (1980), Tensor spline approximation, Linear Algebra and its Applications, 34, 29�41.

Guerra and Tapia
Guerra, V., and R. A. Tapia (1974), A local procedure for error detection and data smoothing,
MRC Technical Summary Report 1452, Mathematics Research Center, University of Wisconsin,
Madison.

Hageman and Young
Hageman, Louis A., and David M.Young (1981), Applied Iterative Methods, Academic Press,
New York.

Hanson
Hanson, Richard J. (1986), Least squares with bounds and linear constraints, SIAM Journal Sci.
Stat. Computing, 7, #3.

Hanson, Richard.J. (1990), A cyclic reduction solver for the IMSL Mathematics Library, IMSL
Technical Report 9002, IMSL, Houston.

Hanson et al.
Hanson, Richard J., R. Lehoucq, J. Stolle, and A. Belmonte (1990), Improved performance of
certain matrix eigenvalue computations for the IMSL/MATH Library, IMSL Technical Report
9007, IMSL, Houston.

Hartman
Hartman, Philip (1964) Ordinary Differential Equations, John Wiley and Sons, New York, NY.

Hausman
Hausman, Jr., R.F. (1971), Function Optimization on a Line Segment by Golden Section,
Lawrence Radiation Laboratory, University of California, Livermore.

C-8 � Appendix C: References IMSL MATH/LIBRARY

Hindmarsh
Hindmarsh, A.C. (1974), GEAR: Ordinary differential equation system solver, Lawrence
Livermore Laboratory Report UCID�30001, Revision 3.

Hull et al.
Hull, T.E., W.H. Enright, and K.R. Jackson (1976), User’s guide for DVERK � A subroutine for
solving non-stiff ODEs, Department of Computer Science Technical Report 100, University of
Toronto.

IEEE
ANSI/IEEE Std 754-1985 (1985), IEEE Standard for Binary Floating-Point Arithmetic, The
IEEE, Inc., New York.

IMSL (1991)
IMSL (1991), IMSL STAT/LIBRARY User’s Manual, Version 2.0, IMSL, Houston.

Irvine et al.
Irvine, Larry D., Samuel P. Marin, and Philip W. Smith (1986), Constrained interpolation and
smoothing, Constructive Approximation, 2, 129�151.

Jenkins
Jenkins, M.A. (1975), Algorithm 493: Zeros of a real polynomial, ACM Transactions on
Mathematical Software, 1, 178�189.

Jenkins and Traub
Jenkins, M.A., and J.F. Traub (1970), A three-stage algorithm for real polynomials using quadratic
iteration, SIAM Journal on Numerical Analysis, 7, 545�566.

Jenkins, M.A., and J.F. Traub (1970), A three-stage variable-shift iteration for polynomial zeros
and its relation to generalized Rayleigh iteration, Numerische Mathematik, 14, 252�263.

Jenkins, M.A., and J.F. Traub (1972), Zeros of a complex polynomial, Communications of the
ACM, 15, 97�99.

Kennedy and Gentle
Kennedy, William J., Jr., and James E. Gentle (1980), Statistical Computing, Marcel Dekker, New
York.

Kershaw
Kershaw, D. (1982), Solution of tridiagonal linear systems and vectorization of the ICCG
algorithm on the Cray-1, Parallel Computations, Academic Press, Inc., 85-99.

IMSL MATH/LIBRARY Appendix C: References � C-9

Knuth
Knuth, Donald E. (1973), The Art of Computer Programming, Volume 3: Sorting and Searching,
Addison-Wesley Publishing Company, Reading, Mass.

Lawson et al.
Lawson, C.L., R.J. Hanson, D.R. Kincaid, and F.T. Krogh (1979), Basic linear algebra
subprograms for Fortran usage, ACM Transactions on Mathematical Software, 5, 308� 323.

Leavenworth
Leavenworth, B. (1960), Algorithm 25: Real zeros of an arbitrary function, Communications of the
ACM, 3, 602.

Levenberg
Levenberg, K. (1944), A method for the solution of certain problems in least squares, Quarterly of
Applied Mathematics, 2, 164�168.

Lewis et al.
Lewis, P.A. W., A.S. Goodman, and J.M. Miller (1969), A pseudo-random number generator for
the System/360, IBM Systems Journal, 8, 136�146.

Liepman
Liepman, David S. (1964), Mathematical constants, in Handbook of Mathematical Functions,
Dover Publications, New York.

Liu
Liu, J.W.H. (1986), On the storage requirement in the out-of-core multifrontal method for sparse
factorization. ACM Transactions on Mathematical Software, 12, 249�264.

Liu, J.W.H. (1987), A collection of routines for an implementation of the multifrontal method,
Technical Report CS-87-10, Department of Computer Science, York University, North York,
Ontario, Canada.

Liu, J.W.H. (1989), The multifrontal method and paging in sparse Cholesky factorization. ACM
Transactions on Mathematical Software, 15, 310�325.

Liu, J.W.H. (1990), The multifrontal method for sparse matrix solution: theory and practice,
Technical Report CS-90-04, Department of Computer Science, York University, North York,
Ontario, Canada.

Liu and Ashcraft
Liu, J., and C. Ashcraft (1987), A vector implementation of the multifrontal method for large
sparse, symmetric positive definite linear systems, Technical Report ETA-TR-51, Engineering
Technology Applications Division, Boeing Computer Services, Seattle, Washington.

C-10 � Appendix C: References IMSL MATH/LIBRARY

Lyness and Giunta
Lyness, J.N. and G. Giunta (1986), A modification of the Weeks Method for numerical inversion
of the Laplace transform, Mathmetics of Computation, 47, 313�322.

Madsen and Sincovec
Madsen, N.K., and R.F. Sincovec (1979), Algorithm 540: PDECOL, General collocation software
for partial differential equations, ACM Transactions on Mathematical Software, 5, #3, 326-351.

Marquardt
Marquardt, D. (1963), An algorithm for least-squares estimation of nonlinear parameters, SIAM
Journal on Applied Mathematics, 11, 431�441.

Martin and Wilkinson
Martin, R.S., and J.W. Wilkinson (1968), Reduction of the symmetric eigenproblem Ax = �Bx and
related problems to standard form, Numerische Mathematik, 11, 99�119.

Micchelli et al.
Micchelli, C.A., T.J. Rivlin, and S. Winograd (1976), The optimal recovery of smooth functions,
Numerische Mathematik, 26, 279�285

Micchelli, C.A., Philip W. Smith, John Swetits, and Joseph D. Ward (1985), Constrained Lp
approximation, Constructive Approximation, 1, 93�102.

Moler and Stewart
Moler, C., and G.W. Stewart (1973), An algorithm for generalized matrix eigenvalue problems,
SIAM Journal on Numerical Analysis, 10, 241�256.

More et al.
More, Jorge, Burton Garbow, and Kenneth Hillstrom (1980), User guide for MINPACK-1,
Argonne National Labs Report ANL-80-74, Argonne, Illinois.

Muller
Muller, D.E. (1956), A method for solving algebraic equations using an automatic computer,
Mathematical Tables and Aids to Computation, 10, 208�215.

Murtagh
Murtagh, Bruce A. (1981), Advanced Linear Programming: Computation and Practice, McGraw-
Hill, New York.

Murty
Murty, Katta G. (1983), Linear Programming, John Wiley and Sons, New York.

IMSL MATH/LIBRARY Appendix C: References � C-11

Nelder and Mead
Nelder, J.A., and R. Mead (1965), A simplex method for function minimization, Computer
Journal 7, 308�313.

Neter and Wasserman
Neter, John, and William Wasserman (1974), Applied Linear Statistical Models, Richard D. Irwin,
Homewood, Ill.

Park and Miller
Park, Stephen K., and Keith W. Miller (1988), Random number generators: good ones are hard to
find, Communications of the ACM, 31, 1192�1201.

Parlett
Parlett, B.N. (1980), The Symmetric Eigenvalue Problem, Prentice�Hall, Inc., Englewood Cliffs,
New Jersey.

Pereyra
Pereyra, Victor (1978), PASVA3: An adaptive finite-difference FORTRAN program for first
order nonlinear boundary value problems, in Lecture Notes in Computer Science, 76, Springer-
Verlag, Berlin, 67�88.

Petro
Petro, R. (1970), Remark on Algorithm 347: An efficient algorithm for sorting with minimal
storage, Communications of the ACM, 13, 624.

Petzold
Petzold, L.R. (1982), A description of DASSL: A differential/ algebraic system solver,
Proceedings of the IMACS World Congress, Montreal, Canada.

Piessens et al.
Piessens, R., E. deDoncker-Kapenga, C.W. Uberhuber, and D.K. Kahaner (1983), QUADPACK,
Springer-Verlag, New York.

Powell
Powell, M.J.D. (1977), Restart procedures for the conjugate gradient method, Mathematical
Programming, 12, 241�254.

Powell, M.J.D. (1978), A fast algorithm for nonlinearly constrained optimization calculations, in
Numerical Analysis Proceedings, Dundee 1977, Lecture Notes in Mathematics, (edited by G.A.
Watson), 630, Springer-Verlag, Berlin, Germany, 144�157.

Powell, M.J.D. (1983), ZQPCVX a FORTRAN subroutine for convex quadratic programming,
DAMTP Report NA17, Cambridge, England.

C-12 � Appendix C: References IMSL MATH/LIBRARY

Powell, M.J.D. (1985), On the quadratic programming algorithm of Goldfarb and Idnani,
Mathematical Programming Study, 25, 46-61.

Powell, M.J.D. (1988), A tolerant algorithm for linearly constrained optimization calculations,
DAMTP Report NA17, University of Cambridge, England.

Powell, M.J.D. (1989), TOLMIN: A fortran package for linearly constrained optimization
calculations, DAMTP Report NA2, University of Cambridge, England.

Pruess and Fulton
Pruess, S. and C.T. Fulton (1993), Mathematical Software for Sturm-Liouville Problems, ACM
Transactions on Mathematical Software, 17, 3, 360�376.

Reinsch
Reinsch, Christian H. (1967), Smoothing by spline functions, Numerische Mathematik, 10,
177�183.

Rice
Rice, J.R. (1983), Numerical Methods, Software, and Analysis, McGraw-Hill, New York.

Saad and Schultz
Saad, Y., and M.H. Schultz (1986), GMRES: a generalized minimal residual residual algorithm
for solving nonsymmetric linear systems, SIAM J. Sci. Stat. Comput., 7, 856�869.

Schittkowski
Schittkowski, K. (1987), More test examples for nonlinear programming codes, SpringerVerlag,
Berlin, 74.

Schnabel
Schnabel, Robert B. (1985), Finite Difference Derivatives � Theory and Practice, Report, National
Bureau of Standards, Boulder, Colorado.

Schreiber and Van Loan
Schreiber, R., and C. Van Loan (1989), A Storage�Efficient WY Representation for Products of
Householder Transformations, SIAM J. Sci. Stat. Comp., Vol. 10, No. 1, pp. 53-57, January
(1989).

Scott et al.
Scott, M.R., L.F. Shampine, and G.M. Wing (1969), Invariant Embedding and the Calculation of
Eigenvalues for Sturm-Liouville Systems, Computing, 4, 10�23.

IMSL MATH/LIBRARY Appendix C: References � C-13

Sewell
Sewell, Granville (1982), IMSL software for differential equations in one space variable, IMSL
Technical Report 8202, IMSL, Houston.

Shampine
Shampine, L.F. (1975), Discrete least-squares polynomial fits, Communications of the ACM, 18,
179�180.

Shampine and Gear
Shampine, L.F. and C.W. Gear (1979), A user’s view of solving stiff ordinary differential
equations, SIAM Review, 21, 1�17.

Sincovec and Madsen
Sincovec, R.F., and N.K. Madsen (1975), Software for nonlinear partial differential equations,
ACM Transactions on Mathematical Software, 1, #3, 232-260.

Singleton
Singleton, R.C. (1969), Algorithm 347: An efficient algorithm for sorting with minimal storage,
Communications of the ACM, 12, 185�187.

Smith
Smith, B.T. (1967), ZERPOL, A Zero Finding Algorithm for Polynomials Using Laguerre’s
Method, Department of Computer Science, University of Toronto.

Smith et al.
Smith, B.T., J.M. Boyle, J.J. Dongarra, B.S. Garbow, Y. Ikebe, V.C. Klema, and C.B. Moler
(1976), Matrix Eigensystem Routines � EISPACK Guide, Springer-Verlag, New York.

Spang
Spang, III, H.A. (1962), A review of minimization techniques for non-linear functions, SIAM
Review, 4, 357�359.

Stewart
Stewart, G.W. (1973), Introduction to Matrix Computations, Academic Press, New York.

Stewart, G.W. (1976), The economical storage of plane rotations, Numerische Mathematik, 25,
137�139.

Stoer
Stoer, J. (1985), Principles of sequential quadratic programming methods for solving nonlinear
programs, in Computational Mathematical Programming, (edited by K. Schittkowski), NATO
ASI Series, 15, Springer-Verlag, Berlin, Germany.

C-14 � Appendix C: References IMSL MATH/LIBRARY

Stroud and Secrest
Stroud, A.H., and D.H. Secrest (1963), Gaussian Quadrature Formulae, Prentice-Hall,
Englewood Cliffs, New Jersey.

Titchmarsh
Titchmarsh, E. Eigenfunction Expansions Associated with Second Order Differential Equations,
Part I, 2d Ed., Oxford University Press, London, 1962.

Trench
Trench, W.F. (1964), An algorithm for the inversion of finite Toeplitz matrices, Journal of the
Society for Industrial and Applied Mathematics, 12, 515�522.

Walker
Walker, H.F. (1988), Implementation of the GMRES method using Householder transformations,
SIAM J. Sci. Stat. Comput., 9, 152�163.

Washizu
Washizu, K. (1968), Variational Methods in Elasticity and Plasticity, Pergamon Press, New York.

Watkins and Elsner
Watkins, D.S., and L. Elsner (1990), Convergence of algorithms of decomposition type for the
eigenvalue problem, Linear Algebra and Applications (to appear).

Weeks
Weeks, W.T. (1966), Numerical inversion of Laplace transforms using Laguerre functions, J.
ACM, 13, 419�429.

Wilkinson
Wilkinson, J.H. (1965),The Algebraic Eigenvalue Problem, Oxford University Press, London,
635.

	IMSL Fortran Library/ MATH/LIBRARY Vol.2
	Table of Contents
	Chapter 8: Optimization
	Routines
	Usage Notes
	
	Unconstrained Minimization
	Minimization with Simple Bounds

	Linearly Constrained Minimization
	Nonlinearly Constrained Minimization
	Selection of Routines
	Unconstrained Minimization
	Minimization with Simple Bounds

	UVMIF
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	UVMID
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	UVMGS
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	UMINF
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	UMING
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	UMIDH
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	UMIAH
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	UMCGF
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	UMCGG
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	UMPOL
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	UNLSF
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	UNLSJ
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	BCONF
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	BCONG
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	BCODH
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	BCOAH
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	BCPOL
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	BCLSF
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	BCLSJ
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	BCNLS
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example 1
	Output
	Comments
	Description
	Example 2
	Output

	DLPRS
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	SLPRS
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	QPROG
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	LCONF
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	LCONG
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	NNLPF
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	Example
	Output
	Comments
	Description

	NNLPG
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	Example 1
	Output
	Comments
	Description
	Example 2
	Output

	CDGRD
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	FDGRD
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	FDHES
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	GDHES
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	FDJAC
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	CHGRD
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	CHHES
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	CHJAC
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	GGUES
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	Appendix B: Alphabetical Summary of Routines
	IMSL MATH/LIBRARY

	Appendix C: References
	
	
	Aird and Howell
	Aird and Rice
	Akima
	Arushanian et al.
	Ashcraft
	Ashcraft et al.
	Atkinson
	Atchison and Hanson
	Bischof et al.
	Bjorck
	Boisvert (1984)
	Boisvert, Howe, and Kahaner
	Boisvert, Howe, Kahaner, and Springmann
	Brankin et al.
	Brenan, Campbell, and Petzold
	Brenner
	Brent
	Brigham
	Cheney
	Cline et al.
	Cody, Fraser, and Hart
	Cohen and Taylor
	Cooley and Tukey
	Courant and Hilbert
	Craven and Wahba
	Crowe et al.
	Crump
	Davis and Rabinowitz
	de Boor
	de Hoog, Knight, and Stokes
	Dennis and Schnabel
	Dongarra et al.
	Draper and Smith
	Du Croz et al.
	Duff and Reid
	Duff et al.
	Enright and Pryce
	Forsythe
	Fox, Hall, and Schryer
	Garbow
	Garbow et al.
	Gautschi
	Gautschi and Milovanofic
	Gay
	Gear
	Gear and Petzold
	George and Liu
	Gill et al.
	Goldfarb and Idnani
	Golub
	Golub and Van Loan
	Golub and Welsch
	Gregory and Karney
	Griffin and Redish
	Grosse
	Guerra and Tapia
	Hageman and Young
	Hanson
	Hanson et al.
	Hartman
	Hausman
	Hindmarsh
	Hull et al.
	IEEE
	IMSL (1991)
	Irvine et al.
	Jenkins
	Jenkins and Traub
	Kennedy and Gentle
	Kershaw
	Knuth
	Lawson et al.
	Leavenworth
	Levenberg
	Lewis et al.
	Liepman
	Liu
	Liu and Ashcraft
	Lyness and Giunta
	Madsen and Sincovec
	Marquardt
	Martin and Wilkinson
	Micchelli et al.
	Moler and Stewart
	More et al.
	Muller
	Murtagh
	Murty
	Nelder and Mead
	Neter and Wasserman
	Park and Miller
	Parlett
	Pereyra
	Petro
	Petzold
	Piessens et al.
	Powell
	Pruess and Fulton
	Reinsch
	Rice
	Saad and Schultz
	Schittkowski
	Schnabel
	Schreiber and Van Loan
	Scott et al.
	Sewell
	Shampine
	Shampine and Gear
	Sincovec and Madsen
	Singleton
	Smith
	Smith et al.
	Spang
	Stewart
	Stoer
	Stroud and Secrest
	Titchmarsh
	Trench
	Walker
	Washizu
	Watkins and Elsner
	Weeks
	Wilkinson

