

IM SL Fortran Library User's Guide MATH/LIBRARY Volume 2 of 2

Mathematical Functions in Fortran

-IMSL
 IM SL Fortran Library User's Guide MATH/LIBRARY Volume 2 of 2
 M athematical Functions in Fortran

Visual Numerics, Inc. - United States
Corporate Headquarters
2000 Crow Canyon Place, Suite 270
San Ramon, CA 94583
PHONE: 925-807-0138
FAX: 925-807-0145
e-mail: info@vni.com
Westminster, CO
PHONE: 303-379-3040
Houston, TX
PHONE: $713-784-3131$

Visual Numerics International Ltd.	Visual Numerics SARL
Sussex House	Immeuble le Wilson 1
6 The Forbury	70, avenue due General de Gaulle
Reading, Berkshire RGI 3EJ	F-92058 PARIS LA DEFENSE, Cedex
UNITED KINGDOM	FRANCE
PHONE: $+44-1-18925-3370$	PHONE: $+33-1-46-93-94-20$
FAX: $+44-1-189-25-3371$	FAX: $+33-1-46-93-94-39$
e-mail: info@vniuk.co.uk	e-mail: info@vni.paris.fr
Support: support@vniuk.co.uk	

PHONE: 713-784-3131

Visual Numerics S. A. de C. V.
Florencia 57 Piso 10-01
Col. Juarez
Mexico D. F. C. P. 06600
MEXICO
PHONE: +52-55-514-9730 or 9628
FAX: +52-55-514-4873
Visual Numerics International GmbH
Zettachring 10
D-70567Stuttgart
GERMANY

PHONE: +49-711-13287-0
FAX: +49-711-13287-99
e-mail: vni@visual-numerics.de

Visual Numerics Japan, Inc.
GOBANCHO HIKARI BLDG. $4^{\text {TH }}$ Floor
14 GOBAN-CHO CHIYODA-KU
TOKYO, JAPAN 102
PHONE: +81-3-5211-7760
FAX: +81-3-5211-7769
e-mail: vnijapan@vnij.co.jp

Visual Numerics, Inc.	Visual Numerics Korea, Inc.	World Wide Web site: http://www.vni.com
7/F, \#510, Sect. 5	HANSHIN BLDG. Room 801	
Chung Hsiao E. Road	136-1, MAPO-DONG, MAPO-GU	
Taipei, Taiwan 110	SEOUL, 121-050	
ROC	KOREA SOUTH	
PHONE: +(886) 2-2727-2255	PHONE: +82-2-3273-2632 or 2633	
FAX: +(886) 2-2727-6798	FAX: +82-2-3273--2634	
e-mail: info@vni.com.tw	e-mail: info@vni.co.kr	

COPYRIGHT NOTICE: Copyright 1994-2003 by Visual Numerics, Inc. All rights reserved. Unpublished-rights reserved under the copyright laws of the United States.
Printed in the USA.
The information contained in this document is subject to change without notice.
This document is provided AS IS, with NO WARRANTY. VISUAL NUMERICS, INC., SHALL NOT BE LIABLE FOR ANY ERRORS WHICH MAY BE CONTAINED HEREIN OR FOR INCIDENTAL, CONSEQUENTIAL, OR OTHER INDIRECT DAMAGES IN CONNECTION WITH THE FURNISHING, PERFORMANCE OR USE OF THIS MATERIAL. [Carol: note case change]

IMSL, PV- WAVE, and Visual Numerics are registered in the U.S. Patent and Trademark Office by, and PV- WAVE Advantage is a trademark of, Visual Numerics, Inc.
TRADEMARK NOTICE: The following are trademarks or registered trademarks of their respective owners, as follows: Microsoft, Windows, Windows 95, Windows NT, Internet Explorer - Microsoft Corporation; Motif - The Open Systems Foundation, Inc.; PostScript - Adobe Systems, Inc.; UNIX - X/Open Company, Limited; X Window System, X11 - Massachusetts Institute of Technology; RISC System/6000 and IBM - International Business Machines Corporation; Sun, Java, JavaBeans - Sun Microsystems, Inc.; JavaScript, Netscape Communicator - Netscape, Inc.; HPGL and PCL - Hewlett Packard Corporation; DEC, VAX, VMS, OpenVMS - Compaq Information Technologies Group, L.P./Hewlett Packard Corporation; Tektronix 4510 Rasterizer Tektronix, Inc.; IRIX, TIFF - Silicon Graphics, Inc.; SPARCstation - SPARC International, licensed exclusively to Sun Microsystems, Inc.; HyperHelp - Bristol Technology, Inc. Other products and company names mentioned herein are trademarks of their respective owners.

Use of this document is governed by a Visual Numerics Software License Agreement. This document contains confidential and proprietary information. No part of this document may be reproduced or transmitted in any form without the prior written consent of Visual Numerics.

RESTRICTED RIGHTS NOTICE: This documentation is provided with RESTRICTED RIGHTS. Use, duplication or disclosure by the US Government is subject to restrictions as set forth in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFAR 252.227-7013, and in subparagraphs (a) through (d) of the Commercial Computer software - Restricted Rights clause at FAR 52.227-19, and in similar clauses in the NASA FAR Supplement, when applicable. Contractor/Manufacturer is Visual Numerics, Inc., 2500 Wilcrest Drive, Suite 200, Houston, TX 77042-2759.

Contents

Volume I
Introduction xiii
Chapter 1: Linear Systems 1
Chapter 2: Eigensystem Analysis 427
Chapter 3: Interpolation and Approximation 553
Chapter 4: Integration and Differentiation 769
Appendix A: GAMS Index A-1
Appendix B: Alphabetical Summary of Routines B-1
Appendix C: References C-1
Product Support i
Index iii
Volume II
Chapter 5: Differential Equations 833
Chapter 6: Transforms 989
Chapter 7: Nonlinear Equations 1147
Chapter 8: Optimization 1181
Chapter 9: Basic Matrix/Vector Operations 1363
Chapter 10: Linear Algebra Operators and Generic Functions 1463
Chapter 11: Utilities 1553
Reference Material 1677
Appendix A: GAMS Index A-1
Appendix B: Alphabetical Summary of Routines B-1
Appendix C: References C-1
Product Support i
Index iii

Chapter 8: Optimization

Routines

8.1. Unconstrained Minimization

8.1.1 Univariate Function

Using function values only ...UVMIF

1186

Using function and first derivative values UVMID 1189
Nonsmooth function...UVMGS 1193

8.1.2 Multivariate Function

Using finite-difference gradient...UMINF

1196

Using analytic gradient ..UMING 1202
Using finite-difference Hessian ... UMIDH 1208
Using analytic Hessian .. UMIAH 1213
Using conjugate gradient with finite-difference gradient.....UMCGF 1219
Using conjugate gradient with analytic gradientUMCGG 1223
Nonsmooth function..UMPOL 1227
$\begin{array}{ll}\text { 8.1.3 Nonlinear Least Squares } \\ & \text { Using finite-difference Jacobian.. UNLSF } 1231\end{array}$
Using analytic Jacobian ...UNLSJ 1237
8.2. Minimization with Simple Bounds

Using finite-difference gradient... BCONF 1243
Using analytic gradient ...BCONG 1249
Using finite-difference Hessian ...BCODH 1257
Using analytic Hessian ...BCOAH 1263
Nonsmooth Function..BCPOL 1271
Nonlinear least squares using finite-difference Jacobian BCLSF 1274
Nonlinear least squares using analytic Jacobian.................BCLSJ 1281
Nonlinear least squares problem subject to bounds............BCNLS 1288
8.3. Linearly Constrained Minimization
Dense linear programming ...DLPRS 1297

Quadratic programming...QPROG 1307
General objective function with finite-difference gradient....LCONF 1310
General objective function with analytic gradient LCONG 1316
8.4. Nonlinearly Constrained Minimization
Using a sequential equality constrained QP methodNNLPF 1323
Using a sequential equality constrained QP method NNLPG 1329
8.5. Service Routines
Central-difference gradient CDGRD 1336
Forward-difference gradient FDGRD 1338
Forward-difference Hessian FDHES 1340
Forward-difference Hessian using analytic gradient GDHES 1343
Forward-difference Jacobian FDJAC 1346
Check user-supplied gradient CHGRD 1349
Check user-supplied Hessian CHHES 1352
Check user-supplied Jacobian CHJAC 1355
Generate starting points GGUES 1359

Usage Notes

Unconstrained Minimization

The unconstrained minimization problem can be stated as follows:

$$
\min _{x \in \mathbb{R}^{\prime}} f(x)
$$

where $f: \mathbf{R}^{n} \rightarrow \mathbf{R}$ is at least continuous. The routines for unconstrained minimization are grouped into three categories: univariate functions (UV***), multivariate functions (UM***), and nonlinear least squares (UNLS*).

For the univariate function routines, it is assumed that the function is unimodal within the specified interval. Otherwise, only a local minimum can be expected. For further discussion on unimodality, see Brent (1973).
A quasi-Newton method is used for the multivariate function routines UMINF (page 1196) and UMING (page 1202), whereas UMIDH (page 1208) and UMIAH (page 1213) use a modified Newton algorithm. The routines UMCGF (page 1219) and UMCGG (page 1223) make use of a conjugate gradient approach, and UMPOL (page 1227) uses a polytope method. For more details on these algorithms, see the documentation for the corresponding routines.
The nonlinear least squares routines use a modified Levenberg-Marquardt algorithm. If the nonlinear least squares problem is a nonlinear data-fitting problem, then software that is designed to deliver better statistical output may be useful; see IMSL (1991).
These routines are designed to find only a local minimum point. However, a function may have many local minima. It is often possible to obtain a better local solution by trying different initial points and intervals.
High precision arithmetic is recommended for the routines that use only function values. Also it is advised that the derivative-checking routines $\mathrm{CH}^{* * *}$ be used to ensure the accuracy of the usersupplied derivative evaluation subroutines.

Minimization with Simple Bounds

The minimization with simple bounds problem can be stated as follows:

$$
\begin{gathered}
\min _{x \in \mathrm{R}^{n}} f(x) \\
\text { subject to } l_{i} \leq x_{i} \leq u_{i}, \text { for } i=1,2, \ldots, n
\end{gathered}
$$

where $f: \mathbf{R}^{n} \rightarrow \mathbf{R}$, and all the variables are not necessarily bounded.
The routines $B C O * *$ use the same algorithms as the routines UMI**, and the routines BCLS* are the corresponding routines of UNLS*. The only difference is that an active set strategy is used to ensure that each variable stays within its bounds. The routine BCPOL (page 1271) uses a function comparison method similar to the one used by UMPOL (page 1227). Convergence for these polytope methods is not guaranteed; therefore, these routines should be used as a last alternative.

Linearly Constrained Minimization

The linearly constrained minimization problem can be stated as follows:

$$
\begin{gathered}
\min _{x \in \mathbf{R}^{n}} f(x) \\
\text { subject to } A x=b
\end{gathered}
$$

where $f: \mathbf{R}^{n} \rightarrow \mathbf{R}, A$ is an $m \times n$ coefficient matrix, and b is a vector of length m. If $f(x)$ is linear, then the problem is a linear programming problem; if $f(x)$ is quadratic, the problem is a quadratic programming problem.

The routine DLPRS (page 1297) uses a revised simplex method to solve small- to medium-sized linear programming problems. No sparsity is assumed since the coefficients are stored in full matrix form.

The routine $Q P R O G$ (page 1307) is designed to solve convex quadratic programming problems using a dual quadratic programming algorithm. If the given Hessian is not positive definite, then QPROG modifies it to be positive definite. In this case, output should be interpreted with care.

The routines LCONF (page 1310) and LCONG (page 1316) use an iterative method to solve the linearly constrained problem with a general objective function. For a detailed description of the algorithm, see Powell $(1988,1989)$.

Nonlinearly Constrained Minimization

The nonlinearly constrained minimization problem can be stated as follows:

$$
\begin{gathered}
\min _{x \in \mathrm{R}^{n}} f(x) \\
\text { subject to } g_{i}(x)=0, \text { for } \quad i=1,2, \ldots, m_{1} \\
g_{i}(x) \geq 0, \text { for } \quad i=m_{1}+1, \ldots, m
\end{gathered}
$$

where $f: \mathbf{R}^{n} \rightarrow \mathbf{R}$ and $g_{i}: \mathbf{R}^{n} \rightarrow \mathbf{R}$, for $i=1,2, \ldots, m$

The routines NNLPF (page 1323) and NNLPG (page 1329) use a sequential equality constrained quadratic programming method. A more complete discussion of this algorithm can be found in the documentation.

Selection of Routines

The following general guidelines are provided to aid in the selection of the appropriate routine.

Unconstrained Minimization

1. For the univariate case, use UVMID (page 1189) when the gradient is available, and use UVMIF (page 1182) when it is not. If discontinuities exist, then use UVMGS (page 1193).
2. For the multivariate case, use UMCG* when storage is a problem, and use UMPOL (page 1227) when the function is nonsmooth. Otherwise, use UMI** depending on the availability of the gradient and the Hessian.
3. For least squares problems, use UNLSJ (page 1237) when the Jacobian is available, and use UnLSF (page 1231) when it is not.

Minimization with Simple Bounds

1. Use BCONF (page 1243) when only function values are available. When first derivatives are available, use either BCONG (page 1249) or BCODH (page 1257). If first and second derivatives are available, then use ВСОАН (page 1263).
2. For least squares, use BCLSF (page 1274) or BCLSJ (page 1281) depending on the availability of the Jacobian.
3. Use BCPOL (page 1271) for nonsmooth functions that could not be solved satisfactorily by the other routines.

The following charts provide a quick reference to routines in this chapter:

UVMIF

Finds the minimum point of a smooth function of a single variable using only function evaluations.

Required Arguments

\boldsymbol{F} - User-supplied FUNCTION to compute the value of the function to be minimized. The form is $F(X)$, where
x - The point at which the function is evaluated. (Input)
X should not be changed by F.
F - The computed function value at the point X . (Output)
F must be declared EXTERNAL in the calling program.
$\boldsymbol{X G U E S S}$ - An initial guess of the minimum point of F . (Input)
BOUND - A positive number that limits the amount by which x may be changed from its initial value. (Input)
X - The point at which a minimum value of F is found. (Output)

Optional Arguments

$\boldsymbol{S T E P}$ - An order of magnitude estimate of the required change in X . (Input) Default: $\mathrm{STEP}=1.0$.
$\boldsymbol{X A C C}$ - The required absolute accuracy in the final value of x . (Input)
On a normal return there are points on either side of X within a distance XACC at which F is no less than $F(X)$.
Default: $\mathrm{XACC}=1 . \mathrm{e}-4$.
MAXFN - Maximum number of function evaluations allowed. (Input)
Default: MAXFN $=1000$.

FORTRAN 90 Interface

Generic: CALL UVMIF (F, XGUESS, BOUND, X [,...])
Specific: The specific interface names are S_UVMIF and D_UVMIF.

FORTRAN 77 Interface

Single: CALL UVMIF (F, XGUESS, STEP, BOUND, XACC, MAXFN, X)

Double: The double precision name is DUVMIF.

Example

A minimum point of $e^{x}-5 x$ is found.

```
USE UVMIF INT
USE UMACH_INT
INTEGER MAXFN, NOUT
REAL BOUND, F, FX, STEP, X, XACC, XGUESS
EXTERNAL F
```

```
XGUESS = 0.0
XACC = 0.001
BOUND = 100.0
STEP = 0.1
MAXFN = 50
!
! Find minimum for F = EXP(X) - 5X
CALL UVMIF (F, XGUESS, BOUND, X, STEP=STEP, XACC=XACC, MAXFN=MAXFN)
FX = F(X)
! Print results
    CALL UMACH (2, NOUT)
    WRITE (NOUT,99999) X, FX
!
99999 FORMAT (' The minimum is at ', 7X, F7.3, //, ' The function ' &
    ,'value is ', F7.3)
!
END
REAL FUNCTION F (X)
REAL X
!
    REAL EXP
    INTRINSIC EXP
!
    F = EXP (X) - 5.0E0*X
!
    RETURN
    END
```


Output

The minimum is at 1.609
The function value is -3.047

Comments

Informational errors

Type	Code	
3	1	Computer rounding errors prevent further refinement of x. 3
2	The final value of x is at a bound. The minimum is probably beyond the bound.	
4	3	The number of function evaluations has exceeded MAXFN.

Description

The routine UVMIF uses a safeguarded quadratic interpolation method to find a minimum point of a univariate function. Both the code and the underlying algorithm are based on the routine ZXLSF written by M.J.D. Powell at the University of Cambridge.
The routine UVMIF finds the least value of a univariate function, f, that is specified by the function subroutine F . Other required data include an initial estimate of the solution, XGUESS , and a positive number BOUND. Let x_{0} XGGESS and $b=$ BOUND, then x is restricted to the
interval $\left[x_{0}-b, x_{0}+b\right]$. Usually, the algorithm begins the search by moving from x_{0} to $x=x_{0}+s$, where $s=$ STEP is also provided by the user and may be positive or negative. The first two function evaluations indicate the direction to the minimum point, and the search strides out along this direction until a bracket on a minimum point is found or until x reaches one of the bounds $x_{0} \pm b$. During this stage, the step length increases by a factor of between two and nine per function evaluation; the factor depends on the position of the minimum point that is predicted by quadratic interpolation of the three most recent function values.

When an interval containing a solution has been found, we will have three points, x_{1}, x_{2}, and x_{3}, with $x_{1}<x_{2}<x_{3}$ and $f\left(x_{2}\right) \leq f\left(x_{1}\right)$ and $f\left(x_{2}\right) \leq f\left(x_{3}\right)$. There are three main ingredients in the technique for choosing the new x from these three points. They are (i) the estimate of the minimum point that is given by quadratic interpolation of the three function values, (ii) a tolerance parameter ε, that depends on the closeness of f to a quadratic, and (iii) whether x_{2} is near the center of the range between x_{1} and x_{3} or is relatively close to an end of this range. In outline, the new value of x is as near as possible to the predicted minimum point, subject to being at least ε from x_{2}, and subject to being in the longer interval between x_{1} and x_{2} or x_{2} and x_{3} when x_{2} is particularly close to x_{1} or x_{3}. There is some elaboration, however, when the distance between these points is close to the required accuracy; when the distance is close to the machine precision; or when ε is relatively large.

The algorithm is intended to provide fast convergence when f has a positive and continuous second derivative at the minimum and to avoid gross inefficiencies in pathological cases, such as

$$
f(x)=x+1.001|x|
$$

The algorithm can make ε large automatically in the pathological cases. In this case, it is usual for a new value of x to be at the midpoint of the longer interval that is adjacent to the least calculated function value. The midpoint strategy is used frequently when changes to f are dominated by computer rounding errors, which will almost certainly happen if the user requests an accuracy that is less than the square root of the machine precision. In such cases, the routine claims to have achieved the required accuracy if it knows that there is a local minimum point within distance δ of x, where $\delta=\mathrm{XACC}$, even though the rounding errors in f may cause the existence of other local minimum points nearby. This difficulty is inevitable in minimization routines that use only function values, so high precision arithmetic is recommended.

UVMID

Finds the minimum point of a smooth function of a single variable using both function evaluations and first derivative evaluations.

Required Arguments

\boldsymbol{F} - User-supplied FUNCTION to define the function to be minimized. The form is $\mathrm{F}(\mathrm{X})$, where
\boldsymbol{X} - The point at which the function is to be evaluated. (Input)
\boldsymbol{F} - The computed value of the function at X. (Output)
E must be declared EXTERNAL in the calling program.
\boldsymbol{G} - User-supplied FUNCTION to compute the derivative of the function. The form is $\mathrm{G}(\mathrm{X})$, where
\boldsymbol{X} - The point at which the derivative is to be computed. (Input)
\boldsymbol{G} - The computed value of the derivative at X. (Output)
G must be declared EXTERNAL in the calling program.
$\boldsymbol{A}-\mathrm{A}$ is the lower endpoint of the interval in which the minimum point of F is to be located. (Input)
$\boldsymbol{B}-\mathrm{B}$ is the upper endpoint of the interval in which the minimum point of F is to be located. (Input)
\boldsymbol{X} - The point at which a minimum value of F is found. (Output)

Optional Arguments

$\boldsymbol{X G U E S S}$ - An initial guess of the minimum point of F . (Input)
Default: $\operatorname{XGUESS}=(\mathrm{a}+\mathrm{b}) / 2.0$.
$\boldsymbol{E R R R E L}$ - The required relative accuracy in the final value of x . (Input)
This is the first stopping criterion. On a normal return, the solution X is in an interval that contains a local minimum and is less than or equal to $\operatorname{MAX}(1.0, \operatorname{ABS}(\mathrm{X}))$ * ERRREL. When the given ERRREL is less than machine epsilon, SQRT(machine epsilon) is used as ERRREL.
Default: $\operatorname{ERRREL}=1 . \mathrm{e}-4$.
GTOL - The derivative tolerance used to decide if the current point is a local minimum. (Input)
This is the second stopping criterion. X is returned as a solution when GX is less than or equal to GTOL. GTOL should be nonnegative, otherwise zero would be used.
Default: GTOL = 1.e-4.

MAXFN - Maximum number of function evaluations allowed. (Input) Default: $\mathrm{MAXFN}=1000$.
$\boldsymbol{F X}$ - The function value at point X . (Output)
$\boldsymbol{G} \boldsymbol{X}$ - The derivative value at point X . (Output)

FORTRAN 90 Interface

Generic: CALL UVMID (F, G, A, B, X [,...])
Specific: The specific interface names are S_UVMID and D_UVMID.

FORTRAN 77 Interface

```
Single: CALL UVMID (F, G, XGUESS, ERRREL, GTOL, MAXFN, A, B, X, FX,
GX)
```

Double: The double precision name is DUVMID.

Example

A minimum point of $e^{x}-5 x$ is found.

```
USE UVMID INT
USE UMACH_INT
INTEGER MAXFN, NOUT
REAL A, B, ERRREL, F, FX, G, GTOL, GX, X, XGUESS
EXTERNAL F, G
XGUESS = 0.0
set ERRREL to zero in order
to use SQRT(machine epsilon)
as relative error
ERRREL = 0.0
GTOL = 0.0
A = -10.0
B = 10.0
MAXFN = 50
! Find minimum for F = EXP(X) - 5X
CALL UVMID (F, G, A, B, X, XGUESS=XGUESS, ERRREL=ERRREL, &
                                    GTOL=FTOL, MAXFN=MAXFN, FX=FX, GX=GX)
                                    Print results
CALL UMACH (2, NOUT)
WRITE (NOUT,99999) X, FX, GX
99999 FORMAT (' The minimum is at ', 7X, F7.3, //, ' The function ' &
    , 'value is ', F7.3, //, ' The derivative is ', F7.3)
END
REAL FUNCTION F (X)
REAL X
REAL EXP
INTRINSIC EXP
F = EXP (X) - 5.0E0*X
```

$!$

```
!
    RETURN
END
!
REAL FUNCTION G (X)
REAL X
REAL EXP
INTRINSIC EXP
!
G = EXP(X) - 5.0E0
RETURN
END
```


Output

```
The minimum is at 1.609
The function value is -3.047
The derivative is -0.001
```


Comments

Informational errors

Type	Code	
3	1	The final value of x is at the lower bound. The minimum is probably beyond the bound.
3	2	The final value of x is at the upper bound. The minimum is probably beyond the bound.
4	3	The maximum number of function evaluations has been exceeded.

Description

The routine UVMID uses a descent method with either the secant method or cubic interpolation to find a minimum point of a univariate function. It starts with an initial guess and two endpoints. If any of the three points is a local minimum point and has least function value, the routine terminates with a solution. Otherwise, the point with least function value will be used as the starting point.
From the starting point, say x_{c}, the function value $f_{c}=f\left(x_{c}\right)$, the derivative value $g_{c}=g\left(x_{c}\right)$, and a new point x_{n} defined by $x_{n}=x_{c}-g_{c}$ are computed. The function $f_{n}=f\left(x_{n}\right)$, and the derivative $g_{n}=g\left(x_{n}\right)$ are then evaluated. If either $f_{n} \geq f_{c}$ or g_{n} has the opposite sign of g_{c}, then there exists a minimum point between x_{c} and x_{n}; and an initial interval is obtained. Otherwise, since x_{c} is kept as the point that has lowest function value, an interchange between x_{n} and x_{c} is performed. The secant method is then used to get a new point

$$
x_{s}=x_{c}-g_{c}\left(\frac{g_{n}-g_{c}}{x_{n}-x_{c}}\right)
$$

Let $x_{n} \leftarrow x_{s}$ and repeat this process until an interval containing a minimum is found or one of the convergence criteria is satisfied. The convergence criteria are as follows: Criterion 1:

$$
\left|x_{c}-x_{n}\right| \leq \varepsilon_{c}
$$

Criterion 2:

$$
\left|g_{c}\right| \leq \varepsilon_{g}
$$

where $\varepsilon_{c}=\max \left\{1.0,\left|x_{c}\right|\right\} \varepsilon, \varepsilon$ is a relative error tolerance and ε_{g} is a gradient tolerance.
When convergence is not achieved, a cubic interpolation is performed to obtain a new point. Function and derivative are then evaluated at that point; and accordingly, a smaller interval that contains a minimum point is chosen. A safeguarded method is used to ensure that the interval reduces by at least a fraction of the previous interval. Another cubic interpolation is then performed, and this procedure is repeated until one of the stopping criteria is met.

UVMGS

Finds the minimum point of a nonsmooth function of a single variable.

Required Arguments

\boldsymbol{F} - User-supplied FUNCTION to compute the value of the function to be minimized. The form is $F(X)$, where

X - The point at which the function is evaluated. (Input) X should not be changed by F.

F - The computed function value at the point X . (Output)
F must be declared EXTERNAL in the calling program.
\boldsymbol{A} - On input, A is the lower endpoint of the interval in which the minimum of F is to be located. On output, A is the lower endpoint of the interval in which the minimum of F is located. (Input/Output)
\boldsymbol{B} - On input, B is the upper endpoint of the interval in which the minimum of F is to be located. On output, B is the upper endpoint of the interval in which the minimum of F is located. (Input/Output)

XMIN - The approximate minimum point of the function F on the original interval (A, B). (Output)

Optional Arguments

TOL - The allowable length of the final subinterval containing the minimum point. (Input) Default: $\mathrm{TOL}=1 . \mathrm{e}-4$.

FORTRAN 90 Interface

Generic: CALL UVMGS (F, A, B, XMIN [,...])

Specific: The specific interface names are S_UVMGS and D_UVMGS.

FORTRAN 77 Interface

Single: CALL UVMGS (F, A, B, TOL, XMIN)

Double: The double precision name is DUVMGS.

Example

A minimum point of $3 x^{2}-2 x+4$ is found.

```
USE UVMGS_INT
USE UMACH_INT
```

```
INTEGER NOUT
REAL A, B, FCN, FMIN, TOL, XMIN
EXTERNAL FCN
```

!
$\mathrm{A}=0.0 \mathrm{E} 0$
$\mathrm{B}=5.0 \mathrm{E} 0$
TOL $=1.0 \mathrm{E}-3$
! Minimize FCN
CALL UVMGS (FCN, A, B, XMIN, TOL=TOL)
FMIN $=$ FCN (XMIN)
Print results
CALL UMACH (2, NOUT)
WRITE (NOUT,99999) XMIN, FMIN, A, B
99999 FORMAT (' The minimum is at ', F5.3, //, , The ', \&
'function value is ', F5.3, //, ' The final ', \&
'interval is (', F6.4, ',', F6.4, ')', /)
!
END
$!$
REAL FUNCTION FCN (X)
REAL X
!
$\mathrm{FCN}=3.0 \mathrm{E} 0 * \mathrm{X} * \mathrm{X}-2.0 \mathrm{E} 0 * \mathrm{X}+4.0 \mathrm{EO}$
!
RETURN
END

Output

The minimum is at 0.333
The function value is 3.667
The final interval is (0.3331,0.3340)

Comments

1. Informational errors

Type	Code	
3	1	TOL is too small to be satisfied.
4	2	Due to rounding errors F does not appear to be unimodal.

2. On exit from UVMGS without any error messages, the following conditions hold: (B-A) \leq TOL.
$\mathrm{A} \leq$ XMIN and XMIN $\leq \mathrm{B}$
$F(X M I N) \leq F(A)$ and $F(X M I N) \leq F(B)$
3. On exit from UVMGS with error code 2, the following conditions hold:
$\mathrm{A} \leq$ XMIN and XMIN $\leq \mathrm{B}$
$F(X M I N) \geq F(A)$ and $F(X M I N) \geq F(B)$ (only one equality can hold).
Further analysis of the function F is necessary in order to determine whether it is not unimodal in the mathematical sense or whether it appears to be not unimodal to the routine due to rounding errors in which case the A, B, and XMIN returned may be acceptable.

Description

The routine UVMGS uses the golden section search technique to compute to the desired accuracy the independent variable value that minimizes a unimodal function of one independent variable, where a known finite interval contains the minimum.

Let $\tau=$ TOL. The number of iterations required to compute the minimizing value to accuracy τ is the greatest integer less than or equal to

$$
\frac{\ln (\tau /(b-a))}{\ln (1-c)}+1
$$

where a and b define the interval and

$$
c=(3-\sqrt{5}) / 2
$$

The first two test points are v_{1} and v_{2} that are defined as

$$
v_{1}=a+c(b-a), \text { and } v_{2}=b-c(b-a)
$$

If $f\left(v_{1}\right)<f\left(v_{2}\right)$, then the minimizing value is in the interval $\left(a, v_{2}\right)$. In this case, $b \leftarrow v_{2}, v_{2} \leftarrow v_{1}$, and $v_{1} \leftarrow a+c(b-a)$. If $f\left(v_{1}\right) \geq f\left(v_{2}\right)$, the minimizing value is in ($\left.v_{1}, b\right)$. In this case, $a \leftarrow v_{1}, v_{1}$ $\leftarrow v_{2}$, and $v_{2} \leftarrow b-c(b-a)$.

The algorithm continues in an analogous manner where only one new test point is computed at each step. This process continues until the desired accuracy τ is achieved. XMIN is set to the point producing the minimum value for the current iteration.

Mathematically, the algorithm always produces the minimizing value to the desired accuracy; however, numerical problems may be encountered. If f is too flat in part of the region of interest, the function may appear to be constant to the computer in that region. Error code 2 indicates that this problem has occurred. The user may rectify the problem by relaxing the requirement on τ, modifying (scaling, etc.) the form of f or executing the program in a higher precision.

UMINF

Minimizes a function of N variables using a quasi-Newton method and a finite-difference gradient.

Required Arguments

$\boldsymbol{F C N}$ - User-supplied SUBROUTINE to evaluate the function to be minimized. The usage is CALL FCN ($\mathrm{N}, \mathrm{X}, \mathrm{F}$), where

N - Length of X . (Input)
X - The point at which the function is evaluated. (Input)
X should not be changed by FCN.
F - The computed function value at the point X . (Output)

FCN must be declared EXTERNAL in the calling program.
$\boldsymbol{X}-$ Vector of length N containing the computed solution. (Output)

Optional Arguments

\boldsymbol{N} - Dimension of the problem. (Input)
Default: $\mathrm{N}=\operatorname{size}(\mathrm{X}, 1)$.
$\boldsymbol{X G U E S S}$ - Vector of length N containing an initial guess of the computed solution. (Input) Default: XGUESS $=0.0$.
$\boldsymbol{X S C A L E}$ — Vector of length N containing the diagonal scaling matrix for the variables.
(Input)
XSCALE is used mainly in scaling the gradient and the distance between two points. In the absence of other information, set all entries to 1.0.
Default: XSCALE $=1.0$.

FSCALE - Scalar containing the function scaling. (Input)
FSCALE is used mainly in scaling the gradient. In the absence of other information, set FSCALE to 1.0 .
Default: $\mathrm{FSCALE}=1.0$.

IPARAM - Parameter vector of length 7. (Input/Output)
Set IPARAM(1) to zero for default values of IPARAM and RPARAM. See Comment 4.
Default: IPARAM $=0$.

RPARAM - Parameter vector of length 7.(Input/Output)
See Comment 4.
$\boldsymbol{F V A L U E}-$ Scalar containing the value of the function at the computed solution. (Output)

FORTRAN 90 Interface

Generic: CALL UMINF (FCN, X [,...])
Specific: The specific interface names are S_UMINF and D_UMINF.

FORTRAN 77 Interface

Single: CALL UMINF (FCN, N, XGUESS, XSCALE, FSCALE, IPARAM, RPARAM, X, FVALUE)

Double: The double precision name is DUMINF.

Example

The function

$$
f(x)=100\left(x_{2}-x_{1}^{2}\right)^{2}+\left(1-x_{1}\right)^{2}
$$

is minimized.

```
USE UMINF INT
USE U4INF_INT
USE UMACH INT
INTEGER - N
PARAMETER (N=2)
INTEGER IPARAM(7), L, NOUT
REAL F, RPARAM(7), X(N), XGUESS (N), &
            XSCALE (N)
EXTERNAL ROSBRK
DATA XGUESS/-1.2E0, 1.0E0/
    Relax gradient tolerance stopping
    criterion
    CALL U4INF (IPARAM, RPARAM)
```

```
    RPARAM(1) = 10.0E0*RPARAM(1)
                                    Minimize Rosenbrock function using
                                    initial guesses of -1.2 and 1.0
    CALL UMINF (ROSBRK, X, XGUESS=XGUESS, IPARAM=IPARAM, RPARAM=RPARAM, &
    FVALUE=F)
! Print results
    CALL UMACH (2, NOUT)
    WRITE (NOUT,99999) X, F, (IPARAM(L),L=3,5)
!
99999 FORMAT (' The solution is ', 6X, 2F8.3, //, ' The function ', &
    'value is ', F8.3, //, ' The number of iterations is ', &
    10X, I3, /, ' The number of function evaluations is ', &
    I3, /, ' The number of gradient evaluations is ', I3)
!
    END
!
    SUBROUTINE ROSBRK (N, X, F)
    INTEGER N
    REAL X(N), F
!
    F = 1.0E2* (X(2)-X(1)*X(1))**2 + (1.0E0-X(1))**2
!
    RETURN
    END
```


Output

```
The solution is 1.000 1.000
The function value is 0.000
The number of iterations is 15
The number of function evaluations is 40
The number of gradient evaluations is 19
```


Comments

1. Workspace may be explicitly provided, if desired, by use of U2INF/DU2 INF. The reference is:
```
CALL U2INF (FCN, N, XGUESS, XSCALE, FSCALE, IPARAM,
```

RPARAM, X, FVALUE, WK)

The additional argument is:
$\boldsymbol{W} \boldsymbol{K}$ - Work vector of length $\mathrm{N}(\mathrm{N}+8)$. WK contains the following information on output: The second N locations contain the last step taken. The third N locations contain the last Newton step. The fourth N locations contain an estimate of the gradient at the solution. The final N^{2} locations contain the Cholesky factorization of a BFGS approximation to the Hessian at the solution.
2. Informational errors

Type Code

1 Both the actual and predicted relative reductions in the function are less than or equal to the relative function convergence tolerance.
2 The iterates appear to be converging to a noncritical point.
3 Maximum number of iterations exceeded.
4 Maximum number of function evaluations exceeded.
5 Maximum number of gradient evaluations exceeded.
6 Five consecutive steps have been taken with the maximum step length.
$7 \quad$ Scaled step tolerance satisfied; the current point may be an approximate local solution, or the algorithm is making very slow progress and is not near a solution, or STEPTL is too big.
8 The last global step failed to locate a lower point than the current X value.
3. The first stopping criterion for UMINF occurs when the infinity norm of the scaled gradient is less than the given gradient tolerance (RPARAM(1)). The second stopping criterion for UMINF occurs when the scaled distance between the last two steps is less than the step tolerance (RPARAM(2)).
4. If the default parameters are desired for UMINF, then set IPARAM(1) to zero and call the routine UMINF. Otherwise, if any nondefault parameters are desired for IPARAM or RPARAM, then the following steps should be taken before calling UMINF:

CALL U4INF (IPARAM, RPARAM)
Set nondefault values for desired IPARAM, RPARAM elements.
Note that the call to U4INF will set IPARAM and RPARAM to their default values so only nondefault values need to be set above.

The following is a list of the parameters and the default values:
IPARAM - Integer vector of length 7.
$\operatorname{IPARAM}(1)=$ Initialization flag.
$\operatorname{IPARAM}(2)=$ Number of good digits in the function.
Default: Machine dependent.
$\operatorname{IPARAM}(3)=$ Maximum number of iterations.
Default: 100.
$\operatorname{IPARAM}(4)=$ Maximum number of function evaluations.
Default: 400.
$\operatorname{IPARAM}(5)=$ Maximum number of gradient evaluations.
Default: 400.
$\operatorname{IPARAM}(6)=$ Hessian initialization parameter.
If $\operatorname{IPARAM}(6)=0$, the Hessian is initialized to the identity matrix; otherwise, it is initialized to a diagonal matrix containing

$$
\max \left(|f(t)|, f_{s}\right) * s_{i}^{2}
$$

on the diagonal where $t=\mathrm{XGUESS}, f_{s}=$ FSCALE, and $s=$ XSCALE.
Default: 0 .
$\operatorname{IPARAM}(7)=$ Maximum number of Hessian evaluations.
Default: Not used in UMINF.
RPARAM - Real vector of length 7.
$\operatorname{RPARAM}(1)=$ Scaled gradient tolerance.
The i-th component of the scaled gradient at x is calculated as

$$
\frac{\left|g_{i}\right| * \max \left(\left|x_{i}\right|, 1 / s_{i}\right)}{\max \left(|f(x)|, f_{s}\right)}
$$

where $g=\nabla f(x), s=$ XSCALE, and $f_{S}=$ FSCALE.
Default:

$$
\sqrt{\varepsilon}, \sqrt[3]{\varepsilon}
$$

in double where ε is the machine precision.
$\operatorname{RPARAM}(2)=$ Scaled step tolerance. (STEPTL)
The i-th component of the scaled step between two points x and y is computed as

$$
\frac{\left|x_{i}-y_{i}\right|}{\max \left(\left|x_{i}\right|, 1 / s_{i}\right)}
$$

where $s=$ XSCALE.
Default: $\varepsilon 2 / 3$ where ε is the machine precision.
$\operatorname{RPARAM}(3)=$ Relative function tolerance.
Default: $\max \left(10^{-10}, \varepsilon^{2 / 3}\right), \max \left(10^{-20}, \varepsilon^{2 / 3}\right)$ in double where ε is the machine precision.
$\operatorname{RPARAM}(4)=$ Absolute function tolerance.
Default: Not used in UMINF.
$\operatorname{RPARAM}(5)=$ False convergence tolerance.
Default: Not used in UMINF.
$\operatorname{RPARAM}(6)=$ Maximum allowable step size.
Default: $1000 \max \left(\varepsilon_{1}, \varepsilon_{2}\right)$ where

$$
\varepsilon_{1}=\sqrt{\sum_{i=1}^{n}\left(s_{i} t_{i}\right)^{2}}, \varepsilon_{2}=\|s\|_{2}, s=\mathrm{XSCALE}, \text { and } t=\mathrm{XGUESS}
$$

$\operatorname{RPARAM}(7)=$ Size of initial trust region radius.
Default: Not used in UMINF.

If double precision is required, then DU4 INF is called, and RPARAM is declared double precision.
5. Users wishing to override the default print/stop attributes associated with error messages issued by this routine are referred to "Error Handling" in the Introduction.

Description

The routine UMINF uses a quasi-Newton method to find the minimum of a function $f(x)$ of n variables. Only function values are required. The problem is stated as follows:

$$
\min _{x \in \mathbf{R}^{n}} f(x)
$$

Given a starting point x_{c}, the search direction is computed according to the formula

$$
d=-B^{-1} g_{c}
$$

where B is a positive definite approximation of the Hessian and g_{c} is the gradient evaluated at x_{c}. A line search is then used to find a new point

$$
x_{n}=x_{c}+\lambda d, \lambda>0
$$

such that

$$
f\left(x_{n}\right) \leq f\left(x_{c}\right)+\alpha g^{T} d, \quad \alpha \in(0,0.5)
$$

Finally, the optimality condition $\|g(x)\|=\varepsilon$ is checked where ε is a gradient tolerance.
When optimality is not achieved, B is updated according to the BFGS formula

$$
B \leftarrow B-\frac{B s s^{T} B}{s^{T} B s}+\frac{y y^{T}}{y^{T} s}
$$

where $s=x_{n}-x_{c}$ and $y=g_{n}-g_{c}$. Another search direction is then computed to begin the next iteration. For more details, see Dennis and Schnabel (1983, Appendix A).

Since a finite-difference method is used to estimate the gradient, for some single precision calculations, an inaccurate estimate of the gradient may cause the algorithm to terminate at a noncritical point. In such cases, high precision arithmetic is recommended. Also, whenever the exact gradient can be easily provided, IMSL routine UMING (page 1202) should be used instead.

UMING

Minimizes a function of N variables using a quasi-Newton method and a user-supplied gradient.

Required Arguments

$\boldsymbol{F C N}$ - User-supplied SUBROUTINE to evaluate the function to be minimized. The usage is CALL FCN (N, X, F), where

N - Length of X. (Input)
$\mathrm{X}-$ Vector of length N at which point the function is evaluated. (Input) X should not be changed by FCN.

F - The computed function value at the point X . (Output)
FCN must be declared EXTERNAL in the calling program.
$\boldsymbol{G R} \boldsymbol{A D}$ - User-supplied Subroutine to compute the gradient at the point x . The usage is
CALL GRAD ($\mathrm{N}, \mathrm{X}, \mathrm{G}$), where

N - Length of X and G . (Input)
X - Vector of length N at which point the function is evaluated. (Input)
X should not be changed by GRAD.
G - The gradient evaluated at the point X . (Output)
GRAD must be declared EXTERNAL in the calling program.
\boldsymbol{X} - Vector of length N containing the computed solution. (Output)

Optional Arguments

N - Dimension of the problem. (Input)
Default: $\mathrm{N}=\operatorname{size}(\mathrm{X}, 1)$.
$\boldsymbol{X G U E S S}$ - Vector of length N containing the initial guess of the minimum. (Input)
Default: XGUESS $=0.0$.
$\boldsymbol{X S C A L E}$ - Vector of length N containing the diagonal scaling matrix for the variables.
(Input)
XSCALE is used mainly in scaling the gradient and the distance between two points. In the absence of other information, set all entries to 1.0 .
Default: $\mathrm{XSCALE}=1.0$.
FSCALE - Scalar containing the function scaling. (Input)
FSCALE is used mainly in scaling the gradient. In the absence of other information, set

FSCALE to 1.0 .
Default: $\operatorname{FSCALE}=1.0$.
IPARAM — Parameter vector of length 7. (Input/Output)
Set IPARAM(1) to zero for default values of IPARAM and RPARAM. See Comment 4. Default: $I P A R A M=0$.
$\boldsymbol{R P A R A M}$ - Parameter vector of length 7. (Input/Output) See Comment 4.
$\boldsymbol{F V A L U E}$ - Scalar containing the value of the function at the computed solution. (Output)

FORTRAN 90 Interface

Generic: CALL UMING (FCN, GRAD, X [,...])
Specific: The specific interface names are S_UMING and D_UMING.

FORTRAN 77 Interface

Single:

```
CALL UMING (FCN, GRAD, N, XGUESS, XSCALE, FSCALE, IPARAM, RPARAM, X, FVALUE)
```

Double: The double precision name is DUMING.

Example

The function

$$
f(x)=100\left(x_{2}-x_{1}^{2}\right)^{2}+\left(1-x_{1}\right)^{2}
$$

is minimized. Default values for parameters are used.

```
USE UMING INT
USE UMACH_INT
INTEGER N
PARAMETER (N=2)
INTEGER IPARAM(7), L, NOUT
REAL F, X(N), XGUESS(N)
EXTERNAL ROSBRK, ROSGRD
DATA XGUESS/-1.2E0, 1.0E0/
IPARAM(1) = 0
    Minimize Rosenbrock function using
    initial guesses of -1.2 and 1.0
    CALL UMING (ROSBRK, ROSGRD, X, XGUESS=XGUESS, IPARAM=IPARAM, FVALUE=F)
    Print results
    CALL UMACH (2, NOUT)
    WRITE (NOUT, 99999) X, F, (IPARAM (L), L=3,5)
```

!

```
!
99999 FORMAT (' The solution is ', 6X, 2F8.3, //, ' The function ', &
    'value is ', F8.3, //, ' The number of iterations is ', &
    10X, I3, /, , The number of function evaluations is ', &
    I3, /, ' The number of gradient evaluations is ', I3)
!
    END
!
    SUBROUTINE ROSBRK (N, X, F)
    INTEGER N
    REAL X(N), F
!
    F = 1.0E2*(X(2)-X(1)*X(1))**2 + (1.0E0-X(1))**2
!
    RETURN
    END
!
    SUBROUTINE ROSGRD (N, X, G)
    INTEGER N
    REAL X(N), G(N)
!
    G(1) = -4.0E2*(X(2)-X(1)*X(1))*X(1) - 2.0E0*(1.0E0-X(1))
    G(2) = 2.0E2*(X(2)-X(1)*X(1))
!
    RETURN
    END
```


Output

```
The solution is 1.000 1.000
The function value is 0.000
The number of iterations is 18
The number of function evaluations is 31
The number of gradient evaluations is 22
```


Comments

1. Workspace may be explicitly provided, if desired, by use of U2ING/DU2 ING. The reference is:
```
CALL U2ING (FCN, GRAD, N, XGUESS, XSCALE, FSCALE, IPARAM,
RPARAM, X, FVALUE, WK)
```

The additional argument is
$\boldsymbol{W} \boldsymbol{K}$ - Work vector of length $\mathrm{N} *(\mathrm{~N}+8)$. WK contains the following information on output: The second N locations contain the last step taken. The third N locations contain the last Newton step. The fourth N locations contain an estimate of the gradient at the solution. The final N^{2} locations contain the Cholesky factorization of a BFGS approximation to the Hessian at the solution.
2. Informational errors

Type	Code	
3	1	Both the actual and predicted relative reductions in the function are less than or equal to the relative function convergence tolerance.
4	2	The iterates appear to be converging to a noncritical point.
4	3	Maximum number of iterations exceeded.
4	4	Maximum number of function evaluations exceeded.
4	5	Maximum number of gradient evaluations exceeded.
4	6	Five consecutive steps have been taken with the maximum step length. Scaled step tolerance satisfied; the current point may be an
2	7	approximate local solution, or the algorithm is making very slow progress and is not near a solution, or STEPTL is too big. The last global step failed to locate a lower point than the current X value.
3	8	

3. The first stopping criterion for UMING occurs when the infinity norm of the scaled gradient is less than the given gradient tolerance (RPARAM(1)). The second stopping criterion for UMING occurs when the scaled distance between the last two steps is less than the step tolerance (RPARAM(2)).
4. If the default parameters are desired for UMING, then set IPARAM(1) to zero and call routine UMING (page 1202). Otherwise, if any nondefault parameters are desired for IPARAM or RPARAM, then the following steps should be taken before calling UMING:

CALL U4INF (IPARAM, RPARAM)
Set nondefault values for desired IPARAM, RPARAM elements.

Note that the call to U4 INF will set IPARAM and RPARAM to their default values so only nondefault values need to be set above.

The following is a list of the parameters and the default values:
IPARAM - Integer vector of length 7.
$\operatorname{IPARAM}(1)=$ Initialization flag.
$\operatorname{IPARAM}(2)=$ Number of good digits in the function.
Default: Machine dependent.
$\operatorname{IPARAM}(3)=$ Maximum number of iterations.
Default: 100.
$\operatorname{IPARAM}(4)=$ Maximum number of function evaluations. Default: 400.
$\operatorname{IPARAM}(5)=$ Maximum number of gradient evaluations.
Default: 400.
$\operatorname{IPARAM}(6)=$ Hessian initialization parameter
If $\operatorname{IPARAM}(6)=0$, the Hessian is initialized to the identity matrix; otherwise, it is initialized to a diagonal matrix containing

$$
\max \left(|f(t)|, f_{s}\right) * s_{i}^{2}
$$

on the diagonal where $t=$ XGUESS, $f_{S}=$ FSCALE, and $s=$ XSCALE.
Default: 0 .
$\operatorname{IPARAM}(7)=$ Maximum number of Hessian evaluations.
Default: Not used in UMING.

RPARAM - Real vector of length 7.
$\operatorname{RPARAM}(1)=$ Scaled gradient tolerance.
The i-th component of the scaled gradient at x is calculated as

$$
\frac{\left|g_{i}\right| * \max \left(\left|x_{i}\right|, 1 / s_{i}\right)}{\max \left(|f(x)|, f_{s}\right)}
$$

where $g=\nabla f(x), s=$ XSCALE, and $f_{s}=$ FSCALE.
Default:

$$
\sqrt{\varepsilon}, \sqrt[3]{\varepsilon}
$$

in double where ε is the machine precision.
RPARAM $(2)=$ Scaled step tolerance. (STEPTL)
The i-th component of the scaled step between two points x and y is computed as

$$
\frac{\left|x_{i}-y_{i}\right|}{\max \left(\left|x_{i}\right|, 1 / s_{i}\right)}
$$

where $s=$ XSCALE .
Default: $\varepsilon^{2 / 3}$ where ε is the machine precision.
$\operatorname{RPARAM}(3)=$ Relative function tolerance.
Default: $\max \left(10^{-10}, \varepsilon^{2 / 3}\right), \max \left(10^{-20}, \varepsilon^{2 / 3}\right)$ in double where ε is the machine precision.
$\operatorname{RPARAM}(4)=$ Absolute function tolerance.
Default: Not used in UMING.
$\operatorname{RPARAM}(5)=$ False convergence tolerance.
Default: Not used in UMING.
$\operatorname{RPARAM}(6)=$ Maximum allowable step size.
Default: $1000 \max \left(\varepsilon_{1}, \varepsilon_{2}\right)$ where

$$
\begin{gathered}
\varepsilon_{1}=\sqrt{\sum_{i=1}^{n}\left(s_{i} t_{i}\right)^{2}} \\
\varepsilon_{2}=\|s\|_{2}, s=\text { XSCALE, and } t=\mathrm{XGUESS} .
\end{gathered}
$$

$\operatorname{RPARAM}(7)=$ Size of initial trust region radius.
Default: Not used in UMING.

If double precision is required, then DU4 INF is called, and RPARAM is declared double precision.
5. Users wishing to override the default print/stop attributes associated with error messages issued by this routine are referred to "Error Handling" in the Introduction.

Description

The routine UMING uses a quasi-Newton method to find the minimum of a function $f(x)$ of n variables. Function values and first derivatives are required. The problem is stated as follows:

$$
\min _{x \in \mathbf{R}^{n}} f(x)
$$

Given a starting point x_{c}, the search direction is computed according to the formula

$$
d=-B^{-1} g_{c}
$$

where B is a positive definite approximation of the Hessian and g_{c} is the gradient evaluated at x_{c}. A line search is then used to find a new point

$$
x_{n}=x_{c}+\lambda d, \lambda>0
$$

such that

$$
f\left(x_{n}\right) \leq f\left(x_{c}\right)+\alpha g^{T} d, \quad \alpha \in(0,0.5)
$$

Finally, the optimality condition $\|g(x)\|=\varepsilon$ is checked where ε is a gradient tolerance.
When optimality is not achieved, B is updated according to the BFGS formula

$$
B \leftarrow B-\frac{B s s^{T} B}{s^{T} B s}+\frac{y y^{T}}{y^{T} s}
$$

where $s=x_{n}-x_{c}$ and $y=g_{n}-g_{c}$. Another search direction is then computed to begin the next iteration. For more details, see Dennis and Schnabel (1983, Appendix A).

UMIDH

Minimizes a function of N variables using a modified Newton method and a finite-difference Hessian.

Required Arguments

$\boldsymbol{F C N}$ - User-supplied SUBROUTINE to evaluate the function to be minimized. The usage is CALL FCN ($\mathrm{N}, \mathrm{X}, \mathrm{F}$), where

N - Length of X . (Input)
$\mathrm{X}-$ Vector of length N at which point the function is evaluated. (Input) X should not be changed by FCN.

F - The computed function value at the point X . (Output)
FCN must be declared EXTERNAL in the calling program.
$\boldsymbol{G R} \boldsymbol{A D}$ - User-supplied SUBROUTINE to compute the gradient at the point x . The usage is CALL GRAD ($\mathrm{N}, \mathrm{X}, \mathrm{G}$), where

N - Length of X and G . (Input)

X - The point at which the gradient is evaluated. (Input) X should not be changed by GRAD.

G - The gradient evaluated at the point X . (Output)
GRAD must be declared EXTERNAL in the calling program.
$\boldsymbol{X}-$ Vector of length N containing the computed solution. (Output)

Optional Arguments

\boldsymbol{N} - Dimension of the problem. (Input)
Default: $\mathrm{N}=\operatorname{size}(\mathrm{x}, 1)$.
$\boldsymbol{X G} \boldsymbol{U} \boldsymbol{E S S}$ - Vector of length N containing initial guess. (Input)
Default: XGUESS $=0.0$.
$\boldsymbol{X S C A L E}$ - Vector of length N containing the diagonal scaling matrix for the variables.
(Input)
XSCALE is used mainly in scaling the gradient and the distance between two points. In the absence of other information, set all entries to 1.0.
Default: XSCALE $=1.0$.

FSCALE - Scalar containing the function scaling. (Input)
FSCALE is used mainly in scaling the gradient. In the absence of other information, set FSCALE to 1.0 .
Default: $\mathrm{FSCALE}=1.0$.

IPARAM - Parameter vector of length 7. (Input/Output)
Set IPARAM(1) to zero for default values of IPARAM and RPARAM. See Comment 4.
Default: $\operatorname{IPARAM}=0$.

RPARAM - Parameter vector of length 7. (Input/Output)
See Comment 4.
$\boldsymbol{F V A L U E}-$ Scalar containing the value of the function at the computed solution. (Output)

FORTRAN 90 Interface

Generic: CALL UMIDH (FCN, GRAD, X [,...])
Specific: The specific interface names are S_UMIDH and D_UMIDH.

FORTRAN 77 Interface

Single: CALL UMIDH (FCN, GRAD, N, XGUESS, XSCALE, FSCALE, IPARAM, RPARAM, X, FVALUE)

Double: The double precision name is Dumidh.

Example

The function

$$
f(x)=100\left(x_{2}-x_{1}^{2}\right)^{2}+\left(1-x_{1}\right)^{2}
$$

is minimized. Default values for parameters are used.

```
USE UMIDH INT
USE UMACH_INT
INTEGER N
PARAMETER (N=2)
INTEGER IPARAM(7), L, NOUT
REAL F, X(N), XGUESS(N)
EXTERNAL ROSBRK, ROSGRD
DATA XGUESS/-1.2E0, 1.0E0/
IPARAM(1) = 0
    Minimize Rosenbrock function using
    initial guesses of -1.2 and 1.0
CALL UMIDH (ROSBRK, ROSGRD, X, XGUESS=XGUESS, IPARAM=IPARAM, FVALUE=F)
Print results
```

$!$

```
    CALL UMACH (2, NOUT)
    WRITE (NOUT,99999) X, F, (IPARAM(L),L=3,5), IPARAM(7)
!
99999 FORMAT (' The solution is ', 6X, 2F8.3, //, ' The function ', &
            'value is ', F8.3, //, ' The number of iterations is ', &
            1OX, I3, /, ' The number of function evaluations is ', &
            I3, /, ' The number of gradient evaluations is ', I3, /, &
            ' The number of Hessian evaluations is ', I3)
!
    END
!
    SUBROUTINE ROSBRK (N, X, F)
    INTEGER N
    REAL X(N), F
!
    F}=1.0\textrm{E}2*(\textrm{X}(2)-\textrm{X}(1)*\textrm{X}(1))**2+(1.0E0-X(1))**
!
    RETURN
    END
!
    SUBROUTINE ROSGRD (N, X, G)
    INTEGER N
    REAL X(N), G(N)
!
    G(1) = -4.0E2*(X(2)-X(1)*X(1))*X(1) - 2.0E0*(1.0E0-X(1))
    G(2) = 2.0E2*(X(2)-X(1)*X(1))
!
    RETURN
    END
```


Output

The solution is	1.000	1.000
The function value is	0.000	

The number of iterations is 21
The number of function evaluations is 30
The number of gradient evaluations is 22
The number of Hessian evaluations is 21

Comments

1. Workspace may be explicitly provided, if desired, by use of U2IDH/DU2IDH. The reference is:
```
1CALL U2IDH (FCN, GRAD, N, XGUESS, XSCALE, FSCALE, IPARAM,
RPARAM, X, FVALUE, WK)
```

The additional argument is
$\boldsymbol{W} \boldsymbol{K}$ - Work vector of length $\mathrm{N} *(\mathrm{~N}+9)$. WK contains the following information on output: The second N locations contain the last step taken. The third N locations contain the last Newton step. The fourth N locations contain an estimate of the
gradient at the solution. The final N^{2} locations contain the Hessian at the approximate solution.
2. Informational errors

Type Code
31 Both the actual and predicted relative reductions in the function are less than or equal to the relative function convergence tolerance.
42 The iterates appear to be converging to a noncritical point.
43 Maximum number of iterations exceeded.
$4 \quad 4 \quad$ Maximum number of function evaluations exceeded.
45 Maximum number of gradient evaluations exceeded.
46 Five consecutive steps have been taken with the maximum step length.
27 Scaled step tolerance satisfied; the current point may be an approximate local solution, or the algorithm is making very slow progress and is not near a solution, or STEPTL is too big.
$4 \quad 7$ Maximum number of Hessian evaluations exceeded.
38 The last global step failed to locate a lower point than the current X value.
3. The first stopping criterion for UMIDH occurs when the norm of the gradient is less than the given gradient tolerance (RPARAM(1)). The second stopping criterion for UMIDH occurs when the scaled distance between the last two steps is less than the step tolerance (RPARAM(2)).
4. If the default parameters are desired for UMIDH, then set IPARAM(1) to zero and call routine UMIDH. Otherwise, if any nondefault parameters are desired for IPARAM or RPARAM, then the following steps should be taken before calling UMIDH:

CALL U4INF (IPARAM, RPARAM)
Set nondefault values for desired IPARAM, RPARAM elements.

Note that the call to U4INF will set IPARAM and RPARAM to their default values so only nondefault values need to be set above.

The following is a list of the parameters and the default values:
IPARAM - Integer vector of length 7.
$\operatorname{IPARAM}(1)=$ Initialization flag.
$\operatorname{IPARAM}(2)=$ Number of good digits in the function.
Default: Machine dependent.
$\operatorname{IPARAM}(3)=$ Maximum number of iterations.
Default: 100.

IPARAM(4) $=$ Maximum number of function evaluations.
Default: 400.
$\operatorname{IPARAM}(5)=$ Maximum number of gradient evaluations. Default: 400.
$\operatorname{IPARAM}(6)=$ Hessian initialization parameter
Default: Not used in UMIDH.
$\operatorname{IPARAM}(7)=$ Maximum number of Hessian evaluations.
Default:100
RPARAM - Real vector of length 7.
$\operatorname{RPARAM}(1)=$ Scaled gradient tolerance.
The i-th component of the scaled gradient at x is calculated as

$$
\frac{\left|g_{i}\right| * \max \left(\left|x_{i}\right|, 1 / s_{i}\right)}{\max \left(|f(x)|, f_{s}\right)}
$$

where $g=\nabla f(x), s=$ XSCALE, and $f_{s}=$ FSCALE.
Default:

$$
\sqrt{\varepsilon}, \sqrt[3]{\varepsilon}
$$

in double where ε is the machine precision.
$\operatorname{RPARAM}(2)=$ Scaled step tolerance. (STEPTL)
The i-th component of the scaled step between two points x and y is computed as

$$
\frac{\left|x_{i}-y_{i}\right|}{\max \left(\left|x_{i}\right|, 1 / s_{i}\right)}
$$

where $s=$ XSCALE.
Default: $\varepsilon^{2 / 3}$ where ε is the machine precision.
$\operatorname{RPARAM}(3)=$ Relative function tolerance.
Default: $\max \left(10^{-10}, \varepsilon^{2 / 3}\right), \max \left(10^{-20}, \varepsilon^{2 / 3}\right)$ in double where ε is the machine precision.
$\operatorname{RPARAM}(4)=$ Absolute function tolerance.

Default: Not used in UMIDH.
$\operatorname{RPARAM}(5)=$ False convergence tolerance.
Default: 100ε where ε is the machine precision.
$\operatorname{RPARAM}(6)=$ Maximum allowable step size.

Default: $1000 \max \left(\varepsilon_{1}, \varepsilon_{2}\right)$ where

$$
\begin{gathered}
\varepsilon_{1}=\sqrt{\sum_{i=1}^{n}\left(s_{i} t_{i}\right)^{2}} \\
\varepsilon_{2}=\|s\|_{2}, s=\text { XSCALE, and } t=\text { XGUESS } .
\end{gathered}
$$

$\operatorname{RPARAM}(7)=$ Size of initial trust region radius.
Default: Based on initial scaled Cauchy step.
If double precision is required, then DU4INF is called, and RPARAM is declared double precision.
5. Users wishing to override the default print/stop attributes associated with error messages issued by this routine are referred to "Error Handling" in the Introduction.

Description

The routine UMIDH uses a modified Newton method to find the minimum of a function $f(x)$ of n variables. First derivatives must be provided by the user. The algorithm computes an optimal locally constrained step (Gay 1981) with a trust region restriction on the step. It handles the case that the Hessian is indefinite and provides a way to deal with negative curvature. For more details, see Dennis and Schnabel (1983, Appendix A) and Gay (1983).

Since a finite-difference method is used to estimate the Hessian for some single precision calculations, an inaccurate estimate of the Hessian may cause the algorithm to terminate at a noncritical point. In such cases, high precision arithmetic is recommended. Also, whenever the exact Hessian can be easily provided, IMSL routine UMIAH (page 1213) should be used instead.

UMIAH

Minimizes a function of N variables using a modified Newton method and a user-supplied Hessian.

Required Arguments

$\boldsymbol{F C N}$ - User-supplied SUBROUTINE to evaluate the function to be minimized. The usage is CALL FCN (N, X, F), where

N - Length of X . (Input)
X - Vector of length N at which point the function is evaluated. (Input) x should not be changed by FCN.

F - The computed function value at the point X . (Output)
FCN must be declared EXTERNAL in the calling program.
$\boldsymbol{G R} \boldsymbol{A D}$ - User-supplied SUBROUTINE to compute the gradient at the point x . The usage is CALL GRAD ($\mathrm{N}, \mathrm{X}, \mathrm{G}$), where

N - Length of X and G . (Input)
$\mathrm{X}-$ Vector of length N at which point the gradient is evaluated. (Input) X should not be changed by GRAD.
$\mathrm{G}-$ The gradient evaluated at the point X . (Output)

GRAD must be declared EXTERNAL in the calling program.
HESS - User-supplied SUbroutine to compute the Hessian at the point X . The usage is
CALL HESS (N, X, H, LDH), where
N - Length of X . (Input)
$\mathrm{X}-$ Vector of length N at which point the Hessian is evaluated. (Input) X should not be changed by HESS.

H - The Hessian evaluated at the point X . (Output)
LDH - Leading dimension of H exactly as specified in the dimension statement of the calling program. LDH must be equal to N in this routine. (Input)

HESS must be declared EXTERNAL in the calling program.
$\boldsymbol{X}-$ Vector of length N containing the computed solution. (Output)

Optional Arguments

\boldsymbol{N} - Dimension of the problem. (Input)
Default: $N=\operatorname{size}(X, 1)$.
$\boldsymbol{X} \boldsymbol{G} \boldsymbol{U} \boldsymbol{E S S}$ - Vector of length N containing initial guess. (Input)
Default: XGUESS $=0.0$.
$\boldsymbol{X S C A L E}$ - Vector of length N containing the diagonal scaling matrix for the variables.
(Input)
XSCALE is used mainly in scaling the gradient and the distance between two points. In
the absence of other information, set all entries to 1.0 .
Default: $\mathrm{XSCALE}=1.0$.
$\boldsymbol{F S C A L E}$ - Scalar containing the function scaling. (Input) FSCALE is used mainly in scaling the gradient. In the absence of other information, set FSCALE to 1.0 .
Default: $\mathrm{FSCALE}=1.0$.

IPARAM - Parameter vector of length 7. (Input/Output)
Set IPARAM(1) to zero for default values of IPARAM and RPARAM. See Comment 4. Default: $\operatorname{IPARAM}=0$.
$\boldsymbol{R P A R A M}$ - Parameter vector of length 7. (Input/Output) See Comment 4.
$\boldsymbol{F V A L U E}$ - Scalar containing the value of the function at the computed solution. (Output)

FORTRAN 90 Interface

Generic: CALL UMIAH (FCN, GRAD, HESS, X, [,...])
Specific: The specific interface names are S_UMIAH and D_UMIAH.

FORTRAN 77 Interface

```
Single: CALL UMIAH (FCN, GRAD, HESS, N, XGUESS, XSCALE, FSCALE,
    IPARAM, RPARAM, X, FVALUE)
```

Double: The double precision name is DUMIAH.

Example

The function

$$
f(x)=100\left(x_{2}-x_{1}^{2}\right)^{2}+\left(1-x_{1}\right)^{2}
$$

is minimized. Default values for parameters are used.

```
USE UMIAH_INT
USE UMACH_INT
INTEGER - N
PARAMETER (N=2)
INTEGER IPARAM(7), L, NOUT
REAL F, FSCALE, RPARAM(7), X(N), &
            XGUESS(N), XSCALE (N)
EXTERNAL ROSBRK, ROSGRD, ROSHES
DATA XGUESS/-1.2E0, 1.0E0/, XSCALE/1.0E0, 1.0E0/, FSCALE/1.0E0/
```

!
!
!

```
    IPARAM(1) = 0
! Minimize Rosenbrock function using
    CALL UMIAH (ROSBRK, ROSGRD, ROSHES, X, XGUESS=XGUESS, IPARAM=IPARAM, &
        FVALUE=F)
            Print results
    CALL UMACH (2, NOUT)
    WRITE (NOUT,99999) X, F, (IPARAM(L),L=3,5), IPARAM(7)
!
99999 FORMAT (' The solution is ', 6X, 2F8.3, //, ' The function ', &
            'value is ', F8.3, //, ' The number of iterations is ', &
            10X, I3, /, ' The number of function evaluations is ', &
            I3, /, ' The number of gradient evaluations is ', I3, /, &
            ' The number of Hessian evaluations is ', I3)
!
    END
!
    SUBROUTINE ROSBRK (N, X, F)
    INTEGER N
    REAL X(N), F
!
    F=1.0E2*(X(2)-X(1)*X(1))**2 + (1.0E0-X(1))**2
!
    RETURN
    END
!
    SUBROUTINE ROSGRD (N, X, G)
    INTEGER N
    REAL X(N),G(N)
!
    G(1) = -4.0E2*(X(2)-X(1)*X(1))*X(1) - 2.0E0*(1.0E0-X(1))
    G(2) = 2.0E2*(X(2)-X(1)*X(1))
!
    RETURN
    END
!
    SUBROUTINE ROSHES (N, X, H, LDH)
    INTEGER N, LDH
    REAL X(N), H(LDH,N)
!
    H(1,1) = -4.0E2*X(2) + 1.2E3*X(1)*X(1) + 2.0E0
    H}(2,1)=-4.0E2*X(1
    H(1, 2) = H (2, 1)
    H(2,2) = 2.0E2
!
    RETURN
    END
```


Output

The solution is	1.000	1.000
The function value is	0.000	

The number of iterations is 21
The number of function evaluations is 31

```
The number of gradient evaluations is 22
The number of Hessian evaluations is 21
```


Comments

1. Workspace may be explicitly provided, if desired, by use of U2IAH/DU2IAH. The reference is:
```
CALL U2IAH (FCN, GRAD, HESS, N, XGUESS, XSCALE, FSCALE, IPARAM,
```

RPARAM, X, FVALUE, WK)

The additional argument is:
$\boldsymbol{W} \boldsymbol{K}$ - Work vector of length N * ($\mathrm{N}+9$). WK contains the following information on output: The second N locations contain the last step taken. The third N locations contain the last Newton step. The fourth N locations contain an estimate of the gradient at the solution. The final N^{2} locations contain the Hessian at the approximate solution.
2. Informational errors

Type	Code	
3	1	Both the actual and predicted relative reductions in the function are less than or equal to the relative function convergence tolerance.
4	2	The iterates appear to be converging to a noncritical point.
4	3	Maximum number of iterations exceeded.
4	4	Maximum number of function evaluations exceeded.
4	5	Maximum number of gradient evaluations exceeded.
4	6	Five consecutive steps have been taken with the maximum step length.
2	7	Scaled step tolerance satisfied; the current point may be an approximate local solution, or the algorithm is making very slow progress and is not near a solution, or STEPTL is too big.
4	7	Maximum number of Hessian evaluations exceeded. 3
8	The last global step failed to locate a lower point than the current X value.	

3. The first stopping criterion for UMIAH occurs when the norm of the gradient is less than the given gradient tolerance (RPARAM(1)). The second stopping criterion for UMIAH occurs when the scaled distance between the last two steps is less than the step tolerance (RPARAM(2)).
4. If the default parameters are desired for UMIAH, then set IPARAM(1) to zero and call the routine UMIAH. Otherwise, if any nondefault parameters are desired for IPARAM or RPARAM, then the following steps should be taken before calling UMIAH:

CALL U4INF (IPARAM, RPARAM)
Set nondefault values for desired IPARAM, RPARAM elements.

Note that the call to U4 INF will set IPARAM and RPARAM to their default values so only nondefault values need to be set above.

The following is a list of the parameters and the default values:
IPARAM - Integer vector of length 7.
$\operatorname{IPARAM}(1)=$ Initialization flag.
$\operatorname{IPARAM}(2)=$ Number of good digits in the function.
Default: Machine dependent.
$\operatorname{IPARAM}(3)=$ Maximum number of iterations.
Default: 100.
$\operatorname{IPARAM}(4)=$ Maximum number of function evaluations.
Default: 400.
$\operatorname{IPARAM}(5)=$ Maximum number of gradient evaluations.
Default: 400.
$\operatorname{IPARAM}(6)=$ Hessian initialization parameter
Default: Not used in UMIAH.
$\operatorname{IPARAM}(7)=$ Maximum number of Hessian evaluations.
Default: 100.
RPARAM - Real vector of length 7.
$\operatorname{RPARAM}(1)=$ Scaled gradient tolerance.
The i-th component of the scaled gradient at x is calculated as

$$
\frac{\left|g_{i}\right| * \max \left(\left|x_{i}\right|, 1 / s_{i}\right)}{\max \left(|f(x)|, f_{s}\right)}
$$

where $g=\nabla f(x), s=$ XSCALE, and $f_{s}=$ FSCALE.
Default:

$$
\sqrt{\varepsilon}, \sqrt[3]{\varepsilon}
$$

in double where ε is the machine precision.
$\operatorname{RPARAM}(2)=$ Scaled step tolerance. $($ STEPTL $)$
The i-th component of the scaled step between two points x and y is computed as

$$
\frac{\left|x_{i}-y_{i}\right|}{\max \left(\left|x_{i}\right|, 1 / s_{i}\right)}
$$

where $s=$ XSCALE.
Default: $\varepsilon^{2 / 3}$ where ε is the machine precision.
$\operatorname{RPARAM}(3)=$ Relative function tolerance.
Default: $\max \left(10^{-10}, \varepsilon^{2 / 3}\right), \max \left(10^{-20}, \varepsilon^{2 / 3}\right)$ in double where ε is the machine precision.
$\operatorname{RPARAM}(4)=$ Absolute function tolerance.
Default: Not used in UMIAH.
$\operatorname{RPARAM}(5)=$ False convergence tolerance.
Default: 100ε where ε is the machine precision.
$\operatorname{RPARAM}(6)=$ Maximum allowable step size.
Default: $1000 \max \left(\varepsilon_{1}, \varepsilon_{2}\right)$ where

$$
\begin{gathered}
\varepsilon_{1}=\sqrt{\sum_{i=1}^{n}\left(s_{i} t_{i}\right)^{2}} \\
\varepsilon_{2}=\|s\|_{2}, s=\text { XSCALE, and } t=\text { XGUESS. }
\end{gathered}
$$

$\operatorname{RPARAM}(7)=$ Size of initial trust region radius.
Default: based on the initial scaled Cauchy step.
If double precision is required, then DU4 INF is called, and RPARAM is declared double precision.
5. Users wishing to override the default print/stop attributes associated with error messages issued by this routine are referred to "Error Handling" in the Introduction.

Description

The routine UMIAH uses a modified Newton method to find the minimum of a function $f(x)$ of n variables. First and second derivatives must be provided by the user. The algorithm computes an optimal locally constrained step (Gay 1981) with a trust region restriction on the step. This algorithm handles the case where the Hessian is indefinite and provides a way to deal with negative curvature. For more details, see Dennis and Schnabel (1983, Appendix A) and Gay (1983).

UMCGF

Minimizes a function of N variables using a conjugate gradient algorithm and a finite-difference gradient.

Required Arguments

FCN - User-supplied SUBROUTINE to evaluate the function to be minimized. The usage is CALL FCN (N, X, F), where

N - Length of X . (Input)
X - The point at which the function is evaluated. (Input)
x should not be changed by FCN.
F - The computed function value at the point X . (Output)
FCN must be declared EXTERNAL in the calling program.
DFPRED - A rough estimate of the expected reduction in the function. (Input)
DFPRED is used to determine the size of the initial change to x.
\boldsymbol{X} - Vector of length N containing the computed solution. (Output)

Optional Arguments

\boldsymbol{N} - Dimension of the problem. (Input)
Default: $\mathrm{N}=\operatorname{size}(\mathrm{X}, 1)$.
$\boldsymbol{X G} \boldsymbol{U} \boldsymbol{E S S}$ - Vector of length N containing the initial guess of the minimum. (Input)
Default: XGUESS $=0.0$.
$\boldsymbol{X S C A L E}$ - Vector of length N containing the diagonal scaling matrix for the variables.
(Input)
Default: $\mathrm{XSCALE}=1.0$.
GRADTL - Convergence criterion. (Input)
The calculation ends when the sum of squares of the components of G is less than GRADTL.
Default: GRADTL = 1.e-4.
MAXFN - Maximum number of function evaluations. (Input)
If MAXFN is set to zero, then no restriction on the number of function evaluations is set. Default: MAXFN $=0$.
\boldsymbol{G} - Vector of length N containing the components of the gradient at the final parameter estimates. (Output)
$\boldsymbol{F V A L U E}$ - Scalar containing the value of the function at the computed solution. (Output)

FORTRAN 90 Interface

Generic: CALL UMCGF (FCN, DFPRED, X [, ...])

Specific: The specific interface names are S_UMCGF and D_UMCGF.

FORTRAN 77 Interface

Single: CALL UMCGF (FCN, N, XGUESS, XSCALE, GRADTL, MAXFN, DFPRED, X, G, FVALUE)

Double: The double precision name is DUMCGF.

Example

The function

$$
f(x)=100\left(x_{2}-x_{1}^{2}\right)^{2}+\left(1-x_{1}\right)^{2}
$$

is minimized and the solution is printed.

```
USE UMCGF_INT
USE UMACH_INT
INTEGER N
PARAMETER (N=2)
INTEGER I, MAXFN, NOUT
REAL DFPRED, FVALUE, G(N), GRADTL, X(N), XGUESS(N)
EXTERNAL ROSBRK
DATA XGUESS/-1.2E0, 1.0E0/
DFPRED = 0.2
GRADTL = 1.0E-6
MAXFN = 100
CALL UMCGF (ROSBRK, DFPRED, X, XGUESS=XGUESS, GRADTL=GRADTL, &
    G=G, FVALUE=FVALUE)
                                    Print the results
    CALL UMACH (2, NOUT)
    WRITE (NOUT,99999) (X(I),I=1,N), FVALUE, (G (I),I=1,N)
99999 FORMAT (' The solution is ', 2F8.3, //, ' The function ', &
        'evaluated at the solution is ', F8.3, //, ' The ', &
        'gradient is ', 2F8.3, /)
    END
    SUBROUTINE ROSBRK (N, X, F)
    INTEGER N
    REAL X(N), F
    F=1.0E2*(X(2)-X(1)*X(1))**2 + (1.0E0-X(1))**2
    RETURN
    END
```

$!$
!

Output

```
The solution is 0.999 0.998
The function evaluated at the solution is 0.000
The gradient is -0.001 0.000
```


Comments

1. Workspace may be explicitly provided, if desired, by use of U2CGF / DU2CGF. The reference is:

CALL U2CGF (FCN, N, XGUESS, XSCALE, GRADTL, MAXFN, DFPRED, X, G, FVALUE, S, RSS, RSG, GINIT, XOPT, GOPT)

The additional arguments are as follows:
\boldsymbol{S} - Vector of length N used for the search direction in each iteration.
$\boldsymbol{R S S}$ - Vector of length N containing conjugacy information.
$\boldsymbol{R S} \boldsymbol{G}$ - Vector of length N containing conjugacy information.
GINIT - Vector of length N containing the gradient values at the start of an iteration.
$\boldsymbol{X O P T}$ - Vector of length N containing the parameter values that yield the least calculated value for FVALUE.
$\boldsymbol{G O P T}$ - Vector of length N containing the gradient values that yield the least calculated value for FVALUE.
2. Informational errors

Type	Code	
4	1	The line search of an integration was abandoned. This error may be caused by an error in gradient.
4	2	The calculation cannot continue because the search is uphill.
4	3	The iteration was terminated because MAXFN was exceeded.
3	4	The calculation was terminated because two consecutive iterations failed to reduce the function.

3. Because of the close relation between the conjugate-gradient method and the method of steepest descent, it is very helpful to choose the scale of the variables in a way that balances the magnitudes of the components of a typical gradient vector. It can be particularly inefficient if a few components of the gradient are much larger than the rest.
4. If the value of the parameter GRADTL in the argument list of the routine is set to zero, then the subroutine will continue its calculation until it stops reducing the objective function. In this case, the usual behavior is that changes in the objective function become dominated by computer rounding errors before precision is lost in the gradient
vector. Therefore, because the point of view has been taken that the user requires the least possible value of the function, a value of the objective function that is small due to computer rounding errors can prevent further progress. Hence, the precision in the final values of the variables may be only about half the number of significant digits in the computer arithmetic, but the least value of FVALUE is usually found to be quite accurate.

Description

The routine UMCGF uses a conjugate gradient method to find the minimum of a function $f(x)$ of n variables. Only function values are required.
The routine is based on the version of the conjugate gradient algorithm described in Powell (1977). The main advantage of the conjugate gradient technique is that it provides a fast rate of convergence without the storage of any matrices. Therefore, it is particularly suitable for unconstrained minimization calculations where the number of variables is so large that matrices of dimension n cannot be stored in the main memory of the computer. For smaller problems, however, a routine such as routine UMINF (page 1196), is usually more efficient because each iteration makes use of additional information from previous iterations.
Since a finite-difference method is used to estimate the gradient for some single precision calculations, an inaccurate estimate of the gradient may cause the algorithm to terminate at a noncritical point. In such cases, high precision arithmetic is recommended. Also, whenever the exact gradient can be easily provided, routine UMCGG (page 1223) should be used instead.

UMCGG

Minimizes a function of N variables using a conjugate gradient algorithm and a user-supplied gradient.

Required Arguments

$\boldsymbol{F C N}$ - User-supplied SUBROUTINE to evaluate the function to be minimized. The usage is
CALL FCN ($\mathrm{N}, \mathrm{X}, \mathrm{F}$), where

N - Length of X . (Input)
X - The point at which the function is evaluated. (Input)
X should not be changed by FCN.
F - The computed function value at the point X . (Output)
FCN must be declared EXTERNAL in the calling program.
$\boldsymbol{G R} \boldsymbol{A D}$ - User-supplied SUBROUTINE to compute the gradient at the point x . The usage is CALL GRAD ($\mathrm{N}, \mathrm{X}, \mathrm{G}$), where

N - Length of X and G . (Input)

X - The point at which the gradient is evaluated. (Input) X should not be changed by GRAD.

G - The gradient evaluated at the point X . (Output)
GRAD must be declared EXTERNAL in the calling program.
DFPRED - A rough estimate of the expected reduction in the function. (Input) DFPRED is used to determine the size of the initial change to X.
\boldsymbol{X} - Vector of length n containing the computed solution. (Output)

Optional Arguments

N - Dimension of the problem. (Input)
Default: $\mathrm{N}=\operatorname{size}(\mathrm{X}, 1)$.
$\boldsymbol{X G} \boldsymbol{U} \boldsymbol{E S S}$ - Vector of length N containing the initial guess of the minimum. (Input) Default: XGUESS $=0.0$.

GRADTL - Convergence criterion. (Input)
The calculation ends when the sum of squares of the components of G is less than GRADTL.
Default: GRADTL $=1 . \mathrm{e}-4$.
MAXFN - Maximum number of function evaluations. (Input)
Default: $\mathrm{MAXFN}=100$.
\boldsymbol{G} - Vector of length N containing the components of the gradient at the final parameter estimates. (Output)
$\boldsymbol{F V A L U E}$ - Scalar containing the value of the function at the computed solution. (Output)

FORTRAN 90 Interface

Generic: CALL UMCGG (FCN, GRAD, DFPRED, X [,...])
Specific: The specific interface names are S_UMCGG and D_UMCGG.

FORTRAN 77 Interface

Single: CALL UMCGG (FCN, GRAD, N, XGUESS, GRADTL, MAXFN, DFPRED, X, G, FVALUE)

Double: The double precision name is DUMCGG.

Example

The function

$$
f(x)=100\left(x_{2}-x_{1}^{2}\right)^{2}+\left(1-x_{1}\right)^{2}
$$

is minimized and the solution is printed.

```
USE UMCGG_INT
USE UMACH_INT
INTEGER N
PARAMETER (N=2)
INTEGER I, NOUT
REAL DFPRED, FVALUE, G(N), GRADTL, X(N), &
        XGUESS (N)
    EXTERNAL ROSBRK, ROSGRD
    DATA XGUESS/-1.2E0, 1.0E0/
    DFPRED = 0.2
    GRADTL = 1.0E-7
    CALL UMCGG (ROSBRK, ROSGRD, DFPRED, X, XGUESS=XGUESS, &
        GRADTL=GRADTL, G=G, FVALUE=FVALUE)
                                Print the results
    CALL UMACH (2, NOUT)
    WRITE (NOUT,99999) (X (I), I=1,N), FVALUE, (G (I), I=1,N)
99999 FORMAT (' The solution is ', 2F8.3, //, ' The function ', &
        'evaluated at the solution is ', F8.3, //, ' The ', &
        'gradient is ', 2F8.3, /)
    END
    SUBROUTINE ROSBRK (N, X, F)
    INTEGER N
    REAL X(N), F
    F=1.0E2*(X(2)-X(1)*X(1))**2 + (1.0E0-X(1))**2
    RETURN
    END
    SUBROUTINE ROSGRD (N, X, G)
    INTEGER N
    REAL X(N),G(N)
    G(1) = -4.0E2*(X(2)-X(1)*X(1))*X(1) - 2.0E0*(1.0E0-X(1))
    G(2) = 2.0E2* (X(2)-X(1)*X(1))
    RETURN
    END
```

$!$
$!$

```
    Output
The solution is 1.000 1.000
The function evaluated at the solution is 0.000
The gradient is 0.000 0.000
```


Comments

1. Workspace may be explicitly provided, if desired, by use of U2CGG/DU2CGG. The reference is:

CALL U2CGG (FCN, GRAD, N, XGUESS, GRADTL, MAXFN, DFPRED, X, G, FVALUE, S, RSS, RSG, GINIT, XOPT, GOPT)

The additional arguments are as follows:
\boldsymbol{S} - Vector of length N used for the search direction in each iteration.
$\boldsymbol{R S S}$ - Vector of length N containing conjugacy information.
$\boldsymbol{R S} \boldsymbol{G}$ - Vector of length N containing conjugacy information.
GINIT - Vector of length N containing the gradient values at the start on an iteration.
$\boldsymbol{X O P T}$ - Vector of length N containing the parameter values which yield the least calculated value for FVALUE.
$\boldsymbol{G O P T}$ - Vector of length N containing the gradient values which yield the least calculated value for FVALUE.
2. Informational errors

Type	Code	
4	1	The line search of an integration was abandoned. This error may be caused by an error in gradient.
4	2	The calculation cannot continue because the search is uphill.
4	3	The iteration was terminated because MAXFN was exceeded. 3
4	The calculation was terminated because two consecutive iterations failed to reduce the function.	

3. The routine includes no thorough checks on the part of the user program that calculates the derivatives of the objective function. Therefore, because derivative calculation is a frequent source of error, the user should verify independently the correctness of the derivatives that are given to the routine.
4. Because of the close relation between the conjugate-gradient method and the method of steepest descent, it is very helpful to choose the scale of the variables in a way that balances the magnitudes of the components of a typical gradient vector. It can be particularly inefficient if a few components of the gradient are much larger than the rest.
5. If the value of the parameter GRADTL in the argument list of the routine is set to zero, then the subroutine will continue its calculation until it stops reducing the objective function. In this case, the usual behavior is that changes in the objective function become dominated by computer rounding errors before precision is lost in the gradient vector. Therefore, because the point of view has been taken that the user requires the least possible value of the function, a value of the objective function that is small due to computer rounding errors can prevent further progress. Hence, the precision in the final values of the variables may be only about half the number of significant digits in the computer arithmetic, but the least value of FVALUE is usually found to be quite accurate.

Description

The routine UMCGG uses a conjugate gradient method to find the minimum of a function $f(x)$ of n variables. Function values and first derivatives are required.

The routine is based on the version of the conjugate gradient algorithm described in Powell (1977). The main advantage of the conjugate gradient technique is that it provides a fast rate of convergence without the storage of any matrices. Therefore, it is particularly suitable for unconstrained minimization calculations where the number of variables is so large that matrices of dimension n cannot be stored in the main memory of the computer. For smaller problems, however, a subroutine such as IMSL routine UMING (page 1202), is usually more efficient because each iteration makes use of additional information from previous iterations.

UMPOL

Minimizes a function of N variables using a direct search polytope algorithm.

Required Arguments

$\boldsymbol{F C N}$ - User-supplied SUBROUTINE to evaluate the function to be minimized. The usage is CALL FCN (N, X, F), where

N - Length of X . (Input)
$X-$ Vector of length N at which point the function is evaluated. (Input) x should not be changed by FCN.

F - The computed function value at the point X . (Output)
FCN must be declared EXTERNAL in the calling program.
\boldsymbol{X} - Real vector of length N containing the best estimate of the minimum found. (Output)

Optional Arguments

\boldsymbol{N} - Dimension of the problem. (Input)
Default: $\mathrm{N}=\operatorname{size}(\mathrm{X}, 1)$.
$\boldsymbol{X G U E S S}$ - Real vector of length N which contains an initial guess to the minimum. (Input) Default: XGUESS $=0.0$.
S - On input, real scalar containing the length of each side of the initial simplex. (Input/Output)
If no reasonable information about S is known, S could be set to a number less than or equal to zero and UMPOL will generate the starting simplex from the initial guess with a random number generator. On output, the average distance from the vertices to the centroid that is taken to be the solution; see Comment 4.
Default: $\mathrm{S}=0.0$.
FTOL - First convergence criterion. (Input)
The algorithm stops when a relative error in the function values is less than FTOL, i.e. when $(F($ worst $)-F$ (best) $)<$ FTOL * $(1+\operatorname{ABS}(F$ (best) $))$ where F (worst) and F (best) are the function values of the current worst and best points, respectively. Second convergence criterion. The algorithm stops when the standard deviation of the function values at the $N+1$ current points is less than FTOL. If the subroutine terminates prematurely, try again with a smaller value for FTOL.
Default: FTOL = 1.e-7.
MAXFCN - On input, maximum allowed number of function evaluations. (Input/ Output) On output, actual number of function evaluations needed.
Default: $\operatorname{MAXFCN}=200$.
$\boldsymbol{F V A L U E}$ - Function value at the computed solution. (Output)

FORTRAN 90 Interface

Generic: CALL UMPOL (FCN, X [,...])
Specific: The specific interface names are S_UMPOL and D_UMPOL.

FORTRAN 77 Interface

Single: CALL UMPOL (FCN, N, XGUESS, S, FTOL, MAXFCN, X, FVALUE)
Double: The double precision name is DUMPOL.

Example

The function

$$
f(x)=100\left(x_{2}-x_{1}^{2}\right)^{2}+\left(1-x_{1}\right)^{2}
$$

is minimized and the solution is printed.

```
USE UMPOL INT
USE UMACH_INT
```

!

```
INTEGER N
PARAMETER (N=2)
INTEGER K, NOUT
REAL FTOL, FVALUE, S, X(N), XGUESS (N)
EXTERNAL FCN
Initializations
XGUESS = ( -1.2, 1.0)
DATA XGUESS/-1.2, 1.0/
FTOL = 1.0E-10
S = 1.0
CALL UMPOL (FCN, X, XGUESS=XGUESS, S=S, FTOL=FTOL,&
                FVALUE=FVALUE)
    CALL UMACH (2, NOUT)
    WRITE (NOUT, 99999) (X (K), K=1,N), FVALUE
99999 FORMAT (' The best estimate for the minimum value of the', /, &
        ' function is X = (', 2(2X,F4.2), ')', /, ' with ', &
        'function value FVALUE = ', E12.6)
!
    END
    SUBROUTINE FCN (N, X, F)
    INTEGER N
    REAL X(N), F
    F=100.0*(X(1)*X(1)-X(2))**2 + (1.0-X(1))**2
    RETURN
    END
```


Output

```
The best estimate for the minimum value of the function is \(X=(1.00 \quad 1.00)\)
with function value FVALUE \(=0.502496 \mathrm{E}-10\)
```


Comments

1. Workspace may be explicitly provided, if desired, by use of U2POL/DU2POL. The reference is:

CALL U2POL (FCN, N, XGUESS, S, FTOL, MAXFCN, X, FVALUE, WK)

The additional argument is:
$\boldsymbol{W} \boldsymbol{K}$ - Real work vector of length $\mathrm{N} * * 2+5$ * $\mathrm{N}+1$.
2. Informational error

Type Code
3. Since UMPOL uses only function value information at each step to determine a new approximate minimum, it could be quite ineficient on smooth problems compared to other methods such as those implemented in routine UMINF that takes into account derivative information at each iteration. Hence, routine UMPOL should only be used as a last resort. Briefly, a set of $\mathrm{N}+1$ points in an N -dimensional space is called a simplex. The minimization process iterates by replacing the point with the largest function value by a new point with a smaller function value. The iteration continues until all the points cluster sufficiently close to a minimum.
4. The value returned in S is useful for assessing the flatness of the function near the computed minimum. The larger its value for a given value of FTOL, the flatter the function tends to be in the neighborhood of the returned point.

Description

The routine UMPOL uses the polytope algorithm to find a minimum point of a function $f(x)$ of n variables. The polytope method is based on function comparison; no smoothness is assumed. It starts with $n+1$ points $x_{1}, x_{2}, \ldots, x_{n+1}$. At each iteration, a new point is generated to replace the worst point x_{j}, which has the largest function value among these $n+1$ points. The new point is constructed by the following formula:

$$
x_{k}=c+\alpha\left(c-x_{j}\right)
$$

where

$$
c=\frac{1}{n} \sum_{i \neq j} x_{i}
$$

and $\alpha(\alpha>0)$ is the reflection coefficient.
When x_{k} is a best point, that is $f\left(x_{k}\right) \leq f\left(x_{i}\right)$ for $i=1, \ldots, n+1$, an expansion point is computed $x_{e}=c+\beta\left(x_{k}-c\right)$ where $\beta(\beta>1)$ is called the expansion coefficient. If the new point is a worst point, then the polytope would be contracted to get a better new point. If the contraction step is unsuccessful, the polytope is shrunk by moving the vertices halfway toward current best point. This procedure is repeated until one of the following stopping criteria is satisfied:

Criterion 1:

$$
f_{\text {best }}-f_{\text {worst }} \leq \varepsilon_{f}\left(1 .+\left|f_{\text {best }}\right|\right)
$$

Criterion 2:

$$
\sum_{i=1}^{n+1}\left(f_{i}-\frac{\sum_{j=1}^{n+1} f_{j}}{n+1}\right)^{2} \leq \varepsilon_{f}
$$

where $f_{i}=f\left(x_{i}\right), f_{j}=f\left(x_{j}\right)$, and ε_{f} is a given tolerance. For a complete description, see Nelder and Mead (1965) or Gill et al. (1981).

UNLSF

Solves a nonlinear least-squares problem using a modified Levenberg-Marquardt algorithm and a finite-difference Jacobian.

Required Arguments

FCN - User-supplied SUBroutine to evaluate the function that defines the least-squares problem. The usage is CALL FCN ($\mathrm{M}, \mathrm{N}, \mathrm{X}, \mathrm{F}$), where
$\mathrm{M}-$ Length of F . (Input)
N - Length of X. (Input)
X - Vector of length N at which point the function is evaluated. (Input)
X should not be changed by FCN .
$\mathrm{F}-$ Vector of length M containing the function values at X . (Output)
FCN must be declared EXTERNAL in the calling program.
\boldsymbol{M} - Number of functions. (Input)
\boldsymbol{X} - Vector of length N containing the approximate solution. (Output)

Optional Arguments

\boldsymbol{N} - Number of variables. N must be less than or equal to M . (Input)
Default: $\mathrm{N}=\operatorname{size}(\mathrm{x}, 1)$.
XGUESS - Vector of length N containing the initial guess. (Input)
Default: NDEG $=$ size (COEFF,1) -1.
$\boldsymbol{X S C A L E}$ - Vector of length N containing the diagonal scaling matrix for the variables.
(Input)
XSCALE is used mainly in scaling the gradient and the distance between two points. By default, the values for XSCALE are set internally. See IPARAm(6) in Comment 4.
Default: XSCALE $=1.0$.
FSCALE - Vector of length m containing the diagonal scaling matrix for the functions. (Input)
FSCALE is used mainly in scaling the gradient. In the absence of other information, set all entries to 1.0 .
Default: $\operatorname{FSCALE}=1.0$.

IPARAM - Parameter vector of length 6. (Input/Output)
Set IPARAM(1) to zero for default values of IPARAM and RPARAM. See Comment 4.
Default: I PARAM $=0$.
$\boldsymbol{R P A R A M}$ - Parameter vector of length 7. (Input/Output) See Comment 4.
$\boldsymbol{F V E C}$ - Vector of length M containing the residuals at the approximate solution. (Output)
$\boldsymbol{F J} \boldsymbol{A C}$ - m by n matrix containing a finite difference approximate Jacobian at the approximate solution. (Output)
$\boldsymbol{L D F J A C}$ - Leading dimension of FJAC exactly as specified in the dimension statement of the calling program. (Input)
Default: LDFJAC = size (FJAC, 1).

FORTRAN 90 Interface

Generic: CALL UNLSF (FCN, M, X [,...])

Specific: The specific interface names are S_UNLSF and D_UNLSF.

FORTRAN 77 Interface

Single: CALL UNLSE (FCN, M, N, XGUESS, XSCALE, FSCALE, IPARAM, RPARAM, X, FVEC, FJAC, LDFJAC)

Double: \quad The double precision name is DUNLSF.

Example

The nonlinear least squares problem

$$
\min _{x \in \mathbf{R}^{2}} \frac{1}{2} \sum_{i=1}^{2} f_{i}(x)^{2}
$$

where

$$
f_{1}(x)=10\left(x_{2}-x_{1}^{2}\right) \text { and } f_{2}(x)=\left(1-x_{1}\right)
$$

is solved. RPARAM(4) is changed to a non-default value.

```
USE UNLSF_INT
USE UMACH_INT
USE U4LSF INT
! Declaration of variables
INTEGER LDFJAC, M, N
PARAMETER (LDFJAC=2, M=2, N=2)
    INTEGER IPARAM(6), NOUT
```

!

```
    REAL FVEC(M), RPARAM(7),X(N), XGUESS (N)
    EXTERNAL ROSBCK
!
!
DATA XGUESS/-1.2E0, 1.0E0/
    Relax the first stopping criterion by
    calling U4LSF and scaling the
    absolute function tolerance by 10.
    CALL U4LSF (IPARAM, RPARAM)
    RPARAM(4) = 10.0E0*RPARAM(4)
    CALL UNLSF (ROSBCK, M, X,XGUESS=XGUESS, IPARAM=IPARAM, &
        RPARAM=RPARAM, FVEC=FVEC)
        Print results
    CALL UMACH (2, NOUT)
    WRITE (NOUT,99999) X, FVEC, IPARAM(3), IPARAM(4)
!
99999 FORMAT (' The solution is ', 2F9.4, //, ' The function ', &
        'evaluated at the solution is ', /, 18X, 2F9.4, //, &
        ' The number of iterations is ', 10X, I3, /, ' The ', &
        'number of function evaluations is ', I3, /)
END
!
SUBROUTINE ROSBCK (M, N, X, F)
INTEGER M, N
REAL X(N), F(M)
F(1) = 10.0E0*(X(2)-X(1)*X(1))
F(2) = 1.0E0 - X(1)
RETURN
END
```


Output

```
The solution is 1.0000 1.0000
```

The solution is 1.0000 1.0000
The function evaluated at the solution is
0.0000 0.0000
The number of iterations is 24
The number of function evaluations is 33

```

\section*{Comments}
1. Workspace may be explicitly provided, if desired, by use of U2LSF/DU2LSF. The reference is:

CALL U2LSF (FCN, M, N, XGUESS, XSCALE, FSCALE, IPARAM, RPARAM, X, FVEC, FJAC, LDFJAC, WK, IWK)

The additional arguments are as follows:
\(\boldsymbol{W} \boldsymbol{K}\) - Real work vector of length \(9 * \mathrm{~N}+3 * \mathrm{M}-1\). WK contains the following information on output: The second N locations contain the last step taken. The
third N locations contain the last Gauss-Newton step. The fourth N locations contain an estimate of the gradient at the solution.
\(\boldsymbol{I W}\) - Integer work vector of length \(N\) containing the permutations used in the \(Q R\) factorization of the Jacobian at the solution.
2. Informational errors
\begin{tabular}{ccl} 
Type & Code & \\
3 & 1 & \begin{tabular}{l} 
Both the actual and predicted relative reductions in the function are \\
less than or equal to the relative function convergence tolerance.
\end{tabular} \\
3 & 2 & The iterates appear to be converging to a noncritical point. \\
4 & 3 & Maximum number of iterations exceeded. \\
4 & 4 & Maximum number of function evaluations exceeded. \\
3 & 6 & \begin{tabular}{l} 
Five consecutive steps have been taken with the maximum step \\
length.
\end{tabular} \\
2 & 7 & \begin{tabular}{l} 
Scaled step tolerance satisfied; the current point may be an \\
approximate local solution, or the algorithm is making very slow \\
progress and is not near a solution, or STEPTL is too big.
\end{tabular}
\end{tabular}
3. The first stopping criterion for UNLSF occurs when the norm of the function is less than the absolute function tolerance (RPARAM(4)). The second stopping criterion occurs when the norm of the scaled gradient is less than the given gradient tolerance (RPARAM(1)). The third stopping criterion for UNLSF occurs when the scaled distance between the last two steps is less than the step tolerance (RPARAM(2)).
4. If the default parameters are desired for UNLSF, then set IPARAM(1) to zero and call the routine UNLSF. Otherwise, if any nondefault parameters are desired for IPARAM or RPARAM, then the following steps should be taken before calling UNLSF:

CALL U4LSF (IPARAM, RPARAM)
Set nondefault values for desired IPARAM, RPARAM elements.

Note that the call to U4LSF will set IPARAM and RPARAM to their default values so only nondefault values need to be set above.

The following is a list of the parameters and the default values:
IPARAM - Integer vector of length 6.
\(\operatorname{IPARAM}(1)=\) Initialization flag.
\(\operatorname{IPARAM}(2)=\) Number of good digits in the function.
Default: Machine dependent.
\(\operatorname{IPARAM}(3)=\) Maximum number of iterations.
Default: 100.
\(\operatorname{IPARAM}(4)=\) Maximum number of function evaluations.
Default: 400.
\(\operatorname{IPARAM}(5)=\) Maximum number of Jacobian evaluations.
Default: Not used in UNLSF.
\(\operatorname{IPARAM}(6)=\) Internal variable scaling flag.
If \(\operatorname{IPARAM}(6)=1\), then the values for XSCALE are set internally.
Default: 1.
\(\boldsymbol{R P A R A M}\) - Real vector of length 7.
\(\operatorname{RPARAM}(1)=\) Scaled gradient tolerance.
The \(i\)-th component of the scaled gradient at x is calculated as
\[
\frac{\left|g_{i}\right| * \max \left(\left|x_{i}\right|, 1 / s_{i}\right)}{\|F(x)\|_{2}^{2}}
\]
where
\[
g_{i}=\left(J(x)^{T} F(x)\right)_{i} *\left(f_{s}\right)_{i}^{2}
\]
\(J(x)\) is the Jacobian, \(s=\) XSCALE, and \(f_{s}\) = FSCALE.
Default:
\[
\sqrt{\varepsilon}, \sqrt[3]{\varepsilon}
\]
in double where \(\varepsilon\) is the machine precision.
RPARAM \((2)=\) Scaled step tolerance. (STEPTL)
The \(i\)-th component of the scaled step between two points \(x\) and \(y\) is computed as
\[
\frac{\left|x_{i}-y_{i}\right|}{\max \left(\left|x_{i}\right|, 1 / s_{i}\right)}
\]
where \(s=\) XSCALE.
Default: \(\varepsilon^{2 / 3}\) where \(\varepsilon\) is the machine precision.
\(\operatorname{RPARAM}(3)=\) Relative function tolerance.
Default: \(\max \left(10^{-10}, \varepsilon^{2 / 3}\right), \max \left(10^{-20}, \varepsilon^{2 / 3}\right)\) in double where \(\varepsilon\) is the machine precision.
\(\operatorname{RPARAM}(4)=\) Absolute function tolerance.
Default: \(\max \left(10^{-20}, \varepsilon^{2}\right), \max \left(10^{-40}, \varepsilon^{2}\right)\) in double where \(\varepsilon\) is the machine precision.
\(\operatorname{RPARAM}(5)=\) False convergence tolerance.
Default: \(100 \varepsilon\) where \(\varepsilon\) is the machine precision.
\(\operatorname{RPARAM}(6)=\) Maximum allowable step size.
Default: \(1000 \max \left(\varepsilon_{1}, \varepsilon_{2}\right)\) where
\[
\varepsilon_{1}=\sqrt{\sum_{i=1}^{n}\left(s_{i} t_{i}\right)^{2}}
\]
\[
\varepsilon_{2}=\|s\|_{2}, s=\mathrm{XSCALE}, \text { and } t=\mathrm{XGUESS} .
\]
\(\operatorname{RPARAM}(7)=\) Size of initial trust region radius.
Default: based on the initial scaled Cauchy step.
If double precision is desired, then DU4LSF is called and RPARAM is declared double precision.
5. Users wishing to override the default print/stop attributes associated with error messages issued by this routine are referred to "Error Handling" in the Introduction.

\section*{Description}

The routine UNLSF is based on the MINPACK routine LMDIF by Moré et al. (1980). It uses a modified Levenberg-Marquardt method to solve nonlinear least squares problems. The problem is stated as follows:
\[
\min _{x \in \mathrm{R}^{n}} \frac{1}{2} F(x)^{T} F(x)=\frac{1}{2} \sum_{i=1}^{m} f_{i}(x)^{2}
\]
where \(m \geq n, F: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}\), and \(f_{i}(x)\) is the \(i\)-th component function of \(F(x)\). From a current point, the algorithm uses the trust region approach:
\[
\begin{gathered}
\min _{x_{n} \in \mathbf{R}^{n}}\left\|F\left(x_{c}\right)+J\left(x_{c}\right)\left(x_{n}-x_{c}\right)\right\|_{2} \\
\quad \text { subject to }\left\|x_{n}-x_{c}\right\|_{2} \leq \delta_{c}
\end{gathered}
\]
to get a new point \(x_{n}\), which is computed as
\[
x_{n}=x_{c}-\left(J\left(x_{c}\right)^{T} J\left(x_{c}\right)+\mu_{c} I\right)^{-1} J\left(x_{c}\right)^{T} F\left(x_{c}\right)
\]
where \(\mu_{c}=0\) if \(\delta_{c} \geq\left\|\left(J\left(x_{c}\right)^{T} J\left(x_{c}\right)\right)^{-1} J\left(x_{c}\right)^{T} F\left(x_{c}\right)\right\|_{2}\) and \(\mu_{c}>0\) otherwise. \(F\left(x_{c}\right)\) and \(J\left(x_{c}\right)\) are the function values and the Jacobian evaluated at the current point \(x_{c}\). This procedure is repeated until the stopping criteria are satisfied. For more details, see Levenberg (1944), Marquardt (1963), or Dennis and Schnabel (1983, Chapter 10).

Since a finite-difference method is used to estimate the Jacobian for some single precision calculations, an inaccurate estimate of the Jacobian may cause the algorithm to terminate at a
noncritical point. In such cases, high precision arithmetic is recommended. Also, whenever the exact Jacobian can be easily provided, routine UNLSJ (page 1237) should be used instead.

\section*{UNLSJ}

Solves a nonlinear least squares problem using a modified Levenberg-Marquardt algorithm and a user-supplied Jacobian.

\section*{Required Arguments}
\(\boldsymbol{F C N}\) - User-supplied SUBROUTINE to evaluate the function which defines the least-squares problem. The usage is CALL FCN ( \(\mathrm{M}, \mathrm{N}, \mathrm{X}, \mathrm{F}\) ), where
\(M\) - Length of \(F\). (Input)
N - Length of X . (Input)
X - Vector of length N at which point the function is evaluated. (Input)
\(X\) should not be changed by FCN.
F - Vector of length M containing the function values at X . (Output)
FCN must be declared EXTERNAL in the calling program.
\(\boldsymbol{J A C}\) - User-supplied SUBROUTINE to evaluate the Jacobian at a point X. The usage is CALL
JAC (M, N, X, FJAC, LDFJAC), where
\(M\) - Length of \(F\). (Input)
N - Length of X . (Input)
X - Vector of length N at which point the Jacobian is evaluated. (Input)
\(X\) should not be changed by JAC.
FJAC - The computed M by N Jacobian at the point X. (Output) LDFJAC - Leading dimension of FJAC. (Input)
JAC must be declared EXTERNAL in the calling program.
\(\boldsymbol{M}\) - Number of functions. (Input)
\(\boldsymbol{X}-\) Vector of length N containing the approximate solution. (Output)

\section*{Optional Arguments}
\(\boldsymbol{N}\) - Number of variables. N must be less than or equal to M. (Input)
Default: \(\mathrm{N}=\operatorname{size}(\mathrm{x}, 1)\).
\(\boldsymbol{X G U E S S}\) - Vector of length N containing the initial guess. (Input)
Default: XGUESS \(=0.0\).
\(\boldsymbol{X S C A L E}\) — Vector of length N containing the diagonal scaling matrix for the variables. (Input)
XSCALE is used mainly in scaling the gradient and the distance between two points. By default, the values for XSCALE are set internally. See IPARAM(6) in Comment 4.
Default: XSCALE \(=1.0\).
\(\boldsymbol{F S C A L E}\) - Vector of length M containing the diagonal scaling matrix for the functions.
(Input)
FSCALE is used mainly in scaling the gradient. In the absence of other information, set all entries to 1.0.
Default: \(\operatorname{FSCALE}=1.0\).
IPARAM - Parameter vector of length 6. (Input/Output)
Set IPARAM(1) to zero for default values of IPARAM and RPARAM. See Comment 4. Default: IPARAM \(=0\).
\(\boldsymbol{R P A R A M}\) - Parameter vector of length 7. (Input/Output) See Comment 4.
\(\boldsymbol{F V E C}\) - Vector of length M containing the residuals at the approximate solution. (Output)
\(\boldsymbol{F J} \boldsymbol{A C}\) — м by n matrix containing a finite-difference approximate Jacobian at the approximate solution. (Output)
\(\boldsymbol{L D F J} \boldsymbol{A C}\) - Leading dimension of FJAC exactly as specified in the dimension statement of the calling program. (Input)
Default: LDFJAC \(=\) size (FJAC, 1 ).

\section*{FORTRAN 90 Interface}

Generic: CALL UNLSJ (FCN, JAC, M, X [, ...])
Specific: The specific interface names are S_UNLSJ and D_UNLSJ.

\section*{FORTRAN 77 Interface}

Single: CALL UNLSU (FCN, JAC, M, N, XGUESS, XSCALE, FSCALE, IPARAM, RPARAM, X, FVEC, FJAC, LDFJAC)

Double: \(\quad\) The double precision name is DUNLSJ.

\section*{Example}

The nonlinear least-squares problem
\[
\min _{x \in \mathbf{R}^{2}} \frac{1}{2} \sum_{i=1}^{2} f_{i}(x)^{2}
\]
where
\[
f_{1}(x)=10\left(x_{2}-x_{1}^{2}\right) \text { and } f_{2}(x)=\left(1-x_{1}\right)
\]
is solved; default values for parameters are used.
```

USE UNLSJ INT
USE UMACH_INT
!
INTEGER LDFJAC, M, N
PARAMETER (LDFJAC=2, M=2, N=2)
INTEGER IPARAM(6), NOUT
REAL FVEC(M), X(N), XGUESS (N)
EXTERNAL ROSBCK, ROSJAC
Compute the least squares for the
Rosenbrock function.
DATA XGUESS/-1.2E0, 1.0E0/
IPARAM(1) = 0
CALL UNLSJ (ROSBCK, ROSJAC, M, X, XGUESS=XGUESS, \&
IPARAM=IPARAM, FVEC=FVEC)
Print results
CALL UMACH (2, NOUT)
WRITE (NOUT,99999) X, FVEC, IPARAM(3), IPARAM(4), IPARAM(5)
!
99999 FORMAT (' The solution is ', 2F9.4, //, ' The function ', \&
'evaluated at the solution is ', /, 18X, 2F9.4, //, \&
' The number of iterations is ', 10X, I3, /, ' The ', \&
'number of function evaluations is ', I3, /, ' The ', \&
'number of Jacobian evaluations is ', I3, /)
END
!
SUBROUTINE ROSBCK (M, N, X, F)
INTEGER M, N
REAL X(N), F(M)
!
F(1) = 10.0E0*(X(2)-X(1)*X(1))
F(2) = 1.0E0 - X(1)
RETURN
END
!
SUBROUTINE ROSJAC (M, N, X, FJAC, LDFJAC)
INTEGER M, N, LDFJAC
REAL X(N), FJAC (LDFJAC,N)
FJAC(1,1) = -20.0EO*X(1)
FJAC (2,1) = -1.0E0
FJAC (1,2) = 10.0E0
FJAC (2,2) = 0.0E0
RETURN
END

```

\section*{Output}
```

The solution is 1.0000 1.0000

```
The function evaluated at the solution is
\(0.0000 \quad 0.0000\)
The number of iterations is
```

The number of function evaluations is 32
The number of Jacobian evaluations is 24

```

\section*{Comments}
1. Workspace may be explicitly provided, if desired, by use of U2LSJ/DU2LSJ. The reference is:
```

CALL U2LSJ (FCN, JAC, M, N, XGUESS, XSCALE, FSCALE, IPARAM,
RPARAM, X, FVEC, FJAC, LDFJAC, WK, IWK)

```

The additional arguments are as follows:
\(\boldsymbol{W} \boldsymbol{K}\) - Work vector of length \(9 * \mathrm{~N}+3 * \mathrm{M}-1\). WK contains the following information on output: The second N locations contain the last step taken. The third N locations contain the last Gauss-Newton step. The fourth \(N\) locations contain an estimate of the gradient at the solution.
\(\boldsymbol{I} \boldsymbol{W} \boldsymbol{K}\) - Work vector of length \(N\) containing the permutations used in the \(Q R\) factorization of the Jacobian at the solution.
2. Informational errors
\begin{tabular}{ccl} 
Type & Code & \\
3 & 1 & \begin{tabular}{l} 
Both the actual and predicted relative reductions in the function are \\
less than or equal to the relative function convergence tolerance.
\end{tabular} \\
3 & 2 & \begin{tabular}{l} 
The iterates appear to be converging to a noncritical point.
\end{tabular} \\
4 & 3 & Maximum number of iterations exceeded. \\
4 & 4 & Maximum number of function evaluations exceeded. \\
4 & 5 & Maximum number of Jacobian evaluations exceeded. \\
3 & 6 & \begin{tabular}{l} 
Five consecutive steps have been taken with the maximum step \\
length.
\end{tabular} \\
2 & 7 & \begin{tabular}{l} 
Scaled step tolerance satisfied; the current point may be an \\
approximate local solution, or the algorithm is making very slow \\
progress and is not near a solution, or STEPTL is too big.
\end{tabular}
\end{tabular}
3. The first stopping criterion for UNLSJ occurs when the norm of the function is less than the absolute function tolerance (RPARAM(4)). The second stopping criterion occurs when the norm of the scaled gradient is less than the given gradient tolerance (RPARAM(1)). The third stopping criterion for UNLS J occurs when the scaled distance between the last two steps is less than the step tolerance (RPARAM(2)).
4. If the default parameters are desired for UNLS \(J\), then set IPARAM(1) to zero and call the routine UNLSJ. Otherwise, if any nondefault parameters are desired for IPARAM or RPARAM, then the following steps should be taken before calling UNLSJ:

CALL U4LSF (IPARAM, RPARAM)
Set nondefault values for desired IPARAM, RPARAM elements.

Note that the call to U4LSF will set IPARAM and RPARAM to their default values, so only nondefault values need to be set above.

The following is a list of the parameters and the default values:
IPARAM - Integer vector of length 6.
IPARAM(1) = Initialization flag.
\(\operatorname{IPARAM}(2)=\) Number of good digits in the function.
Default: Machine dependent.
\(\operatorname{IPARAM}(3)=\) Maximum number of iterations.
Default: 100.
\(\operatorname{IPARAM}(4)=\) Maximum number of function evaluations.
Default: 400.
\(\operatorname{IPARAM}(5)=\) Maximum number of Jacobian evaluations.
Default: 100.
\(\operatorname{IPARAM}(6)=\) Internal variable scaling flag.
If \(\operatorname{IPARAM}(6)=1\), then the values for XSCALE are set internally.
Default: 1.
\(\boldsymbol{R P A R A M}\) - Real vector of length 7.
\(\operatorname{RPARAM}(1)=\) Scaled gradient tolerance.
The \(i\)-th component of the scaled gradient at x is calculated as
\[
\frac{\left|g_{i}\right| * \max \left(\left|x_{i}\right|, 1 / s_{i}\right)}{\|F(x)\|_{2}^{2}}
\]
where
\[
g_{i}=\left(J(x)^{T} F(x)\right)_{i} *\left(f_{s}\right)_{i}^{2}
\]
\(J(x)\) is the Jacobian, \(s=\) XSCALE, and \(f_{s}=\) FSCALE.
Default:
\[
\sqrt{\varepsilon}, \sqrt[3]{\varepsilon}
\]
in double where \(\varepsilon\) is the machine precision.

RPARAM \((2)=\) Scaled step tolerance. (STEPTL)
The \(i\)-th component of the scaled step between two points \(x\) and \(y\) is computed as
\[
\frac{\left|x_{i}-y_{i}\right|}{\max \left(\left|x_{i}\right|, 1 / s_{i}\right)}
\]
where \(s=\) XSCALE.
Default: \(\varepsilon^{2 / 3}\) where \(\varepsilon\) is the machine precision.
\(\operatorname{RPARAM}(3)=\) Relative function tolerance.
Default: \(\max \left(10^{-10}, \varepsilon^{2 / 3}\right), \max \left(10^{-20}, \varepsilon^{2 / 3}\right)\) in double where \(\varepsilon\) is the machine precision.
\(\operatorname{RPARAM}(4)=\) Absolute function tolerance.
Default: \(\max \left(10^{-20}, \varepsilon^{2}\right), \max \left(10^{-40}, \varepsilon^{2}\right)\) in double where \(\varepsilon\) is the machine precision.
\(\operatorname{RPARAM}(5)=\) False convergence tolerance.
Default: \(100 \varepsilon\) where \(\varepsilon\) is the machine precision.
\(\operatorname{RPARAM}(6)=\) Maximum allowable step size.
Default: \(1000 \max \left(\varepsilon_{1}, \varepsilon_{2}\right)\) where
\[
\begin{aligned}
& \qquad \varepsilon_{1} \sqrt{\sum_{i=1}^{n}\left(s_{i} t_{i}\right)^{2}} \\
& \varepsilon_{2}=\|s\|_{2}, s=\text { XSCALE, and } t=\text { XGUESS } .
\end{aligned}
\]
\(\operatorname{RPARAM}(7)=\) Size of initial trust region radius.
Default: based on the initial scaled Cauchy step.
If double precision is desired, then DU4LSF is called and RPARAM is declared double precision.
5. Users wishing to override the default print/stop attributes associated with error messages issued by this routine are referred to "Error Handling" in the Introduction.

\section*{Description}

The routine UNLSJ is based on the MINPACK routine LMDER by Moré et al. (1980). It uses a modified Levenberg-Marquardt method to solve nonlinear least squares problems. The problem is stated as follows:
\[
\min _{x \in \mathbf{R}^{n}} \frac{1}{2} F(x)^{T} F(x)=\frac{1}{2} \sum_{i=1}^{m} f_{i}(x)^{2}
\]
where \(m \geq n, F: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}\), and \(f_{i}(x)\) is the \(i\)-th component function of \(F(x)\). From a current point, the algorithm uses the trust region approach:
\[
\begin{gathered}
\min _{x_{n} \in \mathbf{R}^{n}}\left\|F\left(x_{c}\right)+J\left(x_{c}\right)\left(x_{n}-x_{c}\right)\right\|_{2} \\
\quad \text { subject to }\left\|x_{n}-x_{c}\right\|_{2} \leq \delta_{c}
\end{gathered}
\]
to get a new point \(x_{n}\), which is computed as
\[
x_{n}=x_{c}-\left(J\left(x_{c}\right)^{T} J\left(x_{c}\right)+\mu_{c} I\right)^{-1} J\left(x_{c}\right)^{T} F\left(x_{c}\right)
\]
where \(\mu_{c}=0\) if \(\delta_{c} \geq\left\|\left(J\left(x_{c}\right)^{T} J\left(x_{c}\right)\right)^{-1} J\left(x_{c}\right)^{T} F\left(x_{c}\right)\right\|_{2}\) and \(\mu_{c}>0\) otherwise. \(F\left(x_{c}\right)\) and \(J\left(x_{c}\right)\) are the function values and the Jacobian evaluated at the current point \(x_{c}\). This procedure is repeated until the stopping criteria are satisfied. For more details, see Levenberg (1944), Marquardt(1963), or Dennis and Schnabel (1983, Chapter 10).

\section*{BCONF}

Minimizes a function of N variables subject to bounds on the variables using a quasi-Newton method and a finite-difference gradient.

\section*{Required Arguments}
\(\boldsymbol{F C N}\) - User-supplied SUBROUTINE to evaluate the function to be minimized. The usage is CALL FCN (N, X, F), where

N - Length of X . (Input)
\(\mathrm{X}-\) Vector of length N at which point the function is evaluated. (Input) \(x\) should not be changed by FCN.

F - The computed function value at the point X . (Output)
FCN must be declared EXTERNAL in the calling program.
IBTYPE - Scalar indicating the types of bounds on variables. (Input)

\section*{IBTYPE Action}

0 User will supply all the bounds.
1 All variables are nonnegative.
2 All variables are nonpositive.
3 User supplies only the bounds on 1st variable, all other variables will have the same bounds.
\(\boldsymbol{X L B}\) - Vector of length n containing the lower bounds on variables. (Input, if \(\operatorname{IBTYPE}=0\); output, if \(\operatorname{IBTYPE}=1\) or 2 ; input/output, if IBTYPE \(=3\) )
\(\boldsymbol{X U B}-\) Vector of length N containing the upper bounds on variables. (Input, if IBTYPE \(=0\); output, if \(I B T Y P E=1\) or 2 ; input/output, if \(\operatorname{IBTYPE}=3\) )
\(\boldsymbol{X}-\) Vector of length N containing the computed solution. (Output)

\section*{Optional Arguments}
\(N\) - Dimension of the problem. (Input)
Default: \(\mathrm{N}=\operatorname{size}(\mathrm{X}, 1)\).
\(\boldsymbol{X G U E S S}\) - Vector of length N containing an initial guess of the computed solution. (Input) Default: XGUESS \(=0.0\).
\(\boldsymbol{X S C A L E}\) - Vector of length N containing the diagonal scaling matrix for the variables.
(Input)
XSCALE is used mainly in scaling the gradient and the distance between two points. In the absence of other information, set all entries to 1.0 .
Default: \(\mathrm{XSCALE}=1.0\).

FSCALE - Scalar containing the function scaling. (Input)
FSCALE is used mainly in scaling the gradient. In the absence of other information, set FSCALE to 1.0 .
Default: \(\mathrm{FSCALE}=1.0\).
IPARAM - Parameter vector of length 7. (Input/Output)
Set IPARAM(1) to zero for default values of IPARAM and RPARAM. See Comment 4.
Default: I PARAM \(=0\).
\(\boldsymbol{R P A R A M}\) - Parameter vector of length 7. (Input/Output)
See Comment 4.
\(\boldsymbol{F V A L U E}\) - Scalar containing the value of the function at the computed solution. (Output)

\section*{FORTRAN 90 Interface}

Generic: CALL BCONF (FCN, IBTYPE, XLB, XUB, X [,...])
Specific: The specific interface names are S_BCONF and D_BCONF.

\section*{FORTRAN 77 Interface}

Single: CALL BCONF (FCN, N, XGUESS, IBTYPE, XLB, XUB, XSCALE, FSCALE, IPARAM, RPARAM, X, FVALUE)

Double: The double precision name is DBCONF.

\section*{Example}

The problem
\[
\begin{gathered}
\min f(x)=100\left(x_{2}-x_{1}^{2}\right)^{2}+\left(1-x_{1}\right)^{2} \\
\text { subject to } \quad-2 \leq x_{1} \leq 0.5 \\
-1 \leq x_{2} \leq 2
\end{gathered}
\]
is solved with an initial guess \((-1.2,1.0)\) and default values for parameters.
```

 USE BCONF INT
 USE UMACH_INT
 INTEGER N
 PARAMETER (N=2)
 INTEGER IPARAM(7), ITP, L, NOUT
 REAL F, FSCALE, RPARAM(7), X(N), XGUESS (N), &
 XLB (N), XSCALE (N), XUB(N)
 EXTERNAL ROSBRK
 DATA XGUESS/-1.2E0, 1.0E0/
 DATA XLB/-2.0E0, -1.0E0/, XUB/0.5E0, 2.0E0/
 ITP = 0
 IPARAM(1) = 0
 All the bounds are provided
 Default parameters are used
 Minimize Rosenbrock function using
 initial guesses of -1.2 and 1.0
 CALL BCONF (ROSBRK, ITP, XLB, XUB, X, XGUESS=XGUESS, &
 IPARAM=IPARAM, FVALUE=F)
 Print results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) X, F, (IPARAM (L), L=3, 5)
 99999 FORMAT (' The solution is ', 6X, 2F8.3, //, ' The function ', \&
'value is ', F8.3, //,', The number of iterations is ', \&
10X, I3, /, ' The number of function evaluations is ', \&
I3, /, ' The number of gradient evaluations is ', I3)
END
SUBROUTINE ROSBRK (N, X, F)
INTEGER N
REAL X(N), F
F=1.0E2*(X(2)-X(1)*X(1))**2 + (1.0E0-X(1))**2
RETURN
END

```
!
!
!
!
\(!\)

\section*{Output}

The solution is \(0.500 \quad 0.250\)
The function value is 0.250
```

The number of iterations is 24
The number of function evaluations is 34
The number of gradient evaluations is 26

```

\section*{Comments}
1. Workspace may be explicitly provided, if desired, by use of B2ONF/DB2ONF. The reference is:
```

CALL B2ONF (FCN, N, XGUESS, IBTYPE, XLB, XUB,
XSCALE, FSCALE, IPARAM, RPARAM, X, FVALUE, WK, IWK)

```

The additional arguments are as follows:
\(\boldsymbol{W} \boldsymbol{K}\) - Real work vector of length \(\mathrm{N} *(2\) * \(\mathrm{N}+8)\). WK contains the following information on output: The second \(N\) locations contain the last step taken. The third N locations contain the last Newton step. The fourth N locations contain an estimate of the gradient at the solution. The final \(N^{2}\) locations contain a BFGS approximation to the Hessian at the solution.
\(\boldsymbol{I W} \boldsymbol{K}\) - Work vector of length N stored in column order. Only the lower triangular portion of the matrix is stored in \(W K\). The values returned in the upper triangle should be ignored.
2. Informational errors
\begin{tabular}{ccl} 
Type & Code & \\
3 & 1 & \begin{tabular}{l} 
Both the actual and predicted relative reductions in the function are \\
less than or equal to the relative function convergence tolerance.
\end{tabular} \\
4 & 2 & \begin{tabular}{l} 
The iterates appear to be converging to a noncritical point. \\
4
\end{tabular} \\
4 & 4 & Maximum number of iterations exceeded. \\
4 & 5 & Maximum number of function evaluations exceeded. \\
4 & 6 & \begin{tabular}{l} 
Maximum number of gradient evaluations exceeded. \\
Five consecutive steps have been taken with the maximum step \\
length. \\
Scaled step tolerance satisfied; the current point may be an
\end{tabular} \\
2 & 7 & \begin{tabular}{l} 
Scale \\
approximate local solution, or the algorithm is making very slow \\
progress and is not near a solution, or STEPTL is too big. \\
The last global step failed to locate a lower point than the current X \\
value.
\end{tabular} \\
3 & 8 &
\end{tabular}
3. The first stopping criterion for BCONF occurs when the norm of the gradient is less than the given gradient tolerance (RPARAM(1)). The second stopping criterion for BCONF occurs when the scaled distance between the last two steps is less than the step tolerance (RPARAM(2)).
4. If the default parameters are desired for BCONF, then set IPARAM(1) to zero and call the routine BCONF. Otherwise, if any nondefault parameters are desired for IPARAM or RPARAM, then the following steps should be taken before calling BCONF:

CALL U4INF (IPARAM, RPARAM)
Set nondefault values for desired IPARAM, RPARAM elements.
Note that the call to U4 INF will set IPARAM and RPARAM to their default values so only nondefault values need to be set above.

The following is a list of the parameters and the default values:
IPARAM - Integer vector of length 7.
\(\operatorname{IPARAM}(1)=\) Initialization flag.
\(\operatorname{IPARAM}(2)=\) Number of good digits in the function.
Default: Machine dependent.
\(\operatorname{IPARAM}(3)=\) Maximum number of iterations.
Default: 100.
\(\operatorname{IPARAM}(4)=\) Maximum number of function evaluations.
Default: 400.
\(\operatorname{IPARAM}(5)=\) Maximum number of gradient evaluations.
Default: 400.
\(\operatorname{IPARAM}(6)=\) Hessian initialization parameter.
If \(\operatorname{IPARAM}(6)=0\), the Hessian is initialized to the identity matrix; otherwise, it is initialized to a diagonal matrix containing
\[
\max \left(|f(t)|, f_{s}\right) * s_{i}^{2}
\]
on the diagonal where \(t=\mathrm{XGUESS}, f_{s}=\) FSCALE, and \(s=\) XSCALE.
Default: 0.
\(\operatorname{IPARAM}(7)=\) Maximum number of Hessian evaluations.
Default: Not used in BCONF.
RPARAM - Real vector of length 7.
\(\operatorname{RPARAM}(1)=\) Scaled gradient tolerance.
The \(i\)-th component of the scaled gradient at x is calculated as
\[
\frac{\left|g_{i}\right| * \max \left(\left|x_{i}\right|, 1 / s_{i}\right)}{\max \left(|f(x)|, f_{s}\right)}
\]
where \(g=\nabla f(x), s=\) XSCALE, and \(f_{s}=\) FSCALE.
Default:
\[
\sqrt{\varepsilon}, \sqrt[3]{\varepsilon}
\]
in double where \(\varepsilon\) is the machine precision.
RPARAM \((2)=\) Scaled step tolerance. (STEPTL)
The \(i\)-th component of the scaled step between two points \(x\) and \(y\) is computed as
\[
\frac{\left|x_{i}-y_{i}\right|}{\max \left(\left|x_{i}\right|, 1 / s_{i}\right)}
\]
where \(s=\) XSCALE.
Default: \(\varepsilon^{2 / 3}\) where \(\varepsilon\) is the machine precision.
\(\operatorname{RPARAM}(3)=\) Relative function tolerance.
Default: \(\max \left(10^{-10}, \varepsilon^{2 / 3}\right), \max \left(10^{-20}, \varepsilon^{2 / 3}\right)\) in double where \(\varepsilon\) is the machine precision.
\(\operatorname{RPARAM}(4)=\) Absolute function tolerance.
Default: Not used in BCONF.
\(\operatorname{RPARAM}(5)=\) False convergence \({ }^{\tau 0 \lambda \varepsilon \rho \alpha v \chi \varepsilon}\).
Default: \(100 \varepsilon\) where \(\varepsilon\) is the machine precision.
\(\operatorname{RPARAM}(6)=\) Maximum allowable step size.
Default: \(1000 \max \left(\varepsilon_{1}, \varepsilon_{2}\right)\) where
\[
\varepsilon_{1} \sqrt{\sum_{i=1}^{n}\left(s_{i} t_{i}\right)^{2}}
\]
\(\varepsilon_{2}=\|s\|_{2}, s=\mathrm{XSCALE}\), and \(t=\mathrm{XGUESS}\).
\(\operatorname{RPARAM}(7)=\) Size of initial trust region radius.
Default: based on the initial scaled Cauchy step.
If double precision is required, then DU4 INF is called and RPARAM is declared double precision.
5. Users wishing to override the default print/stop attributes associated with error messages issued by this routine are referred to "Error Handling" in the Introduction.

\section*{Description}

The routine BCONF uses a quasi-Newton method and an active set strategy to solve minimization problems subject to simple bounds on the variables. The problem is stated as follows:
\[
\min _{x \in \mathbf{R}^{n}} f(x)
\]
\[
\text { subject to } l \leq x \leq u
\]

From a given starting point \(x^{c}\), an active set IA, which contains the indices of the variables at their bounds, is built. A variable is called a "free variable" if it is not in the active set. The routine then computes the search direction for the free variables according to the formula
\[
d=-B^{-1} g^{c}
\]
where \(B\) is a positive definite approximation of the Hessian and \(g^{c}\) is the gradient evaluated at \(x^{c}\); both are computed with respect to the free variables. The search direction for the variables in IA is set to zero. A line search is used to find a new point \(x^{n}\),
\[
x^{n}=x^{c}+\lambda d, \lambda \in(0,1]
\]
such that
\[
f\left(x^{n}\right) \leq f\left(x^{c}\right)+\alpha g^{T} d, \quad \alpha \in(0,0.5)
\]

Finally, the optimality conditions
\[
\begin{gathered}
\left\|g\left(x_{i}\right)\right\| \leq \varepsilon, l_{i}<x_{i}<u_{i} \\
g\left(x_{i}\right)<0, x_{i}=u_{i} \\
g\left(x_{i}\right)>0, x_{i}=l_{i}
\end{gathered}
\]
are checked, where \(\varepsilon\) is a gradient tolerance. When optimality is not achieved, \(B\) is updated according to the BFGS formula:
\[
B \leftarrow B-\frac{B s s^{T} B}{s^{T} B s}+\frac{y y^{T}}{y^{T} s}
\]
where \(s=x^{n}-x^{c}\) and \(y=g^{n}-g^{c}\). Another search direction is then computed to begin the next iteration.

The active set is changed only when a free variable hits its bounds during an iteration or the optimality condition is met for the free variables but not for all variables in IA, the active set. In the latter case, a variable that violates the optimality condition will be dropped out of IA. For more details on the quasi-Newton method and line search, see Dennis and Schnabel (1983). For more detailed information on active set strategy, see Gill and Murray (1976).
Since a finite-difference method is used to estimate the gradient for some single precision calculations, an inaccurate estimate of the gradient may cause the algorithm to terminate at a noncritical point. In such cases, high precision arithmetic is recommended. Also, whenever the exact gradient can be easily provided, routine BCONG (page 1249) should be used instead.

\section*{BCONG}

Minimizes a function of \(N\) variables subject to bounds on the variables using a quasi-Newton method and a user-supplied gradient.

\section*{Required Arguments}

FCN - User-supplied SUBROUTINE to evaluate the function to be minimized. The usage is CALL FCN (N, X, F), where

N - Length of X . (Input)
X - Vector of length N at which point the function is evaluated. (Input) \(X\) should not be changed by FCN.

F - The computed function value at the point X . (Output)

FCN must be declared EXTERNAL in the calling program.
\(\boldsymbol{G R} \boldsymbol{A D}\) - User-supplied SUBROUTINE to compute the gradient at the point X . The usage is CALL GRAD ( \(\mathrm{N}, \mathrm{X}, \mathrm{G}\) ), where

N - Length of X and G . (Input)
\(\mathrm{X}-\) Vector of length N at which point the gradient is evaluated. (Input) \(x\) should not be changed by GRAD.

G - The gradient evaluated at the point X . (Output)

GRAD must be declared EXTERNAL in the calling program.
IBTYPE - Scalar indicating the types of bounds on variables. (Input)

\section*{IBTYPE Action}
\(0 \quad\) User will supply all the bounds.
1 All variables are nonnegative.

2
All variables are nonpositive.
3
User supplies only the bounds on 1st variable, all other variables will have the same bounds.
\(\boldsymbol{X L B}-\) Vector of length N containing the lower bounds on variables. (Input, if IBTYPE \(=0\); output, if IBTYPE \(=1\) or 2 ; input/output, if \(\triangle B T Y P E=3\) )
\(\boldsymbol{X U B}\) - Vector of length N containing the upper bounds on variables. (Input, if IBTYPE \(=0\); output, if IBTYPE \(=1\) or 2 ; input/output, if \(\operatorname{IBTYPE~}=3\) )
\(\boldsymbol{X}-\) Vector of length N containing the computed solution. (Output)

\section*{Optional Arguments}
\(N\) - Dimension of the problem. (Input)
Default: \(\mathrm{N}=\operatorname{size}(\mathrm{X}, 1)\).
\(\boldsymbol{X G} \boldsymbol{U} \boldsymbol{E S S}\) - Vector of length N containing the initial guess of the minimum. (Input) Default: XGUESS \(=0.0\).
\(\boldsymbol{X S C A L E}\) — Vector of length N containing the diagonal scaling matrix for the variables. (Input)
XSCALE is used mainly in scaling the gradient and the distance between two points. In the absence of other information, set all entries to 1.0.
Default: XSCALE \(=1.0\).
FSCALE - Scalar containing the function scaling. (Input)
FSCALE is used mainly in scaling the gradient. In the absence of other information, set FSCALE to 1.0 .
Default: \(\operatorname{FSCALE}=1.0\).

IPARAM - Parameter vector of length 7. (Input/Output)
Set IPARAM(1) to zero for default values of IPARAM and RPARAM. See Comment 4.
Default: \(\operatorname{IPARAM}=0\).
\(\boldsymbol{R P A R A M}\) - Parameter vector of length 7. (Input/Output) See Comment 4.
\(\boldsymbol{F V A L U E}\) - Scalar containing the value of the function at the computed solution. (Output)

\section*{FORTRAN 90 Interface}

Generic: CALL BCONG (FCN, GRAD, IBTYPE, XLB, XUB, X [, ...])
Specific: The specific interface names are \(S_{\text {_ }}\) BCONG and D_BCONG.

\section*{FORTRAN 77 Interface}

Single: CALL BCONG (FCN, GRAD, N, XGUESS, IBTYPE, XLB, XUB, XSCALE, FSCALE, IPARAM, RPARAM, X, FVALUE)

Double: The double precision name is DBCONG.

\section*{Example}

The problem
\[
\begin{aligned}
& \min f(x)=100\left(x_{2}-x_{1}^{2}\right)^{2}+\left(1-x_{1}\right)^{2} \\
& \text { subject to } \quad-2 \leq x_{1} \leq 0.5 \\
&-1 \leq x_{2} \leq 2
\end{aligned}
\]
is solved with an initial guess \((-1.2,1.0)\), and default values for parameters.
USE BCONG_INT
USE UMACH_INT
INTEGER - N
PARAMETER ( \(\mathrm{N}=2\) )
\(!\)
INTEGER IPARAM(7), ITP, L, NOUT
REAL \(F, X(N), \quad X G U E S S(N), \quad X L B(N), \quad X U B(N)\)
EXTERNAL ROSBRK, ROSGRD
\(!\)
DATA XGUESS/-1.2E0, 1.0E0/
DATA XLB/-2.0E0, -1.0E0/, XUB/0.5E0, 2.0E0/
All the bounds are provided
ITP \(=0\)
Default parameters are used
Minimize Rosenbrock function using
initial guesses of -1.2 and 1.0
CALL BCONG (ROSBRK, ROSGRD, ITP, XLB, XUB, X, XGUESS=XGUESS, \& IPARAM=IPARAM, FVALUE=F)

Print results
CALL UMACH (2, NOUT)
WRITE (NOUT, 99999) X, F, (IPARAM (L), L=3, 5)
!
99999 FORMAT (' The solution is ', 6X, 2F8.3, //, ' The function ', \&
'value is ', F8.3, //, ' The number of iterations is ', \& 10X, I3, /, ' The number of function evaluations is ', \& I3, /, ' The number of gradient evaluations is ', I3)
\(!\)
END
\(!\)
SUBROUTINE ROSBRK (N, X, F)
INTEGER N
REAL \(\quad X(N), F\)
\(F=1.0 E 2 *(X(2)-X(1) * X(1)) * * 2+(1.0 E 0-X(1)) * * 2\)
\(!\)
RETURN
END
\(!\)
SUBROUTINE ROSGRD (N, X, G)
INTEGER N
REAL \(\quad X(N), G(N)\)
\(!\)
\(G(1)=-4.0 E 2 *(X(2)-X(1) * X(1)) * X(1)-2.0 E 0 *(1.0 E 0-X(1))\)
\(G(2)=2.0 E 2^{*}(X(2)-X(1) * X(1))\)
\(!\)
RETURN
END

\section*{Output}
```

The solution is 0.500 0.250
The function value is 0.250
The number of iterations is 22
The number of function evaluations is 32
The number of gradient evaluations is 23

```

\section*{Comments}
1. Workspace may be explicitly provided, if desired, by use of B2ONG/DB2ONG. The reference is:
```

CALL B2ONG (FCN, GRAD, N, XGUESS, IBTYPE, XLB, XUB, XSCALE,
FSCALE, IPARAM, RPARAM, X, FVALUE, WK, IWK)

```

The additional arguments are as follows:
\(\boldsymbol{W} \boldsymbol{K}\) - Real work vector of length \(\mathrm{N} *(2 * \mathrm{~N}+8)\). WK contains the following information on output: The second N locations contain the last step taken. The third N locations contain the last Newton step. The fourth N locations contain an estimate of the gradient at the solution. The final \(\mathrm{N}^{2}\) locations contain a BFGS approximation to the Hessian at the solution.
\(\boldsymbol{I W} \boldsymbol{K}\) - Work vector of length N stored in column order. Only the lower triangular portion of the matrix is stored in WK. The values returned in the upper triangle should be ignored.
2. Informational errors

Type Code
31 Both the actual and predicted relative reductions in the function are less than or equal to the relative function convergence tolerance.

42 The iterates appear to be converging to a noncritical point.
43 Maximum number of iterations exceeded.
44 Maximum number of function evaluations exceeded.
45 Maximum number of gradient evaluations exceeded.
46 Five consecutive steps have been taken with the maximum step length.
27 Scaled step tolerance satisfied; the current point may be an approximate local solution, or the algorithm is making very slow progress and is not near a solution, or STEPTL is too big.
3. The first stopping criterion for \(B C O N G\) occurs when the norm of the gradient is less than the given gradient tolerance (RPARAM (1) ). The second stopping criterion for BCONG occurs when the scaled distance between the last two steps is less than the step tolerance (RPARAM (2)).
4. If the default parameters are desired for BCONG, then set IPARAM (1) to zero and call the routine BCONG. Otherwise, if any nondefault parameters are desired for IPARAM or RPARAM, then the following steps should be taken before calling BCONG:

CALL U4INF (IPARAM, RPARAM)
Set nondefault values for desired IPARAM, RPARAM elements.
Note that the call to U4INF will set IPARAM and RPARAM to their default values so only nondefault values need to be set above.

The following is a list of the parameters and the default values:
IPARAM - Integer vector of length 7.
\(\operatorname{IPARAM}(1)=\) Initialization flag.
\(\operatorname{IPARAM}(2)=\) Number of good digits in the function.
Default: Machine dependent.
\(\operatorname{IPARAM}(3)=\) Maximum number of iterations.
Default: 100.
\(\operatorname{IPARAM}(4)=\) Maximum number of function evaluations.
Default: 400.
\(\operatorname{IPARAM}(5)=\) Maximum number of gradient evaluations.
Default: 400.
\(\operatorname{IPARAM}(6)=\) Hessian initialization parameter.
If \(\operatorname{IPARAM}(6)=0\), the Hessian is initialized to the identity matrix; otherwise, it is initialized to a diagonal matrix containing
\[
\max \left(|f(t)|, f_{s}\right) * s_{i}^{2}
\]
on the diagonal where \(t=\) XGUESS, \(f s=\) FSCALE, and \(s=\) XSCALE .
Default: 0 .
\(\operatorname{IPARAM}(7)=\) Maximum number of Hessian evaluations.
Default: Not used in BCONG.
\(\boldsymbol{R P A R A M}\) - Real vector of length 7.
\(\operatorname{RPARAM}(1)=\) Scaled gradient tolerance.
The \(i\)-th component of the scaled gradient at x is calculated as
\[
\frac{\left|g_{i}\right| * \max \left(\left|x_{i}\right|, 1 / s_{i}\right)}{\max \left(|f(x)|, f_{s}\right)}
\]
where \(g=\nabla f(x), s=\) XSCALE, and \(f_{s}=\) FSCALE.
Default:
\[
\sqrt{\varepsilon}, \sqrt[3]{\varepsilon}
\]
in double where \(\varepsilon\) is the machine precision.
\(\operatorname{RPARAM}(2)=\) Scaled step tolerance. (STEPTL)
The \(i\)-th component of the scaled step between two points \(x\) and \(y\) is computed as
\[
\frac{\left|x_{i}-y_{i}\right|}{\max \left(\left|x_{i}\right|, 1 / s_{i}\right)}
\]
where \(s=\) XSCALE.
Default: \(\varepsilon^{2 / 3}\) where \(\varepsilon\) is the machine precision.
\(\operatorname{RPARAM}(3)=\) Relative function tolerance.
Default: \(\max \left(10^{-10}, \varepsilon^{2 / 3}\right), \max \left(10^{-20}, \varepsilon^{2 / 3}\right)\) in double where \(\varepsilon\) is the machine precision.
\(\operatorname{RPARAM}(4)=\) Absolute function tolerance.
Default: Not used in BCONG.
\(\operatorname{RPARAM}(5)=\) False convergence tolerance.
Default: \(100 \varepsilon\) where \(\varepsilon\) is the machine precision.
\(\operatorname{RPARAM}(6)=\) Maximum allowable step size.
Default: \(1000 \max \left(\varepsilon_{1}, \varepsilon_{2}\right)\) where
\[
\varepsilon_{1} \sqrt{\sum_{i=1}^{n}\left(s_{i} t_{i}\right)^{2}}
\]
\(\varepsilon_{2}=\|s\|_{2}, s=\operatorname{XSCALE}\), and \(t=\mathrm{XGUESS}\).
\(\operatorname{RPARAM}(7)=\) Size of initial trust region radius.
Default: based on the initial scaled Cauchy step.
If double precision is required, then DU4 INF is called and RPARAM is declared double precision.
5. Users wishing to override the default print/stop attributes associated with error messages issued by this routine are referred to "Error Handling" in the Introduction.

\section*{Description}

The routine BCONG uses a quasi-Newton method and an active set strategy to solve minimization problems subject to simple bounds on the variables. The problem is stated as follows:
\[
\begin{gathered}
\min _{x \in \mathrm{R}^{n}} f(x) \\
\text { subject to } l \leq x \leq u
\end{gathered}
\]

From a given starting point \(x^{c}\), an active set IA, which contains the indices of the variables at their bounds, is built. A variable is called a "free variable" if it is not in the active set. The routine then computes the search direction for the free variables according to the formula
\[
d=-B^{-1} g^{c}
\]
where \(B\) is a positive definite approximation of the Hessian and \(g^{c}\) is the gradient evaluated at \(x^{c}\); both are computed with respect to the free variables. The search direction for the variables in IA is set to zero. A line search is used to find a new point \(x^{n}\),
\[
x^{n}=x^{c}+\lambda d, \lambda \in(0,1]
\]
such that
\[
f\left(x^{n}\right) \leq f\left(x^{c}\right)+\alpha g^{T} d, \quad \alpha \in(0,0.5)
\]

Finally, the optimality conditions
\[
\begin{gathered}
\left\|g\left(x_{i}\right)\right\| \leq \varepsilon, l_{i}<x_{i}<u_{i} \\
g\left(x_{i}\right)<0, x_{i}=u_{i} \\
g\left(x_{i}\right)>0, x_{i}=l_{i}
\end{gathered}
\]
are checked, where \(\varepsilon\) is a gradient tolerance. When optimality is not achieved, \(B\) is updated according to the BFGS formula:
\[
B \leftarrow B-\frac{B s s^{T} B}{s^{T} B s}+\frac{y y^{T}}{y^{T} s}
\]
where \(s=x^{n}-x^{c}\) and \(y=g^{n}-g^{c}\). Another search direction is then computed to begin the next iteration.
The active set is changed only when a free variable hits its bounds during an iteration or the optimality condition is met for the free variables but not for all variables in IA, the active set. In the latter case, a variable that violates the optimality condition will be dropped out of IA. For more details on the quasi-Newton method and line search, see Dennis and Schnabel (1983). For more detailed information on active set strategy, see Gill and Murray (1976).

\section*{BCODH}

Minimizes a function of N variables subject to bounds on the variables using a modified Newton method and a finite-difference Hessian.

\section*{Required Arguments}
\(\boldsymbol{F C N}\) - User-supplied SUBROUTINE to evaluate the function to be minimized. The usage is
CALL FCN (N, X, F), where

N - Length of X . (Input)
\(\mathrm{X}-\) Vector of length N at which point the function is evaluated. (Input) X should not be changed by FCN.

F - The computed function value at the point X . (Output)
FCN must be declared EXTERNAL in the calling program.
\(\boldsymbol{G R} \boldsymbol{A D}\) - User-supplied SUBROUTINE to compute the gradient at the point x . The usage is CALL GRAD ( \(\mathrm{N}, \mathrm{X}, \mathrm{G}\) ), where

N - Length of X and G . (Input)
\(\mathrm{X}-\) Vector of length N at which point the gradient is evaluated. (Input) \(X\) should not be changed by GRAD.

G - The gradient evaluated at the point X . (Output)
GRAD must be declared EXTERNAL in the calling program.
IBTYPE - Scalar indicating the types of bounds on variables. (Input)

\section*{IBTYPe Action}

0 User will supply all the bounds.
1 All variables are nonnegative.
2 All variables are nonpositive.
3 User supplies only the bounds on 1st variable, all other variables will have the same bounds.
\(\boldsymbol{X} \boldsymbol{L B}\) - Vector of length N containing the lower bounds on the variables. (Input)
\(\boldsymbol{X} \boldsymbol{U} \boldsymbol{B}-\) Vector of length N containing the upper bounds on the variables. (Input)
\(\boldsymbol{X}\) - Vector of length N containing the computed solution. (Output)

\section*{Optional Arguments}
\(N\) - Dimension of the problem. (Input)
Default: \(\mathrm{N}=\operatorname{size}(\mathrm{X}, 1)\).
\(\boldsymbol{X G U E S S}\) - Vector of length N containing the initial guess of the minimum. (Input)
Default: XGUESS \(=0.0\).
\(\boldsymbol{X S C A L E}\) - Vector of length N containing the diagonal scaling matrix for the variables.
(Input)
XSCALE is used mainly in scaling the gradient and the distance between two points. In the absence of other information, set all entries to 1.0.
Default: \(\mathrm{XSCALE}=1.0\).
FSCALE - Scalar containing the function scaling. (Input)
FSCALE is used mainly in scaling the gradient. In the absence of other information, set FSCALE to 1.0 .
Default: FSCALE = 1.0.
IPARAM - Parameter vector of length 7. (Input/Output)
Set IPARAM(1) to zero for default values of IPARAM and RPARAM. See Comment 4.
Default: IPARAM \(=0\).
\(\boldsymbol{R P A R A M}\) - Parameter vector of length 7. (Input/Output) See Comment 4.
\(\boldsymbol{F V A L U E}\) - Scalar containing the value of the function at the computed solution. (Output)

\section*{FORTRAN 90 Interface}

Generic: CALL BCODH (FCN, GRAD, IBTYPE, XLB, XUB, X [,...])
Specific: The specific interface names are S_BCODH and D_BCODH.

\section*{FORTRAN 77 Interface}

Single: CALL BCODH (FCN, GRAD, N, XGUESS, IBTYPE, XLB, XUB, XSCALE, FSCALE, IPARAM, RPARAM, X, FVALUE)

Double: The double precision name is DBCODH.

\section*{Example}

The problem
\[
\begin{gathered}
\min f(x)=100\left(x_{2}-x_{1}^{2}\right)^{2}+\left(1-x_{1}\right)^{2} \\
\text { subject to } \quad-2 \leq x_{1} \leq 0.5 \\
-1 \leq x_{2} \leq 2
\end{gathered}
\]
is solved with an initial guess \((-1.2,1.0)\), and default values for parameters.
```

 USE BCODH_INT
 USE UMACH_INT
 INTEGER N
 PARAMETER (N=2)
 INTEGER IP, IPARAM(7), L, NOUT
 REAL F, X(N), XGUESS(N), XLB(N), XUB(N)
 EXTERNAL ROSBRK, ROSGRD
 !
DATA XGUESS/-1.2E0, 1.0E0/
DATA XLB/-2.0E0, -1.0E0/, XUB/0.5E0, 2.0E0/
!
IPARAM(1) = 0
IP = 0
Minimize Rosenbrock function using
initial guesses of -1.2 and 1.0
CALL BCODH (ROSBRK, ROSGRD, IP, XLB, XUB, X, XGUESS=XGUESS, \&
IPARAM=IPARAM, FVALUE=F)
Print results
CALL UMACH (2, NOUT)
WRITE (NOUT,99999) X, F, (IPARAM(L),L=3,5)
99999 FORMAT (' The solution is ', 6X, 2F8.3, //, ' The function ', \&
'value is ', F8.3, //, ' The number of iterations is ', \&
10X, I3, /, ' The number of function evaluations is ', \&
I3, /, ' The number of gradient evaluations is ', I3)
END
SUBROUTINE ROSBRK (N, X, F)
INTEGER N
REAL X (N), F
F=1.0E2*(X(2)-X(1)*X(1))**2 + (1.0E0-X(1))**2
RETURN
END
SUBROUTINE ROSGRD (N, X, G)
INTEGER N
REAL X(N),G(N)
G(1) = -4.0E2*(X(2)-X(1)*X(1))*X(1) - 2.0E0*(1.0E0-X(1))
G(2) = 2.0E2*(X(2)-X(1)*X(1))
RETURN
END

```
```

 Output
 The solution is 0.500 0.250
The function value is 0.250
The number of iterations is 17
The number of function evaluations is 26
The number of gradient evaluations is 18

```

\section*{Comments}
1. Workspace may be explicitly provided, if desired, by use of B2ODH/DB2ODH. The reference is:
```

CALL B2ODH (FCN, GRAD, N, XGUESS, IBTYPE, XLB, XUB, XSCALE,
FSCALE, IPARAM, RPARAM, X, FVALUE, WK, IWK)

```

The additional arguments are as follows:
\(\boldsymbol{W} \boldsymbol{K}\) - Real work vector of length N * ( \(\mathrm{N}+8\) ). WK contains the following information on output: The second N locations contain the last step taken. The third \(N\) locations contain the last Newton step. The fourth \(N\) locations contain an estimate of the gradient at the solution. The final \(N^{2}\) locations contain the Hessian at the approximate solution.
\(\boldsymbol{I} \boldsymbol{W} \boldsymbol{K}\) - Integer work vector of length N.
2. Informational errors
\begin{tabular}{ccl} 
Type & Code & \\
3 & 1 & \begin{tabular}{l} 
Both the actual and predicted relative reductions in the function are \\
less than or equal to the relative function convergence tolerance.
\end{tabular} \\
4 & 2 & The iterates appear to be converging to a noncritical point. \\
4 & 3 & Maximum number of iterations exceeded. \\
4 & 4 & Maximum number of function evaluations exceeded. \\
4 & 5 & Maximum number of gradient evaluations exceeded. \\
4 & 6 & \begin{tabular}{l} 
Five consecutive steps have been taken with the maximum step \\
length.
\end{tabular} \\
2 & 7 & \begin{tabular}{l} 
Scaled step tolerance satisfied; the current point may be an \\
approximate local solution, or the algorithm is making very slow \\
progress and is not near a solution, or STEPTL is too big.
\end{tabular} \\
4 & 7 & \begin{tabular}{l} 
Maximum number of Hessian evaluations exceeded.
\end{tabular}
\end{tabular}
3. The first stopping criterion for BCODH occurs when the norm of the gradient is less than the given gradient tolerance (RPARAM(1)). The second stopping criterion for BCODH occurs when the scaled distance between the last two steps is less than the step tolerance (RPARAM(2)).
4. If the default parameters are desired for BCODH, then set IPARAM(1) to zero and call the routine BCODH. Otherwise, if any nondefault parameters are desired for IPARAM or RPARAM; then the following steps should be taken before calling BCODH:

CALL U4INF (IPARAM, RPARAM)
Set nondefault values for desired IPARAM, RPARAM elements.

Note that the call to U4INF will set IPARAM and RPARAM to their default values so only nondefault values need to be set above.

The following is a list of the parameters and the default values:
IPARAM - Integer vector of length 7.
\(\operatorname{IPARAM}(1)=\) Initialization flag.
\(\operatorname{IPARAM}(2)=\) Number of good digits in the function.
Default: Machine dependent.
\(\operatorname{IPARAM}(3)=\) Maximum number of iterations.
Default: 100.
\(\operatorname{IPARAM}(4)=\) Maximum number of function evaluations.
Default: 400.
\(\operatorname{IPARAM}(5)=\) Maximum number of gradient evaluations.
Default: 400.
\(\operatorname{IPARAM}(6)=\) Hessian initialization parameter.
Default: Not used in BCODH.
\(\operatorname{IPARAM}(7)=\) Maximum number of Hessian evaluations.
Default: 100.
\(\boldsymbol{R P A R A M}\) - Real vector of length 7.
\(\operatorname{RPARAM}(1)=\) Scaled gradient tolerance.
The \(i\)-th component of the scaled gradient at x is calculated as
\[
\frac{\left|g_{i}\right| * \max \left(\left|x_{i}\right|, 1 / s_{i}\right)}{\max \left(|f(x)|, f_{s}\right)}
\]
where \(g=\nabla f(x), s=\) XSCALE, and \(f_{s}=\) FSCALE.
Default:
\[
\sqrt{\varepsilon}, \sqrt[3]{\varepsilon}
\]
in double where \(\varepsilon\) is the machine precision.
\(\operatorname{RPARAM}(2)=\) Scaled step tolerance. (STEPTL)
The \(i\)-th component of the scaled step between two points \(x\) and \(y\) is computed as
\[
\frac{\left|x_{i}-y_{i}\right|}{\max \left(\left|x_{i}\right|, 1 / s_{i}\right)}
\]
where \(s=\) XSCALE.
Default: \(\varepsilon^{2 / 3}\) where \(\varepsilon\) is the machine precision.
\(\operatorname{RPARAM}(3)=\) Relative function tolerance.
Default: \(\max \left(10^{-10}, \varepsilon^{2 / 3}\right), \max \left(10^{-20}, \varepsilon^{2 / 3}\right)\) in double where \(\varepsilon\) is the machine precision.
\(\operatorname{RPARAM}(4)=\) Absolute function tolerance.
Default: Not used in BCODH.
\(\operatorname{RPARAM}(5)=\) False convergence tolerance.
Default: \(100 \varepsilon\) where \(\varepsilon\) is the machine precision.
\(\operatorname{RPARAM}(6)=\) Maximum allowable step size.
Default: \(1000 \max \left(\varepsilon_{1}, \varepsilon_{2}\right)\) where
\[
\varepsilon_{1} \sqrt{\sum_{i=1}^{n}\left(s_{i} t_{i}\right)^{2}}
\]
\(\varepsilon_{2}=\|s\|_{2}, s=\) XSCALE, and \(t=\) XGUESS.
\(\operatorname{RPARAM}(7)=\) Size of initial trust region radius.
Default: based on the initial scaled Cauchy step.
If double precision is required, then DU4INF is called and RPARAM is declared double precision.
5. Users wishing to override the default print/stop attributes associated with error messages issued by this routine are referred to "Error Handling" in the Introduction.

\section*{Description}

The routine BCODH uses a modified Newton method and an active set strategy to solve minimization problems subject to simple bounds on the variables. The problem is stated as
\[
\begin{gathered}
\min _{x \in \mathbb{R}^{n}} f(x) \\
\text { subject to } l \leq x \leq u
\end{gathered}
\]

From a given starting point \(x^{c}\), an active set IA, which contains the indices of the variables at their bounds, is built. A variable is called a "free variable" if it is not in the active set. The routine then computes the search direction for the free variables according to the formula
\[
d=-H^{-1} g^{c}
\]
where \(H\) is the Hessian and \(g^{c}\) is the gradient evaluated at \(x^{c}\); both are computed with respect to the free variables. The search direction for the variables in IA is set to zero. A line search is used to find a new point \(x^{n}\),
\[
x^{n}=x^{c}+\lambda d, \lambda \in(0,1]
\]
such that
\[
f\left(x^{n}\right) \leq f\left(x^{c}\right)+\alpha g^{T} d, \quad \alpha \in(0,0.5)
\]

Finally, the optimality conditions
\[
\begin{gathered}
\left\|g\left(x_{i}\right)\right\| \leq \varepsilon, l_{i}<x_{i}<u_{i} \\
g\left(x_{i}\right)<0, x_{i}=u_{i} \\
g\left(x_{i}\right)>0, x_{i}=l_{i}
\end{gathered}
\]
are checked where \(\varepsilon\) is a gradient tolerance. When optimality is not achieved, another search direction is computed to begin the next iteration. This process is repeated until the optimality criterion is met.

The active set is changed only when a free variable hits its bounds during an iteration or the optimality condition is met for the free variables but not for all variables in IA, the active set. In the latter case, a variable that violates the optimality condition will be dropped out of IA. For more details on the modified Newton method and line search, see Dennis and Schnabel (1983). For more detailed information on active set strategy, see Gill and Murray (1976).

Since a finite-difference method is used to estimate the Hessian for some single precision calculations, an inaccurate estimate of the Hessian may cause the algorithm to terminate at a noncritical point. In such cases, high precision arithmetic is recommended. Also, whenever the exact Hessian can be easily provided, routine BCOAH (page 1263) should be used instead.

\section*{BCOAH}

Minimizes a function of N variables subject to bounds on the variables using a modified Newton method and a user-supplied Hessian.

\section*{Required Arguments}
\(\boldsymbol{F C N}\) - User-supplied SUBROUTINE to evaluate the function to be minimized. The usage is CALL FCN (N, X, F), where

N - Length of X . (Input)
\(X-\) Vector of length \(N\) at which point the function is evaluated. (Input) \(X\) should not be changed by FCN.

F - The computed function value at the point X . (Output)
FCN must be declared EXTERNAL in the calling program.
\(\boldsymbol{G R} \boldsymbol{A D}\) - User-supplied SUBROUTINE to compute the gradient at the point x . The usage is CALL GRAD ( \(\mathrm{N}, \mathrm{X}, \mathrm{G}\) ), where

N - Length of X and G. (Input)
\(\mathrm{X}-\) Vector of length N at which point the gradient is evaluated. (Input) \(x\) should not be changed by GRAD.

G - The gradient evaluated at the point X . (Output)

GRAD must be declared EXTERNAL in the calling program.
HESS - User-supplied SUbroutine to compute the Hessian at the point X . The usage is CALL HESS (N, X, H, LDH), where

N - Length of X . (Input)
\(\mathrm{X}-\) Vector of length N at which point the Hessian is evaluated. (Input) \(X\) should not be changed by HESS.

H - The Hessian evaluated at the point X . (Output)
LDH - Leading dimension of \(H\) exactly as specified in the dimension statement of the calling program. (Input)

HESS must be declared EXTERNAL in the calling program.
IBTYPE - Scalar indicating the types of bounds on variables. (Input)

\section*{IBTYPE Action}

0 User will supply all the bounds.
1 All variables are nonnegative.
2 All variables are nonpositive.
3 User supplies only the bounds on 1st variable, all other variables will have the same bounds.
\(\boldsymbol{X L B}-\) Vector of length N containing the lower bounds on the variables. (Input)
\(\boldsymbol{X U B}-\) Vector of length N containing the upper bounds on the variables. (Input)
\(\boldsymbol{X}-\) Vector of length N containing the computed solution. (Output)

\section*{Optional Arguments}
\(N\)-Dimension of the problem. (Input)
Default: \(\mathrm{N}=\operatorname{size}(\mathrm{X}, 1)\).
\(\boldsymbol{X G U E S S}\) - Vector of length N containing the initial guess. (Input)
Default: XGUESS \(=0.0\).
\(\boldsymbol{X S C A L E}\) - Vector of length N containing the diagonal scaling matrix for the variables.
(Input)
XSCALE is used mainly in scaling the gradient and the distance between two points. In the absence of other information, set all entries to 1.0 .
Default: XSCALE \(=1.0\).
\(\boldsymbol{F S C A L E}\) - Scalar containing the function scaling. (Input)
FSCALE is used mainly in scaling the gradient. In the absence of other information, set FSCALE to 1.0 .
Default: \(\mathrm{FSCALE}=1.0\).
IPARAM - Parameter vector of length 7. (Input/Output)
Set IPARAM(1) to zero for default values of IPARAM and RPARAM. See Comment 4.
Default: \(\operatorname{IPARAM}=0\).
\(\boldsymbol{R P A R A M}\) - Parameter vector of length 7. (Input/Output) See Comment 4.
\(\boldsymbol{F V A L U E}\) - Scalar containing the value of the function at the computed solution. (Output)

\section*{FORTRAN 90 Interface}

Generic: CALL BCOAH (FCN, GRAD, HESS, IBTYPE, XLB, XUB, X [,...])
Specific: The specific interface names are S_BCOAH and D_BCOAH.

\section*{FORTRAN 77 Interface}

Single: CALL BCOAH (FCN, GRAD, HESS, N, XGUESS, IBTYPE, XLB, XUB, XSCALE, FSCALE, IPARAM, RPARAM, X, FVALUE)

Double: The double precision name is DBCOAH.

\section*{Example}

The problem
\[
\begin{gathered}
\min f(x)=100\left(x_{2}-x_{1}^{2}\right)^{2}+\left(1-x_{1}\right)^{2} \\
\text { subject to } \quad-2 \leq x_{1} \leq 0.5 \\
-1 \leq x_{2} \leq 2
\end{gathered}
\]
is solved with an initial guess \((-1.2,1.0)\), and default values for parameters.
```

 USE BCOAH_INT
 USE UMACH_INT
 INTEGER N
 PARAMETER (N=2)
 INTEGER IP, IPARAM(7), L, NOUT
 REAL F, X(N), XGUESS (N), XLB (N), XUB (N)
 EXTERNAL ROSBRK, ROSGRD, ROSHES
 !
DATA XGUESS/-1.2E0, 1.0E0/
DATA XLB/-2.0E0, -1.0E0/, XUB/0.5E0, 2.0E0/
!
IPARAM(1) = 0
IP = 0
CALL BCOAH (ROSBRK, ROSGRD, ROSHES, IP, XLB, XUB, X, \&
XGUESS=XGUESS,IPARAM=IPARAM, FVALUE=F)
Print results
CALL UMACH (2, NOUT)
WRITE (NOUT,99999) X, F, (IPARAM(L),L=3,5), IPARAM(7)
99999 FORMAT (' The solution is ', 6X, 2F8.3, //, ' The function ', \&
'value is ', F8.3, //, ' The number of iterations is ', \&
10X, I3, /, ' The number of function evaluations is ', \&
I3, /, ' The number of gradient evaluations is ', I3, /, \&
' The number of Hessian evaluations is ', I3)
!
END
!
SUBROUTINE ROSBRK (N, X, F)
INTEGER N
REAL X(N), F
F=1.0E2*(X(2)-X(1)*X(1))**2 + (1.0EO-X(1))**2
!
RETURN
END
!
SUBROUTINE ROSGRD (N, X, G)
INTEGER N
REAL X(N),G(N)
!
G(1) = -4.0E2*(X(2)-X(1)*X(1))*X(1) - 2.0E0*(1.0E0-X(1))
G(2) = 2.0E2* (X(2)-X(1)*X(1))
!
RETURN
END

```
```

!
SUBROUTINE ROSHES (N, X, H, LDH)
INTEGER N, LDH
REAL X(N), H(LDH,N)
!
H(1,1) = -4.0E2*X(2) + 1.2E3*X(1)*X(1) + 2.0E0
H}(2,1)=-4.0E2*X(1
H}(1,2)=H(2,1
H(2,2) = 2.0E2
!
RETURN
END

```

\section*{Output}
```

The solution is 0.500 0.250

```
The solution is 0.500 0.250
The function value is 0.250
The function value is 0.250
The number of iterations is 18
The number of iterations is 18
The number of function evaluations is 29
The number of function evaluations is 29
The number of gradient evaluations is 19
The number of gradient evaluations is 19
The number of Hessian evaluations is 18
```

The number of Hessian evaluations is 18

```

\section*{Comments}
1. Workspace may be explicitly provided, if desired, by use of B2OAH/DB2OAH. The reference is:
```

CALL B2OAH (FCN, GRAD, HESS, N, XGUESS, IBTYPE, XLB,
XUB, XSCALE, FSCALE, IPARAM, RPARAM, X,
FVALUE, WK, IWK)

```

The additional arguments are as follows:
\(\boldsymbol{W} \boldsymbol{K}\) - Work vector of length \(\mathrm{N} *(\mathrm{~N}+8)\). WK contains the following information on output: The second N locations contain the last step taken. The third N locations contain the last Newton step. The fourth \(N\) locations contain an estimate of the gradient at the solution. The final \(\mathrm{N}^{2}\) locations contain the Hessian at the approximate solution.
\(\boldsymbol{I W} \boldsymbol{K}\) - Work vector of length N .
2. Informational errors
\begin{tabular}{ccl} 
Type & Code & \\
3 & 1 & \begin{tabular}{l} 
Both the actual and predicted relative reductions in the function are \\
less than or equal to the relative function convergence tolerance.
\end{tabular} \\
4 & 2 & The iterates appear to be converging to a noncritical point.
\end{tabular}

43 Maximum number of iterations exceeded.
\(4 \quad 4\) Maximum number of function evaluations exceeded.
\(4 \quad 5\) Maximum number of gradient evaluations exceeded.
46 Five consecutive steps have been taken with the maximum step length.
27 Scaled step tolerance satisfied; the current point may be an approximate local solution, or the algorithm is making very slow progress and is not near a solution, or STEPTL is too big.
7 Maximum number of Hessian evaluations exceeded.
8 The last global step failed to locate a lower point than the current X value.
3. The first stopping criterion for \(В С О А Н\) occurs when the norm of the gradient is less than the given gradient tolerance (RPARAM(1)). The second stopping criterion for BCOAH occurs when the scaled distance between the last two steps is less than the step tolerance (RPARAM(2)).
4. If the default parameters are desired for BCOAH, then set IPARAM(1) to zero and call the routine ВСОАн. Otherwise, if any nondefault parameters are desired for IPARAM or RPARAM, then the following steps should be taken before calling BCOAH:

CALL U4INF (IPARAM, RPARAM)
Set nondefault values for desired IPARAM, RPARAM elements.

Note that the call to U4 INF will set IPARAM and RPARAM to their default values so only nondefault values need to be set above.

The following is a list of the parameters and the default values:
IPARAM - Integer vector of length 7.
\(\operatorname{IPARAM}(1)=\) Initialization flag.
\(\operatorname{IPARAM}(2)=\) Number of good digits in the function.
Default: Machine dependent.
\(\operatorname{IPARAM}(3)=\) Maximum number of iterations.
Default: 100.
\(\operatorname{IPARAM}(4)=\) Maximum number of function evaluations.
Default: 400.
\(\operatorname{IPARAM}(5)=\) Maximum number of gradient evaluations.
Default: 400.
\(\operatorname{IPARAM}(6)=\) Hessian initialization parameter.
Default: Not used in BCOAH.
\(\operatorname{IPARAM}(7)=\) Maximum number of Hessian evaluations.
Default: 100.
RPARAM - Real vector of length 7.
\(\operatorname{RPARAM}(1)=\) Scaled gradient tolerance.
The \(i\)-th component of the scaled gradient at x is calculated as
\[
\frac{\left|g_{i}\right| * \max \left(\left|x_{i}\right|, 1 / s_{i}\right)}{\max \left(|f(x)|, f_{s}\right)}
\]
where \(g=\nabla f(x), s=\) XSCALE, and \(f_{s}=\) FSCALE.
Default:
\[
\sqrt{\varepsilon}, \sqrt[3]{\varepsilon}
\]
in double where \(\varepsilon\) is the machine precision.
\(\operatorname{RPARAM}(2)=\) Scaled step tolerance. \((S T E P T L)\)
The \(i\)-th component of the scaled step between two points \(x\) and \(y\) is computed as
\[
\frac{\left|x_{i}-y_{i}\right|}{\max \left(\left|x_{i}\right|, 1 / s_{i}\right)}
\]
where \(s=\) XSCALE.
Default: \(\varepsilon^{2 / 3}\) where \(\varepsilon\) is the machine precision.
\(\operatorname{RPARAM}(3)=\) Relative function tolerance.
Default: \(\max \left(10^{-10}, \varepsilon^{2 / 3}\right), \max \left(10^{-20}, \varepsilon^{2 / 3}\right)\) in double where \(\varepsilon\) is the machine precision.
\(\operatorname{RPARAM}(4)=\) Absolute function tolerance.
Default: Not used in BCOAH.
\(\operatorname{RPARAM}(5)=\) False convergence tolerance.
Default: \(100 \varepsilon\) where \(\varepsilon\) is the machine precision.
\(\operatorname{RPARAM}(6)=\) Maximum allowable step size.
Default: \(1000 \max \left(\varepsilon_{1}, \varepsilon_{2}\right)\) where
\[
\varepsilon_{1} \sqrt{\sum_{i=1}^{n}\left(s_{i} t_{i}\right)^{2}}
\]
\(\varepsilon_{2}=\|s\|_{2}, s=\) XSCALE, and \(t=\) XGUESS.
\(\operatorname{RPARAM}(7)=\) Size of initial trust region radius.
Default: based on the initial scaled Cauchy step.

If double precision is required, then DU4 INF is called and RPARAM is declared double precision.
5. Users wishing to override the default print/stop attributes associated with error messages issued by this routine are referred to "Error Handling" in the Introduction.

\section*{Description}

The routine BCOAH uses a modified Newton method and an active set strategy to solve minimization problems subject to simple bounds on the variables. The problem is stated as follows:
\[
\begin{gathered}
\min _{x \in \mathbb{R}^{n}} f(x) \\
\text { subject to } l \leq x \leq u
\end{gathered}
\]

From a given starting point \(x^{c}\), an active set IA, which contains the indices of the variables at their bounds, is built. A variable is called a "free variable" if it is not in the active set. The routine then computes the search direction for the free variables according to the formula
\[
d=-H^{-1} g^{c}
\]
where \(H\) is the Hessian and \(g^{c}\) is the gradient evaluated at \(x^{c}\); both are computed with respect to the free variables. The search direction for the variables in IA is set to zero. A line search is used to find a new point \(x^{n}\),
\[
x^{n}=x^{c}+\lambda d, \lambda \in(0,1]
\]
such that
\[
f\left(x^{n}\right) \leq f\left(x^{c}\right)+\alpha g^{T} d, \alpha \in(0,0.5)
\]

Finally, the optimality conditions
\[
\begin{gathered}
\left\|g\left(x_{i}\right)\right\| \leq \varepsilon, l_{i}<x_{i}<u_{i} \\
g\left(x_{i}\right)<0, x_{i}=u_{i} \\
g\left(x_{i}\right)>0, x_{i}=l_{i}
\end{gathered}
\]
are checked where \(\varepsilon\) is a gradient tolerance. When optimality is not achieved, another search direction is computed to begin the next iteration. This process is repeated until the optimality criterion is met.

The active set is changed only when a free variable hits its bounds during an iteration or the optimality condition is met for the free variables but not for all variables in IA, the active set. In the latter case, a variable that violates the optimality condition will be dropped out of IA. For more details on the modified Newton method and line search, see Dennis and Schnabel (1983). For more detailed information on active set strategy, see Gill and Murray (1976).

\section*{BCPOL}

Minimizes a function of N variables subject to bounds on the variables using a direct search complex algorithm.

\section*{Required Arguments}
\(\boldsymbol{F C N}\) - User-supplied SUBROUTINE to evaluate the function to be minimized. The usage is
CALL FCN (N, X, F), where

N - Length of X . (Input)
\(X\) - Vector of length \(N\) at which point the function is evaluated. (Input) \(X\) should not be changed by FCN.

F - The computed function value at the point X . (Output)
FCN must be declared EXTERNAL in the calling program.
IBTYPE - Scalar indicating the types of bounds on variables. (Input)
IBTYPE Action
\(0 \quad\) User will supply all the bounds.
1 All variables are nonnegative.
2 All variables are nonpositive.
3 User supplies only the bounds on the first, variable. All other variables will have the same bounds.
\(\boldsymbol{X L B}\) - Vector of length N containing the lower bounds on the variables. (Input, if IBTYPE \(=0\); output, if IBTYPE \(=1\) or 2 ; input/output, if IBTYPE \(=3\) )
\(\boldsymbol{X U B}\) - Vector of length N containing the upper bounds on the variables. (Input, if IBTYPE
\(=0\); output, if \(\triangle B T Y P E=1\) or 2 ; input/output, if \(I B T Y P E=3\) )
\(\boldsymbol{X}\) - Real vector of length N containing the best estimate of the minimum found. (Output)

\section*{Optional Arguments}
\(N\) - The number of variables. (Input)
Default: \(\mathrm{N}=\operatorname{size}(\mathrm{XGUESS}, 1)\).
\(\boldsymbol{X G U E S S}\) - Real vector of length N that contains an initial guess to the minimum. (Input) Default: XGUESS \(=0.0\).

FTOL - First convergence criterion. (Input)
The algorithm stops when a relative error in the function values is less than FTOL, i.e. when \((F\) (worst) \(-F\) (best) \()<\) FTOL * \((1+\operatorname{ABS}(F\) (best) \())\) where \(F\) (worst) and \(F\) (best) are the function values of the current worst and best point, respectively. Second convergence criterion. The algorithm stops when the standard deviation of the function values at the \(2 * \mathrm{~N}\) current points is less than FTOL. If the subroutine terminates prematurely, try again with a smaller value FTOL.
Default: FTOL \(=1.0 \mathrm{e}-4\) for single and \(1.0 \mathrm{~d}-8\) for double precision.
MAXFCN - On input, maximum allowed number of function evaluations. (Input/ Output) On output, actual number of function evaluations needed.
Default: \(\operatorname{MAXFCN}=300\).
\(\boldsymbol{F V A L U E}\) - Function value at the computed solution. (Output)

\section*{FORTRAN 90 Interface}

Generic: CALL BCPOL (FCN, IBTYPE, XLB, XUB, X [,...])
Specific: The specific interface names are S_BCPOL and D_BCPOL.

\section*{FORTRAN 77 Interface}

Single: CALL BCPOL (FCN, N, XGUESS, IBTYPE, XLB, XUB, FTOL, MAXFCN, X, FVALUE)

Double: The double precision name is DBCPOL.

\section*{Example}

The problem
\[
\begin{gathered}
\min f(x)=100\left(x_{2}-x_{1}^{2}\right)^{2}+\left(1-x_{1}\right)^{2} \\
\text { subject to } \quad-2 \leq x_{1} \leq 0.5 \\
-1 \leq x_{2} \leq 2
\end{gathered}
\]
is solved with an initial guess \((-1.2,1.0)\), and the solution is printed.
```

USE BCPOL_INT
USE UMACH_INT
INTEGER N
PARAMETER (N=2)
INTEGER IBTYPE, K, NOUT
REAL FTOL, FVALUE, X(N), XGUESS (N), XLB(N), XUB(N)
EXTERNAL FCN

```
!
```

 Initializations
 XGUESS = (-1.2, 1.0)
 XLB = (-2.0, -1.0)
 XUB = (0.5, 2.0)
 DATA XGUESS/-1.2, 1.0/, XLB/-2.0E0, -1.0E0/, XUB/0.5E0, 2.0E0/
 FTOL = 1.0E-5
 IBTYPE = 0
 CALL BCPOL (FCN, IBTYPE, XLB, XUB, X, XGUESS=XGUESS, FTOL=FTOL, &
 FVALUE=FVALUE)
 CALL UMACH (2, NOUT)
WRITE (NOUT,99999) (X (K), K=1,N), FVALUE
99999 FORMAT (' The best estimate for the minimum value of the', /, \&
' function is X = (', 2(2X,F4.2), ')', /, ' with ', \&
'function value FVALUE = ', E12.6)
END
! External function to be minimized
SUBROUTINE FCN (N, X, F)
INTEGER N
REAL X(N), F
F=100.0*(X(2)-X(1)*X(1))**2 + (1.0-X(1))**2
RETURN
END

```

\section*{Output}
```

The best estimate for the minimum value of the
function is $X=(0.500 .25)$
with function value FVALUE $=0.250002 \mathrm{E}+00$

```
\(!\)
\(!\)
!

\section*{Comments}
1. Workspace may be explicitly provided, if desired, by use of B2POL/DB2 POL. The reference is:
```

CALL B2POL (FCN, N, XGUESS, IBTYPE, XLB, XUB, FTOL,
MAXFCN, X, FVALUE, WK)

```

The additional argument is:
\(\boldsymbol{W} \boldsymbol{K}\) - Real work vector of length 2 * \(\mathrm{N}^{*}\) * \(2+5\) * N
2. Informational error

Type Code
31 The maximum number of function evaluations is exceeded.
3. Since \(\operatorname{BCPOL}\) uses only function-value information at each step to determine a new approximate minimum, it could be quite inefficient on smooth problems compared to other methods such as those implemented in routine BCONF (page 1243), which takes
into account derivative information at each iteration. Hence, routine BCPOL should only be used as a last resort. Briefly, a set of 2 * N points in an N-dimensional space is called a complex. The minimization process iterates by replacing the point with the largest function value by a new point with a smaller function value. The iteration continues until all the points cluster sufficiently close to a minimum.

\section*{Description}

The routine \(B C P O L\) uses the complex method to find a minimum point of a function of \(n\) variables. The method is based on function comparison; no smoothness is assumed. It starts with \(2 n\) points \(x_{1}, x_{2}, \ldots, x_{2 n}\). At each iteration, a new point is generated to replace the worst point \(x_{j}\), which has the largest function value among these \(2 n\) points. The new point is constructed by the following formula:
\[
x_{k}=c+\alpha\left(c-x_{j}\right)
\]
where
\[
c=\frac{1}{2 n-1} \sum_{i \neq j} x_{i}
\]
and \(\alpha(\alpha>0)\) is the reflection coefficient.
When \(x_{k}\) is a best point, that is, when \(f\left(x_{k}\right) \leq f\left(x_{i}\right)\) for \(i=1, \ldots, 2 n\), an expansion point is computed \(x_{e}=c+\beta\left(x_{k}-c\right)\), where \(\beta(\beta>1)\) is called the expansion coefficient. If the new point is a worst point, then the complex would be contracted to get a better new point. If the contraction step is unsuccessful, the complex is shrunk by moving the vertices halfway toward the current best point. Whenever the new point generated is beyond the bound, it will be set to the bound. This procedure is repeated until one of the following stopping criteria is satisfied:
Criterion 1:
\[
f_{\text {best }}-f_{\text {worst }} \leq \varepsilon_{f}\left(1 .+\left|f_{\text {best }}\right|\right)
\]

Criterion 2:
\[
\sum_{i=1}^{2 n}\left(f_{i}-\frac{\sum_{j=1}^{2 n} f_{j}}{2 n}\right)^{2} \leq \varepsilon_{f}
\]
where \(f_{i}=f\left(x_{i}\right), f_{j}=f\left(x_{j}\right)\), and \(\varepsilon_{f}\) is a given tolerance. For a complete description, see Nelder and Mead (1965) or Gill et al. (1981).

\section*{BCLSF}

Solves a nonlinear least squares problem subject to bounds on the variables using a modified Levenberg-Marquardt algorithm and a finite-difference Jacobian.

\section*{Required Arguments}

FCN - User-supplied SUBROUTINE to evaluate the function to be minimized. The usage is CALL FCN (M, N, X, F), where

M - Length of F . (Input)
N - Length of X . (Input)

X - The point at which the function is evaluated. (Input) X should not be changed by FCN.

F - The computed function at the point X . (Output)
FCN must be declared EXTERNAL in the calling program.
\(\boldsymbol{M}\) - Number of functions. (Input)
IBTYPE - Scalar indicating the types of bounds on variables. (Input)

\section*{IBTYPE Action}
\(0 \quad\) User will supply all the bounds.
1 All variables are nonnegative.
2 All variables are nonpositive.

3 User supplies only the bounds on 1st variable, all other variables will have the same bounds.
\(\boldsymbol{X L B}-\) Vector of length N containing the lower bounds on variables. (Input, if IBTYPE \(=0\); output, if IBTYPE \(=1\) or 2 ; input/output, if \(\operatorname{IBTYPE}=3\) )
\(\boldsymbol{X U B}\) - Vector of length N containing the upper bounds on variables. (Input, if \(\operatorname{IBTYPE}=0\); output, if \(\operatorname{IBTYPE}=1\) or 2 ; input/output, if \(\operatorname{IBTYPE}=3\) )
\(\boldsymbol{X}-\) Vector of length N containing the approximate solution. (Output)

\section*{Optional Arguments}
\(N\) - Number of variables. (Input)
N must be less than or equal to M .
Default: \(\mathrm{N}=\operatorname{size}(\mathrm{X}, 1)\).
\(\boldsymbol{X G} \boldsymbol{U} \boldsymbol{E S S}\) - Vector of length N containing the initial guess. (Input)
Default: XGUESS \(=0.0\).
\(\boldsymbol{X S C A L E}\) - Vector of length N containing the diagonal scaling matrix for the variables. (Input)
XSCALE is used mainly in scaling the gradient and the distance between two points. By default, the values for XSCALE are set internally. See IPARAM(6) in Comment 4.
\(\boldsymbol{F S C A L E}\) - Vector of length M containing the diagonal scaling matrix for the functions. (Input)
FSCALE is used mainly in scaling the gradient. In the absence of other information, set all entries to 1.0 .
Default: \(\operatorname{FSCALE}=1.0\).
IPARAM - Parameter vector of length 6. (Input/Output)
Set IPARAM(1) to zero for default values of IPARAM and RPARAM. See Comment 4. Default: \(\operatorname{IPARAM}=0\).
\(\boldsymbol{R P A R A M}\) - Parameter vector of length 7. (Input/Output)
See Comment 4.
\(\boldsymbol{F V E C}\) - Vector of length M containing the residuals at the approximate solution. (Output)
\(\boldsymbol{F J} \boldsymbol{A C}\) — m by n matrix containing a finite difference approximate Jacobian at the approximate solution. (Output)
\(\boldsymbol{L D F J A C}\) - Leading dimension of FJAC exactly as specified in the dimension statement of the calling program. (Input)
Default: LDFJAC \(=\operatorname{size}(\) FJAC, 1\()\).

\section*{FORTRAN 90 Interface}

Generic: CALL BCLSF (FCN, M, IBTYPE, XLB, XUB, X [,...])
Specific: The specific interface names are \(S \_B C L S F\) and D_BCLSF.

\section*{FORTRAN 77 Interface}

Single: CALL BCLSF (FCN, M, N, XGUESS, IBTYPE, XLB, XUB, XSCALE, FSCALE, IPARAM, RPARAM, X, FVEC, FJAC, LDFJAC)

Double: The double precision name is DBCLSF.

\section*{Example}

The nonlinear least squares problem
\[
\min _{x \in \mathbf{R}^{2}} \frac{1}{2} \sum_{i=1}^{2} f_{i}(x)^{2}
\]
subject to \(-2 \leq x_{1} \leq 0.5\)
\[
-1 \leq x_{2} \leq 2
\]
where
\[
f_{1}(x)=10\left(x_{2}-x_{1}^{2}\right) \text { and } f_{2}(x)=\left(1-x_{1}\right)
\]
is solved with an initial guess \((-1.2,1.0)\) and default values for parameters.
```

 USE BCLSF_INT
 USE UMACH_INT
 INTEGER M, N
 PARAMETER (M=2, N=2)
 !
INTEGER IPARAM(7), ITP, NOUT
REAL FSCALE (M), FVEC(M), X (N), XGUESS (N), XLB (N), XS (N), XUB(N)
EXTERNAL ROSBCK
Compute the least squares for the
Rosenbrock function.
DATA XGUESS/-1.2E0, 1.0E0/
DATA XLB/-2.0E0, -1.0E0/, XUB/0.5E0, 2.0E0/
All the bounds are provided
ITP = 0
IPARAM(1) = 0
CALL BCLSF (ROSBCK, M, ITP, XLB, XUB, X, XGUESS=XGUESS, \&
IPARAM=IPARAM, FVEC=FVEC)
Print results
CALL UMACH (2, NOUT)
WRITE (NOUT,99999) X, FVEC, IPARAM(3), IPARAM(4)
!
99999 FORMAT (' The solution is ', 2F9.4, //, ' The function ', \&
'evaluated at the solution is ', /, 18X, 2F9.4, //, \&
, The number of iterations is ', 10X, I3, /, ' The ', \&
'number of function evaluations is ', I3, /)
END
SUBROUTINE ROSBCK (M, N, X, F)
INTEGER M, N
REAL X(N), F(M)
F(1) = 1.0E1*(X(2)-X(1)*X(1))
F(2) = 1.0E0 - X(1)
RETURN
END

```

\section*{Output}

The solution is \(0.5000 \quad 0.2500\)
The function evaluated at the solution is
\(0.0000 \quad 0.5000\)
The number of iterations is 15
The number of function evaluations is 20

\section*{Comments}
1. Workspace may be explicitly provided, if desired, by use of B2LSF/DB2LSF. The reference is:
```

CALL B2LSF (FCN, M, N, XGUESS, IBTYPE, XLB, XUB, XSCALE, FSCALE,
IPARAM, RPARAM, X, FVEC, FJAC, LDFJAC, WK, IWK)

```

The additional arguments are as follows:
\(\boldsymbol{W} \boldsymbol{K}\) - Work vector of length \(11 * N+3 * M-1\). WK contains the following information on output: The second N locations contain the last step taken. The third N locations contain the last Gauss-Newton step. The fourth N locations contain an estimate of the gradient at the solution.
\(\boldsymbol{I W K}\) - Work vector of length \(2 * \mathrm{~N}\) containing the permutations used in the \(Q \mathrm{R}\) factorization of the Jacobian at the solution.
2. Informational errors

Type Code
31 Both the actual and predicted relative reductions in the function are less than or equal to the relative function convergence tolerance.
32 The iterates appear to be converging to a noncritical point.
43 Maximum number of iterations exceeded.
\(4 \quad 4 \quad\) Maximum number of function evaluations exceeded.
36 Five consecutive steps have been taken with the maximum step length.
27 Scaled step tolerance satisfied; the current point may be an approximate local solution, or the algorithm is making very slow progress and is not near a solution, or STEPTL is too big.
3. The first stopping criterion for BCLSF occurs when the norm of the function is less than the absolute function tolerance. The second stopping criterion occurs when the norm of the scaled gradient is less than the given gradient tolerance. The third stopping criterion for BCLSF occurs when the scaled distance between the last two steps is less than the step tolerance.
4. If the default parameters are desired for BCLSF, then set IPARAM(1) to zero and call the routine BCLSF. Otherwise, if any nondefault parameters are desired for IPARAM or RPARAM, then the following steps should be taken before calling BCLSF:

CALL U4LSF (IPARAM, RPARAM)
Set nondefault values for desired IPARAM, RPARAM elements.
Note that the call to U4LSF will set IPARAM and RPARAM to their default values so only nondefault values need to be set above.

The following is a list of the parameters and the default values:

IPARAM - Integer vector of length 6.
\(\operatorname{IPARAM}(1)=\) Initialization flag.
\(\operatorname{IPARAM}(2)=\) Number of good digits in the function.
Default: Machine dependent.
\(\operatorname{IPARAM}(3)=\) Maximum number of iterations.
Default: 100.
\(\operatorname{IPARAM}(4)=\) Maximum number of function evaluations.
Default: 400.
\(\operatorname{IPARAM}(5)=\) Maximum number of Jacobian evaluations.
Default: 100.
\(\operatorname{IPARAM}(6)=\) Internal variable scaling flag.
If \(\operatorname{IPARAM}(6)=1\), then the values for XSCALE are set internally.
Default: 1.
\(\boldsymbol{R P A R A M}\) - Real vector of length 7.
\(\operatorname{RPARAM}(1)=\) Scaled gradient tolerance.
The \(i\)-th component of the scaled gradient at x is calculated as
\[
\frac{\left|g_{i}\right| * \max \left(\left|x_{i}\right|, 1 / s_{i}\right)}{\|F(x)\|_{2}^{2}}
\]
where
\[
g_{i}=\left(J(x)^{T} F(x)\right)_{i} *\left(f_{s}\right)_{i}^{2}
\]
\(J(x)\) is the Jacobian, \(s=\) XSCALE, and \(f_{s}\) =FSCALE. Default:
\[
\sqrt{\varepsilon}, \sqrt[3]{\varepsilon}
\]
in double where \(\varepsilon\) is the machine precision.
\(\operatorname{RPARAM}(2)=\) Scaled step tolerance. (STEPTL)
The i-th component of the scaled step between two points \(x\) and \(y\) is computed as
\[
\frac{\left|x_{i}-y_{i}\right|}{\max \left(\left|x_{i}\right|, 1 / s_{i}\right)}
\]
where \(s=\) XSCALE.

Default: \(\varepsilon^{2 / 3}\) where \(\varepsilon\) is the machine precision.
\(\operatorname{RPARAM}(3)=\) Relative function tolerance.
Default: \(\max \left(10^{-10,} \varepsilon^{2 / 3),} \max \left(10^{-20}, \varepsilon^{2 / 3}\right)\right.\) in double where \(\varepsilon\) is the machine precision.
\(\operatorname{RPARAM}(4)=\) Absolute function tolerance.
Default: \(\max \left(10^{-20}, \varepsilon^{2}\right), \max \left(10^{-40}, \varepsilon^{2}\right)\) in double where \(\varepsilon\) is the machine precision.
\(\operatorname{RPARAM}(5)=\) False convergence tolerance.
Default: \(100 \varepsilon\) where \(\varepsilon\) is the machine precision.
\(\operatorname{RPARAM}(6)=\) Maximum allowable step size.
Default: \(1000 \max \left(\varepsilon_{1}, \varepsilon_{2}\right)\) where
\[
\varepsilon_{1}=\sqrt{\sum_{i=1}^{n}\left(s_{i} t_{i}\right)^{2}}
\]
\(\varepsilon_{2}=\|s\|_{2}, s=\) XSCALE, and \(t=\mathrm{XGUESS}\).
\(\operatorname{RPARAM}(7)=\) Size of initial trust region radius.
Default: based on the initial scaled Cauchy step.
If double precision is desired, then DU4LSF is called and RPARAM is declared double precision.
5. Users wishing to override the default print/stop attributes associated with error messages issued by this routine are referred to "Error Handling" in the Introduction.

\section*{Description}

The routine BCLSF uses a modified Levenberg-Marquardt method and an active set strategy to solve nonlinear least squares problems subject to simple bounds on the variables. The problem is stated as follows:
\[
\begin{gathered}
\min _{x \in \mathbf{R}^{n}} \frac{1}{2} F(x)^{T} F(x)=\frac{1}{2} \sum_{i=1}^{m} f_{i}(x)^{2} \\
\text { subject to } l \leq x \leq u
\end{gathered}
\]
where \(m \geq n, F: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}\), and \(f_{i}(x)\) is the \(i\)-th component function of \(F(x)\). From a given starting point, an active set IA, which contains the indices of the variables at their bounds, is built. A variable is called a "free variable" if it is not in the active set. The routine then computes the search direction for the free variables according to the formula
\[
d=-\left(J^{T} J+\mu I\right)^{-1} J^{T} F
\]
where \(\mu\) is the Levenberg-Marquardt parameter, \(F=F(x)\), and \(J\) is the Jacobian with respect to the free variables. The search direction for the variables in IA is set to zero. The trust region
approach discussed by Dennis and Schnabel (1983) is used to find the new point. Finally, the optimality conditions are checked. The conditions are
\[
\begin{gathered}
\left\|g\left(x_{i}\right)\right\| \leq \varepsilon, l_{i}<x_{i}<u_{i} \\
g\left(x_{i}\right)<0, x_{i}=u_{i} \\
g\left(x_{i}\right)>0, x_{i}=l_{i}
\end{gathered}
\]
where \(\varepsilon\) is a gradient tolerance. This process is repeated until the optimality criterion is achieved.

The active set is changed only when a free variable hits its bounds during an iteration or the optimality condition is met for the free variables but not for all variables in IA, the active set. In the latter case, a variable that violates the optimality condition will be dropped out of IA. For more detail on the Levenberg-Marquardt method, see Levenberg (1944), or Marquardt (1963). For more detailed information on active set strategy, see Gill and Murray (1976).
Since a finite-difference method is used to estimate the Jacobian for some single precision calculations, an inaccurate estimate of the Jacobian may cause the algorithm to terminate at a noncritical point. In such cases, high precision arithmetic is recommended. Also, whenever the exact Jacobian can be easily provided, routine BCLSJ (page 1281) should be used instead.

\section*{BCLSJ}

Solves a nonlinear least squares problem subject to bounds on the variables using a modified Levenberg-Marquardt algorithm and a user-supplied Jacobian.

\section*{Required Arguments}
\(\boldsymbol{F C N}\) - User-supplied SUBROUTINE to evaluate the function to be minimized. The usage is
CALL FCN (M, N, X, F), where
\(M\) - Length of \(F\). (Input)
N - Length of X . (Input)
X - The point at which the function is evaluated. (Input)
\(X\) should not be changed by FCN.
F - The computed function at the point X . (Output)
FCN must be declared EXTERNAL in the calling program.
\(\boldsymbol{J A C}\) - User-supplied SUbroutine to evaluate the Jacobian at a point X . The usage is CALL
JAC (M, N, X, FJAC, LDFJAC), where

M - Length of F . (Input)
N - Length of X . (Input)

X - The point at which the function is evaluated. (Input)
\(X\) should not be changed by FCN.
FJAC - The computed M by N Jacobian at the point X . (Output)
LDF JAC - Leading dimension of FJAC. (Input)

JAC must be declared EXTERNAL in the calling program.
\(\boldsymbol{M}\) - Number of functions. (Input)
IBTYPE - Scalar indicating the types of bounds on variables. (Input)

\section*{IBTYPE Action}
\(0 \quad\) User will supply all the bounds.
1 All variables are nonnegative.
2 All variables are nonpositive.
3 User supplies only the bounds on 1st variable, all other variables will have the same bounds.
\(\boldsymbol{X L B}\) - Vector of length N containing the lower bounds on variables. (Input, if IBTYPE \(=0\); output, if \(\operatorname{IBTYPE}=1\) or 2 ; input/output, if \(\operatorname{IBTYPE}=3\) )
\(\boldsymbol{X U B}\) - Vector of length N containing the upper bounds on variables. (Input, if IBTYPE \(=0\); output, if \(\operatorname{IBTYPE}=1\) or 2 ; input/output, if \(\operatorname{IBTYPE}=3\) )
\(\boldsymbol{X}-\) Vector of length N containing the approximate solution. (Output)

\section*{Optional Arguments}
\(N\) - Number of variables. (Input)
N must be less than or equal to M .
Default: \(\mathrm{N}=\operatorname{size}(\mathrm{x}, 1)\).
\(\boldsymbol{X G} \boldsymbol{U} \boldsymbol{E S S}\) - Vector of length N containing the initial guess. (Input)
Default: XGUESS \(=0.0\).
\(\boldsymbol{X S C A L E}\) - Vector of length N containing the diagonal scaling matrix for the variables. (Input)
XSCALE is used mainly in scaling the gradient and the distance between two points. By default, the values for XSCALE are set internally. See IPARAM(6) in Comment 4.
\(\boldsymbol{F S C A L E}\) - Vector of length M containing the diagonal scaling matrix for the functions. (Input)
FSCALE is used mainly in scaling the gradient. In the absence of other information, set all entries to 1.0.
Default: \(\mathrm{FSCALE}=1.0\).
IPARAM - Parameter vector of length 6. (Input/Output)
Set IPARAM(1) to zero for default values of IPARAM and RPARAM. See Comment 4.
Default: IPARAM=0.
\(\boldsymbol{R P A R A M}\) - Parameter vector of length 7. (Input/Output)
See Comment 4.
\(\boldsymbol{F V E C}\) - Vector of length M containing the residuals at the approximate solution. (Output)
\(\boldsymbol{F J} \boldsymbol{A C}\) — м by n matrix containing a finite difference approximate Jacobian at the approximate solution. (Output)

LDFJAC - Leading dimension of FJAC exactly as specified in the dimension statement of the calling program. (Input)
Default: LDFJAC size \(=(\) FJAC, 1\()\).

\section*{FORTRAN 90 Interface}

Generic: CALL BCLSJ (FCN, JAC, M, IBTYPE, XLB, XUB, X [,...])
Specific: The specific interface names are S_BCLSJ and D_BCLSJ.

\section*{FORTRAN 77 Interface}

Single: CALL BCLSU (FCN, JAC, M, N, XGUESS, IBTYPE, XLB, XUB, XSCALE, FSCALE, IPARAM, RPARAM, X, FVEC, FJAC, LDFJAC)

Double: The double precision name is DBCLSJ.

\section*{Example}

The nonlinear least squares problem
\[
\min _{x \in \mathbf{R}^{2}} \frac{1}{2} \sum_{i=1}^{2} f_{i}(x)^{2}
\]
subject to \(-2 \leq x_{1} \leq 0.5\)
\[
-1 \leq x_{2} \leq 2
\]
where
\[
f_{1}(x)=10\left(x_{2}-x_{1}^{2}\right) \text { and } f_{2}(x)=\left(1-x_{1}\right)
\]
is solved with an initial guess \((-1.2,1.0)\) and default values for parameters.
```

USE BCLSJ_INT
USE UMACH_INT
Declaration of variables
PARAMETER (LDFJAC=2, M=2, N=2)
INTEGER IPARAM(7), ITP, NOUT
REAL FVEC(M), RPARAM(7), X(N), XGUESS(N), XLB(N), XUB(N)
EXTERNAL ROSBCK, ROSJAC
Compute the least squares for the
Rosenbrock function.
DATA XGUESS/-1.2E0, 1.0E0/
DATA XLB/-2.0E0, -1.0E0/, XUB/0.5E0, 2.0E0/
All the bounds are provided
ITP = 0
IPARAM(1) = 0
CALL BCLSJ (ROSBCK,ROSJAC,M,ITP,XLB,XUB,X,XGUESS=XGUESS, \&
IPARAM=IPARAM, FVEC=FVEC)
Print results
CALL UMACH (2, NOUT)
WRITE (NOUT,99999) X, FVEC, IPARAM(3), IPARAM(4)
99999 FORMAT (' The solution is ', 2F9.4, //, , The function ', \&
'evaluated at the solution is ', /, 18X, 2F9.4, //, \&
' The number of iterations is ', 10X, I3, /, ' The ', \&
'number of function evaluations is ', I3, /)
END
SUBROUTINE ROSBCK (M, N, X, F)
INTEGER M, N
REAL }X(N),F(M
F(1) = 1.0E1*(X(2)-X(1)*X(1))
F(2) = 1.0E0 - X(1)
RETURN
END
SUBROUTINE ROSJAC (M, N, X, FJAC, LDFJAC)
INTEGER M, N, LDFJAC
REAL X(N), FJAC(LDFJAC,N)
FJAC(1,1) = -20.0E0*X(1)
FJAC (2,1) = -1.0E0
FJAC(1,2) = 10.0E0
FJAC (2,2) = 0.0E0
RETURN
END

```
!
!
!

\section*{Output}
```

The solution is 0.5000 0.2500
The function evaluated at the solution is
0.0000 0.5000
The number of iterations is 13
The number of function evaluations is 21

```

\section*{Comments}
1. Workspace may be explicitly provided, if desired, by use of B2LSJ/DB2LSJ. The reference is:
```

CALL B2LSJ (FCN, JAC, M, N, XGUESS, IBTYPE, XLB, XUB, XSCALE,
FSCALE, IPARAM, RPARAM, X, FVEC, FJAC, LDFJAC, WK, IWK)

```

The additional arguments are as follows:
\(\boldsymbol{W K}\) - Work vector of length \(11 *{ }_{\mathrm{N}}+3 * \mathrm{M}-1\). WK contains the following information on output: The second N locations contain the last step taken. The third N locations contain the last Gauss-Newton step. The fourth N locations contain an estimate of the gradient at the solution.
\(\boldsymbol{I W K}\) - Work vector of length \(2 * \mathrm{~N}\) containing the permutations used in the \(Q \mathrm{R}\) factorization of the Jacobian at the solution.
2. Informational errors
\begin{tabular}{cll} 
Type & Code & \\
3 & 1 & \begin{tabular}{l} 
Both the actual and predicted relative reductions in the function are \\
less than or equal to the relative function convergence tolerance.
\end{tabular} \\
3 & 2 & The iterates appear to be converging to a noncritical point. \\
4 & 3 & Maximum number of iterations exceeded. \\
4 & 4 & Maximum number of function evaluations exceeded. \\
3 & 6 & \begin{tabular}{l} 
Five consecutive steps have been taken with the maximum step \\
4
\end{tabular} \\
\hline & \begin{tabular}{l} 
length.
\end{tabular} \\
2 & 7 & \begin{tabular}{l} 
Maximum number of Jacobian evaluations exceeded. \\
Scaled step tolerance satisfied; the current point may be an \\
approximate local solution, or the algorithm is making very slow \\
progress and is not near a solution, or STEPTL is too big.
\end{tabular}
\end{tabular}
3. The first stopping criterion for BCLSJ occurs when the norm of the function is less than the absolute function tolerance. The second stopping criterion occurs when the norm of the scaled gradient is less than the given gradient tolerance. The third stopping criterion for BCLSJ occurs when the scaled distance between the last two steps is less than the step tolerance.
4. If the default parameters are desired for BCLSJ, then set IPARAM(1) to zero and call the routine BCLSJ. Otherwise, if any nondefault parameters are desired for IPARAM or RPARAM, then the following steps should be taken before calling BCLSJ:

CALL U4LSF (IPARAM, RPARAM)
Set nondefault values for desired IPARAM, RPARAM elements.
Note that the call to U4LSF will set IPARAM and RPARAM to their default values so only nondefault values need to be set above.

The following is a list of the parameters and the default values:
IPARAM - Integer vector of length 6.
\(\operatorname{IPARAM}(1)=\) Initialization flag.
\(\operatorname{IPARAM}(2)=\) Number of good digits in the function.
Default: Machine dependent.
\(\operatorname{IPARAM}(3)=\) Maximum number of iterations.
Default: 100.
\(\operatorname{IPARAM}(4)=\) Maximum number of function evaluations.
Default: 400.
\(\operatorname{IPARAM}(5)=\) Maximum number of Jacobian evaluations.
Default: 100.
\(\operatorname{IPARAM}(6)=\) Internal variable scaling flag.
If \(\operatorname{IPARAM}(6)=1\), then the values for XSCALE are set internally.
Default: 1.
\(\boldsymbol{R P A R A M}\) - Real vector of length 7.
\(\operatorname{RPARAM}(1)=\) Scaled gradient tolerance.
The \(i\)-th component of the scaled gradient at x is calculated as
\[
\frac{\left|g_{i}\right| * \max \left(\left|x_{i}\right|, 1 / s_{i}\right)}{\|F(x)\|_{2}^{2}}
\]
where
\[
g_{i}=\left(J(x)^{T} F(x)\right)_{i} *\left(f_{s}\right)_{i}^{2}
\]
\(J(x)\) is the Jacobian, \(s=\) XSCALE, and \(f_{s}\) = FSCALE.
Default:
\[
\sqrt{\varepsilon}, \sqrt[3]{\varepsilon}
\]
in double where \(\varepsilon\) is the machine precision.
\(\operatorname{RPARAM}(2)=\) Scaled step tolerance. (STEPTL)
The \(i\)-th component of the scaled step
between two points \(x\) and \(y\) is computed as
\[
\frac{\left|x_{i}-y_{i}\right|}{\max \left(\left|x_{i}\right|, 1 / s_{i}\right)}
\]
where \(s=\) XSCALE.

Default: \(\varepsilon^{2 / 3}\) where \(\varepsilon\) is the machine precision.
\(\operatorname{RPARAM}(3)=\) Relative function tolerance.
Default: \(\max \left(10^{-10}, \varepsilon^{2 / 3}\right), \max \left(10^{-20}, \varepsilon^{2 / 3}\right)\) in double where \(\varepsilon\) is the machine precision.
\(\operatorname{RPARAM}(4)=\operatorname{Absolute}\) function tolerance.
Default: \(\max \left(10^{-20}, \varepsilon^{2}\right), \max \left(10^{-40}, \varepsilon^{2}\right)\) in double where \(\varepsilon\) is the machine precision.
\(\operatorname{RPARAM}(5)=\) False convergence tolerance.
Default: \(100 \varepsilon\) where \(\varepsilon\) is the machine precision.
\(\operatorname{RPARAM}(6)=\) Maximum allowable step size.
Default: \(1000 \max \left(\varepsilon_{1}, \varepsilon_{2}\right)\) where
\[
\varepsilon_{1}=\sqrt{\sum_{i=1}^{n}\left(s_{i} t_{i}\right)^{2}}
\]
\(\varepsilon_{2}=\|s\|_{2}, s=\) XSCALE, and \(t=\) XGUESS.
\(\operatorname{RPARAM}(7)=\) Size of initial trust region radius.
Default: based on the initial scaled Cauchy step.
If double precision is desired, then DU4LSF is called and RPARAM is declared double precision.
5. Users wishing to override the default print/stop attributes associated with error messages issued by this routine are referred to ERROR HANDLING in the Introduction.

\section*{Description}

The routine BCLSJ uses a modified Levenberg-Marquardt method and an active set strategy to solve nonlinear least squares problems subject to simple bounds on the variables. The problem is stated as follows:
\[
\begin{gathered}
\min _{x \in \mathbb{R}^{R}} \frac{1}{2} F(x)^{T} F(x)=\frac{1}{2} \sum_{i=1}^{m} f_{i}(x)^{2} \\
\text { subject to } l \leq x \leq u
\end{gathered}
\]
where \(m \geq n, F: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}\), and \(f_{i}(x)\) is the \(i\)-th component function of \(F(x)\). From a given starting point, an active set IA, which contains the indices of the variables at their bounds, is built. A variable is called a "free variable" if it is not in the active set. The routine then computes the search direction for the free variables according to the formula
\[
d=-\left(J^{T} J+\mu I\right)^{-1} J^{T} F
\]
where is the Levenberg-Marquardt parameter, \(F=F(x)\), and \(J\) is the Jacobian with respect to the free variables. The search direction for the variables in IA is set to zero. The trust region approach discussed by Dennis and Schnabel (1983) is used to find the new point. Finally, the optimality conditions are checked. The conditions are
\[
\begin{gathered}
\left\|g\left(x_{i}\right)\right\| \leq \varepsilon, l_{i}<x_{i}<u_{i} \\
g\left(x_{i}\right)<0, x_{i}=u_{i} \\
g\left(x_{i}\right)>0, x_{i}=l_{i}
\end{gathered}
\]
where \(\varepsilon\) is a gradient tolerance. This process is repeated until the optimality criterion is achieved.

The active set is changed only when a free variable hits its bounds during an iteration or the optimality condition is met for the free variables but not for all variables in IA, the active set. In the latter case, a variable that violates the optimality condition will be dropped out of IA. For more detail on the Levenberg-Marquardt method, see Levenberg (1944) or Marquardt (1963). For more detailed information on active set strategy, see Gill and Murray (1976).

\section*{BCNLS}

Solves a nonlinear least-squares problem subject to bounds on the variables and general linear constraints.

\section*{Required Arguments}
\(\boldsymbol{F C N}\) - User-supplied SUBROUTINE to evaluate the function to be minimized. The usage is
CALL FCN ( \(\mathrm{M}, \mathrm{N}, \mathrm{X}, \mathrm{F}\) ), where
\(M\) - Number of functions. (Input)
N - Number of variables. (Input)
X - Array of length N containing the point at which the function will be evaluated. (Input)
F - Array of length M containing the computed function at the point X . (Output)
The routine FCN must be declared EXTERNAL in the calling program.
\(\boldsymbol{M}\) - Number of functions. (Input)
\(\boldsymbol{C}\) — MCON \(\times \mathrm{N}\) matrix containing the coefficients of the MCON general linear constraints. (Input)
\(\boldsymbol{B L}\) - Vector of length MCON containing the lower limit of the general constraints. (Input).
\(\boldsymbol{B} \boldsymbol{U}\) - Vector of length MCON containing the upper limit of the general constraints. (Input).
IRTYPE - Vector of length MCON indicating the types of general constraints in the matrix C. (Input)
Let \(R(I)=C(I, 1) * X(1)+\ldots+C(I, N) * X(N)\). Then the value of IRTYPE \((I)\) signifies the following:
```

IRTYPE(I) I-th CONSTRAINT
0 BL(I).EQ.R(I).EQ.BU(I)
1 R(I).LE.BU(I)
2 R(I).GE.BL(I)
3 BL(I).LE.R(I).LE.BU(I)

```
\(\boldsymbol{X L B}\) - Vector of length N containing the lower bounds on variables; if there is no lower bound on a variable, then 1.0 E 30 should be set as the lower bound. (Input)
\(\boldsymbol{X} \boldsymbol{U} \boldsymbol{B}\) - Vector of length N containing the upper bounds on variables; if there is no upper bound on a variable, then -1.0 E 30 should be set as the upper bound. (Input)
\(\boldsymbol{X}-\) Vector of length N containing the approximate solution. (Output)

\section*{Optional Arguments}
\(\boldsymbol{N}\) - Number of variables. (Input)
Default: \(\mathrm{N}=\operatorname{size}(\mathrm{c}, 2)\).
MCON - The number of general linear constraints for the system, not including simple bounds. (Input)
Default: \(\mathrm{MCON}=\operatorname{size}(\mathrm{C}, 1)\).
\(\boldsymbol{L D C}\) - Leading dimension of C exactly as specified in the dimension statement of the calling program. (Input)
LDC must be at least MCON.
Default: LDC = size (c,1).
\(\boldsymbol{X G} \boldsymbol{U} \boldsymbol{E S S}\) - Vector of length N containing the initial guess. (Input) Default: \(\mathrm{XGUESS}=0.0\).

RNORM - The Euclidean length of components of the function \(f(x)\) after the approximate solution has been found. (Output).

ISTAT - Scalar indicating further information about the approximate solution X . (Output) See the Comments section for a description of the tolerances and the vectors IPARAM and RPARAM.

ISTAT Meaning

1 The function \(f(x)\) has a length less than TOLF \(=\) RPARAM(1). This is the expected value for ISTAT when an actual zero value of \(f(x)\) is anticipated.

The function \(f(x)\) has reached a local minimum. This is the expected value for ISTAT when a nonzero value of \(f(x)\) is anticipated.

A small change (absolute) was noted for the vector \(x\). A full model problem step was taken. The condition for ISTAT \(=2\) may also be satisfied, so that a minimum has been found. However, this test is made before the test for ISTAT \(=2\).

A small change (relative) was noted for the vector \(x\). A full model problem step was taken. The condition for ISTAT \(=2\) may also be satisfied, so that a minimum has been found. However, this test is made before the test for ISTAT \(=2\).

The number of terms in the quadratic model is being restricted by the amount of storage allowed for that purpose. It is suggested, but not required, that additional storage be given for the quadratic model parameters. This is accessed through the vector IPARAM, documented below.

6 Return for evaluation of function and Jacobian if reverse communication is desired. See the Comments below.

\section*{FORTRAN 90 Interface}

Generic: CALL BCNLS (FCN, M, C, BL, BU, IRTYPE, XLB, XUB, X [,...])
Specific: The specific interface names are S_BCNLS and D_BCNLS.

\section*{FORTRAN 77 Interface}

Single: CALL BCNLS (FCN, M, N, MCON, C, LDC, BL, BU, IRTYPE,


XLB, XUB, XGUESS, X, RNORM, ISTAT)

Double: The double precision name is DBCNLS.

\section*{Example 1}

This example finds the four variables \(x_{1}, x_{2}, x_{3}, x_{4}\) that are in the model function
\[
h(t)=x_{1} e^{x_{2} t}+x_{3} e^{x_{4} t}
\]

There are values of \(h(t)\) at five values of \(t\).
```

h(0.05) = 2.206
h(0.1) = 1.994

```
```

h(0.4) = 1.35
h(0.5) = 1.216
h(1.0) = 0.7358

```

There are also the constraints that \(x_{2}, x_{4} \leq 0, x_{1}, x_{3} \geq 0\), and \(x_{2}\) and \(x_{4}\) must be separated by at least 0.05 . Nothing more about the values of the parameters is known so the initial guess is 0 .
```

USE BCNLS INT
USE UMACH INT
USE WRRRN_INT
INTEGER MCON, N
PARAMETER (MCON=1, N=4)
INTEGER LDC, M
PARAMETER (M=5, LDC=MCON)
INTEGER IRTYPE (MCON), NOUT
REAL BL (MCON), C(MCON,N), RNORM, X (N), XLB(N), \&
XUB (N)
SPECIFICATIONS FOR SUBROUTINES
SPECIFICATIONS FOR FUNCTIONS
EXTERNAL FCN
CALL UMACH (2, NOUT)
Define the separation between x(2)
and x(4)
C(1,1) = 0.0
C(1,2) = 1.0
C(1,3) = 0.0
C(1,4) = -1.0
BL(1) = 0.05
IRTYPE(1) = 2
XLB(1) = 0.0
XLB(2) = 1.0E30
XLB(3) = 0.0
XLB(4) = 1.0E30
XUB(1) = -1.0E30
XUB (2) = 0.0
XUB(3) = -1.0E30
XUB(4) = 0.0
CALL BCNLS (FCN, M, C, BL, BL, IRTYPE, XLB, XUB, X, RNORM=RNORM)
CALL WRRRN ('X', X, 1, N, 1)
WRITE (NOUT,99999) RNORM
99999 FORMAT (/, 'rnorm = ', E10.5)
END
SUBROUTINE FCN (M, N, X, F)
SPECIFICAIONS FOR ARGUMENTS
REAL X(*), F(*)
SPECIFICATIONS FOR LOCAL VARIABLES

```
!
\(!\)
\(!\)
```

 INTEGER I
 ! REAL H(5), T(5)
SAVE H, T
! SPECIFICATIONS FOR INTRINSICS
INTRINSIC EXP
REAL EXP
!
DATA T/0.05, 0.1, 0.4, 0.5, 1.0/
DATA H/2.206, 1.994, 1.35, 1.216, 0.7358/
!
DO 10 I=1, M
F(I) = X(1)*EXP(X(2)*T(I)) + X(3)*EXP(X(4)*T(I)) - H(I)
10 CONTINUE
RETURN
END

```

\section*{Output}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{X} \\
\hline 1 & 2 & 3 & 4 \\
\hline 1.999 & -1.000 & 0.500 & -9.954 \\
\hline rnorm \(=\) & 42425E-03 & & \\
\hline
\end{tabular}

\section*{Comments}
1. Workspace may be explicitly provided, if desired, by use of B2NLS / DB2NLS. The reference is:

CALL B2NLS (FCN, M, N, MCON, C, LDC, BL, BU, IRTYPE, XLB, XUB, XGUESS, X, RNORM, ISTAT, IPARAM, RPARAM, JAC, F, FJ, LDFJ, IWORK, LIWORK, WORK, LWORK)

The additional arguments are as follows:
IPARAM - Integer vector of length six used to change certain default attributes of BCNLS. (Input).
If the default parameters are desired for BCNLS, set IPARAM(1) to zero.
Otherwise, if any nondefault parameters are desired for IPARAM or RPARAM, the following steps should be taken before calling B2NLS:

CALL B7NLS (IPARAM, RPARAM)
Set nondefault values for IPARAM and RPARAM.

If double precision is being used, DB7NLS should be called instead. Following is a list of parameters and the default values.
\(\operatorname{IPARAM}(1)=\) Initialization flag.
\(\operatorname{IPARAM}(2)=\operatorname{ITMAX}\), the maximum number of iterations allowed.
Default: 75
\(\operatorname{IPARAM}(3)=\) a flag that suppresses the use of the quadratic model in the inner loop. If set to one, then the quadratic model is never used. Otherwise use the quadratic model where appropriate. This option decreases the amount of workspace as well as the computing overhead required. A user may wish to determine if the application really requires the use of the quadratic model.
Default: 0
\(\operatorname{IPARAM}(4)=\) NTERMS, one more than the maximum number of terms used in the quadratic model.
Default: 5
\(\operatorname{IPARAM}(5)=\operatorname{RCSTAT}\), a flag that determines whether forward or reverse communication is used. If set to zero, forward communication through functions FCN and JAC is used. If set to one, reverse communication is used, and the dummy routines B10LS/DB10LS and B11LS/DB11LS may be used in place of FCN and JAC, respectively. When BCNLS returns with \(\operatorname{ISTAT}=6\), arrays F and FJ are filled with \(f(x)\) and the Jacobian of \(f(x)\), respectively. BCNLS is then called again.
Default: 0
\(\operatorname{IPARAM}(6)=\) a flag that determines whether the analytic Jacobian, as supplied in JAC, is used, or if a finite difference approximation is computed. If set to zero, JAC is not accessed and finite differences are used. If set to one, JAC is used to compute the Jacobian.
Default: 0
\(\boldsymbol{R P A R A M}\) - Real vector of length 7 used to change certain default attributes of BCNLS. (Input)

For the description of RPARAM, we make the following definitions:
FC current value of the length of \(f(x)\)
FB best value of length of \(f(x)\)
FL value of length of \(f(x)\) at the previous step
\(\mathrm{PV} \quad\) predicted value of length of \(f(x)\), after the step is taken, using the approximating model
\(\varepsilon\) machine epsilon \(=\operatorname{amach}(4)\)
The conditions \(|\mathrm{FB}-\mathrm{PV}| \leq \mathrm{TOLSNR}\) FB and \(|\mathrm{FC}-\mathrm{PV}| \leq T O L P * F B\) and \(|F C-F L| \leq\) TOLSNR*FB together with taking a full model step, must be satisfied before the condition ISTAT \(=2\) is returned. (Decreasing any of the values for TOLF, TOLD, TOLX, TOLSNR, or TOLP will likely increase the number of iterations required for convergence.)
\(\operatorname{RPARAM}(1)=\) TOLF, tolerance used for stopping when \(\mathrm{FC} \leq\) TOLF.
Default: \(\min (1 . \mathrm{E}-5, \sqrt{\varepsilon})\)
\(\operatorname{RPARAM}(2)=\) TOLX, tolerance for stopping when change to \(x\) values has length less than or equal to TOLX*length of \(x\) values.
Default : \(\min (1 . E-5, \sqrt{\varepsilon})\)
\(\operatorname{RPARAM}(3)=\operatorname{TOLD}\), tolerance for stopping when change to \(x\) values has length less than pr equal to TOLD.
Default : \(\min (1 . E-5, \sqrt{\varepsilon})\)
\(\operatorname{RPARAM}(4)=\operatorname{TOLSNR}\), tolerance used in stopping condition ISTAT \(=2\).
Default: 1.E-5
\(\operatorname{RPARAM}(5)=\operatorname{TOLP}\), tolerance used in stopping condition ISTAT \(=2\).
Default: 1.E-5
\(\operatorname{RPARAM}(6)=\operatorname{TOLUSE}\), tolerance used to avoid values of \(x\) in the quadratic model's interpolation of previous points. Decreasing this value may result in more terms being included in the quadratic model.
Default : \(\sqrt{\varepsilon}\)
\(\operatorname{RPARAM}(7)=\operatorname{COND}\), largest condition number to allow when solving for the quadratic model coefficients. Increasing this value may result in more terms being included in the quadratic model.
Default: 30
\(\boldsymbol{J} \boldsymbol{A C}\) - User-supplied SUBROUTINE to evaluate the Jacobian. The usage is
CALL JAC (M, N, X, FJAC, LDFJAC), where
M - Number of functions. (Input)
N - Number of variables. (Input)
X - Array of length N containing the point at which the Jacobian will be evaluated. (Input)
FJAC - The computed \(M \times N\) Jacobian at the point \(X\). (Output)
LDFJAC - Leading dimension of the array FJAC. (Input)
The routine JAC must be declared EXTERNAL in the calling program.
\(\boldsymbol{F}\) - Real vector of length N used to pass \(f(x)\) if reverse communication
(IPARAM(4)) is enabled. (Input)
\(\boldsymbol{F J}\) - Real array of size \(\mathrm{M} \times \mathrm{N}\) used to store the Jacobian matrix of \(f(x)\) if reverse communication (IPARAM(4)) is enabled. (Input) Specifically,
\[
F J(i, j)=\frac{\partial f_{i}}{\partial x_{j}}
\]
\(\boldsymbol{L D F J}\) - Leading dimension of FJ exactly as specified in the dimension statement of the calling program. (Input)

IWORK - Integer work vector of length LIWORK.
LIWORK - Length of work vector IWORK. LIWORK must be at least \(5 \mathrm{MCON}+12 \mathrm{~N}+47+\operatorname{MAX}(\mathrm{M}, \mathrm{N})\)

WORK - Real work vector of length LWORK
\(\boldsymbol{L W O R K}\) - Length of work vector WORK. LWORK must be at least 41N \(+6 \mathrm{M}+11 \mathrm{MCON}+(\mathrm{M}+\) MCON) \((\mathrm{N}+1)+\mathrm{NA}(\mathrm{NA}+7)+8 \mathrm{MAX}(\mathrm{M}, \mathrm{N})+99\). Where \(\mathrm{NA}=\mathrm{MCON}+\) \(2 \mathrm{~N}+6\).
2. Informational errors

Type Code
31 The function \(f(x)\) has reached a value that may be a local minimum. However, the bounds on the trust region defining the size of the step are being hit at each step. Thus, the situation is suspect. (Situations of this type can occur when the solution is at infinity at some of the components of the unknowns, \(x\) ).
32 The model problem solver has noted a value for the linear or quadratic model problem residual vector length that is greater than or equal to the current value of the function, i.e. the Euclidean length of \(f(x)\). This situation probably means that the evaluation of \(f(x)\) has more uncertainty or noise than is possible to account for in the tolerances used to not a local minimum. The value of \(x\) is suspect, but a minimum has probably been found.
33 More than ITMAX iterations were taken to obtain the solution. The value obtained for \(x\) is suspect, although it is the best set of \(x\) values that occurred in the entire computation. The value of ITMAX can be increased though the IPARAM vector.

\section*{Description}

The routine BCNLS solves the nonlinear least squares problem
\[
\min \sum_{i=1}^{m} f_{i}(x)^{2}
\]
subject to
\[
\begin{aligned}
b_{l} & \leq C x \leq b_{u} \\
x_{l} & \leq x \leq x_{u}
\end{aligned}
\]

BCNLS is based on the routine DQED by R.J. Hanson and F.T. Krogh. The section of BCNLS that approximates, using finite differences, the Jacobian of \(f(x)\) is a modification of JACBF by D.E. Salane.

\section*{Example 2}

This example solves the same problem as the last example, but reverse communication is used to evaluate \(f(x)\) and the Jacobian of \(f(x)\). The use of the quadratic model is turned off.
```

USE B2NLS INT
USE UMACH INT
USE WRRRN_INT
INTEGER LDC, LDFJ, M, MCON, N
PARAMETER (M=5, MCON=1, N=4, LDC=MCON, LDFJ=M)
Specifications for local variables
INTEGER I, IPARAM(6), IRTYPE(MCON), ISTAT, IWORK(1000), \&
LIWORK, LWORK, NOUT
REAL BL (MCON), C(MCON,N), F(M), FJ (M,N), RNORM, RPARAM(7), \&
WORK(1000), X(N), XGUESS(N), XLB(N), XUB(N)
REAL H(5), T(5)
SAVE H, T
INTRINSIC EXP
REAL EXP
EXTERNAL B7NLS
EXTERNAL B10LS, B11LS
DATA T/0.05, 0.1, 0.4, 0.5, 1.0/
DATA H/2.206, 1.994, 1.35, 1.216, 0.7358/
CALL UMACH (2, NOUT)
Define the separation between x(2)
and x(4)
C(1,1) = 0.0
C(1,2) = 1.0
C(1,3) = 0.0
C(1,4) = -1.0
BL(1) = 0.05
IRTYPE(1) = 2
! Set lower bounds on variables
XLB(1) = 0.0
XLB(2) = 1.0E30
XLB(3) = 0.0
XLB(4) = 1.0E30
XUB(1) = -1.0E30
XUB (2) = 0.0
XUB(3) = -1.0E30
XUB(4)=0.0
XGUESS = 0.0E0
CALL B7NLS (IPARAM, RPARAM)
Suppress the use of the quadratic
model, evaluate functions and
Jacobian by reverse communication
IPARAM(3) = 1
IPARAM(5) = 1

```
```

 IPARAM(6) = 1
 LWORK = 1000
 LIWORK = 1000
 !
!
1 0 ~ C O N T I N U E
CALL B2NLS (B10LS, M, N, MCON, C, LDC, BL, BL, IRTYPE, XLB, \&
XUB, XGUESS, X, RNORM, ISTAT, IPARAM, RPARAM, \&
B11LS, F, FJ, LDFJ, IWORK, LIWORK, WORK, LWORK)
!
!
Evaluate functions if the routine
returns with ISTAT = 6
IF (ISTAT .EQ. 6) THEN
DO 20 I=1, M
FJ(I,1)= EXP(X(2)*T(I))
FJ(I,2) = T(I)*X(1)*FJ(I,1)
FJ(I,3) = EXP(X(4)*T(I))
FJ(I,4) = T(I)*X(3)*FJ(I, 3)
F(I) = X(1)*FJ(I,1) + X(3)*FJ(I, 3) - H(I)
CONTINUE
GO TO 10
END IF
!
CALL WRRRN ('X', X, 1, N, 1)
WRITE (NOUT,99999) RNORM
99999 FORMAT (/, 'rnorm = ', E10.5)
END

```

\section*{Output}
\begin{tabular}{rrrr}
1 & \multicolumn{3}{c}{ X } \\
1.999 & -1.000 & 0.500 & 4 \\
rnorm \(=.42413 \mathrm{E}-03\)
\end{tabular}

\section*{DLPRS}

Solves a linear programming problem via the revised simplex algorithm.

\section*{Required Arguments}
\(\boldsymbol{A}-\mathrm{M}\) by NVAR matrix containing the coefficients of the M constraints. (Input)
\(\boldsymbol{B L}\) - Vector of length M containing the lower limit of the general constraints; if there is no lower limit on the I-th constraint, then \(B L(I)\) is not referenced. (Input)
\(\boldsymbol{B} \boldsymbol{U}\) - Vector of length M containing the upper limit of the general constraints; if there is no upper limit on the I-th constraint, then \(B U(I)\) is not referenced; if there are no range constraints, BL and BU can share the same storage locations. (Input)
\(\boldsymbol{C}\) - Vector of length NVAR containing the coefficients of the objective function. (Input)
IRTYPE - Vector of length m indicating the types of general constraints in the matrix \(A\). (Input)
Let \(R(I)=A(I, 1) * \operatorname{XSOL}(1)+\ldots+A(I, N V A R) * X S O L(N V A R)\). Then, the value of IRTYPE(I) signifies the following:

\section*{IRTYPE(I) I-th Constraint}

0
BL(I).EQ.R(I).EQ.BU(I)

1
R(I).LE.BU(I)
2
R(I).GE.BL(I)
3
BL(I).LE.R(I).LE.BU(I)
\(\boldsymbol{O B J}\) - Value of the objective function. (Output)
\(\boldsymbol{X S O L}\) - Vector of length NVAR containing the primal solution. (Output)
\(\boldsymbol{D S O L}\) - Vector of length M containing the dual solution. (Output)

\section*{Optional Arguments}
\(\boldsymbol{M}\) - Number of constraints. (Input)
Default: \(M=\operatorname{size}(A, 1)\).
\(\boldsymbol{N V A R}\) - Number of variables. (Input)
Default: NVAR \(=\operatorname{size}(\mathrm{A}, 2)\).
\(\boldsymbol{L D} \boldsymbol{A}\) - Leading dimension of A exactly as specified in the dimension statement of the calling program. (Input)
LDA must be at least M.
Default: LDA \(=\operatorname{size}(\mathrm{A}, 1)\).
\(\boldsymbol{X} \boldsymbol{L B}\) - Vector of length NVAR containing the lower bound on the variables; if there is no lower bound on a variable, then 1.0E30 should be set as the lower bound. (Input) Default: \(\mathrm{xLB}=0.0\).
\(\boldsymbol{X U B}\) - Vector of length NVAR containing the upper bound on the variables; if there is no upper bound on a variable, then -1.0 E 30 should be set as the upper bound. (Input) Default: \(\mathrm{XUB}=3.4 \mathrm{e} 38\) for single precision and \(1.79 \mathrm{~d}+308\) for double precision.

\section*{FORTRAN 90 Interface}

Generic: CALL DLPRS (A, BL, BU, C, IRTYPE, OBJ, XSOL, DSOL [,\(\ldots]\) )

Specific: The specific interface names are S_DLPRS and D_DLPRS.

\section*{FORTRAN 77 Interface}

Single: CALL DLPRS (M, NVAR, A, LDA, BL, BU, C, IRTYPE, XLB, XUB, OBJ, XSOL, DSOL)

Double: The double precision name is DDLPRS.

\section*{Example}

A linear programming problem is solved.
```

USE DLPRS INT
USE UMACH INT
USE SSCAL INT
INTEGER - LDA, M, NVAR
PARAMETER (M=2, NVAR=2, LDA=M)
M = number of constraints
NVAR = number of variables
INTEGER I, IRTYPE (M), NOUT
XSOL (NVAR) , XUB (NVAR)
Set values for the following problem
Max 1.0*XSOL(1) + 3.0*XSOL(2)
XSOL(1) + XSOL(2) .LE. 1.5
XSOL(1) + XSOL(2) .GE. 0.5
0 .LE. XSOL(1) .LE. 1
0 .LE. XSOL (2) .LE. 1
DATA XLB/2*0.0/, XUB/2*1.0/
DATA A/4*1.0/, B/1.5, .5/, C/1.0, 3.0/
DATA IRTYPE/1, 2/
To maximize, C must be multiplied by
-1.
CALL SSCAL (NVAR, -1.OE0, C, 1)
Solve the LP problem. Since there is
no range constraint, only B is
needed.
CALL DLPRS (A, B, B, C, IRTYPE, OBJ, XSOL, DSOL, \&
XUB=XUB)
OBJ must be multiplied by -1 to get
the true maximum.
OBJ = -OBJ
DSOL must be multiplied by -1 for
maximization.
CALL SSCAL (M, -1.0E0, DSOL, 1)
CALL UMACH (2, NOUT)

```
```

 WRITE (NOUT,99999) OBJ, (XSOL(I),I=1,NVAR), (DSOL(I),I=1,M)
 !
99999 FORMAT (//, ' Objective = ', F9.4, //, ' Primal ',\&
'Solution =', 2F9.4, //, , Dual solution =', 2F9.4)
!
END

```

Output
Objective \(=3.5000\)
Primal Solution \(=0.5000 \quad 1.0000\)
Dual solution \(=1.00000 .0000\)

\section*{Comments}
1. Workspace may be explicitly provided, if desired, by use of D2PRS / DD2 PRS. The reference is:

CALL D2PRS (M, NVAR, A, LDA, BL, BU, C, IRTYPE, XLB, XUB, OBJ, XSOL, DSOL, AWK, LDAWK, WK, IWK)

The additional arguments are as follows:
\(\boldsymbol{A} \boldsymbol{W} \boldsymbol{K}\) - Real work array of dimension 1 by 1. (AWk is not used in the new implementation of the revised simplex algorithm. It is retained merely for calling sequence consistency.)
\(\boldsymbol{L D} \boldsymbol{A W K}\) - Leading dimension of AWK exactly as specified in the dimension statement of the calling program. LDAWK should be 1. (LDAWK is not used in the new implementation of the revised simplex algorithm. It is retained merely for calling sequence consistency.)
\(\boldsymbol{W} \boldsymbol{K}\) - Real work vector of length \(\mathrm{M} *(\mathrm{M}+28)\).
\(\boldsymbol{I} \boldsymbol{W} \boldsymbol{K}\) - Integer work vector of length \(29 * \mathrm{~m}+3 *\) NVAR.
2. Informational errors
\begin{tabular}{ccl} 
Type & Code & \\
3 & 1 & The problem is unbounded. \\
4 & 2 & Maximum number of iterations exceeded. \\
3 & 3 & The problem is infeasible. \\
4 & 4 & \begin{tabular}{l} 
Moved to a vertex that is poorly conditioned; using double precision \\
may help.
\end{tabular} \\
4 & 5 & The bounds are inconsistent.
\end{tabular}

\section*{Description}

The routine DLPRS uses a revised simplex method to solve linear programming problems, i.e., problems of the form
\[
\begin{gathered}
\min _{x \in \mathbf{R}^{n}} c^{T} x \\
\text { subject to } b_{l} \leq A x \leq b_{u} \\
x_{l} \leq x \leq x_{u}
\end{gathered}
\]
where \(c\) is the objective coefficient vector, \(A\) is the coefficient matrix, and the vectors \(b_{l}, b_{u}, x_{l}\) and \(x_{u}\) are the lower and upper bounds on the constraints and the variables, respectively.

For a complete description of the revised simplex method, see Murtagh (1981) or Murty (1983).

\section*{SLPRS}

Solves a sparse linear programming problem via the revised simplex algorithm.

\section*{Required Arguments}
\(\boldsymbol{A}\) - Vector of length NZ containing the coefficients of the M constraints. (Input)
\(\boldsymbol{I R O W}\) - Vector of length NZ containing the row numbers of the corresponding element in A. (Input)
\(\boldsymbol{J C O L}-\) Vector of length NZ containing the column numbers of the corresponding elements in \(A\). (Input)
\(\boldsymbol{B L}\) - Vector of length M containing the lower limit of the general constraints; if there is no lower limit on the I-th constraint, then BL (I) is not referenced. (Input)
\(\boldsymbol{B} \boldsymbol{U}\) - Vector of length M containing the upper lower limit of the general constraints; if there is no upper limit on the I-th constraint, then \(B U\) (I) is not referenced. (Input)
\(\boldsymbol{C}\) - Vector of length NVAR containing the coefficients of the objective function. (Input)
IRTYPE - Vector of length M indicating the types of general constraints in the matrix A. (Input)
Let \(R(I)=A(I, 1) \star X S O L(1)+\ldots+A(I, N V A R) \star X S O L(N V A R)\)
\begin{tabular}{cl} 
IRTYPE(I) & I-th CONSTRAINT \\
0 & \(\mathrm{BL}(\mathrm{I})=\mathrm{R}(\mathrm{I})=\mathrm{BU}(\mathrm{I})\) \\
1 & \(\mathrm{R}(\mathrm{I}) \leq \mathrm{BU}(\mathrm{I})\) \\
2 & \(\mathrm{R}(\mathrm{I}) \geq \mathrm{BL}(\mathrm{I})\) \\
3 & \(\mathrm{BL}(\mathrm{I}) \leq \mathrm{R}(\mathrm{I}) \leq \mathrm{BU}(\mathrm{I})\)
\end{tabular}
\(\boldsymbol{O B J}\) - Value of the objective function. (Output)
\(\boldsymbol{X S O L}\) - Vector of length NVAR containing the primal solution. (Output)
DSOL - Vector of length M containing the dual solution. (Output)

\section*{Optional Arguments}
\(\boldsymbol{M}\) - Number of constraints. (Input)
Default: \(M=\operatorname{size}(\) IRTYPE, 1 ).
\(\boldsymbol{N V A R}\) - Number of variables. (Input)
Default: NVAR \(=\operatorname{size}(\mathrm{C}, 1)\).
\(N Z\) - Number of nonzero coefficients in the matrix \(A\). (Input)
Default: NZ \(=\operatorname{size}(\mathrm{A}, 1)\).
\(\boldsymbol{X} \boldsymbol{L} \boldsymbol{B}\) - Vector of length NVAR containing the lower bound on the variables; if there is no lower bound on a variable, then 1.0 E 30 should be set as the lower bound. (Input) Default: \(\mathrm{XLB}=0.0\).
\(\boldsymbol{X U B}\) - Vector of length NVAR containing the upper bound on the variables; if there is no upper bound on a variable, then -1.0 E 30 should be set as the upper bound. (Input) Default: \(\mathrm{XLB}=3.4 \mathrm{e} 38\) for single precision and \(1.79 \mathrm{~d}+308\) for double precision.

\section*{FORTRAN 90 Interface}

Generic: CALL SLPRS (A, IROW, JCOL, BL, BU, C, IRTYPE, OBJ, XSOL, DSOL [,...])

Specific: The specific interface names are S_SLPRS and D_SLPRS.

\section*{FORTRAN 77 Interface}

Single: CALL SLPRS (M, NVAR, NZ, A, IROW, JCOL, BL, BU, C, IRTYPE, XLB, XUB, OBJ, XSOL, DSOL)

Double: The double precision name is DSLPRS.

\section*{Example}

Solve a linear programming problem, with
\[
A=\left[\begin{array}{ccccc}
0 & 0.5 & & & \\
& 1 & 0.5 & & \\
& & 1 & \ddots & \\
& & & \ddots & 0.5 \\
& & & & 1
\end{array}\right]
\]
defined in sparse coordinate format.
```

USE SLPRS_INT
USE UMACH }\mp@subsup{}{}{-}\mathrm{ INT
INTEGER - M, NVAR
PARAMETER (M=200, NVAR=200)
INTEGER INDEX, IROW(3*M), J, JCOL (3*M), NOUT, NZ
REAL A (3*M), DSOL (M), OBJ, XSOL (NVAR)
INTEGER IRTYPE (M)
REAL B(M), C(NVAR), XL (NVAR), XU (NVAR)
Specifications for subroutines
DATA B/199*1.7, 1.0/
DATA C/-1.0, -2.0, -3.0, -4.0, -5.0, -6.0, -7.0, -8.0, -9.0, \&
-10.0, 190*-1.0/
DATA XL/200*0.1/
DATA XU/200*2.0/
DATA IRTYPE/200*1/
CALL UMACH (2, NOUT)
INDEX = 1
DO 10 J=2, M
! Superdiagonal element
IROW(INDEX) = J - 1
JCOL(INDEX) = J
A(INDEX) = 0.5
Diagonal element
IROW (INDEX+1) = J
JCOL (INDEX+1) = J
A(INDEX+1) = 1.0
INDEX = INDEX + 2
10 CONTINUE
NZ = INDEX - 1
XL(4) = 0.2
CALL SLPRS (A, IROW, JCOL, B, B, C, IRTYPE, OBJ, XSOL, DSOL, \&
NZ=NZ, XLB=XL, XUB=XU)
WRITE (NOUT,99999) OBJ
9 9 9 9 9 ~ F O R M A T ~ (/ , ~ ' T h e ~ v a l u e ~ o f ~ t h e ~ o b j e c t i v e ~ f u n c t i o n ~ i s ~ ' , ~ E 1 2 . 6)
END

```
!
!

\section*{Output}

The value of the objective function is -. \(280971 \mathrm{E}+03\)

\section*{Comments}

Workspace may be explicitly provided, if desired, by use of S2PRS / DS2PRS. The reference is:
```

CALL S2PRS (M, NVAR, NZ, A, IROW, JCOL, BL, BU, C,
IRTYPE, XLB, XUB, OBJ, XSOL, DSOL,
IPARAM, RPARAM, COLSCL, ROWSCL, WORK,
LW, IWORK, LIW)

```

The additional arguments are as follows:
IPARAM - Integer parameter vector of length 12. If the default parameters are desired for SLPRS, then set IPARAM(1) to zero and call the routine SLPRS. Otherwise, if any nondefault parameters are desired for IPARAM or RPARAM, then the following steps should be taken before calling SLPRS:

CALL S5PRS (IPARAM, RPARAM)
Set nondefault values for IPARAM and RPARAM.
Note that the call to S5PRS will set IPARAM and RPARAM to their default values so only nondefault values need to be set above.
\(\operatorname{IPARAM}(1)=0\) indicates that a minimization problem is solved. If set to \(1, a\) maximization problem is solved.
Default: 0
\(\operatorname{IPARAM}(2)=\) switch indicating the maximum number of iterations to be taken before returning to the user. If set to zero, the maximum number of iterations taken is set to \(3 *(N V A R S+M)\). If positive, that value is used as the iteration limit.
Default: \(\operatorname{IPARAM}(2)=0\)
\(\operatorname{IPARAM}(3)=\) indicator for choosing how columns are selected to enter the basis. If set to zero, the routine uses the steepest edge pricing strategy which is the best local move. If set to one, the minimum reduced cost pricing strategy is used. The steepest edge pricing strategy generally uses fewer iterations than the minimum reduced cost pricing, but each iteration costs more in terms of the amount of calculation performed.
However, this is very problem-dependent.
Default: \(\operatorname{IPARAM}(3)=0\)
\(\operatorname{IPARAM}(4)=\operatorname{MXITBR}\), the number of iterations between recalculating the error in the primal solution is used to monitor the error in solving the linear system. This is an expensive calculation and every tenth iteration is generally enough.
Default: \(\operatorname{IPARAM}(4)=10\)
\(\operatorname{IPARAM}(5)=\) NPP, the number of negative reduced costs (at most) to be found at each iteration of choosing a variable to enter the basis. If set to zero, NPP = NVARS will be used, implying that all of the reduced costs are computed at each such step. This "Partial pricing" may increase the total number of iterations required. However, it decreases the number of calculation required at each iteration. The effect on overall efficiency is very problem-dependent. If set to some positive number, that value is used as NPP.
Default: \(\operatorname{IPARAM}(5)=0\)
\(\operatorname{IPARAM}(6)=\operatorname{IREDFQ}\), the number of steps between basis matrix redecompositions. Redecompositions also occur whenever the linear systems for the primal and dual systems have lost half their working precision.
Default: \(\operatorname{IPARAM}(6)=50\)
\(\operatorname{IPARAM}(7)=\operatorname{LAMAT}\), the length of the portion of wORK that is allocated to sparse matrix storage and decomposition. LAMAT must be greater than NZ + NVARS +4 .
Default: LAMAT \(=\) NZ + NVARS +5
\(\operatorname{IPARAM}(8)=\operatorname{LBM}\), then length of the portion of IWORK that is allocated to sparse matrix storage and decomposition. LBM must be positive.
Default: \(\mathrm{LBM}=8 *_{\mathrm{M}}\)
\(\operatorname{IPARAM}(9)=\) switch indicating that partial results should be saved after the maximum number of iterations, IPARAM(2), or at the optimum. If IPARAM(9) is not zero, data essential to continuing the calculation is saved to a file, attached to unit number IPARAM(9). The data saved includes all the information about the sparse matrix A and information about the current basis. If IPARAM(9) is set to zero, partial results are not saved. It is the responsibility of the calling program to open the output file.
\(\operatorname{IPARAM}(10)=\) switch indicating that partial results have been computed and stored on unit number IPARAM(10), if greater than zero. If IPARAM(10) is zero, a new problem is started.
Default: \(\operatorname{IPARAM}(10)=0\)
\(\operatorname{IPARAM}(11)=\) switch indicating that the user supplies scale factors for the columns of the matrix \(A\). If IPARAM \((11)=0, \operatorname{SLPRS}\) computes the scale factors as the reciprocals of the max norm of each column. If IPARAM(11) is set to one, element I of the vector COLSCL is used as the scale factor for column I of the matrix \(A\). The scaling is implicit, so no input data is actually changed.
Default: \(\operatorname{IPARAM}(11)=0\)
\(\operatorname{IPARAM}(12)=\) switch indicating that the user supplied scale factors for the rows of the matrix \(A\). If IPARAM(12) is set to zero, no row scaling is one. If IPARAM(12) is set to 1 , element I of the vector ROWSCL is used as the scale factor for row I of the matrix \(A\). The scaling is implicit, so no input data is actually changed.
Default: \(\operatorname{IPARAM}(12)=0\)
RPARAM - Real parameter vector of length 7.
\(\operatorname{RPARAM}(1)=\operatorname{costSC}\), a scale factor for the vector of costs. Normally SLPRS computes this scale factor to be the reciprocal of the max norm if the vector costs after the column scaling has been applied. If RPARAM(1) is zero,
SLPRS compute COSTSC.
Default: \(\operatorname{RPARAM}(1)=0.0\)
\(\operatorname{RPARAM}(2)=\operatorname{ASMALL}\), the smallest magnitude of nonzero entries in the matrix \(A\). If \(\operatorname{RPARAM}(2)\) is nonzero, checking is done to ensure that all elements of \(A\) are at least as
large as RPARAM(2). Otherwise, no checking is done.
Default: \(\operatorname{RPARAM}(2)=0.0\)
\(\operatorname{RPARAM}(3)=\operatorname{ABIG}\), the largest magnitude of nonzero entries in the matrix \(A\). If \(\operatorname{RPARAM}(3)\) is nonzero, checking is done to ensure that all elements of \(A\) are no larger than RPARAM(3). Otherwise, no checking is done.
Default: \(\operatorname{RPARAM}(3)=0.0\)
\(\operatorname{RPARAM}(4)=\operatorname{TOLLS}\), the relative tolerance used in checking if the residuals are feasible. RPARAM(4) is nonzero, that value is used as TOLLS, otherwise the default value is used.
Default: TOLLS \(=1000.0 * \operatorname{amach}(4)\)
\(\operatorname{RPARAM}(5)=\mathrm{PHI}\), the scaling factor used to scale the reduced cost error estimates. In some environments, it may be necessary to reset PHI to the range [ \(0.01,0.1\), particularly on machines with short word length and working precision when solving a large problem. If RPARAM(5) is nonzero, that value is used as PHI, otherwise the default value is used.
Default: PHI = 1.0
\(\operatorname{RPARAM}(6)=\operatorname{TOLABS}\), an absolute error test on feasibility. Normally a relative test is used with TOLLS (see RPARAM(4)). If this test fails, an absolute test will be applied using the value TOLABS.
Default: TOLABS \(=0.0\)
\(\operatorname{RPARAM}(7)=\) pivot tolerance of the underlying sparse factorization routine. If \(\operatorname{RPARAM}(7)\) is set to zero, the default pivot tolerance is used, otherwise, the \(\operatorname{RPARAM}(7)\) is used.
Default: \(\operatorname{RPARAM}(7)=0.1\)

COLSCL - Array of length NVARS containing column scale factors for the matrix \(A\). (Input).
COLSCL is not used if IPARAM(11) is set to zero.
ROWSCL - Array of length M containing row scale factors for the matrix \(A\). (Input) ROWSCL is not used if IPARAM(12) is set to zero.

WORK - Work array of length LW.
\(\boldsymbol{L W}\) - Length of real work array. LW must be at least
\[
2+2 N Z+9 N V A R+27 M+M A X(N Z+N V A R+8,4 N V A R+7) .
\]

IWORK - Integer work array of length LIW.
\(\boldsymbol{L I W}\) - Length of integer work array. LIW must be at least
\[
1+3 N V A R+41 M+\operatorname{MAX}(N Z+N V A R+8,4 N V A R+7) .
\]

\section*{Description}

This subroutine solves problems of the form
\[
\min c^{T} x
\]
subject to
\[
\begin{aligned}
b_{l} & \leq A x \leq b_{u}, \\
x_{l} & \leq x \leq x_{u}
\end{aligned}
\]
where \(c\) is the objective coefficient vector, \(A\) is the coefficient matrix, and the vectors \(b_{l}, b_{u}, x_{l}\), and \(x_{u}\) are the lower and upper bounds on the constraints and the variables, respectively. SLPRS is designed to take advantage of sparsity in \(A\). The routine is based on DPLO by Hanson and Hiebert.

\section*{QPROG}

Solves a quadratic programming problem subject to linear equality/inequality constraints.

\section*{Required Arguments}

NEQ - The number of linear equality constraints. (Input)
\(\boldsymbol{A}\) - NCON by NVAR matrix. (Input)
The matrix contains the equality contraints in the first NEQ rows followed by the inequality constraints.
\(\boldsymbol{B}\) - Vector of length NCON containing right-hand sides of the linear constraints. (Input)
\(\boldsymbol{G}\) - Vector of length NVAR containing the coefficients of the linear term of the objective function. (Input)
\(\boldsymbol{H}\) - NVAR by NVAR matrix containing the Hessian matrix of the objective function. (Input) \(H\) should be symmetric positive definite; if \(H\) is not positive definite, the algorithm attempts to solve the QP problem with H replaced by a \(H+\) DIAGNL * I such that \(\mathrm{H}+\) DIAGNL * I is positive definite. See Comment 3.
\(\boldsymbol{S O L}\) - Vector of length NVAR containing solution. (Output)

\section*{Optional Arguments}
\(\boldsymbol{N V A R}\) - The number of variables. (Input) Default: NVAR \(=\operatorname{size}(A, 2)\).

NCON - The number of linear constraints. (Input)
Default: \(\mathrm{NCON}=\operatorname{size}(\mathrm{A}, 1)\).
\(\boldsymbol{L D} \boldsymbol{A}\) - Leading dimension of A exactly as specified in the dimension statement of the calling program. (Input)
Default: LDA \(=\operatorname{size}(\mathrm{A}, 1)\).
\(\boldsymbol{L D H}\) - Leading dimension of H exactly as specified in the dimension statement of the calling program. (Input)
Default: LDH = size ( \(\mathrm{H}, 1\) ).
DIAGNL - Scalar equal to the multiple of the identity matrix added to H to give a positive definite matrix. (Output)
\(\boldsymbol{N A C T}\) - Final number of active constraints. (Output)
\(\boldsymbol{I A C T}\) - Vector of length NVAR containing the indices of the final active constraints in the first NACT positions. (Output)
\(\boldsymbol{A L A M D} \boldsymbol{A}\) - Vector of length NVAR containing the Lagrange multiplier estimates of the final active constraints in the first NACT positions. (Output)

\section*{FORTRAN 90 Interface}

Generic: CALL QPROG (NEQ, A, B, G, H, SOL [,...])
Specific: The specific interface names are S_QPROG and D_QPROG.

\section*{FORTRAN 77 Interface}
```

Single: CALL QPROG (NVAR, NCON, NEQ, A, LDA, B, G, H, LDH, DIAGNL,
SOL, NACT, IACT, ALAMDA)

```

Double: The double precision name is DQPROG.

\section*{Example}

The quadratic programming problem
\[
\begin{aligned}
\min f(x)= & x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2}+x_{5}^{2}-2 x_{2} x_{3}-2 x_{4} x_{5}-2 x_{1} \\
\text { subject to } \quad & x_{1}+x_{2}+x_{3}+x_{4}+x_{5}=5 \\
& x_{3}-2 x_{4}-2 x_{5}=-3
\end{aligned}
\]
is solved.
```

USE QPROG INT
USE UMACH_INT
INTEGER LDA, LDH, NCON, NEQ, NVAR

```
!
```

!
INTEGER K, NACT, NOUT
REAL A(LDA,NVAR), ALAMDA(NVAR), B (NCON), G(NVAR), \&
H (LDH,LDH), SOL (NVAR)
Set values of A, B, G and H.
A=($$
\begin{array}{lllll}{1.0}&{1.0}&{1.0}&{1.0}&{1.0}\end{array}
$$)
(0.0 0.0 1.0 -2.0 -2.0)
B=(5.0-3.0)
G = (-2.0 0.0 0.0 0.0 0.0)
H=($$
\begin{array}{lllll}{2.0}&{0.0}&{0.0}&{0.0}&{0.0}\end{array}
$$)
(0.0 2.0 -2.0 0.0 0.0)
(0.0-2.0 2.0 0.0 0.0)
(0.0 0.0 0.0 2.0 -2.0)
(0.0 0.0 0.0 -2.0 2.0)
DATA A/1.0, 0.0, 1.0, 0.0, 1.0, 1.0, 1.0, -2.0, 1.0, -2.0/
DATA B/5.0, -3.0/
DATA G/-2.0, 4*0.0/
DATA H/2.0, 5*0.0, 2.0, -2.0, 3*0.0, -2.0, 2.0, 5*0.0, 2.0, \&
-2.0, 3*0.0, -2.0, 2.0/
CALL QPROG (NEQ, A, B, G, H, SOL)
CALL UMACH (2, NOUT)
WRITE (NOUT, 99999) (SOL (K), K=1,NVAR)
99999 FORMAT (' The solution vector is', /, ' SOL = (', 5F6.1, \&
)')
!
END

```

\section*{Output}
```

The solution vector is
SOL $=\left(\begin{array}{lllll}1.0 & 1.0 & 1.0 & 1.0 & 1.0\end{array}\right)$

```

\section*{Comments}
1. Workspace may be explicitly provided, if desired, by use of Q2ROG/DQ2ROG. The reference is:
```

CALL Q2ROG (NVAR, NCON, NEQ, A, LDA, B, G, H, LDH,
DIAGNL, SOL, NACT, IACT, ALAMDA, WK)

```

The additional argument is:
\(\boldsymbol{W} \boldsymbol{K}\) - Work vector of length \((3 *\) NVAR \(* * 2+11 *\) NVAR \() / 2+\) NCON.
2. Informational errors

Type Code

31 Due to the effect of computer rounding error, a change in the variables fail to improve the objective function value; usually the solution is close to optimum.
4
2 The system of equations is inconsistent. There is no solution.
3. If a perturbation of \(H, H+D I A G N L\) * \(I\), was used in the QP problem, then \(+{ }^{+}\)DIAGNL * I should also be used in the definition of the Lagrange multipliers.

\section*{Description}

The routine \(Q P R O G\) is based on M.J.D. Powell's implementation of the Goldfarb and Idnani (1983) dual quadratic programming (QP) algorithm for convex QP problems subject to general linear equality/inequality constraints, i.e., problems of the form
\[
\begin{array}{r}
\min _{x \in \mathbf{R}^{n}} g^{T} x+\frac{1}{2} x^{T} H x \\
\text { subject to } \quad A_{1} x=b_{1} \\
A_{2} x \geq b_{2}
\end{array}
\]
given the vectors \(b_{1}, b_{2}\), and \(g\) and the matrices \(H, A_{1}\), and \(A_{2}\). \(H\) is required to be positive definite. In this case, a unique \(x\) solves the problem or the constraints are inconsistent. If \(H\) is not positive definite, a positive definite perturbation of \(H\) is used in place of \(H\). For more details, see Powell (1983, 1985).

\section*{LCONF}

Minimizes a general objective function subject to linear equality/inequality constraints.

\section*{Required Arguments}
\(\boldsymbol{F C N}\) - User-supplied SUBROUTINE to evaluate the function to be minimized. The usage is CALL FCN ( \(\mathrm{N}, \mathrm{X}, \mathrm{F}\) ), where

N - Value of NVAR. (Input)
\(X-\) Vector of length \(N\) at which point the function is evaluated. (Input) \(X\) should not be changed by FCN.

F - The computed function value at the point X . (Output)
FCN must be declared EXTERNAL in the calling program.
\(N E Q\) - The number of linear equality constraints. (Input)
\(\boldsymbol{A}\) - NCON by NVAR matrix. (Input)
The matrix contains the equality constraint gradients in the first NEQ rows, followed by the inequality constraint gradients.
\(\boldsymbol{B}\) - Vector of length NCON containing right-hand sides of the linear constraints. (Input) Specifically, the constraints on the variables \(X(I), I=1, \ldots\), NVAR are \(A(K, 1) * X(1)+\) \(\ldots+A(K, N V A R)\) * X(NVAR).EQ.B(K), \(K=1, \ldots, N E Q . A(K, 1) * X(1)+\ldots+A(K, N V A R)\) * \(X(N V A R) . L E \cdot B(K), K=N E Q+1, \ldots, N C O N\). Note that the data that define the equality constraints come before the data of the inequalities.
\(\boldsymbol{X L B}\) - Vector of length NVAR containing the lower bounds on the variables; choose a very large negative value if a component should be unbounded below or set \(\operatorname{XLB}(\mathrm{I})=\operatorname{XUB}(\mathrm{I})\) to freeze the \(I\)-th variable. (Input)
Specifically, these simple bounds are XLB(I). LE. \(\mathrm{X}(\mathrm{I}), I=1, \ldots\), NVAR.
\(\boldsymbol{X U B}\) - Vector of length NVAR containing the upper bounds on the variables; choose a very large positive value if a component should be unbounded above. (Input) Specifically, these simple bounds are \(\mathrm{X}(\mathrm{I}) . \operatorname{LE} . \mathrm{XUB}(\mathrm{I}), \mathrm{I}=1, \ldots\), NVAR.
\(\boldsymbol{S O L}\) - Vector of length NVAR containing solution. (Output)

\section*{Optional Arguments}
\(\boldsymbol{N V A R}\) - The number of variables. (Input)
Default: NVAR \(=\operatorname{size}(\mathrm{A}, 2)\).
NCON - The number of linear constraints (excluding simple bounds). (Input)
Default: \(\mathrm{NCON}=\operatorname{size}(\mathrm{A}, 1)\).
\(\boldsymbol{L D} \boldsymbol{A}\) - Leading dimension of A exactly as specified in the dimension statement of the calling program. (Input)
Default: LDA \(=\operatorname{size}(\mathrm{A}, 1)\).
\(\boldsymbol{X G U E S S}\) - Vector of length NVAR containing the initial guess of the minimum. (Input) Default: XGUESS \(=0.0\).
\(\boldsymbol{A C C}\) - The nonnegative tolerance on the first order conditions at the calculated solution. (Input)
Default: \(\mathrm{ACC}=1 . \mathrm{e}-4\) for single precision and \(1 . \mathrm{d}-8\) for double precision.
MAXFCN - On input, maximum number of function evaluations allowed. (Input/ Output) On output, actual number of function evaluations needed.
Default: \(\operatorname{MAXFCN}=400\).
\(\boldsymbol{O B J}\) - Value of the objective function. (Output)
\(\boldsymbol{N A C T}\) - Final number of active constraints. (Output)
\(\boldsymbol{I A C T}\) - Vector containing the indices of the final active constraints in the first NACT positions. (Output)
Its length must be at least NCON +2 * NVAR.
\(\boldsymbol{A L A M D A}\) - Vector of length NVAR containing the Lagrange multiplier estimates of the final active constraints in the first NACT positions. (Output)

\section*{FORTRAN 90 Interface}
```

Generic: CALL LCONF (FCN, NEQ, A, B, XLB, XUB, SOL [,...])

```

Specific: The specific interface names are S_LCONF and D_LCONF.

\section*{FORTRAN 77 Interface}

\section*{Single: CALL LCONF (FCN, NVAR, NCON, NEQ, A, LDA, B, XLB, XUB, XGUESS, ACC, MAXFCN, SOL, OBJ, NACT, IACT, ALAMDA)}

Double: The double precision name is DLCONF.

\section*{Example}

The problem from Schittkowski (1987)
\[
\begin{gathered}
\min f(x)=-x_{1} x_{2} x_{3} \\
\text { subject to } \quad-x_{1}-2 x_{2}-2 x_{3} \leq 0 \\
x_{1}+2 x_{2}+2 x_{3} \leq 72 \\
0 \leq x_{1} \leq 20 \\
0 \leq x_{2} \leq 11 \\
0
\end{gathered}
\]
is solved with an initial guess \(x_{1}=10, x_{2}=10\) and \(x_{3}=10\).
```

USE LCONF_INT
USE UMACH_INT
INTEGER NCON, NEQ, NVAR
PARAMETER (NCON=2, NEQ=0, NVAR=3)
INTEGER MAXFCN, NOUT
REAL A(NCON,NVAR), ACC, B(NCON), OBJ, \&
EXTERNAL FCN

```
!
```

 0 .LE. X(1) .LE. 20
 0 .LE. X(2) .LE. 11
 O .LE. X(3) .LE. 42
 DATA A/-1.0, 1.0, -2.0, 2.0, -2.0, 2.0/, B/0.0, 72.0/
DATA XLB/3*0.0/, XUB/20.0, 11.0, 42.0/, XGUESS/3*10.0/
DATA ACC/0.0/, MAXFCN/400/
CALL UMACH (2, NOUT)
CALL LCONF (FCN, NEQ, A, B, XLB, XUB, SOL, XGUESS=XGUESS, \&
MAXFCN=MAXFCN, ACC=ACC, OBJ=OBJ)
WRITE (NOUT,99998) 'Solution:'
WRITE (NOUT,99999) SOL
WRITE (NOUT,99998) 'Function value at solution:'
WRITE (NOUT,99999) OBJ
WRITE (NOUT,99998) 'Number of function evaluations:', MAXFCN
STOP
99998 FORMAT (//, , ', A, I4)
99999 FORMAT (1X, 5F16.6)
END
SUBROUTINE FCN (N, X, F)
INTEGER N
REAL X(*), F
F = -X(1)*X(2)*X(3)
RETURN
END

```

\section*{Output}
```

20.000000 11.000000 15.000000
Function value at solution:
-3300.000000
Number of function evaluations: 5

```
!
!
\(!\)
```

Solution:

```

\section*{Comments}
1. Workspace may be explicitly provided, if desired, by use of L2ONF/DL2ONF. The reference is:

CALL L2ONF (FCN, NVAR, NCON, NEQ, A, LDA, B, XLB, XUB, XGUESS, ACC, MAXFCN, SOL, OBJ, NACT, IACT, ALAMDA, IPRINT, INFO, WK)

The additional arguments are as follows:
IPRINT — Print option (see Comment 3). (Input)
INFO - Informational flag (see Comment 3). (Output)
\(\boldsymbol{W} \boldsymbol{K}-\) Real work vector of length NVAR**2 +11 * NVAR + NCON.
2. Informational errors
\begin{tabular}{ccl} 
Type & Code \\
4 & 4 & The equality constraints are inconsistent. \\
4 & 5 & \begin{tabular}{l} 
The equality constraints and the bounds on the variables are found to \\
be inconsistent.
\end{tabular} \\
4 & 6 & \begin{tabular}{l} 
No vector X satisfies all of the constraints. In particular, the current \\
active constraints prevent any change in X that reduces the sum of \\
constraint violations.
\end{tabular} \\
4 & 7 & \begin{tabular}{l} 
Maximum number of function evaluations exceeded.
\end{tabular} \\
4 & 9 & The variables are determined by the equality constraints.
\end{tabular}
3. The following are descriptions of the arguments IPRINT and INFO:

IPRINT - This argument must be set by the user to specify the frequency of printing during the execution of the routine LCONF. There is no printed output if \(\operatorname{IPRINT}=0\). Otherwise, after ensuring feasibility, information is given every IABS(IPRINT) iterations and whenever a parameter called TOL is reduced. The printing provides the values of \(X(),. F(\).\() and G()=.\operatorname{GRAD}(F)\) if IPRINT is positive. If IPRINT is negative, this information is augmented by the current values of \(\operatorname{IACT}(\mathrm{K}) \mathrm{K}=1, \ldots, \mathrm{NACT}\), \(\operatorname{PAR}(\mathrm{K}) \mathrm{K}=1, \ldots\), NACT and \(\operatorname{RESKT}(\mathrm{I}) \mathrm{I}=1, \ldots, \mathrm{~N}\). The reason for returning to the calling program is also displayed when IPRINT is nonzero.

INFO - On exit from L2ONF, INFO will have one of the following integer values to indicate the reason for leaving the routine:
\(I N F O=1\) SOL is feasible, and the condition that depends on ACC is satisfied.
\(I N F O=2 S O L\) is feasible, and rounding errors are preventing further progress.
\(I N F O=3\) SOL is feasible, but the objective function fails to decrease although a decrease is predicted by the current gradient vector.

INFO \(=4\) In this case, the calculation cannot begin because LDA is less than NCON or because the lower bound on a variable is greater than the upper bound.
\(I N F O=5\) This value indicates that the equality constraints are inconsistent. These constraints include any components of \(x(\).\() that are frozen by setting\) \(\mathrm{XL}(\mathrm{I})=\mathrm{XU}(\mathrm{I})\).
\(I N F O=6\) In this case there is an error return because the equality constraints and the bounds on the variables are found to be inconsistent.

INFO \(=7\) This value indicates that there is no vector of variables that satisfies all of the constraints. Specifically, when this return or an INFO \(=6\) return occurs, the current active constraints (whose indices are \(\operatorname{IACT}(\mathrm{K}), \mathrm{K}=1, \ldots\), NACT) prevent
any change in \(X(\).\() that reduces the sum of constraint violations. Bounds are only\) included in this sum if \(I N F O=6\).
\(I N F O=8\) Maximum number of function evaluations exceeded.
INFO \(=9\) The variables are determined by the equality constraints.

\section*{Description}

The routine LCONF is based on M.J.D. Powell's TOLMIN, which solves linearly constrained optimization problems, i.e., problems of the form
\[
\begin{gathered}
\min _{x \in \mathbf{R}^{n}} f(x) \\
\text { subject to } \quad A_{1} x=b_{1} \\
A_{2} x \leq b_{2} \\
x_{l} \leq x \leq x_{u}
\end{gathered}
\]
given the vectors \(b_{1}, b_{2}, x_{l}\) and \(x_{u}\) and the matrices \(A_{1}\), and \(A_{2}\).
The algorithm starts by checking the equality constraints for inconsistency and redundancy. If the equality constraints are consistent, the method will revise \(x^{0}\), the initial guess provided by the user, to satisfy
\[
A_{1} x=b_{1}
\]

Next, \(x^{0}\) is adjusted to satisfy the simple bounds and inequality constraints. This is done by solving a sequence of quadratic programming subproblems to minimize the sum of the constraint or bound violations.

Now, for each iteration with a feasible \(x^{k}\), let \(J_{k}\) be the set of indices of inequality constraints that have small residuals. Here, the simple bounds are treated as inequality constraints. Let \(I_{k}\) be the set of indices of active constraints. The following quadratic programming problem
\[
\begin{gathered}
\min f\left(x^{k}\right)+d^{T} \nabla f\left(x^{k}\right)+\frac{1}{2} d^{T} B^{k} d \\
\text { subject to } \quad a_{j} d=0 j \in I_{k} \\
a_{j} d \leq 0 j \in J_{k}
\end{gathered}
\]
is solved to get \(\left(d^{k}, \lambda^{k}\right)\) where \(a_{j}\) is a row vector representing either a constraint in \(A_{1}\) or \(A_{2}\) or a bound constraint on \(x\). In the latter case, the \(a_{j}=e_{i}\) for the bound constraint \(x_{i} \leq\left(x_{u}\right)_{i}\) and \(a_{j}=-e_{i}\) for the constraint \(-x_{i} \leq\left(-x_{l}\right)_{i}\). Here, \(e_{i}\) is a vector with a 1 as the \(i\)-th component, and zeroes elsewhere. \(\lambda^{k}\) are the Lagrange multipliers, and \(B^{k}\) is a positive definite approximation to the second derivative \(\nabla^{2} f\left(x^{k}\right)\).

After the search direction \(d^{k}\) is obtained, a line search is performed to locate a better point. The new point \(x^{k+1}=x^{k}+\alpha^{k} d^{k}\) has to satisfy the conditions
\[
f\left(x^{k}+\alpha^{k} d^{k}\right) \leq f\left(x^{k}\right)+0.1 \alpha^{k}\left(d^{k}\right)^{T} \nabla f\left(x^{k}\right)
\]
and
\[
\left(d^{k}\right)^{T} \nabla f\left(x^{k}+\alpha^{k} d^{k}\right) \geq 0.7\left(d^{k}\right)^{T} \nabla f\left(x^{k}\right)
\]

The main idea in forming the set \(J_{k}\) is that, if any of the inequality constraints restricts the steplength \(\alpha^{k}\), then its index is not in \(J_{k}\). Therefore, small steps are likely to be avoided.

Finally, the second derivative approximation, \(B^{k}\), is updated by the BFGS formula, if the condition
\[
\left(d^{k}\right)^{T} \nabla f\left(x^{k}+\alpha^{k} d^{k}\right)-\nabla f\left(x^{k}\right)>0
\]
holds. Let \(x^{k} \leftarrow x^{k+1}\), and start another iteration.

The iteration repeats until the stopping criterion
\[
\left\|\nabla f\left(x^{k}\right)-A^{k} \lambda^{k}\right\|_{2} \leq \tau
\]
is satisfied; here, \(\tau\) is a user-supplied tolerance. For more details, see Powell \((1988,1989)\).
Since a finite-difference method is used to estimate the gradient for some single precision calculations, an inaccurate estimate of the gradient may cause the algorithm to terminate at a noncritical point. In such cases, high precision arithmetic is recommended. Also, whenever the exact gradient can be easily provided, routine LCONG (page 1316) should be used instead.

\section*{LCONG}

Minimizes a general objective function subject to linear equality/inequality constraints.

\section*{Required Arguments}
\(\boldsymbol{F C N}\) - User-supplied SUBROUTINE to evaluate the function to be minimized. The usage is CALL FCN (N, X, F), where

N - Value of NVAR. (Input)
\(\mathrm{X}-\) Vector of length N at which point the function is evaluated. (Input) \(x\) should not be changed by FCN.

F - The computed function value at the point X . (Output)
FCN must be declared EXTERNAL in the calling program.
\(\boldsymbol{G R} \boldsymbol{A D}\) - User-supplied SUBROUTINE to compute the gradient at the point X . The usage is CALL GRAD ( \(\mathrm{N}, \mathrm{X}, \mathrm{G}\) ), where

N - Value of NVAR. (Input)
\(X-\) Vector of length \(N\) at which point the function is evaluated. (Input) \(X\) should not be changed by GRAD.

G - Vector of length N containing the values of the gradient of the objective function evaluated at the point X . (Output)

GRAD must be declared EXTERNAL in the calling program.
\(\boldsymbol{N E Q}\) - The number of linear equality constraints. (Input)
\(\boldsymbol{A}\) - NCON by NVAR matrix. (Input)
The matrix contains the equality constraint gradients in the first NEQ rows, followed by the inequality constraint gradients.
\(\boldsymbol{B}\) - Vector of length NCON containing right-hand sides of the linear constraints. (Input)
Specifically, the constraints on the variables X(I), \(I=1, \ldots\), NVAR are \(A(K, 1) * X(1)+\)
\(\ldots+A(K, N V A R)\) * \(X(N V A R) \cdot E Q \cdot B(K), K=1, \ldots, N E Q . A(K, 1) * X(1)+\ldots+A(K, N V A R)\)
* X(NVAR).LE. \(B(K), K=N E Q+1, \ldots, N C O N\). Note that the data that define the equality constraints come before the data of the inequalities.
\(\boldsymbol{X L B}\) - Vector of length NVAR containing the lower bounds on the variables; choose a very large negative value if a component should be unbounded below or set \(\mathrm{XLB}(\mathrm{I})=\) \(\operatorname{XUB}(\mathrm{I})\) to freeze the I-th variable. (Input)
Specifically, these simple bounds are XLB(I). LE. X(I), I = \(1, \ldots\), NVAR.
\(\boldsymbol{X U B}\) - Vector of length NVAR containing the upper bounds on the variables; choose a very large positive value if a component should be unbounded above. (Input) Specifically, these simple bounds are X(I).LE. XUB(I), I = 1, \(\ldots\), NVAR.
\(\boldsymbol{S O L}-\) Vector of length NVAR containing solution. (Output)

\section*{Optional Arguments}
\(\boldsymbol{N V A R}\) - The number of variables. (Input)
Default: NVAR \(=\operatorname{size}(A, 2)\).
NCON - The number of linear constraints (excluding simple bounds). (Input)
Default: \(\mathrm{NCON}=\operatorname{size}(\mathrm{A}, 1)\).
\(\boldsymbol{L D A}\) - Leading dimension of A exactly as specified in the dimension statement of the calling program. (Input)
Default: LDA \(=\operatorname{size}(\mathrm{A}, 1)\).
\(\boldsymbol{X G} \boldsymbol{U} \boldsymbol{E S S}\) - Vector of length NVAR containing the initial guess of the minimum. (Input)
Default: \(\mathrm{XGUESS}=0.0\).
\(A C C\) - The nonnegative tolerance on the first order conditions at the calculated solution. (Input)
Default: \(\mathrm{ACC}=1 . \mathrm{e}-4\) for single precision and 1.d-8 for double precision.
MAXFCN - On input, maximum number of function evaluations allowed.(Input/ Output) On output, actual number of function evaluations needed. Default: \(\operatorname{MAXFCN}=400\).
\(\boldsymbol{O B J}\) - Value of the objective function. (Output)
\(\boldsymbol{N A C T}\) - Final number of active constraints. (Output)
\(\boldsymbol{I A C T}\) - Vector containing the indices of the final active constraints in the first NACT positions. (Output) Its length must be at least \(\mathrm{NCON}+2\) * NVAR.
\(\boldsymbol{A L A M D A}\) - Vector of length NVAR containing the Lagrange multiplier estimates of the final active constraints in the first NACT positions. (Output)

\section*{FORTRAN 90 Interface}

Generic: CALL LCONG (FCN, GRAD, NEQ, A, B, XLB, XUB, SOL [,...])

Specific: The specific interface names are S_LCONG and D_LCONG.

\section*{FORTRAN 77 Interface}

Single: CALL LCONG (FCN, GRAD, NVAR, NCON, NEQ, A, LDA, B, XLB, XUB, XGUESS, ACC, MAXFCN, SOL, OBJ, NACT, IACT, ALAMDA)

Double: The double precision name is DLCONG.

\section*{Example}

The problem from Schittkowski (1987)
\[
\begin{gathered}
\min f(x)=-x_{1} x_{2} x_{3} \\
\text { subject to } \\
-x_{1}-2 x_{2}-2 x_{3} \leq 0 \\
x_{1}+2 x_{2}+2 x_{3} \leq 72 \\
0 \leq x_{1} \leq 20 \\
0 \leq x_{2} \leq 11
\end{gathered}
\]
\[
0 \leq x_{3} \leq 42
\]
is solved with an initial guess \(x_{1}=10, x_{2}=10\) and \(x_{3}=10\).
```

USE LCONG_INT
USE UMACH__INT

```
\(!\)
INTEGER NCON, NEQ, NVAR
PARAMETER ( \(\mathrm{NCON}=2, \mathrm{NEQ}=0, \mathrm{NVAR}=3)\)
INTEGER MAXFCN, NOUT
REAL A (NCON,NVAR), ACC, B (NCON), OBJ, \&
    SOL (NVAR), XGUESS (NVAR), XLB (NVAR), XUB (NVAR)
EXTERNAL FCN, GRAD
                                    Set values for the following problem.
                                    Min \(-X(1) * X(2) * X(3)\)
                                    \(-X(1)-2 * X(2)-2 * X(3) \quad . L E . \quad 0\)
                                    \(X(1)+2 * X(2)+2 * X(3)\).LE. 72
                                    0 .LE. X(1) .LE. 20
                                    0 .LE. \(X(2)\).LE. 11
                                    0 .LE. \(X(3)\).LE. 42
DATA A/-1.0, 1.0, -2.0, 2.0, -2.0, 2.0/, B/0.0, 72.0/
DATA XLB/3*0.0/, XUB/20.0, 11.0, 42.0/, XGUESS/3*10.0/
DATA ACC/0.0/, MAXFCN/400/
    CALL UMACH (2, NOUT)
    CALL LCONG (FCN, GRAD, NEQ, A, B, XLB, XUB, SOL, XGUESS=XGUESS, \&
        \(A C C=A C C, \quad\) MAXFCN=MAXFCN, OBJ=OBJ)
    WRITE (NOUT, 99998) 'Solution:'
    WRITE (NOUT, 99999) SOL
    WRITE (NOUT, 99998) 'Function value at solution:'
    WRITE (NOUT, 99999) OBJ
    WRITE (NOUT, 99998) 'Number of function evaluations:', MAXFCN
    STOP
99998 FORMAT (//, ' ', A, I4)
99999 FORMAT (1X, 5F16.6)
    END
!
    SUBROUTINE FCN (N, X, F)
    INTEGER N
    REAL \(X(*), F\)
    \(\mathrm{F}=-\mathrm{X}(1) * \mathrm{X}(2) * \mathrm{X}(3)\)
    RETURN
    END
\(!\)
SUBROUTINE GRAD (N, X, G)
INTEGER N
REAL \(X(*), G(*)\)
```

!
G(1) = -X(2)*X(3)
G(2) = -X(1)*X(3)
G(3) = -X(1)*X(2)
RETURN
END

```
Output
Solution:
20.00000011 .00000015 .000000
Function value at solution:
-3300.000000
Number of function evaluations: 5

\section*{Comments}
1. Workspace may be explicitly provided, if desired, by use of L2ONG/DL2ONG. The reference is:
```

CALL L2ONG (FCN, GRAD, NVAR, NCON, NEQ, A, LDA, B, XLB, XUB,
XGUESS, ACC, MAXFCN, SOL, OBJ, NACT, IACT, ALAMDA, IPRINT,
INFO, WK)

```

The additional arguments are as follows:
IPRINT — Print option (see Comment 3). (Input)
INFO - Informational flag (see Comment 3). (Output)
\(\boldsymbol{W} \boldsymbol{K}\) - Real work vector of length NVAR**2 + 11 * NVAR + NCON.
2. Informational errors
\begin{tabular}{ccl} 
Type & Code \\
4 & 4 & The equality constraints are inconsistent. \\
4 & 5 & \begin{tabular}{l} 
The equality constraints and the bounds on the variables are found to \\
be inconsistent.
\end{tabular} \\
4 & 6 & \begin{tabular}{l} 
No vector X satisfies all of the constraints. In particular, the current \\
active constraints prevent any change in X that reduces the sum of \\
constraint violations.
\end{tabular} \\
4 & 7 & \begin{tabular}{l} 
Maximum number of function evaluations exceeded.
\end{tabular} \\
4 & 9 & The variables are determined by the equality constraints.
\end{tabular}
3. The following are descriptions of the arguments IPRINT and INFO:

IPRINT - This argument must be set by the user to specify the frequency of printing during the execution of the routine LCONG. There is no printed output if IPRINT \(=0\). Otherwise, after ensuring feasibility, information is given every IABS (IPRINT) iterations and whenever a parameter called TOL is reduced. The printing provides the values of \(X(),. F(\).\() and G()=.\operatorname{GRAD}(F)\) if IPRINT is
positive. If IPRINT is negative, this information is augmented by the current values of \(\operatorname{IACT}(\mathrm{K}) \mathrm{K}=1, \ldots\),
\(\operatorname{NACT}, \operatorname{PAR}(K) K=1, \ldots, \operatorname{NACT}\) and \(\operatorname{RESKT}(I) I=1, \ldots, N\). The reason for returning to the calling program is also displayed when IPRINT is nonzero.
\begin{tabular}{|c|c|}
\hline INFO - & On exit from L2ONG, INFO will have one of the following integer values to indicate the reason for leaving the routine: \\
\hline \(\mathrm{INFO}=1\) & SOL is feasible and the condition that depends on ACC is satisfied. \\
\hline \(\mathrm{INFO}=2\) & SOL is feasible and rounding errors are preventing further progress. \\
\hline \(\mathrm{INFO}=3\) & SOL is feasible but the objective function fails to decrease although a decrease is predicted by the current gradient vector. \\
\hline INFO \(=4\) & In this case, the calculation cannot begin because LDA is less than NCON or because the lower bound on a variable is greater than the upper bound. \\
\hline \(I N F O=5\) & This value indicates that the equality constraints are inconsistent. These constraints include any components of \(x(\).\() that are frozen\) by setting \(X L(I)=X U(I)\). \\
\hline \(\mathrm{INFO}=6\) & In this case, there is an error return because the equality constraints and the bounds on the variables are found to be inconsistent. \\
\hline \(\mathrm{INFO}=7\) & This value indicates that there is no vector of variables that satisfies all of the constraints. Specifically, when this return or an INFO \(=6\) return occurs, the current active constraints (whose indices are \(\operatorname{IACT}(\mathrm{K}), \mathrm{K}=1, \ldots, \mathrm{NACT}\) ) prevent any change in \(\mathrm{X}(\). that reduces the sum of constraint violations, where only bounds are included in this sum if \(\operatorname{INFO}=6\). \\
\hline INFO \(=8\) & Maximum number of function evaluations exceeded. \\
\hline INFO \(=9\) & The variables are determined by the equality constraints. \\
\hline
\end{tabular}

\section*{Description}

The routine LCONG is based on M.J.D. Powell's TOLMIN, which solves linearly constrained optimization problems, i.e., problems of the form
\[
\begin{gathered}
\min _{x \in \mathbf{R}^{n}} f(x) \\
\text { subject to } \quad A_{1} x=b_{1} \\
\\
A_{2} x \leq b_{2}
\end{gathered}
\]
\[
x_{l} \leq x \leq x_{u}
\]
given the vectors \(b_{1}, b_{2}, x_{l}\) and \(x_{u}\) and the matrices \(A_{1}\), and \(A_{2}\).
The algorithm starts by checking the equality constraints for inconsistency and redundancy. If the equality constraints are consistent, the method will revise \(x^{0}\), the initial guess provided by the user, to satisfy
\[
A_{1} x=b_{1}
\]

Next, \(x^{0}\) is adjusted to satisfy the simple bounds and inequality constraints. This is done by solving a sequence of quadratic programming subproblems to minimize the sum of the constraint or bound violations.

Now, for each iteration with a feasible \(x_{k}\), let \(J_{k}\) be the set of indices of inequality constraints that have small residuals. Here, the simple bounds are treated as inequality constraints. Let \(I_{k}\) be the set of indices of active constraints. The following quadratic programming problem
\[
\begin{array}{r}
\min f\left(x^{k}\right)+d^{T} \nabla f\left(x^{k}\right)+\frac{1}{2} d^{T} B^{k} d \\
\text { subject to } \quad \begin{aligned}
& a_{j} d=0 \quad j \in I_{k} \\
& a_{j} d \leq 0 \quad j \in J_{k}
\end{aligned}
\end{array}
\]
is solved to get \(\left(d^{k}, \lambda^{k}\right)\) where \(a_{j}\) is a row vector representing either a constraint in \(A_{1}\) or \(A_{2}\) or a bound constraint on \(x\). In the latter case, the \(a_{j}=e_{i}\) for the bound constraint \(x_{i} \leq\left(x_{u}\right)_{i}\) and \(a_{j}=-e_{i}\) for the constraint \(-x_{i} \leq\left(-x_{l}\right)_{i}\). Here, \(e_{i}\) is a vector with a 1 as the \(i\)-th component, and zeroes elsewhere. \(\lambda^{k}\) are the Lagrange multipliers, and \(B^{k}\) is a positive definite approximation to the second derivative \(\nabla^{2} f\left(x^{k}\right)\).

After the search direction \(d^{k}\) is obtained, a line search is performed to locate a better point. The new point \(x^{k+1}=x^{k}+\alpha^{k} d^{k}\) has to satisfy the conditions
\[
f\left(x^{k}+\alpha^{k} d^{k}\right) \leq f\left(x^{k}\right)+0.1 \alpha^{k}\left(d^{k}\right)^{T} \nabla f\left(x^{k}\right)
\]
and
\[
\left(d^{k}\right)^{T} \nabla f\left(x^{k}+\alpha^{k} d^{k}\right) \geq 0.7\left(d^{k}\right)^{T} \nabla f\left(x^{k}\right)
\]

The main idea in forming the set \(J_{k}\) is that, if any of the inequality constraints restricts the steplength \(\alpha^{k}\), then its index is not in \(J_{k}\). Therefore, small steps are likely to be avoided.

Finally, the second derivative approximation, \(B^{k}\), is updated by the BFGS formula, if the condition
\[
\left(d^{k}\right)^{T} \nabla f\left(x^{k}+\alpha^{k} d^{k}\right)-\nabla f\left(x^{k}\right)>0
\]
holds. Let \(x^{k} \leftarrow x^{k+1}\), and start another iteration.

The iteration repeats until the stopping criterion
\[
\left\|\nabla f\left(x^{k}\right)-A^{k} \lambda^{k}\right\|_{2} \leq \tau
\]
is satisfied; here, \(\tau\) is a user-supplied tolerance. For more details, see Powell (1988, 1989).

\section*{NNLPF}

Solves a general nonlinear programming problem using a sequential equality constrained quadratic programming method.

\section*{Required Arguments}

FCN - User-supplied SUBROUTINE to evaluate the objective function and constraints at a given point. The internal usage is CALL FCN ( X , IACT, RESULT, IERR), where
\(\boldsymbol{X}\) - The point at which the objective function or constraint is evaluated. (Input)
\(\boldsymbol{I A C T}\) - Integer indicating whether evaluation of the objective function is requested or evaluation of a constraint is requested. If IACT is zero, then an objective function evaluation is requested. If \(I A C T\) is nonzero then the value if IACT indicates the index of the constraint to evaluate. (Input)
\(\boldsymbol{R E S U L T}\) - If IACT is zero, then RESULT is the computed function value at the point X. If IACT is nonzero, then RESULT is the computed constraint value at the point X . (Output)
\(\boldsymbol{I E R R}\) - Logical variable. On input IERR is set to .FALSE. If an error or other undesirable condition occurs during evaluation, then IERR should be set to .TRUE. Setting IERR to .TRUE. will result in the step size being reduced and the step being tried again. (If IERR is set to .TRUE. for XGUESS, then an error is issued.)

The routine FCN must be use-associated in a user module that uses NNLPF_INT, or else declared EXTERNAL in the calling program. If FCN is a separately compiled routine, not in a module, then it must be declared EXTERNAL.
\(\boldsymbol{M}\) - Total number of constraints. (Input)
\(\boldsymbol{M E}\) - Number of equality constraints. (Input)
IBTYPE - Scalar indicating the types of bounds on variables. (Input)

\section*{IBTYPE Action}
\(0 \quad\) User will supply all the bounds.

All variables are nonnegative.
All variables are nonpositive.
3
User supplies only the bounds on 1st variable; all other variables will have the same bounds.
\(\boldsymbol{X L B}\) - Vector of length N containing the lower bounds on variables. (Input, if IBTYPE \(=0\); output, if IBTYPE \(=1\) or 2 ; input/output, if IBTYPE \(=3\) )
If there is no lower bound for a variable, then the corresponding XLB value should be set to -Huge(X(1)).
\(\boldsymbol{X U B}\) - Vector of length N containing the upper bounds on variables. (Input, if \(\operatorname{IBTYPE}=0\); output, if \(I B T Y P E=1\) or 2 ; input/output, if \(I B T Y P E=3\) ).
If there is no upper bound for a variable, then the corresponding XUB value should be set to Huge(X(1)).
\(\boldsymbol{X}\) - Vector of length N containing the computed solution. (Output)

\section*{Optional Arguments}
\(\boldsymbol{N}\) - Number of variables. (Input)
Default: \(\mathrm{N}=\operatorname{size}(\mathrm{X})\).
\(\boldsymbol{X G} \boldsymbol{U} \boldsymbol{E S S}\) - Vector of length N containing an initial guess of the solution. (Input)
Default: XGUESS \(=\mathrm{X}\), (with the smallest value of \(\|X\|_{2}\) ) that satisfies the bounds.
\(\boldsymbol{X S C A L E}\) - Vector of length N setting the internal scaling of the variables. The initial value given and the objective function and gradient evaluations however are always in the original unscaled variables. The first internal variable is obtained by dividing values X (I) by XSCALE (I). (Input)
In the absence of other information, set all entries to 1.0.
Default: \(\operatorname{XSCALE}(:)=1.0\).
IPRINT - Parameter indicating the desired output level. (Input)
IPRINT Action
\(0 \quad\) No output printed.
1 One line of intermediate results is printed in each iteration.
2 Lines of intermediate results summarizing the most important data for each step are printed.

Lines of detailed intermediate results showing all primal and dual variables, the relevant values from the working set, progress in the backtracking and etc are printed

4 Lines of detailed intermediate results showing all primal and dual variables, the relevant values from the working set, progress in the backtracking, the gradients in the working set, the quasi-Newton updated and etc are printed.

Default: \(\operatorname{IPRINT}=0\).
MAXITN - Maximum number of iterations allowed. (Input)
Default: MAXITN \(=200\).

EPSDIF - Relative precision in gradients. (Input)
Default: EPSDIF = epsilon(x(1))
\(\boldsymbol{T A U O}\) - A universal bound describing how much the unscaled penalty-term may deviate from zero. (Input)
NNLPF assumes that within the region described by
\[
\sum_{i=1}^{M_{e}}\left|g_{i}(x)\right|-\sum_{i=M_{e}+1}^{M} \min \left(0, g_{i}(x)\right) \leq \text { TAU } 0
\]
all functions may be evaluated safely. The initial guess, however, may violate these requirements. In that case an initial feasibility improvement phase is run by NNLPF until such a point is found. A small TAU0 diminishes the efficiency of NNLPF, because the iterates then will follow the boundary of the feasible set closely. Conversely, a large TAU0 may degrade the reliability of the code.
Default TAU0 \(=1 . \mathrm{E} 0\)
DELO - In the initial phase of minimization a constraint is considered binding if
\[
\frac{g_{i}(x)}{\max \left(1,\left\|\nabla g_{i}(x)\right\|\right)} \leq \mathrm{DELO} \quad i=M_{e}+1, \ldots, M
\]

Good values are between .01 and 1.0. If DEL0 is chosen too small then identification of the correct set of binding constraints may be delayed. Contrary, if DEL0 is too large, then the method will often escape to the full regularized SQP method, using individual slack variables for any active constraint, which is quite costly. For well-scaled problems DEL \(0=1.0\) is reasonable. (Input)
Default: DELO \(=.5 *^{*}\) TAU 0
EPSFCN - Relative precision of the function evaluation routine. (Input)
Default: EPSFCN = epsilon(x(1))
IDTYPE - Type of numerical differentiation to be used. (Input)
Default: \(\operatorname{IDTYPE}=1\)

\section*{IDTYPE Action}

1 Use a forward difference quotient with discretization stepsize 0.1 (EPSFCN \({ }^{1 / 2}\) ) componentwise relative.

Use the symmetric difference quotient with discretization stepsize \(0.1\left(\right.\) EPSFCN \(\left.^{1 / 3}\right)\) componentwise relative

3 Use the sixth order approximation computing a Richardson extrapolation of three symmetric difference quotient values. This uses a discretization stepsize 0.01 (EPSFCN \({ }^{1 / 7}\) )

TAUBND - Amount by which bounds may be violated during numerical differentiation. Bounds are violated by TAUBND (at most) only if a variable is on a bound and finite differences are taken for gradient evaluations. (Input)
Default: \(\mathrm{TAUBND}=1 . \mathrm{E} 0\)
\(\boldsymbol{S M A L L W}\) - Scalar containing the error allowed in the multipliers. For example, a negative multiplier of an inequality constraint is accepted (as zero) if its absolute value is less than SMALLW. (Input)
Default: SMALLW \(=\exp (2 * \log (\operatorname{epsilon}(x(1) / 3)))\)
DELMIN - Scalar which defines allowable constraint violations of the final accepted result.
Constraints are satisfied if \(\left|\mathrm{g}_{\mathrm{i}}(\mathrm{x})\right| \leq\) DELMIN , and \(\mathrm{g}_{\mathrm{j}}(\mathrm{x}) \geq(-\) DELMIN \()\) respectively.
(Input)
Default: DELMIN \(=\min (\) DEL0/10, \(\max (E P S D I F, \min (D E L 0 / 10\), \(\max (1 . E-6 * D E L 0\), SMALLW))

SCFMAX - Scalar containing the bound for the internal automatic scaling of the objective function. (Intput)
Default: \(\mathrm{SCFMAX}=1.0 \mathrm{E} 4\)
\(\boldsymbol{F V A L U E}\) - Scalar containing the value of the objective function at the computed solution. (Output)

\section*{FORTRAN 90 Interface}

Generic: CALL NNLPF (FCN, M, ME, IBTYPE, XLB, XUB, X [,...])
Specific: The specific interface names are S_NNLPF and D_NNLPF .

\section*{Example}

The problem
\[
\begin{gathered}
\min F(x)=\left(x_{1}-2\right)^{2}+\left(x_{2}-1\right)^{2} \\
\text { subject to } \quad g_{1}(x)=x_{1}-2 x_{2}+1=0 \\
g_{2}(x)=-x_{1}^{2} / 4-x_{2}^{2}+1 \geq 0
\end{gathered}
\]
is solved.
```

USE NNLPF_INT
USE WRRRN_INT
INTEGER IBTYPE, M, ME
PARAMETER (IBTYPE=0, M=2, ME=1)
REAL(KIND(1E0)) FVALUE, X(2), XGUESS(2), XLB(2), XUB(2)
EXTERNAL FCN, GRAD
XLB = -HUGE(X(1))
XUB = HUGE(X(1))
CALL NNLPF (FCN, M, ME, IBTYPE, XLB, XUB, X)
CALL WRRRN ('The solution is', X)
END
SUBROUTINE FCN (X, IACT, RESULT, IERR)
INTEGER IACT
REAL(KIND(1E0)) X(*), RESULT
LOGICAL IERR
SELECT CASE (IACT)
CASE (0)
RESULT = (X(1)-2.0E0)**2 + (X(2)-1.0E0)**2
CASE (1)
RESULT = X(1) - 2.0E0*X(2) + 1.0E0
CASE (2)
RESULT = -(X(1)**2)/4.0E0 - X(2)**2 + 1.0E0
END SELECT
RETURN
END

```
!

\section*{Output}
```

The solution is
10.8229
2 0.9114

```

\section*{Comments}
1. Informational errors
\begin{tabular}{ccl} 
Type & Code & \\
4 & 1 & Constraint evaluation returns an error with current point. \\
4 & 2 & Objective evaluation returns an error with current point. \\
4 & 3 & Working set is singular in dual extended QP. \\
4 & 4 & QP problem is seemingly infeasible. \\
4 & 5 & A stationary point located.
\end{tabular}

46 A stationary point located or termination criteria too strong.
\(4 \quad 7 \quad\) Maximum number of iterations exceeded.
\(4 \quad 8 \quad\) Stationary point not feasible.
\(4 \quad 9 \quad\) Very slow primal progress.
410 The problem is singular.
411 Matrix of gradients of binding constraints is singular or very illconditioned.
4
12 Small changes in the penalty function.

\section*{Description}

The routine NNLPF provides an interface to a licensed version of subroutine DONLP2, a FORTRAN code developed by Peter Spellucci (1998). It uses a sequential equality constrained quadratic programming method with an active set technique, and an alternative usage of a fully regularized mixed constrained subproblem in case of nonregular constraints (i.e. linear dependent gradients in the "working sets"). It uses a slightly modified version of the PantojaMayne update for the Hessian of the Lagrangian, variable dual scaling and an improved Armjijo-type stepsize algorithm. Bounds on the variables are treated in a gradient-projection like fashion. Details may be found in the following two papers:
P. Spellucci: An SQP method for general nonlinear programs using only equality constrained subproblems. Math. Prog. 82, (1998), 413-448.
P. Spellucci: A new technique for inconsistent problems in the SQP method. Math. Meth. of Oper. Res. 47, (1998), 355-500. (published by Physica Verlag, Heidelberg, Germany).
The problem is stated as follows:
\[
\min _{x \in \mathbb{R}^{\prime \prime}} f(x)
\]
subject to
\[
\begin{array}{ll}
g_{j}(x)=0, \text { for } & j=1, \ldots, m_{e} \\
g_{j}(x) \geq 0, \text { for } & j=m_{e}+1, \ldots, m \\
x_{l} \leq x \leq x_{u} &
\end{array}
\]

Although default values are provided for optional input arguments, it may be necessary to adjust these values for some problems. Through the use of optional arguments, NNLPF allows for several parameters of the algorithm to be adjusted to account for specific characteristics of problems. The DONLP2 Users Guide provides detailed descriptions of these parameters as well as strategies for maximizing the perfomance of the algorithm. The DONLP2 Users Guide is available in the "help" subdirectory of the main IMSL product installation directory. In addition, the following are a number of guidelines to consider when using NNLPF.
- A good initial starting point is very problem specific and should be provided by the calling program whenever possible. See optional argument XGUESS .
- Gradient approximation methods can have an effect on the success of NNLPF. Selecting a higher order appoximation method may be necessary for some problems. See optional argument IDTYPE.
- If a two sided constraint \(l_{i} \leq g_{i}(x) \leq u_{i}\) is transformed into two constraints \(g_{2 i}(x) \geq 0\) and \(g_{2 i+1}(x) \geq 0\), then choose DEL0 \(<\frac{1}{2}\left(u_{i}-l_{i}\right) / \max \left\{1,\left\|\nabla g_{i}(x)\right\|\right\}\), or at least try to provide an estimate for that value. This will increase the efficiency of the algorithm. See optional argument DELO.
- The parameter IERR provided in the interface to the user supplied function FCN can be very useful in cases when evaluation is requested at a point that is not possible or reasonable. For example, if evaluation at the requested point would result in a floating point exception, then setting IERR to .TRUE. and returning without performing the evaluation will avoid the exception. NNLPF will then reduce the stepsize and try the step again. Note, if IERR is set to . TRUE. for the initial guess, then an error is issued.

\section*{NNLPG}

Solves a general nonlinear programming problem using a sequential equality constrained quadratic programming method with user supplied gradients.

\section*{Required Arguments}
\(\boldsymbol{F C N}\) - User-supplied SUBROUTINE to evaluate the objective function and constraints at a given point. The internal usage is CALL FCN ( X , IACT, RESULT, IERR), where
\(\boldsymbol{X}\) - The point at which the objective function or constraint is evaluated. (Input)
\(\boldsymbol{I A C T}\) - Integer indicating whether evaluation of the objective function is requested or evaluation of a constraint is requested. If IACT is zero, then an objective function evaluation is requested. If IACT is nonzero then the value if IACT indicates the index of the constraint to evaluate. (Input)
\(\boldsymbol{R E S U L T}\) - If IACT is zero, then RESULT is the computed objective function value at the point X . If IACT is nonzero, then RESULT is the computed constraint value at the point X . (Output)
\(\boldsymbol{I E R R}\) - Logical variable. On input IERR is set to .FALSE. If an error or other undesirable condition occurs during evaluation, then IERR should be set to .TRUE. Setting IERR to . TRUE. will result in the step size being reduced and the step being tried again. (If IERR is set to .TRUE. for XGUESS, then an error is issued.)

The routine FCN must be use-associated in a user module that uses NNLPG_INT, or else declared EXTERNAL in the calling program. If FCN is a separately compiled routine, not in a module, then it must be declared EXTERNAL
\(\boldsymbol{G R} \boldsymbol{A D}\) - User-supplied SUBROUTINE to evaluate the gradients at a given point. The usage is CALL GRAD (X, IACT, RESULT), where
\(\boldsymbol{X}\) - The point at which the gradient of the objective function or gradient of a constraint is evaluated. (Input)
\(\boldsymbol{I A C T}\) - Integer indicating whether evaluation of the function gradient is requested or evaluation of a constraint gradient is requested. If IACT is zero, then an objective function gradient evaluation is requested. If IACT is nonzero then the value if IACT indicates the index of the constraint gradient to evaluate. (Input) \(\boldsymbol{R E S U L T}\) - If IACT is zero, then RESULT is the computed gradient of the objective function at the point X . If IACT is nonzero, then RESULT is the computed gradient of the requested constraint value at the point X . (Output)

The routine GRAD must be use-associated in a user module that uses NNLPG_INT, or else declared EXTERNAL in the calling program. If GRAD is a separately compiled routine, not in a module, then is must be declared EXTERNAL
\(\boldsymbol{M}\) — Total number of constraints. (Input)
\(M E\) - Number of equality constraints. (Input)
IBTYPE - Scalar indicating the types of bounds on variables. (Input)

\section*{IBTYPE Action}
\(0 \quad\) User will supply all the bounds.
1 All variables are nonnegative.
2 All variables are nonpositive.
3 User supplies only the bounds on 1st variable, all other variables will have the same bounds.
\(\boldsymbol{X} \boldsymbol{L} \boldsymbol{B}\) - Vector of length N containing the lower bounds on the variables. (Input, if IBTYPE \(=0\); output, if IBTYPE \(=1\) or 2 ; input/output, if \(I B T Y P E=3\) ) If there is no lower bound on a variable, then the corresponding XLB value should be set to -huge(x(1)).
\(\boldsymbol{X U B}\) - Vector of length N containing the upper bounds on the variables. (Input, if IBTYPE \(=0\); output, if IBTYPE \(=1\) or 2 ; input/output, if IBTYPE \(=3\) ) If there is no upper bound on a variable, then the corresponding XUB value should be set to huge( \(\mathrm{x}(1)\) ).
\(\boldsymbol{X}-\) Vector of length N containing the computed solution. (Output)

\section*{Optional Arguments}
\(N\) - Number of variables. (Input)
Default: \(\mathrm{N}=\operatorname{size}(\mathrm{X})\).

IPRINT - Parameter indicating the desired output level. (Input)

\section*{IPRINT Action}
\(0 \quad\) No output printed.
1 One line of intermediate results is printed in each iteration.
2 Lines of intermediate results summarizing the most important data for each step are printed.

3
Lines of detailed intermediate results showing all primal and dual variables, the relevant values from the working set, progress in the backtracking and etc are printed

4 Lines of detailed intermediate results showing all primal and dual variables, the relevant values from the working set, progress in the backtracking, the gradients in the working set, the quasi-Newton updated and etc are printed.

Default: \(\operatorname{IPRINT}=0\).

MAXITN - Maximum number of iterations allowed. (Input)
Default: MAXITN \(=200\).
\(\boldsymbol{X G U E S S}\) - Vector of length N containing an initial guess of the solution. (Input)
Default: XGUESS \(=\mathrm{X}\), (with the smallest value of \(\|X\|_{2}\) ) that satisfies the bounds.
\(\boldsymbol{T A U O}\) - A universal bound describing how much the unscaled penalty-term may deviate from zero. (Input)
NNLPG assumes that within the region described by
\[
\sum_{i=1}^{M_{e}}\left|g_{i}(x)\right|-\sum_{i=M_{e}+1}^{M} \min \left(0, g_{i}(x)\right) \leq \text { TAU } 0
\]
all functions may be evaluated safely. The initial guess however, may violate these requirements. In that case an initial feasibility improvement phase is run by NNLPG until such a point is found. A small TAU0 diminishes the efficiency of NNLPG, because the iterates then will follow the boundary of the feasible set closely. Conversely, a large TAUO may degrade the reliability of the code.
Default: TAUO = 1.E0

DELO - In the initial phase of minimization a constraint is considered binding if
\[
\frac{g_{i}(x)}{\max \left(1,\left\|\nabla g_{i}(x)\right\|\right)} \leq \mathrm{DEL} 0 \quad i=M_{e}+1, \ldots, M
\]

Good values are between .01 and 1.0. If DEL0 is chosen too small then identification of the correct set of binding constraints may be delayed. Contrary, if DEL0 is too large, then the method will often escape to the full regularized SQP method, using individual slack variables for any active constraint, which is quite costly. For well-scaled problems DEL \(0=1.0\) is reasonable. (Input)
Default: DELO \(=.5 *\) TAUO
\(\boldsymbol{S M A L L W}\) - Scalar containing the error allowed in the multipliers. For example, a negative multiplier of an inequality constraint is accepted (as zero) if its absolute value is less than SMALLW. (Input)
Default: SMALLW \(=\exp (2 * \log (\operatorname{epsilon}(x(1) / 3)))\)
DELMIN - Scalar which defines allowable constraint violations of the final accepted result. Constraints are satisfied if \(\left|\mathrm{g}_{\mathrm{i}}(\mathrm{x})\right| \leq\) DELMIN , and \(\mathrm{g}_{\mathrm{j}}(\mathrm{x}) \geq(-\) DELMIN \()\) respectively. (Input)
Default: DELMIN \(=\min (\) DEL0/10, \(\max (E P S D I F, \min (\) DEL0/10, \(\max (1 . E-6 *\) DELO, SMALLW) \()\)

SCFMAX - Scalar containing the bound for the internal automatic scaling of the objective function. (Intput)
Default: SCFMAX \(=1.0 \mathrm{E} 4\)
\(\boldsymbol{F V A L U E}\) - Scalar containing the value of the objective function at the computed solution. (Output)

\section*{FORTRAN 90 Interface}

Generic: CALL NNLPG (FCN, GRAD, M, ME, IBTYPE, XLB, XUB, X [,...])
Specific: The specific interface names are S_NNLPG and D_NNLPG.

\section*{Example 1}

The problem
\[
\begin{gathered}
\min F(x)=\left(x_{1}-2\right)^{2}+\left(x_{2}-1\right)^{2} \\
\text { subject to } \quad g_{1}(x)=x_{1}-2 x_{2}+1=0 \\
g_{2}(x)=-x_{1}^{2} / 4-x_{2}^{2}+1 \geq 0
\end{gathered}
\]
is solved.
```

USE NNLPG_INT
USE WRRRN_INT
INTEGER - IBTYPE, M, ME
PARAMETER (IBTYPE=0, M=2, ME=1)
REAL(KIND(1E0)) FVALUE, X(2), XGUESS (2), XLB(2), XUB(2)
EXTERNAL FCN, GRAD

```
!
\(!\)
```

XLB = -HUGE (X (1))
XUB = HUGE(X(1))
!
CALL NNLPG (FCN, GRAD, M, ME, IBTYPE, XLB, XUB, X)
!
CALL WRRRN ('The solution is', X)
END
SUBROUTINE FCN (X, IACT, RESULT, IERR)
INTEGER IACT
REAL(KIND(1E0)) X(*), RESULT
LOGICAL IERR
!
SELECT CASE (IACT)
CASE (0)
RESULT = (X(1)-2.0E0)**2 + (X(2)-1.OEO)**2
CASE (1)
RESULT = X(1) - 2.0E0*X(2) + 1.0E0
CASE (2)
RESULT = -(X(1)**2)/4.0E0 - X(2)**2 + 1.0E0
END SELECT
RETURN
END
SUBROUTINE GRAD (X, IACT, RESULT)
INTEGER IACT
REAL(KIND(1E0)) X(*),RESULT(*)
!
SELECT CASE (IACT)
CASE (0)
RESULT (1) = 2.0E0*(X(1)-2.0E0)
RESULT (2) = 2.0EO*(X(2)-1.0E0)
CASE (1)
RESULT (1) = 1.0E0
RESULT (2) = -2.0E0
CASE (2)
RESULT (1) = -0.5E0*X(1)
RESULT (2) = -2.0E0*X(2)
END SELECT
RETURN
END

```

\section*{Output}
```

The solution is
10.8229
20.9114

```

\section*{Comments}
1. Informational errors
\begin{tabular}{ccl} 
Type & Code & \\
4 & 1 & Constraint evaluation returns an error with current point. \\
4 & 2 & Objective evaluation returns an error with current point.
\end{tabular}

43 Working set is singular in dual extended QP.
\(4 \quad 4 \quad\) QP problem is seemingly infeasible.
5 A stationary point located.
46 A stationary point located or termination criteria too strong.
\(4 \quad 7 \quad\) Maximum number of iterations exceeded.
\(4 \quad 8 \quad\) Stationary point not feasible.
\(4 \quad 9 \quad\) Very slow primal progress.
410 The problem is singular.
411 Matrix of gradients of binding constraints is singular or very illconditioned.
4
12 Small changes in the penalty function.

\section*{Description}

The routine NNLPG provides an interface to a licensed version of subroutine DONLP2, a FORTRAN code developed by Peter Spellucci (1998). It uses a sequential equality constrained quadratic programming method with an active set technique, and an alternative usage of a fully regularized mixed constrained subproblem in case of nonregular constraints (i.e. linear dependent gradients in the "working sets"). It uses a slightly modified version of the PantojaMayne update for the Hessian of the Lagrangian, variable dual scaling and an improved Armjijo-type stepsize algorithm. Bounds on the variables are treated in a gradient-projection like fashion. Details may be found in the following two papers:
P. Spellucci: An SQP method for general nonlinear programs using only equality constrained subproblems. Math. Prog. 82, (1998), 413-448.
P. Spellucci: A new technique for inconsistent problems in the SQP method. Math. Meth. of Oper. Res. 47, (1998), 355-500. (published by Physica Verlag, Heidelberg, Germany).
The problem is stated as follows:
\[
\min _{x \in \mathbb{R}^{\prime}} f(x)
\]
subject to
\[
\begin{array}{ll}
g_{j}(x)=0, \text { for } & j=1, \ldots, m_{e} \\
g_{j}(x) \geq 0, \text { for } & j=m_{e}+1, \ldots, m \\
x_{l} \leq x \leq x_{u} &
\end{array}
\]

Although default values are provided for optional input arguments, it may be necessary to adjust these values for some problems. Through the use of optional arguments, NNLPG allows for several parameters of the algorithm to be adjusted to account for specific characteristics of problems. The DONLP2 Users Guide provides detailed descriptions of these parameters as well as strategies for maximizing the perfomance of the algorithm. The DONLP2 Users Guide is available in the "help" subdirectory of the main IMSL product installation directory. In addition, the following are a number of guidelines to consider when using NNLPG.
- A good initial starting point is very problem specific and should be provided by the calling program whenever possible. See optional argument XGUESS.
- If a two sided constraint \(l_{i} \leq g_{i}(x) \leq u_{i}\) is transformed into two constraints \(g_{2 i}(x) \geq 0\) and \(g_{2 i+1}(x) \geq 0\), then choose DEL0 \(<\frac{1}{2}\left(u_{i}-l_{i}\right) / \max \left\{1,\left\|\nabla g_{i}(x)\right\|\right\}\), or at least try to provide an estimate for that value. This will increase the efficiency of the algorithm. See optional argument DELO.
- The parameter IERR provided in the interface to the user supplied function FCN can be very useful in cases when evaluation is requested at a point that is not possible or reasonable. For example, if evaluation at the requested point would result in a floating point exception, then setting IERR to .TRUE. and returning without performing the evaluation will avoid the exception. NNLPG will then reduce the stepsize and try the step again. Note, if IERR is set to . TRUE. for the initial guess, then an error is issued.

\section*{Example 2}

The same problem from Example 1 is solved, but here we use central differences to compute the gradient of the first constraint. This example demonstrates how NNLPG can be used in cases when analytic gradients are known for only a portion of the constraints and/or objective function. The subroutine CDGRD is used to compute an approximation to the gradient of the first constraint.
```

USE NNLPG_INT
USE CDGRD - INT
USE WRRRN_INT
INTEGER IBTYPE, M, ME
PARAMETER (IBTYPE=0, M=2, ME=1)
REAL(KIND(1E0)) FVALUE, X(2), XGUESS (2), XLB(2), XUB(2)
EXTERNAL FCN, GRAD
XLB = - HUGE (X (1))
XUB = HUGE(X(1))
CALL NNLPG (FCN, GRAD, M, ME, IBTYPE, XLB, XUB, X)
CALL WRRRN ('The solution is', X)
END
SUBROUTINE FCN (X, IACT, RESULT, IERR)
INTEGER IACT
REAL(KIND(1E0)) X(2), RESULT
LOGICAL IERR
EXTERNAL CONSTR1
SELECT CASE (IACT)
CASE (0)
RESULT = (X(1)-2.0E0)**2 + (X(2)-1.0E0)**2
CASE (1)
CALL CONSTR1 (2, X, RESULT)
CASE (2)
RESULT = - (X(1)**2)/4.0E0 - X(2)**2 + 1.0E0
END SELECT
RETURN

```
\(!\)
\(!\)
\(!\)
\(!\)
\(!\)
```

END
SUBROUTINE GRAD (X, IACT, RESULT)
USE CDGRD INT
INTEGER IACT
REAL(KIND (1E0)) X(2) ,RESULT (2)
EXTERNAL CONSTR1
!
SELECT CASE (IACT)
CASE (0)
RESULT (1) = 2.0EO*(X(1)-2.0E0)
RESULT (2) = 2.0E0*(X(2)-1.0E0)
CASE (1)
CALL CDGRD(CONSTR1, X, RESULT)
CASE (2)
RESULT (1) = -0.5E0*X(1)
RESULT (2) = -2.0E0*X(2)
END SELECT
RETURN
END
SUBROUTINE CONSTR1 (N, X, RESULT)
INTEGER N
REAL(KIND(1E0)) X(*), RESULT
RESULT = X(1) - 2.0E0*X(2) + 1.0E0
RETURN
END

```

\section*{Output}

The solution is
10.8229
20.9114

\section*{CDGRD}

Approximates the gradient using central differences.

\section*{Required Arguments}
\(\boldsymbol{F C N}\) - User-supplied SUBROUTINE to evaluate the function to be minimized. The usage is CALL FCN ( \(\mathrm{N}, \mathrm{X}, \mathrm{F}\) ), where

N - Length of X . (Input)
X - The point at which the function is evaluated. (Input) \(x\) should not be changed by FCN.

F - The computed function value at the point X . (Output)

FCN must be declared EXTERNAL in the calling program.
\(X C\) - Vector of length N containing the point at which the gradient is to be estimated. (Input)
\(\boldsymbol{G C}\) - Vector of length N containing the estimated gradient at XC . (Output)

\section*{Optional Arguments}
\(N\) - Dimension of the problem. (Input)
Default: \(\mathrm{N}=\operatorname{size}(\mathrm{XC}, 1)\).
\(\boldsymbol{X S C A L E}\) - Vector of length N containing the diagonal scaling matrix for the variables.
(Input)
In the absence of other information, set all entries to 1.0 .
Default: XSCALE \(=1.0\).
EPSFCN - Estimate for the relative noise in the function. (Input)
EPSFCN must be less than or equal to 0.1 . In the absence of other information, set EPSFCN to 0.0.
Default: EPSFCN \(=0.0\).

\section*{FORTRAN 90 Interface}

Generic: CALL CDGRD (FCN, XC, GC [,...])
Specific: The specific interface names are S_CDGRD and D_CDGRD.

\section*{FORTRAN 77 Interface}

Single: CALL CDGRD (FCN, N, XC, XSCALE, EPSFCN, GC)
Double: The double precision name is DCDGRD.

\section*{Example}

In this example, the gradient of \(f(x)=x_{1}-x_{1} x_{2}-2\) is estimated by the finite-difference method at the point \((1.0,1.0)\).
```

USE CDGRD INT
USE UMACH_INT
INTEGER I, N, NOUT
PARAMETER (N=2)
REAL EPSFCN, GC (N), XC (N)
EXTERNAL FCN
DATA XC/2*1.0E0/
EPSFCN = 0.01
CALL CDGRD (FCN, XC, GC, EPSFCN=EPSFCN)

```
```

!
CALL UMACH (2, NOUT)
WRITE (NOUT,99999) (GC(I),I=1,N)
99999 FORMAT (' The gradient is', 2F8.2, /)
!
END
!
SUBROUTINE FCN (N, X, F)
INTEGER N
REAL X(N), F
!
F = X(1) - X(1)*X(2) - 2.0E0
!
RETURN
END

```

\section*{Output}

The gradient is \(0.00-1.00\)

\section*{Comments}

This is Description A5.6.4, Dennis and Schnabel, 1983, page 323.

\section*{Description}

The routine CDGRD uses the following finite-difference formula to estimate the gradient of a function of \(n\) variables at \(x\) :
\[
\frac{f\left(x+h_{i} e_{i}\right)-f\left(x-h_{i} e_{i}\right)}{2 h_{i}} \quad \text { for } i=1, \ldots, n
\]
where \(h_{i}=\varepsilon^{1 / 2} \max \left\{\left|x_{i}\right|, 1 / s_{i}\right\} \operatorname{sign}\left(x_{i}\right), \varepsilon\) is the machine epsilon, \(s_{i}\) is the scaling factor of the \(i\)-th variable, and \(e_{i}\) is the \(i\)-th unit vector. For more details, see Dennis and Schnabel (1983).

Since the finite-difference method has truncation error, cancellation error, and rounding error, users should be aware of possible poor performance. When possible, high precision arithmetic is recommended.

\section*{FDGRD}

Approximates the gradient using forward differences.

\section*{Required Arguments}
\(\boldsymbol{F C N}\) - User-supplied SUBROUTINE to evaluate the function to be minimized. The usage is CALL FCN (N, X, F), where

N - Length of X . (Input)
X - The point at which the function is evaluated. (Input)
X should not be changed by FCN.

F - The computed function value at the point X . (Output)
FCN must be declared EXTERNAL in the calling program.
\(\boldsymbol{X C}\) - Vector of length N containing the point at which the gradient is to be estimated. (Input)
\(\boldsymbol{F C}\) - Scalar containing the value of the function at XC . (Input)
\(\boldsymbol{G C}\) - Vector of length N containing the estimated gradient at XC. (Output)

\section*{Optional Arguments}
\(\boldsymbol{N}\) - Dimension of the problem. (Input)
Default: \(\mathrm{N}=\operatorname{size}(\mathrm{XC}, 1)\).
\(\boldsymbol{X S C A L E}\) — Vector of length N containing the diagonal scaling matrix for the variables.
(Input)
In the absence of other information, set all entries to 1.0.
Default: XSCALE \(=1.0\).
EPSFCN - Estimate of the relative noise in the function. (Input)
EPSFCN must be less than or equal to 0.1 . In the absence of other information, set EPSFCN to 0.0.
Default: \(\operatorname{EPSFCN}=0.0\).

\section*{FORTRAN 90 Interface}

Generic: CALL FDGRD (FCN, XC, FC, GC [,...])
Specific: The specific interface names are S_FDGRD and D_FDGRD.

\section*{FORTRAN 77 Interface}

Single: CALL FDGRD (FCN, XC, FC, GC, N, XSCALE, EPSFCN)
Double: The double precision name is DFDGRD.

\section*{Example}

In this example, the gradient of \(f(x)=x_{1}-x_{1} x_{2}-2\) is estimated by the finite-difference method at the point (1.0, 1.0).
```

USE FDGRD INT
USE UMACH }\mp@subsup{}{}{-}\mathrm{ INT
INTEGER - I, N, NOUT
PARAMETER (N=2)
REAL EPSFCN, FC, GC (N), XC (N)

```
```

 EXTERNAL FCN
 !
DATA XC/2*1.0E0/
EPSFCN = 0.01
CALL FCN (N, XC, FC)
!
CALL FDGRD (FCN, XC, FC, GC, EPSFCN=EPSFCN)
!
CALL UMACH (2, NOUT)
WRITE (NOUT,99999) (GC(I),I=1,N)
99999 FORMAT (' The gradient is', 2F8.2, /)
!
END
!
SUBROUTINE FCN (N, X, F)
INTEGER N
REAL X(N), F
!
F = X(1) - X(1)*X(2) - 2.0E0
!
RETURN
END

```

\section*{Output}

The gradient is \(0.00-1.00\)

\section*{Comments}

This is Description A5.6.3, Dennis and Schnabel, 1983, page 322.

\section*{Description}

The routine FDGRD uses the following finite-difference formula to estimate the gradient of a function of \(n\) variables at \(x\) :
\[
\frac{f\left(x+h_{i} e_{i}\right)-f(x)}{h_{i}} \quad \text { for } i=1, \ldots, n
\]
where \(h_{i}=\varepsilon^{1 / 2} \max \left\{\left|x_{i}\right|, 1 / s_{i}\right\} \operatorname{sign}\left(x_{i}\right), \varepsilon\) is the machine epsilon, \(e_{i}\) is the \(i\)-th unit vector, and \(s_{i}\) is the scaling factor of the \(i\)-th variable. For more details, see Dennis and Schnabel (1983).

Since the finite-difference method has truncation error, cancellation error, and rounding error, users should be aware of possible poor performance. When possible, high precision arithmetic is recommended. When accuracy of the gradient is important, IMSL routine CDGRD (page 1336) should be used.

\section*{FDHES}

Approximates the Hessian using forward differences and function values.

\section*{Required Arguments}

FCN - User-supplied SUBROUTINE to evaluate the function to be minimized. The usage is CALL FCN (N, X, F), where

N - Length of X . (Input)
X - The point at which the function is evaluated. (Input) \(x\) should not be changed by FCN.

F - The computed function value at the point X . (Output)

FCN must be declared EXTERNAL in the calling program.
\(\boldsymbol{X C}\) - Vector of length N containing the point at which the Hessian is to be approximated. (Input)
\(\boldsymbol{F C}\) - Function value at XC. (Input)
\(\boldsymbol{H}-\mathrm{N}\) by N matrix containing the finite difference approximation to the Hessian in the lower triangle. (Output)

\section*{Optional Arguments}
\(N\) - Dimension of the problem. (Input)
Default: \(\mathrm{N}=\operatorname{size}(\mathrm{XC}, 1)\).
\(\boldsymbol{X S C A L E}\) - Vector of length N containing the diagonal scaling matrix for the variables. (Input)
In the absence of other information, set all entries to 1.0 .
Default: XSCALE \(=1.0\).
EPSFCN - Estimate of the relative noise in the function. (Input)
EPSFCN must be less than or equal to 0.1 . In the absence of other information, set EPSFCN to 0.0.
Default: \(\operatorname{EPSFCN}=0.0\).
\(\boldsymbol{L D H}\) - Row dimension of H exactly as specified in the dimension statement of the calling program. (Input)
Default: LDH = size \((H, 1)\).

\section*{FORTRAN 90 Interface}

Generic: CALL FDHES (FCN, XC, FC, H [,...])
Specific: The specific interface names are S_FDHES and D_FDHES.

\section*{FORTRAN 77 Interface}

Single: CALL FDHES (FCN, N, XC, XSCALE, FC, EPSFCN, H, LDH)
Double: The double precision name is DFDHES.

\section*{Example}

The Hessian is estimated for the following function at \((1,-1)\)
\[
f(x)=x_{1}^{2}-x_{1} x_{2}-2
\]

USE FDHES INT
USE UMACH_INT
```

! Declaration of variables
INTEGER N, LDHES, NOUT
PARAMETER (N=2, LDHES=2)
REAL XC (N), FVALUE, HES (LDHES,N), EPSFCN
EXTERNAL FCN
! Initialization
DATA XC/1.0E0,-1.0E0/
EPSFCN = 0.001
CALL FCN (N, XC, FVALUE)
Get Hessian forward difference
approximation
CALL FDHES (FCN, XC, FVALUE, HES, EPSFCN=EPSFCN)
CALL UMACH (2, NOUT)
WRITE (NOUT,99999) ((HES(I,J),J=1,I),I=1,N)
99999 FORMAT (' The lower triangle of the Hessian is', /,\&
5X,F10.2,/,5X,2F10.2,/)
!
END
!
SUBROUTINE FCN (N, X, F)
INTEGER N
REAL X(N), F
!
F}=\textrm{X}(1)*(X(1)-X(2))-2.0E
!
RETURN
END

```

\section*{Output}

The lower triangle of the Hessian is
2.00
\(-1.00 \quad 0.00\)

\section*{Comments}
1. Workspace may be explicitly provided, if desired, by use of F2HES/DF2HES. The reference is:

CALL F2HES (FCN, N, XC, XSCALE, FC, EPSFCN, H, LDH, WK1, WK2)
The additional arguments are as follows:
WK1 - Real work vector of length N .
\(\boldsymbol{W} \boldsymbol{K} 2\) - Real work vector of length N .
2. This is Description A5.6.2 from Dennis and Schnabel, 1983; page 321.

\section*{Description}

The routine FDHES uses the following finite-difference formula to estimate the Hessian matrix of function \(f\) at \(x\) :
\[
\frac{f\left(x+h_{i} e_{i}+h_{j} e_{j}\right)-f\left(x+h_{i} e_{i}\right)-f\left(x+h_{j} e_{j}\right)+f(x)}{h_{i} h_{j}}
\]
where \(h_{i}=\varepsilon^{1 / 3} \max \left\{\left|x_{i}\right|, 1 / s_{i}\right\} \operatorname{sign}\left(x_{i}\right), h_{j}=\varepsilon^{1 / 3} \max \left\{\left|x_{j}\right|, 1 / s_{i}\right\} \operatorname{sign}\left(x_{j}\right), \varepsilon\) is the machine epsilon or user-supplied estimate of the relative noise, \(s_{i}\) and \(s_{j}\) are the scaling factors of the \(i\)-th and \(j\)-th variables, and \(e_{i}\) and \(e_{j}\) are the \(i\)-th and \(j\)-th unit vectors, respectively. For more details, see Dennis and Schnabel (1983).
Since the finite-difference method has truncation error, cancellation error, and rounding error, users should be aware of possible poor performance. When possible, high precision arithmetic is recommended.

\section*{GDHES}

Approximates the Hessian using forward differences and a user-supplied gradient.

\section*{Required Arguments}

GRAD - User-supplied SUbroutine to compute the gradient at the point x . The usage is CALL GRAD (N, X, G), where

N - Length of X and G . (Input)
x - The point at which the gradient is evaluated. (Input) \(x\) should not be changed by GRAD.

G - The gradient evaluated at the point x . (Output)

GRAD must be declared EXTERNAL in the calling program.
\(\boldsymbol{X C}\) - Vector of length N containing the point at which the Hessian is to be estimated. (Input)
\(\boldsymbol{G C}-\) Vector of length N containing the gradient of the function at XC . (Input)
\(\boldsymbol{H}-\mathrm{N}\) by N matrix containing the finite-difference approximation to the Hessian in the lower triangular part and diagonal. (Output)

\section*{Optional Arguments}
\(N\) - Dimension of the problem. (Input)
Default: \(\mathrm{N}=\operatorname{size}(\mathrm{XC}, 1)\).
\(\boldsymbol{X S C A L E}\) - Vector of length N containing the diagonal scaling matrix for the variables.
(Input)
In the absence of other information, set all entries to 1.0.
Default: \(\mathrm{XSCALE}=1.0\).
EPSFCN - Estimate of the relative noise in the function. (Input)
EPSFCN must be less than or equal to 0.1 . In the absence of other information, set EPSFCN to 0.0.
Default: \(\operatorname{EPSFCN}=0.0\).
\(\boldsymbol{L D H}\) - Leading dimension of H exactly as specified in the dimension statement of the calling program. (Input)
Default: LDH = size ( \(\mathrm{H}, 1\) ).

\section*{FORTRAN 90 Interface}

Generic: CALL GDHES (GRAD, XC, GC, H [,...])
Specific: The specific interface names are S_GDHES and D_GDHES.

\section*{FORTRAN 77 Interface}

Single: CALL GDHES (GRAD, N, XC, XSCALE, GC, EPSFCN, H, LDH)
Double: The double precision name is DGDHES.

\section*{Example}

The Hessian is estimated by the finite-difference method at point \((1.0,1.0)\) from the following gradient functions:
```

 g}=2\mp@subsup{x}{1}{}\mp@subsup{x}{2}{}-
 g}=\mp@subsup{x}{1}{}\mp@subsup{x}{1}{}+
 USE GDHES_INT
USE UMACH_INT
INTEGER N, LDHES, NOUT
PARAMETER (N=2, LDHES=2)
REAL XC (N),GC(N), HES (LDHES,N)
EXTERNAL GRAD
DATA XC/2*1.0E0/
Set function noise
Evaluate the gradient at the
current point
CALL GRAD (N, XC, GC)
Get Hessian forward-difference
approximation
CALL GDHES (GRAD, XC, GC, HES)
CALL UMACH (2, NOUT)
WRITE (NOUT, 99999) ((HES (I, J), J=1,N), I=1,N)
99999 FORMAT (' THE HESSIAN IS', /, 2(5X,2F10.2,/),/)
END
SUBROUTINE GRAD (N, X, G)
INTEGER N
REAL X (N),G(N)
!
G(1) = 2.0E0*X(1)*X(2) - 2.0E0
G(2) = X(1)*X(1) + 1.0E0
!
RETURN
END

```

\section*{Output}

THE HESSIAN IS
\(2.00 \quad 2.00\)
\(2.00 \quad 0.00\)

\section*{Comments}
1. Workspace may be explicitly provided, if desired, by use of G2HES/DG2HES. The reference is:

CALL G2HES (GRAD, N, XC, XSCALE, GC, EPSFCN, H, LDH, WK)
The additional argument is
\(\boldsymbol{W} \boldsymbol{K}\) - Work vector of length N .
2. This is Description A5.6.1, Dennis and Schnabel, 1983; page 320.

\section*{Description}

The routine GDHES uses the following finite-difference formula to estimate the Hessian matrix of function \(F\) at \(x\) :
\[
\frac{g\left(x+h_{j} e_{j}\right)-g(x)}{h_{j}}
\]
where \(h_{j}=\varepsilon^{1 / 2} \max \left\{\left|x_{j}\right|, 1 / s_{j}\right\} \operatorname{sign}\left(x_{j}\right), \varepsilon\) is the machine epsilon, \(s_{j}\) is the scaling factor of the \(j\)-th variable, \(g\) is the analytic gradient of \(F\) at \(x\), and \(e_{j}\) is the \(j\)-th unit vector. For more details, see Dennis and Schnabel (1983).
Since the finite-difference method has truncation error, cancellation error, and rounding error, users should be aware of possible poor performance. When possible, high precision arithmetic is recommended.

\section*{FDJAC}

Approximates the Jacobian of m functions in N unknowns using forward differences.

\section*{Required Arguments}
\(\boldsymbol{F C N}\) - User-supplied SUBROUTINE to evaluate the function to be minimized. The usage is CALL FCN (M, N, X, F), where
\(M\) - Length of \(F\). (Input)
N - Length of X . (Input)
X - The point at which the function is evaluated. (Input) \(X\) should not be changed by FCN.

F - The computed function at the point X . (Output)
FCN must be declared EXTERNAL in the calling program.
\(\boldsymbol{X C}\) - Vector of length N containing the point at which the gradient is to be estimated.
(Input)
\(\boldsymbol{F C}\) - Vector of length M containing the function values at xc . (Input)
\(\boldsymbol{F J} \boldsymbol{A C}-\mathrm{m}\) by N matrix containing the estimated Jacobian at Xc . (Output)

\section*{Optional Arguments}
\(\boldsymbol{M}\) - The number of functions. (Input)
Default: \(M=\operatorname{size}(F C, 1)\).
\(N\) - The number of variables. (Input)
Default: \(\mathrm{N}=\operatorname{size}(\mathrm{XC}, 1)\).
\(\boldsymbol{X S C A L E}\) - Vector of length N containing the diagonal scaling matrix for the variables. (Input)
In the absence of other information, set all entries to 1.0.
Default: \(\mathrm{XSCALE}=1.0\).

EPSFCN - Estimate for the relative noise in the function. (Input)
EPSFCN must be less than or equal to 0.1 . In the absence of other information, set EPSFCN to 0.0.
Default: \(\operatorname{EPSFCN}=0.0\).

LDFJAC - Leading dimension of FJAC exactly as specified in the dimension statement of the calling program. (Input)
Default: LDFJAC = size (FJAC, 1 ).

\section*{FORTRAN 90 Interface}

Generic: CALL FDJAC (FCN, XC, FC, FJAC [,...])
Specific: The specific interface names are S_FDJAC and D_FDJAC.

\section*{FORTRAN 77 Interface}

Single: CALL FDJAC (FCN, M, N, XC, XSCALE, FC, EPSFCN, FJAC, LDFJAC)

Double: The double precision name is DFDJAC.

\section*{Example}

In this example, the Jacobian matrix of
\[
\begin{aligned}
& f_{1}(x)=x_{1} x_{2}-2 \\
& f_{2}(x)=x_{1}-x_{1} x_{2}+1
\end{aligned}
\]
is estimated by the finite-difference method at the point (1.0, 1.0).
```

USE FDJAC_INT
USE UMACH INT
INTEGER N, M, LDFJAC, NOUT
PARAMETER (N=2, M=2, LDFJAC=2)
REAL FJAC(LDFJAC,N), XC(N), FC(M), EPSFCN
EXTERNAL FCN
DATA XC/2*1.0E0/
EPSFCN = 0.01

```
!
```

! Evaluate the function at the
CALL FCN (M, N, XC, FC)
current point
Get Jacobian forward-difference
approximation
CALL FDJAC (FCN, XC, FC, FJAC, EPSFCN=EPFSCN)
Print results
CALL UMACH (2, NOUT)
WRITE (NOUT,99999) ((FJAC (I,J),J=1,N),I=1,M)
99999 FORMAT (' The Jacobian is', /, 2(5X,2F10.2,/),/)
!
END
SUBROUTINE FCN (M, N, X, F)
INTEGER M, N
REAL X(N), F(M)
!
F(1) = X(1)*X(2) - 2.0E0
F(2) = X(1) - X(1)*X(2) + 1.0E0
!
RETURN
END

```

\section*{Output}
\begin{tabular}{lc} 
The Jacobian is \\
1.00 & 1.00 \\
0.00 & -1.00
\end{tabular}

\section*{Comments}
1. Workspace may be explicitly provided, if desired, by use of F2 JAC/DF2 JAC. The reference is:

CALL F2JAC (FCN, M, N, XC, XSCALE, FC, EPSFCN, FJAC, LDFJAC, WK)
The additional argument is:
\(\boldsymbol{W} \boldsymbol{K}\) - Work vector of length M.
2. This is Description A5.4.1, Dennis and Schnabel, 1983, page 314.

\section*{Description}

The routine FDJAC uses the following finite-difference formula to estimate the Jacobian matrix of function \(f\) at \(x\) :
\[
\frac{f\left(x+h_{j} e_{j}\right)-f(x)}{h_{j}}
\]
where \(e_{j}\) is the \(j\)-th unit vector, \(h_{j}=\varepsilon^{1 / 2} \max \left\{\left|x_{j}\right|, 1 / s_{j}\right\} \operatorname{sign}\left(x_{j}\right), \varepsilon\) is the machine epsilon, and \(s_{j}\) is the scaling factor of the \(j\)-th variable. For more details, see Dennis and Schnabel (1983).

Since the finite-difference method has truncation error, cancellation error, and rounding error, users should be aware of possible poor performance. When possible, high precision arithmetic is recommended.

\section*{CHGRD}

Checks a user-supplied gradient of a function.

\section*{Required Arguments}

FCN - User-supplied SUBROUTINE to evaluate the function of which the gradient will be checked. The usage is CALL FCN ( \(\mathrm{N}, \mathrm{X}, \mathrm{F}\) ), where

N - Length of X . (Input)
X - The point at which the function is evaluated. (Input) \(x\) should not be changed by FCN.

F - The computed function value at the point X . (Output)
FCN must be declared EXTERNAL in the calling program.
\(\boldsymbol{G R} \boldsymbol{A D}\) - Vector of length N containing the estimated gradient at x . (Input)
\(\boldsymbol{X}\) - Vector of length N containing the point at which the gradient is to be checked. (Input)
INFO - Integer vector of length N. (Output)
\(\operatorname{INFO}(\mathrm{I})=0\) means the user-supplied gradient is a poor estimate of the numerical gradient at the point \(\mathrm{X}(\mathrm{I})\).
\(\operatorname{INFO}(\mathrm{I})=1\) means the user-supplied gradient is a good estimate of the numerical gradient at the point \(X(I)\).

INFO(I) \(=2\) means the user-supplied gradient disagrees with the numerical gradient at the point \(X(I)\), but it might be impossible to calculate the numerical gradient.
\(\operatorname{INFO}(\mathrm{I})=3\) means the user-supplied gradient and the numerical gradient are both zero at \(X(I)\), and, therefore, the gradient should be rechecked at a different point.

\section*{Optional Arguments}
\(\boldsymbol{N}\) - Dimension of the problem. (Input)
Default: \(\mathrm{N}=\operatorname{size}(\mathrm{X}, 1)\).

\section*{FORTRAN 90 Interface}

Generic: CALL CHGRD (FCN, GRAD, X, INFO [,...])

Specific: The specific interface names are S_CHGRD and D_CHGRD.

\section*{FORTRAN 77 Interface}

Single: CALL CHGRD (FCN, GRAD, N, X, INFO)
Double: The double precision name is DCHGRD.

\section*{Example}

The user-supplied gradient of
\[
f(x)=x_{i}+x_{2} e^{-\left(t-x_{3}\right) 2 / x_{4}}
\]
at \((625,1,3.125,0.25)\) is checked where \(t=2.125\).
```

USE CHGRD INT
USE WRIRN_INT
Declare variables
INTEGER N
PARAMETER (N=4)
INTEGER INFO(N)
REAL GRAD (N), X(N)
EXTERNAL DRIV, FCN
Input values for point X
X = (625.0, 1.0, 3.125, .25)
DATA X/625.0E0, 1.0E0, 3.125E0, 0.25E0/
CALL DRIV (N, X, GRAD)
CALL CHGRD (FCN, GRAD, X, INFO)
CALL WRIRN ('The information vector', INFO, 1, N, 1)
END
SUBROUTINE FCN (N, X, FX)
INTEGER N
REAL X(N), FX
REAL EXP
INTRINSIC EXP
FX = X(1) + X(2)*EXP(-1.0E0*(2.125E0-X(3))**2/X(4))
RETURN
END
SUBROUTINE DRIV (N, X, GRAD)

```
!
!
```

INTEGER N
REAL X(N), GRAD (N)
REAL EXP
INTRINSIC EXP
GRAD (1) = 1.0E0
GRAD(2) = EXP(-1.0E0*(2.125E0-X(3))**2/X(4))
GRAD(3) = X(2)*EXP(-1.0E0*(2.125E0-X(3))**2/X(4))*2.0E0/X(4)* \&
(2.125-X(3))
GRAD(4) = X(2)*EXP(-1.0E0*(2.125E0-X(3))**2/X(4))* \&
(2.125E0-X(3))**2/(X(4)*X(4))
RETURN
END

```

\section*{Output}
```

The information vector
1 2 3 4
1 1 1 1 1 1

```

\section*{Comments}
1. Workspace may be explicitly provided, if desired, by use of C2GRD/DC2GRD. The reference is:

CALL C2GRD (FCN, GRAD, N, X, INFO, FX, XSCALE, EPSFCN, XNEW)
The additional arguments are as follows:
\(\boldsymbol{F X}\) - The functional value at X .
\(\boldsymbol{X S C A L E}\) - Real vector of length N containing the diagonal scaling matrix.
EPSFCN - The relative "noise" of the function FCN.
\(\boldsymbol{X N E W}\) - Real work vector of length N.
2. Informational errors
\begin{tabular}{ccl} 
Type & Code & \\
4 & 1 & \begin{tabular}{l} 
The user-supplied gradient is a poor estimate of the numerical \\
gradient.
\end{tabular}
\end{tabular}

\section*{Description}

The routine CHGRD uses the following finite-difference formula to estimate the gradient of a function of \(n\) variables at \(x\) :
\[
g_{i}(x)=\frac{f\left(x+h_{i} e_{i}\right)-f(x)}{h_{i}} \quad \text { for } i=1, \ldots, n
\]
where \(h_{i}=\varepsilon^{1 / 2} \max \left\{\left|x_{i}\right|, 1 / s_{i}\right\} \operatorname{sign}\left(x_{i}\right), \varepsilon\) is the machine epsilon, \(e_{i}\) is the \(i\)-th unit vector, and \(s_{i}\) is the scaling factor of the \(i\)-th variable.

The routine CHGRD checks the user-supplied gradient \(\nabla f(x)\) by comparing it with the finitedifference gradient \(g(x)\). If
\[
\left|g_{i}(x)-(\nabla f(x))_{i}\right|<\tau\left|(\nabla f(x))_{i}\right|
\]
where \(\tau=\varepsilon^{1 / 4}\), then \((\nabla f(x))_{i}\), which is the \(i\)-th element of \(\nabla f(x)\), is declared correct; otherwise, CHGRD computes the bounds of calculation error and approximation error. When both bounds are too small to account for the difference, \((\nabla f(x))_{i}\) is reported as incorrect. In the case of a large error bound, CHGRD uses a nearly optimal stepsize to recompute \(g_{i}(x)\) and reports that \((\nabla f(x))_{i}\) is correct if
\[
\left|g_{i}(x)-(\nabla f(x))_{i}\right|<2 \tau\left|(\nabla f(x))_{i}\right|
\]

Otherwise, \((\nabla f(x))_{i}\) is considered incorrect unless the error bound for the optimal step is greater than \(\tau\left|(\nabla f(x))_{i}\right|\). In this case, the numeric gradient may be impossible to compute correctly. For more details, see Schnabel (1985).

\section*{CHHES}

Checks a user-supplied Hessian of an analytic function.

\section*{Required Arguments}
\(\boldsymbol{G R} \boldsymbol{A D}\) - User-supplied SUBROUTINE to compute the gradient at the point X . The usage is CALL GRAD ( \(\mathrm{N}, \mathrm{X}, \mathrm{G}\) ), where

N - Length of X and G. (Input)
\(X\) - The point at which the gradient is evaluated. \(X\) should not be changed by GRAD. (Input)

G - The gradient evaluated at the point X . (Output)
GRAD must be declared EXTERNAL in the calling program.
HESS - User-supplied SUBROUTINE to compute the Hessian at the point x . The usage is CALL HESS (N, X, H, LDH), where

N - Length of X. (Input)
X - The point at which the Hessian is evaluated. (Input)
X should not be changed by HESS.
H - The Hessian evaluated at the point X. (Output)

LDH - Leading dimension of H exactly as specified in in the dimension statement of the calling program. (Input)

HESS must be declared EXTERNAL in the calling program.
\(\boldsymbol{X}\) - Vector of length N containing the point at which the Hessian is to be checked. (Input)
INFO - Integer matrix of dimension N by N . (Output)
\(\operatorname{INFO}(I, J)=0\) means the Hessian is a poor estimate for function \(I\) at the point \(X(J)\).
\(\operatorname{INFO}(I, J)=1\) means the Hessian is a good estimate for function \(I\) at the point \(X(J)\).
\(\operatorname{INFO}(I, J)=2\) means the Hessian disagrees with the numerical Hessian for function \(I\) at the point \(X(J)\), but it might be impossible to calculate the numerical Hessian.
\(\operatorname{INFO}(I, J)=3\) means the Hessian for function \(I\) at the point \(X(J)\) and the numerical Hessian are both zero, and, therefore, the gradient should be rechecked at a different point.

\section*{Optional Arguments}
\(\boldsymbol{N}\) - Dimension of the problem. (Input)
Default: \(\mathrm{N}=\operatorname{size}(\mathrm{x}, 1)\).
LDINFO - Leading dimension of INFO exactly as specified in the dimension statement of the calling program. (Input)
Default: LDINFO = size (INFO, 1 ).

\section*{FORTRAN 90 Interface}

Generic: CALL CHHES (GRAD, HESS, X, INFO [,...])
Specific: The specific interface names are S_CHHES and D_CHHES.

\section*{FORTRAN 77 Interface}

Single: CALL CHHES (GRAD, HESS, N, X, INFO, LDINFO)
Double: The double precision name is DCHHES.

\section*{Example}

The user-supplied Hessian of
\[
f(x)=100\left(x_{2}-x_{1}^{2}\right)^{2}+\left(1-x_{1}\right)^{2}
\]
at \((-1.2,1.0)\) is checked, and the error is found.
```

USE CHHES_INT

```
INTEGER LDINFO, N
PARAMETER ( \(\mathrm{N}=2\), LDINFO=N)
!
    INTEGER INFO (LDINFO,N)
    REAL \(\quad X(N)\)
    EXTERNAL GRD, HES
\(!\)
!
!
    DATA X/-1.2, 1.0/
!
    CALL CHHES (GRD, HES, X, INFO)
\(!\)
    END
!
    SUBROUTINE GRD (N, X, UG)
    INTEGER N
    REAL \(\quad X(N), U G(N)\)
!
    \(\mathrm{UG}(1)=-400.0 * X(1) *(X(2)-X(1) * X(1))+2.0 * X(1)-2.0\)
    UG (2) \(=200.0 * X(2)-200.0 * X(1) * X(1)\)
    RETURN
    END
!
    SUBROUTINE HES (N, X, HX, LDHS)
    INTEGER \(N\), LDHS
    REAL \(X(N), H X(L D H S, N)\)
!
    \(H X(1,1)=-400.0 * X(2)+1200.0 * X(1) * X(1)+2.0\)
    HX \((1,2)=-400.0 * X(1)\)
    \(\mathrm{HX}(2,1)=-400 \cdot 0 * \mathrm{X}(1)\)
\(!\quad\) A sign change is made to \(H X(2,2)\)
    \(H X(2,2)=-200.0\)
    RETURN
    END

\section*{Output}
*** FATAL
ERROR 1 from CHHES. The Hessian evaluation with respect to
        \(X(2)\) and \(X(2)\) is a poor estimate.

\section*{Comments}

Workspace may be explicitly provided, if desired, by use of \(\mathrm{C} 2 \mathrm{HES} / \mathrm{DC} 2 \mathrm{HES}\). The reference is
```

CALL C2HES (GRAD, HESS, N, X, INFO, LDINFO, G, HX, HS,
XSCALE, EPSFCN, INFT, NEWX)

```

The additional arguments are as follows:
\(\boldsymbol{G}\) - Vector of length N containing the value of the gradient GRD at X.
\(\boldsymbol{H} \boldsymbol{X}\) - Real matrix of dimension N by N containing the Hessian evaluated at X .
\(\boldsymbol{H} \boldsymbol{S}\) - Real work vector of length N.
\(\boldsymbol{X S C A L E}\) - Vector of length N used to store the diagonal scaling matrix for the variables.

EPSFCN - Estimate of the relative noise in the function.
\(\boldsymbol{I N F T}\) - Vector of length N. For I = 1 through N, INFT contains information about the Jacobian.
\(\boldsymbol{N E W} \boldsymbol{X}\) - Real work array of length N.

\section*{Description}

The routine CHHES uses the following finite-difference formula to estimate the Hessian of a function of \(n\) variables at \(x\) :
\[
B_{i j}(x)=\left(g_{i}\left(x+h_{j} e_{j}\right)-g_{i}(x)\right) / h_{j} \quad \text { for } j=1, \ldots, n
\]
where \(h_{j}=\varepsilon^{1 / 2} \max \left\{\left|x_{j}\right|, 1 / s_{j}\right\} \operatorname{sign}\left(x_{j}\right), \varepsilon\) is the machine epsilon, \(e_{j}\) is the \(j\)-th unit vector, \(s_{j}\) is the scaling factor of the \(j\)-th variable, and \(g_{i}(x)\) is the gradient of the function with respect to the \(i\)-th variable.

Next, CHHES checks the user-supplied Hessian \(H(x)\) by comparing it with the finite difference approximation \(B(x)\). If
\[
\left|B_{i j}(x)-H_{i j}(x)\right|<\tau\left|H_{i j}(x)\right|
\]
where \(\tau=\varepsilon^{1 / 4}\), then \(H_{i j}(x)\) is declared correct; otherwise, CHHES computes the bounds of calculation error and approximation error. When both bounds are too small to account for the difference, \(H_{i j}(x)\) is reported as incorrect. In the case of a large error bound, CHHES uses a nearly optimal stepsize to recompute \(B_{i j}(x)\) and reports that \(B_{i j}(x)\) is correct if
\[
\left|B_{i j}(x)-H_{i j}(x)\right|<2 \tau\left|H_{i j}(x)\right|
\]

Otherwise, \(H_{i j}(x)\) is considered incorrect unless the error bound for the optimal step is greater than \(\tau\left|H_{i j}(x)\right|\). In this case, the numeric approximation may be impossible to compute correctly. For more details, see Schnabel (1985).

\section*{CHJAC}

Checks a user-supplied Jacobian of a system of equations with \(M\) functions in \(N\) unknowns.

\section*{Required Arguments}
\(\boldsymbol{F C N}\) - User-supplied SUBROUTINE to evaluate the function to be minimized. The usage is CALL FCN (M, N, X, F), where

M - Length of F . (Input)
N - Length of X . (Input)
X - The point at which the function is evaluated. (Input) \(x\) should not be changed by FCN.

F - The computed function value at the point X . (Output)

ECN must be declared EXTERNAL in the calling program.
\(\boldsymbol{J A C}\) - User-supplied SUBROUTINE to evaluate the Jacobian at a point X . The usage is CALL JAC ( \(\mathrm{M}, \mathrm{N}, \mathrm{X}, \mathrm{FJAC}, \mathrm{LDFJAC}\) ), where

M - Length of F. (Input)
N - Length of X. (Input)
X - The point at which the function is evaluated. (Input) \(X\) should not be changed by FCN.

FJAC - The computed M by N Jacobian at the point X . (Output)
LDFJAC - Leading dimension of FJAC. (Input)
JAC must be declared EXTERNAL in the calling program.
\(\boldsymbol{X}\) - Vector of length N containing the point at which the Jacobian is to be checked. (Input)

INFO - Integer matrix of dimension M by N . (Output)
\(\operatorname{INFO}(I, J)=0\) means the user-supplied Jacobian is a poor estimate for function I at the point \(X(J)\).
\(\operatorname{INFO}(\mathrm{I}, \mathrm{J})=1\) means the user-supplied Jacobian is a good estimate for function I at the point \(X(J)\).
\(\operatorname{INFO}(I, J)=2\) means the user-supplied Jacobian disagrees with the numerical Jacobian for function I at the point \(X(J)\), but it might be impossible to calculate the numerical Jacobian.
\(\operatorname{INFO}(I, J)=3\) means the user-supplied Jacobian for function \(I\) at the point \(X(J)\) and the numerical Jacobian are both zero. Therefore, the gradient should be rechecked at a different point.

\section*{Optional Arguments}
\(\boldsymbol{M}\) - The number of functions in the system of equations. (Input) Default: \(M=\operatorname{size}(I N F O, 1)\).
\(\boldsymbol{N}\) - The number of unknowns in the system of equations. (Input) Default: \(\mathrm{N}=\operatorname{size}(\mathrm{X}, 1)\).

LDINFO - Leading dimension of INFO exactly as specified in the dimension statement of the calling program. (Input)
Default: LDINFO = size (INFO, 1 ).

\section*{FORTRAN 90 Interface}

Generic: CALL CHJAC (FCN, JAC, X, INFO [,...])
Specific: The specific interface names are S_CHJAC and D_CHJAC.

\section*{FORTRAN 77 Interface}

Single: CALL CHJAC (FCN, JAC, M, N, X, INFO, LDINFO)
Double: The double precision name is DCHJAC.

\section*{Example}

The user-supplied Jacobian of
\[
\begin{aligned}
& f_{1}=1-x_{1} \\
& f_{2}=10\left(x_{2}-x_{1}^{2}\right)
\end{aligned}
\]
at \((-1.2,1.0)\) is checked.
USE CHJAC_INT
USE WRIRN \({ }^{-}\)INT
INTEGER LDINFO, N
PARAMETER ( \(\mathrm{M}=2, \mathrm{~N}=2, \mathrm{LDINFO}=\mathrm{M})\)
!
INTEGER INFO(LDINFO,N)
REAL \(\quad \mathrm{X}(\mathrm{N})\)
EXTERNAL FCN, JAC
\(!\)

DATA X/-1.2, 1.0/
!
CALL CHJAC (FCN, JAC, X, INFO)
CALL WRIRN ('The information matrix', INFO)
!
END
```

!
SUBROUTINE FCN (M, N, X, F)
INTEGER M, N
REAL X(N), F(M)
!
F(1) = 1.0 - X(1)
F(2) = 10.0*(X(2)-X(1)*X(1))
RETURN
END
!
SUBROUTINE JAC (M, N, X, FJAC, LDFJAC)
INTEGER M, N, LDFJAC
REAL X(N), FJAC(LDFJAC,N)
!
FJAC (1,1) = -1.0
FJAC (1,2) = 0.0
FJAC (2,1) = -20.0*X(1)
FJAC (2,2) = 10.0
RETURN
END

```

\section*{Output}
*** WARNING
\(\star \star \star\)
\(\star \star \star\)
\(\star * *\)
\(\star \star \star\)
The information matrix
    12
\(1 \quad 1 \quad 3\)
211

\section*{Comments}
1. Workspace may be explicitly provided, if desired, by use of C2 JAC / DC2 JAC. The reference is:
```

CALL C2JAC (FCN, JAC, N, X, INFO, LDINFO, FX, FJAC,

```
GRAD, XSCALE, EPSFCN, INFT, NEWX)

The additional arguments are as follows:
\(\boldsymbol{F X}\) - Vector of length M containing the value of each function in FCN at X.
\(\boldsymbol{F J} \boldsymbol{A C}\) - Real matrix of dimension M by N containing the Jacobian of FCN evaluated at X.
\(\boldsymbol{G R} \boldsymbol{A D}\) - Real work vector of length N used to store the gradient of each function in FCN.
\(\boldsymbol{X S C A L E}\) - Vector of length N used to store the diagonal scaling matrix for the variables.

EPSFCN - Estimate of the relative noise in the function.
\(\boldsymbol{I N F T}\) - Vector of length N . For \(\mathrm{I}=1\) through N , INFT contains information about the Jacobian.
\(\boldsymbol{N E W} \boldsymbol{X}\) - Real work array of length N .
2. Informational errors

Type Code
41 The user-supplied Jacobian is a poor estimate of the numerical Jacobian.

\section*{Description}

The routine CHJAC uses the following finite-difference formula to estimate the gradient of the \(i\) th function of \(n\) variables at \(x\) :
\[
g_{i j}(x)=\left(f_{i}\left(x+h_{j} e_{j}\right)-f_{i}(x)\right) / h_{j} \quad \text { for } j=1, \ldots, n
\]
where \(h_{j}=\varepsilon^{1 / 2} \max \left\{\left|x_{j}\right|, 1 / s_{j}\right\} \operatorname{sign}\left(x_{j}\right), \varepsilon\) is the machine epsilon, \(e_{j}\) is the \(j\)-th unit vector, and \(s_{j}\) is the scaling factor of the \(j\)-th variable.

Next, CHJAC checks the user-supplied Jacobian \(J(x)\) by comparing it with the finite difference gradient \(g_{i}(x)\). If
\[
\left|g_{i j}(x)-J_{i j}(x)\right|<\tau\left|J_{i j}(x)\right|
\]
where \(\tau=\varepsilon^{1 / 4}\), then \(\mathrm{J}_{i j}(x)\) is declared correct; otherwise, ChJAC computes the bounds of calculation error and approximation error. When both bounds are too small to account for the difference, \(J_{i j}(x)\) is reported as incorrect. In the case of a large error bound, CHJAC uses a nearly optimal stepsize to recompute \(g_{i j}(x)\) and reports that \(J_{i j}(x)\) is correct if
\[
\left|g_{i j}(x)-J_{i j}(x)\right|<2 \tau\left|J_{i j}(x)\right|
\]

Otherwise, \(J_{i j}(x)\) is considered incorrect unless the error bound for the optimal step is greater than \(\tau\left|J_{i j}(x)\right|\). In this case, the numeric gradient may be impossible to compute correctly. For more details, see Schnabel (1985).

\section*{GGUES}

Generates points in an N -dimensional space.

\section*{Required Arguments}
\(\boldsymbol{A}\) - Vector of length N. (Input)
See B.
\(\boldsymbol{B}\) - Real vector of length N. (Input)
\(A\) and \(B\) define the rectangular region in which the points will be generated, i.e., \(A(I)<S(I)<B(I)\) for \(I=1,2, \ldots, N\). Note that if \(B(I)<A(I)\), then \(B(I)<S(I)<A(I)\).
\(\boldsymbol{K}\) - The number of points to be generated. (Input)
IDO - Initialization parameter. (Input/Output) IDO must be set to zero for the first call. GGUES resets IDO to 1 and returns the first generated point in \(S\). Subsequent calls should be made with \(\operatorname{IDO}=1\).
\(\boldsymbol{S}\) - Vector of length N containing the generated point. (Output) Each call results in the next generated point being stored in \(S\).

\section*{Optional Arguments}
\(\boldsymbol{N}\) - Dimension of the space. (Input)
Default: \(\mathrm{N}=\operatorname{size}(\mathrm{B}, 1)\).

\section*{FORTRAN 90 Interface}

Generic: CALL GGUES (A, B, K, IDO, S [,...])
Specific: The specific interface names are S_GGUES and D_GGUES.

\section*{FORTRAN 77 Interface}

Single: CALL GGUES (N, A, B, K, IDO, S)
Double: The double precision name is DGGUES.

\section*{Example}

We want to search the rectangle with vertices at coordinates \((1,1),(3,1),(3,2)\), and \((1,2)\) ten times for a global optimum of a nonlinear function. To do this, we need to generate starting points. The following example illustrates the use of GGUES in this process:
```

USE GGUES INT

```
USE UMACH_INT
```

 Variable Declarations
    ```
INTEGER N
PARAMETER ( \(\mathrm{N}=2\) )
!
INTEGER IDO, J, K, NOUT
REAL \(\quad A(N), B(N), S(N)\)
                                    Initializations
\(\mathrm{A}=(1.0,1.0)\)
\(\mathrm{B}=(3.0,2.0)\)
DATA A/1.0, 1.0/
```

 DATA B/3.0, 2.0/
 !
CALL UMACH (2, NOUT)
WRITE (NOUT,99998)
99998 FORMAT (' Point Number', 7X, 'Generated Point')
!
K=10
IDO = 0
DO 10 J=1, K
CALL GGUES (A, B, K, IDO, S)
!
99999
FORMAT (1X, I7, 14X, '(', F4.1, ',', F6.3, ')')
1 0 CONTINUE
!
END

```

\section*{Output}
\begin{tabular}{cr} 
Point Number & \begin{tabular}{r} 
Generated Point \\
1 \\
2
\end{tabular} \\
3 & \((1.5,1.125)\) \\
4 & \((2.0,1.500)\) \\
5 & \((1.5,1.375)\) \\
6 & \((2.0,1.750)\) \\
7 & \((1.5,1.625)\) \\
8 & \((2.5,1.250)\) \\
9 & \((1.5,1.875)\) \\
10 & \((2.0,1.250)\) \\
\hline & \((2.5,1.500)\)
\end{tabular}

\section*{Comments}
1. Workspace may be explicitly provided, if desired, by use of G2UES / DG2UES. The reference is:

CALL G2UES (N, A, B, K, IDO, S, WK, IWK)
The additional arguments are:
\(\boldsymbol{W} \boldsymbol{K}\) - Work vector of length N . WK must be preserved between calls to G2UES.
\(\boldsymbol{I W}\) - Work vector of length 10 . IWK must be preserved between calls to G2UES.
2. Informational error
\begin{tabular}{ccc} 
Type & Code & \\
4 & 1 & Attempt to generate more than K points.
\end{tabular}
3. The routine GGUES may be used with any nonlinear optimization routine that requires starting points. The rectangle to be searched (defined by A, B, and N) must be determined; and the number of starting points, \(K\), must be chosen. One possible use for

GGUES would be to call GGUES to generate a point in the chosen rectangle. Then, call the nonlinear optimization routine using this point as an initial guess for the solution. Repeat this process K times. The number of iterations that the optimization routine is allowed to perform should be quite small ( 5 to 10 ) during this search process. The best (or best several) point(s) found during the search may be used as an initial guess to allow the optimization routine to determine the optimum more accurately. In this manner, an N dimensional rectangle may be effectively searched for a global optimum of a nonlinear function. The choice of \(k\) depends upon the nonlinearity of the function being optimized. A function with many local optima requires a larger value than a function with only a few local optima.

\section*{Description}

The routine GGUES generates starting points for algorithms that optimize functions of several variables-or, almost equivalently-algorithms that solve simultaneous nonlinear equations.

The routine GGUES is based on systematic placement of points to optimize the dispersion of the set. For more details, see Aird and Rice (1977).

\section*{Appendix B: Alphabetical Summary of Routines}

\section*{IMSL MATH/LIBRARY}
\begin{tabular}{|c|c|c|}
\hline ACBCB & 1441 & Adds two complex band matrices, both in band storage mode. \\
\hline ACHAR & 1624 & Returns a character given its ASCII value. \\
\hline AMACH & 1685 & Retrieves single-precision machine constants. \\
\hline ARBRB & 1438 & Adds two band matrices, both in band storage mode. \\
\hline BCLSF & 1274 & Solves a nonlinear least squares problem subject to bounds on the variables using a modified LevenbergMarquardt algorithm and a finite-difference Jacobian. \\
\hline BCLSJ & 1281 & Solves a nonlinear least squares problem subject to bounds on the variables using a modified LevenbergMarquardt algorithm and a user-supplied Jacobian. \\
\hline BCNLS & 1288 & Solves a nonlinear least-squares problem subject to bounds on the variables and general linear constraints. \\
\hline BCOAH & 1263 & Minimizes a function of N variables subject to bounds the variables using a modified Newton method and a usersupplied Hessian. \\
\hline BCODH & 1257 & Minimizes a function of \(N\) variables subject to bounds the variables using a modified Newton method and a finitedifference Hessian. \\
\hline BCONF & 1243 & Minimizes a function of \(N\) variables subject to bounds the variables using a quasi-Newton method and a finitedifference gradient. \\
\hline BCONG & 1249 & Minimizes a function of \(N\) variables subject to bounds the variables using a quasi-Newton method and a usersupplied gradient. \\
\hline BCPOL & 1271 & Minimizes a function of \(N\) variables subject to bounds the variables using a direct search complex algorithm. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline BLINF & 1427 & Computes the bilinear form \(x^{T} A y\). \\
\hline BS1GD & 656 & Evaluates the derivative of a spline on a grid, given its Bspline representation. \\
\hline BS2DR & 653 & Evaluates the derivative of a two-dimensional tensorproduct spline, given its tensor-product B-spline representation. \\
\hline BS2GD & 656 & Evaluates the derivative of a two-dimensional tensorproduct spline, given its tensor-product B-spline representation on a grid. \\
\hline BS2IG & 661 & Evaluates the integral of a tensor-product spline on a rectangular domain, given its tensor-product B-spline representation. \\
\hline BS2IN & 631 & Computes a two-dimensional tensor-product spline interpolant, returning the tensor-product B-spline coefficients. \\
\hline BS2VL & 651 & Evaluates a two-dimensional tensor-product spline, given its tensor-product B-spline representation. \\
\hline BS3DR & 666 & Evaluates the derivative of a three-dimensional tensorproduct spline, given its tensor-product B-spline representation. \\
\hline BS3GD & 670 & Evaluates the derivative of a three-dimensional tensorproduct spline, given its tensor-product B-spline representation on a grid. \\
\hline BS3IG & 676 & Evaluates the integral of a tensor-product spline in three dimensions over a three-dimensional rectangle, given its tensorproduct B -spline representation. \\
\hline BS3IN & 635 & Computes a three-dimensional tensor-product spline interpolant, returning the tensor-product B-spline coefficients. \\
\hline BS3VL & 664 & Evaluates a three-dimensional tensor-product spline, given its tensor-product B-spline representation. \\
\hline BSCPP & 680 & Converts a spline in B-spline representation to piecewise polynomial representation. \\
\hline BSDER & 643 & Evaluates the derivative of a spline, given its B-spline representation. \\
\hline BSINT & 622 & Computes the spline interpolant, returning the B-spline coefficients. \\
\hline BSITG & 649 & Evaluates the integral of a spline, given its B-spline representation. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline BSLS2 & 743 & Computes a two-dimensional tensor-product spline approximant using least squares, returning the tensorproduct B-spline coefficients. \\
\hline BSLS3 & 748 & Computes a three-dimensional tensor-product spline approximant using least squares, returning the tensorproduct B-spline coefficients. \\
\hline BSLSQ & 725 & Computes the least-squares spline approximation, and return the B -spline coefficients. \\
\hline BSNAK & 625 & Computes the 'not-a-knot' spline knot sequence. \\
\hline BSOPK & 628 & Computes the 'optimal' spline knot sequence. \\
\hline BSVAL & 641 & Evaluates a spline, given its B-spline representation. \\
\hline BSVLS & 729 & Computes the variable knot B-spline least squares approximation to given data. \\
\hline BVPFD & 870 & Solves a (parameterized) system of differential equations with boundary conditions at two points, using a variable order, variable step size finite-difference method with deferred corrections. \\
\hline BVPMS & 882 & Solves a (parameterized) system of differential equations with boundary conditions at two points, using a multipleshooting method. \\
\hline CADD & 1319 & Adds a scalar to each component of a vector, \(x \leftarrow x+a\), all complex. \\
\hline CAXPY & 1320 & Computes the scalar times a vector plus a vector, \(y \leftarrow a x\) \(+y\), all complex. \\
\hline CCBCB & 1393 & Copies a complex band matrix stored in complex band storage mode. \\
\hline CCBCG & 1400 & Converts a complex matrix in band storage mode to a complex matrix in full storage mode. \\
\hline CCGCB & 1398 & Converts a complex general matrix to a matrix in complex band storage mode. \\
\hline CCGCG & 1390 & Copies a complex general matrix. \\
\hline CCONV & 1064 & Computes the convolution of two complex vectors. \\
\hline CCOPY & 1319 & Copies a vector \(x\) to a vector \(y\), both complex. \\
\hline CCORL & 1073 & Computes the correlation of two complex vectors. \\
\hline CDGRD & 1336 & Approximates the gradient using central differences. \\
\hline CDOTC & 1320 & Computes the complex conjugate dot product, \(\bar{x}^{T} y\). \\
\hline CDOTU & 1320 & Computes the complex dot product \(x^{T} y\). \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline CGBMV & 1330 & \begin{tabular}{l}
Computes one of the matrix-vector operations:
\[
y \leftarrow \alpha A x+\beta y, y \leftarrow \alpha A^{T} x+\beta y, \text { or } y \leftarrow \alpha \bar{A}^{T}+\beta y
\] \\
where \(A\) is a matrix stored in band storage mode.
\end{tabular} \\
\hline CGEMM & 1333 & Computes one of the matrix-matrix operations:
\[
\begin{aligned}
& C \leftarrow \alpha A B+\beta C, C \leftarrow \alpha A^{T} B+\beta C, C \leftarrow \alpha A B^{T} \\
& +\beta C, C \leftarrow \alpha A^{T} B^{T}+\beta C, C \leftarrow \alpha A \bar{B}^{T}+\beta C, \\
& \text { or } C \leftarrow \alpha \bar{A}^{T} B+\beta C, C \leftarrow \alpha A^{T} \bar{B}^{T}+\beta C, \\
& C \leftarrow \alpha \bar{A}^{T} B^{T}+\beta C, \text { or } C \leftarrow \alpha \bar{A}^{T} \bar{B}^{T}+\beta C
\end{aligned}
\] \\
\hline CGEMV & 1329 & Computes one of the matrix-vector operations:
\[
y \leftarrow \alpha A x+\beta y, y \leftarrow \alpha A^{T} x+\beta y, \text { or } y \leftarrow \alpha \bar{A}^{T}+\beta y
\] \\
\hline CGERC & 1384 & Computes the rank-one update of a complex general matrix:
\[
A \leftarrow A+\alpha x \bar{y}^{T}
\] \\
\hline CGERU & 1384 & Computes the rank-one update of a complex general matrix:
\[
A \leftarrow A+\alpha x y^{T}
\] \\
\hline CHBCB & 1411 & Copies a complex Hermitian band matrix stored in band Hermitian storage mode to a complex band matrix stored in band storage mode. \\
\hline CHBMV & 1381 & \begin{tabular}{l}
Computes the matrix-vector operation
\[
y \leftarrow \alpha A x+\beta y
\] \\
where \(A\) is an Hermitian band matrix in band Hermitian storage.
\end{tabular} \\
\hline CHEMM & 1385 & \begin{tabular}{l}
Computes one of the matrix-matrix operations:
\[
C \leftarrow \alpha A B+\beta C \text { or } C \leftarrow \alpha B A+\beta C,
\] \\
where \(A\) is an Hermitian matrix and \(B\) and \(C\) are \(m\) by \(n\) matrices.
\end{tabular} \\
\hline CHEMV & 1381 & \begin{tabular}{l}
Computes the matrix-vector operation \(y \leftarrow \alpha A x+\beta y\), \\
where \(A\) is an Hermitian matrix.
\end{tabular} \\
\hline CHER & 1384 & Computes the rank-one update of an Hermitian matrix: \(A \leftarrow A+\alpha x \bar{x}^{T}\) with \(x\) complex and \(\alpha\) real. \\
\hline CHER2 & 1384 & Computes a rank-two update of an Hermitian matrix: \(A \leftarrow A+\alpha x \bar{y}^{T}+\bar{\alpha} y \bar{x}^{T}\). \\
\hline CHER2K & 1387 & Computes one of the Hermitian rank \(2 k\) operations: \(C \leftarrow \alpha A \bar{B}^{T}+\bar{\alpha} B \bar{A}^{T}+\beta C\) or \(C \leftarrow \alpha \bar{A}^{T} B+\bar{\alpha} \bar{B}^{T} A+\beta C\), where \(C\) is an \(n\) by \(n\) Hermitian matrix and \(A\) and \(B\) are \(n\) \\
\hline
\end{tabular}
\begin{tabular}{lcl} 
& & \begin{tabular}{l} 
by \(k\) matrices in the first case and \(k\) by \(n\) matrices in the \\
second case.
\end{tabular} \\
CHERK & 1386 & \begin{tabular}{l} 
Computes one of the Hermitian rank \(k\) operations: \\
\(C \leftarrow \alpha A \bar{A} \bar{T}^{T}+\beta C\) or \(C \leftarrow \alpha \bar{A}^{T} A+\beta C\), \\
where \(C\) is an \(n\) by \(n\) Hermitian matrix and \(A\) is an \(n\) by \(k\) \\
matrix in the first case and a \(k\) by \(n\) matrix in the second \\
case.
\end{tabular} \\
& 1408 & \begin{tabular}{l} 
Extends a complex Hermitian matrix defined in its upper \\
triangle to its lower triangle. \\
Checks a user-supplied gradient of a function.
\end{tabular} \\
CHFCG & 1349 & 1352
\end{tabular} \begin{tabular}{l} 
Checks a user-supplied Hessian of an analytic function. \\
CHGRD \\
CHHES
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline CSCAL & 1319 & Multiplies a vector by a scalar, \(y \leftarrow\) \\
\hline CSCON & 603 & Computes a cubic spline interpolant that is consistent with the concavity of the data. \\
\hline CSDEC & 593 & Computes the cubic spline interpolant with specified derivative endpoint conditions. \\
\hline CSDER & 610 & Evaluates the derivative of a cubic spline. \\
\hline CSET & 1318 & Sets the components of a vector to a scalar, all complex. \\
\hline CSFRG & 1406 & Extends a real symmetric matrix defined in its upper triangle to its lower triangle. \\
\hline CSHER & 597 & Computes the Hermite cubic spline interpolant. \\
\hline CSIEZ & 587 & Computes the cubic spline interpolant with the 'not-aknot' condition and return values of the interpolant at specified points. \\
\hline CSINT & 590 & Computes the cubic spline interpolant with the 'not-aknot' condition. \\
\hline CSITG & 616 & Evaluates the integral of a cubic spline. \\
\hline CSPER & 506 & Computes the cubic spline interpolant with periodic boundary conditions. \\
\hline CSROT & 1325 & Applies a complex Givens plane rotation. \\
\hline CSROTM & 1326 & Applies a complex modified Givens plane rotation. \\
\hline CSSCAL & 1319 & Multiplies a complex vector by a single-precision scalar, \(y \leftarrow a y\). \\
\hline csscv & 761 & Computes a smooth cubic spline approximation to noisy data using cross-validation to estimate the smoothing parameter. \\
\hline CSSED & 754 & Smooths one-dimensional data by error detection. \\
\hline CSSMH & 758 & Computes a smooth cubic spline approximation to noisy data. \\
\hline CSUB & 1319 & Subtracts each component of a vector from a scalar, \(x \leftarrow a-x\), all complex. \\
\hline CSVAL & 609 & Evaluates a cubic spline. \\
\hline CSVCAL & 1319 & Multiplies a complex vector by a single-precision scalar and store the result in another complex vector, \(y \leftarrow a x\). \\
\hline CSWAP & 1320 & Interchanges vectors \(x\) and \(y\), both complex. \\
\hline CSYMM & 1334 & \begin{tabular}{l}
Computes one of the matrix-matrix operations:
\[
C \leftarrow \alpha A B+\beta C \text { or } C \leftarrow \alpha B A+\beta C,
\] \\
where \(A\) is a symmetric matrix and \(B\) and \(C\) are \(m\) by \(n\) matrices.
\end{tabular} \\
\hline
\end{tabular}

Computes one of the symmetric rank \(2 k\) operations:
\(C \leftarrow \alpha A B^{T}+\alpha B A^{T}+\beta C\) or \(C \leftarrow \alpha A^{T} B+\alpha B^{T} A+\beta C\), where \(C\) is an \(n\) by \(n\) symmetric matrix and \(A\) and \(B\) are \(n\) by \(k\) matrices in the first case and \(k\) by \(n\) matrices in the second case.

Computes one of the symmetric rank \(k\) operations:
\(C \leftarrow \alpha A A^{T}+\beta C\) or \(C \leftarrow \alpha A^{T} A+\beta C\),
where \(C\) is an \(n\) by \(n\) symmetric matrix and \(A\) is an \(n\) by \(k\) matrix in the first case and a \(k\) by \(n\) matrix in the second case.

Computes one of the matrix-vector operations:
\(x \leftarrow A x, x \leftarrow A^{T} x\), or \(x \leftarrow \bar{A}^{T} x\),
where \(A\) is a triangular matrix in band storage mode.
Solves one of the complex triangular systems:
\(x \leftarrow A^{-1} x, x \leftarrow\left(A^{-1}\right)^{T} x\), or \(x \leftarrow\left(\bar{A}^{T}\right)^{-1} x\),
where \(A\) is a triangular matrix in band storage mode.
Computes one of the matrix-matrix operations:
\(B \leftarrow \alpha A B, B \leftarrow \alpha A^{T} B, B \leftarrow \alpha B A, B \leftarrow \alpha B A^{T}\),
\(B \leftarrow \alpha \bar{A}^{T} B\), or \(B \leftarrow \alpha B \bar{A}^{T}\)
where \(B\) is an \(m\) by \(n\) matrix and \(A\) is a triangular matrix.
Computes one of the matrix-vector operations:
\(x \leftarrow A x, x \leftarrow A^{T} x\), or \(x \leftarrow \bar{A}^{T} x\),
where \(A\) is a triangular matrix.
Solves one of the complex matrix equations:
\(B \leftarrow \alpha A^{-1} B, B \leftarrow \alpha B A^{-1}, B \leftarrow \alpha\left(A^{-1}\right)^{T} B, B \leftarrow \alpha B\left(A^{-1}\right)^{T}\),
\(B \leftarrow \alpha\left(\bar{A}^{T}\right)^{-1} B\), or \(B \leftarrow \alpha B\left(\bar{A}^{T}\right)^{-1}\)
where \(A\) is a traiangular matrix.
Solves one of the complex triangular systems:
\(x \leftarrow A^{-1} x, x \leftarrow\left(A^{-1}\right)^{T} x\), or \(x \leftarrow\left(\bar{A}^{T}\right)^{-1} x\),
where \(A\) is a triangular matrix.
Converts X in units XUNITS to Y in units YUNITS.
Multiplies a vector by a scalar and store the result in another vector, \(y \leftarrow a x\), all complex.

Converts a character string containing an integer number into the corresponding integer form.
\begin{tabular}{|c|c|c|}
\hline CZCDOT & 1321 & Computes the sum of a complex scalar plus a complex conjugate dot product, \(a+\bar{x}^{T} y\), using a double-precision accumulator. \\
\hline CZDOTA & 1321 & Computes the sum of a complex scalar, a complex dot product and the double-complex accumulator, which is set to the result \(\mathrm{ACC} \leftarrow \mathrm{ACC}+a+x^{T} y\). \\
\hline CZDOTC & 1320 & Computes the complex conjugate dot product, \(\bar{x}^{T} y\), using a double-precision accumulator. \\
\hline CZDOTI & 1321 & Computes the sum of a complex scalar plus a complex dot product using a double-complex accumulator, which is set to the result ACC \(\leftarrow a+x^{T} y\). \\
\hline CZDOTU & 1320 & Computes the complex dot product \(x^{T} y\) using a doubleprecision accumulator. \\
\hline CZUDOT & 1321 & Computes the sum of a complex scalar plus a complex dot product, \(a+x^{T} y\), using a double-precision accumulator. \\
\hline DASPG & 889 & Solves a first order differential-algebraic system of equations, \(g\left(t, y, y^{\prime}\right)=0\), using Petzold-Gear BDF method. \\
\hline DERIV & 827 & Computes the first, second or third derivative of a usersupplied function. \\
\hline DET & 1477 & Computes the determinant of a rectangular matrix, \(A\). \\
\hline DIAG & 1479 & Constructs a square diagonal matrix from a rank-1 array or several diagonal matrices from a rank-2 array. \\
\hline DIAGONALS & 1479 & Extracts a rank-1 array whose values are the diagonal terms of a rank-2 array argument. \\
\hline DISL1 & 1452 & Computes the 1-norm distance between two points. \\
\hline DISL2 & 1450 & Computes the Euclidean (2-norm) distance between two points. \\
\hline DISLI & 1454 & Computes the infinity norm distance between two points. \\
\hline DLPRS & 1297 & Solves a linear programming problem via the revised simplex algorithm. \\
\hline DMACH & 1686 & See AMACH. \\
\hline DQADD & 1460 & Adds a double-precision scalar to the accumulator in extended precision. \\
\hline DQINI & 1460 & Initializes an extended-precision accumulator with a double-precision scalar. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline DQMUL & 1460 & Multiplies double-precision scalars in extended precision. \\
\hline DQSTO & 1460 & Stores a double-precision approximation to an extendedprecision scalar. \\
\hline DSDOT & 1371 & Computes the single-precision dot product \(x^{T} y\) using a double precision accumulator. \\
\hline DUMAG & 1664 & This routine handles MATH/LIBRARY and STAT/LIBRARY type DOUBLE PRECISION options. \\
\hline EIG & 1480 & Computes the eigenvalue-eigenvector decomposition of an ordinary or generalized eigenvalue problem. \\
\hline EPICG & 467 & Computes the performance index for a complex eigensystem. \\
\hline EPIHF & 518 & Computes the performance index for a complex Hermitian eigensystem. \\
\hline EPIRG & 460 & Computes the performance index for a real eigensystem. \\
\hline EPISB & 501 & Computes the performance index for a real symmetric eigensystem in band symmetric storage mode. \\
\hline EPISF & 483 & Computes the performance index for a real symmetric eigensystem. \\
\hline ERROR_POST & 1568 & Prints error messages that are generated by IMSL routines using EPACK \\
\hline ERSET & 1679 & Sets error handler default print and stop actions. \\
\hline EVAHF & 508 & Computes the largest or smallest eigenvalues of a complex Hermitian matrix. \\
\hline EVASB & 490 & Computes the largest or smallest eigenvalues of a real symmetric matrix in band symmetric storage mode. \\
\hline EVASF & 473 & Computes the largest or smallest eigenvalues of a real symmetric matrix. \\
\hline EVBHF & 513 & Computes the eigenvalues in a given range of a complex Hermitian matrix. \\
\hline EVBSB & 495 & Computes the eigenvalues in a given interval of a real symmetric matrix stored in band symmetric storage mode. \\
\hline EVBSF & 478 & Computes selected eigenvalues of a real symmetric matrix. \\
\hline EVCCG & 464 & Computes all of the eigenvalues and eigenvectors of a complex matrix. \\
\hline EVCCH & 526 & Computes all of the eigenvalues and eigenvectors of a complex upper Hessenberg matrix. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline EVCHF & 505 & Computes all of the eigenvalues and eigenvectors of a complex Hermitian matrix. \\
\hline EVCRG & 457 & Computes all of the eigenvalues and eigenvectors of a real matrix. \\
\hline EVCRH & 522 & Computes all of the eigenvalues and eigenvectors of a real upper Hessenberg matrix. \\
\hline EVCSB & 487 & Computes all of the eigenvalues and eigenvectors of a real symmetric matrix in band symmetric storage mode. \\
\hline EVCSF & 471 & Computes all of the eigenvalues and eigenvectors of a real symmetric matrix. \\
\hline EVEHF & 510 & Computes the largest or smallest eigenvalues and the corresponding eigenvectors of a complex Hermitian matrix. \\
\hline EVESB & 492 & Computes the largest or smallest eigenvalues and the corresponding eigenvectors of a real symmetric matrix in band symmetric storage mode. \\
\hline EVESF & 475 & Computes the largest or smallest eigenvalues and the corresponding eigenvectors of a real symmetric matrix. \\
\hline EVFHF & 515 & Computes the eigenvalues in a given range and the corresponding eigenvectors of a complex Hermitian matrix. \\
\hline EVFSB & 498 & Computes the eigenvalues in a given interval and the corresponding eigenvectors of a real symmetric matrix stored in band symmetric storage mode. \\
\hline EVFSF & 480 & Computes selected eigenvalues and eigenvectors of a real symmetric matrix. \\
\hline EVLCG & 462 & Computes all of the eigenvalues of a complex matrix. \\
\hline EVLCH & 525 & Computes all of the eigenvalues of a complex upper Hessenberg matrix. \\
\hline EVLHF & 502 & Computes all of the eigenvalues of a complex Hermitian matrix. \\
\hline EVLRG & 455 & Computes all of the eigenvalues of a real matrix. \\
\hline EVLRH & 520 & Computes all of the eigenvalues of a real upper Hessenberg matrix. \\
\hline EVLSB & 485 & Computes all of the eigenvalues of a real symmetric matrix in band symmetric storage mode. \\
\hline EVLSF & 469 & Computes all of the eigenvalues of a real symmetric matrix. \\
\hline EYE & 1481 & Creates a rank-2 square array whose diagonals are all the value one. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline FAURE_FREE & 1655 & Frees the structure containing information about the Faure sequence. \\
\hline FAURE_INIT & 1655 & Shuffled Faure sequence initialization. \\
\hline FAURE_NEXT & 1656 & Computes a shuffled Faure sequence. \\
\hline FAST_DFT & 992 & Computes the Discrete Fourier Transform of a rank-1 complex array, \(x\). \\
\hline FAST_2DFT & 1000 & Computes the Discrete Fourier Transform (2DFT) of a rank-2 complex array, \(x\). \\
\hline FAST_3DFT & 1006 & Computes the Discrete Fourier Transform (2DFT) of a rank-3 complex array, \(x\). \\
\hline FCOSI & 1030 & Computes parameters needed by FCOST. \\
\hline FCOST & 1028 & Computes the discrete Fourier cosine transformation of an even sequence. \\
\hline FDGRD & 1338 & Approximates the gradient using forward differences. \\
\hline FDHES & 1340 & Approximates the Hessian using forward differences and function values. \\
\hline FDJAC & 1346 & Approximates the Jacobian of m functions in N unknowns using forward differences. \\
\hline FFT & 1482 & The Discrete Fourier Transform of a complex sequence and its inverse transform. \\
\hline FFT_BOX & 1482 & The Discrete Fourier Transform of several complex or real sequences. \\
\hline FFT2B & 1048 & Computes the inverse Fourier transform of a complex periodic two-dimensional array. \\
\hline FFT2D & 1045 & Computes Fourier coefficients of a complex periodic twodimensional array. \\
\hline FFT3B & 1055 & Computes the inverse Fourier transform of a complex periodic three-dimensional array. \\
\hline FFT3F & 1051 & Computes Fourier coefficients of a complex periodic threedimensional array. \\
\hline FFTCB & 1019 & Computes the complex periodic sequence from its Fourier coefficients. \\
\hline FFTCF & 1017 & Computes the Fourier coefficients of a complex periodic sequence. \\
\hline FFTCI & 1022 & Computes parameters needed by FFTCF and FFTCB. \\
\hline FFTRB & 1012 & Computes the real periodic sequence from its Fourier coefficients. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline FFTRF & 1009 & Computes the Fourier coefficients of a real periodic sequence. \\
\hline FFTRI & 1015 & Computes parameters needed by FFTRF and FFTRB. \\
\hline FNLSQ & 720 & Computes a least-squares approximation with usersupplied basis functions. \\
\hline FPS2H & 961 & Solves Poisson's or Helmholtz's equation on a twodimensional rectangle using a fast Poisson solver based on the HODIE finite-difference scheme on a uni mesh. \\
\hline FPS3H & 967 & Solves Poisson's or Helmholtz's equation on a threedimensional box using a fast Poisson solver based on the HODIE finite-difference scheme on a uniform mesh. \\
\hline FQRUL & 824 & Computes a Fejér quadrature rule with various classical weight functions. \\
\hline FSINI & 1026 & Computes parameters needed by FSINT. \\
\hline FSINT & 1024 & Computes the discrete Fourier sine transformation of an odd sequence. \\
\hline GDHES & 1343 & Approximates the Hessian using forward differences and a user-supplied gradient. \\
\hline GGUES & 1359 & Generates points in an N-dimensional space. \\
\hline GMRES & 368 & Uses restarted GMRES with reverse communication to generate an approximate solution of \(A x=b\). \\
\hline GPICG & 542 & Computes the performance index for a generalized complex eigensystem \(A z=\lambda B z\). \\
\hline GPIRG & 535 & Computes the performance index for a generalized real eigensystem \(A z=\lambda B z\). \\
\hline GPISP & 549 & Computes the performance index for a generalized real symmetric eigensystem problem. \\
\hline GQRCF & 815 & Computes a Gauss, Gauss-Radau or Gauss-Lobatto quadrature rule given the recurrence coefficients for the monic polynomials orthogonal with respect to the weight function. \\
\hline GQRUL & 811 & Computes a Gauss, Gauss-Radau, or Gauss-Lobatto quadrature rule with various classical weight functions. \\
\hline GVCCG & 540 & Computes all of the eigenvalues and eigenvectors of a generalized complex eigensystem \(A z=\lambda B z\). \\
\hline GVCRG & 531 & Computes all of the eigenvalues and eigenvectors of a generalized real eigensystem \(A z=\lambda B z\). \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline GVCSP & 547 & Computes all of the eigenvalues and eigenvectors of the generalized real symmetric eigenvalue problem \(A z=\lambda B z\), with \(B\) symmetric positive definite. \\
\hline GVLCG & 537 & Computes all of the eigenvalues of a generalized complex eigensystem \(A z=\lambda B z\). \\
\hline GVLRG & 529 & Computes all of the eigenvalues of a generalized real eigensystem \(A z=\lambda B z\). \\
\hline GVLSP & 544 & Computes all of the eigenvalues of the generalized real symmetric eigenvalue problem \(A z=\lambda B z\), with \(B\) symmetric positive definite. \\
\hline HRRRR & 1425 & Computes the Hadamard product of two real rectangular matrices. \\
\hline HYPOT & 1675 & Computes \(\sqrt{a^{2}+b^{2}}\) without underflow or overflow. \\
\hline IACHAR & 1625 & Returns the integer ASCII value of a character argument. \\
\hline IADD & 1319 & Adds a scalar to each component of a vector, \(x \leftarrow x+a\), all integer. \\
\hline ICAMAX & 1324 & Finds the smallest index of the component of a complex vector having maximum magnitude. \\
\hline ICAMIN & 1323 & Finds the smallest index of the component of a complex vector having minimum magnitude. \\
\hline ICASE & 1626 & Returns the ASCII value of a character converted to uppercase. \\
\hline ICOPY & 1319 & Copies a vector \(x\) to a vector \(y\), both integer. \\
\hline IDYWK & 1637 & Computes the day of the week for a given date. \\
\hline IERCD & 1680 & Retrieves the code for an informational error. \\
\hline IFFT & 1483 & The inverse of the Discrete Fourier Transform of a complex sequence. \\
\hline IFFT_BOX & 1484 & The inverse Discrete Fourier Transform of several complex or real sequences. \\
\hline IFNAN (X) & 1686 & Checks if a value is NaN ( not a number). \\
\hline IICSR & 1627 & Compares two character strings using the ASCII collating sequence but without regard to case. \\
\hline IIDEX & 1629 & Determines the position in a string at which a given character sequence begins without regard to case. \\
\hline IIMAX & 1323 & Finds the smallest index of the maximum component of a integer vector. \\
\hline IIMIN & 1323 & Finds the smallest index of the minimum of an integer vector. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline IMACH & 1683 & Retrieves integer machine constants. \\
\hline INLAP & 1078 & Computes the inverse Laplace transform of a complex function. \\
\hline ISAMAX & 1374 & Finds the smallest index of the component of a singleprecision vector having maximum absolute value. \\
\hline ISAMIN & 1374 & Finds the smallest index of the component of a singleprecision vector having minimum absolute value. \\
\hline ISET & 1318 & Sets the components of a vector to a scalar, all integer. \\
\hline ISMAX & 1374 & Finds the smallest index of the component of a singleprecision vector having maximum value. \\
\hline ISMIN & 1374 & Finds the smallest index of the component of a singleprecision vector having minimum value. \\
\hline ISNAN & 1485 & This is a generic logical function used to test scalars or arrays for occurrence of an IEEE 754 Standard format of floating point (ANSI/IEEE 1985) NaN, or not-a-number. \\
\hline ISRCH & 1620 & Searches a sorted integer vector for a given integer and return its index. \\
\hline ISUB & 1319 & Subtracts each component of a vector from a scalar, \(x \leftarrow a-x\), all integer. \\
\hline ISUM & 1322 & Sums the values of an integer vector. \\
\hline ISWAP & 1320 & Interchanges vectors \(x\) and \(y\), both integer. \\
\hline IUMAG & 1658 & Sets or retrieves MATH/LIBRARY integer options. \\
\hline IVMRK & 844 & Solves an initial-value problem \(y^{\prime}=f(t, y)\) for ordinary differential equations using Runge-Kutta pairs of various orders. \\
\hline IVPAG & 854 & Solves an initial-value problem for ordinary differential equations using either Adams-Moulton's or Gear's BDF method. \\
\hline IVPRK & 837 & Solves an initial-value problem for ordinary differential equations using the Runge-Kutta-Verner fifth-order and sixth-order method. \\
\hline IWKCIN & 1701 & Initializes bookkeeping locations describing the character workspace stack. \\
\hline IWKIN & 1700 & Initializes bookkeeping locations describing the workspace stack. \\
\hline JCGRC & 365 & Solves a real symmetric definite linear system using the Jacobi preconditioned conjugate gradient method with reverse communication. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline LCHRG & 406 & Computes the Cholesky decomposition of a symmetric positive semidefinite matrix with optional column pivoting. \\
\hline LCLSQ & 388 & Solves a linear least-squares problem with linear constraints. \\
\hline LCONF & 1310 & Minimizes a general objective function subject to linear equality/inequality constraints. \\
\hline LCONG & 1316 & Minimizes a general objective function subject to linear equality/inequality constraints. \\
\hline LDNCH & 412 & Downdates the \(R^{T} R\) Cholesky factorization of a real symmetric positive definite matrix after a rank-one matrix is removed. \\
\hline LFCCB & 262 & Computes the \(L U\) factorization of a complex matrix in band storage mode and estimate its \(L_{1}\) condition number. \\
\hline LFCCG & 108 & Computes the \(L U\) factorization of a complex general matrix and estimate its \(L_{1}\) condition number. \\
\hline LFCCT & 132 & Estimates the condition number of a complex triangular matrix. \\
\hline LFCDH & 179 & Computes the \(R^{H} R\) factorization of a complex Hermitian positive definite matrix and estimate its \(L_{1}\) condition number. \\
\hline LFCDS & 143 & Computes the \(R^{T} R\) Cholesky factorization of a real symmetric positive definite matrix and estimate its \(L_{1}\) condition number. \\
\hline LFCHF & 197 & Computes the \(U D U^{H}\) factorization of a complex Hermitian matrix and estimate its \(L_{1}\) condition number. \\
\hline LFCQH & 284 & Computes the \(R^{H} R\) factorization of a complex Hermitian positive definite matrix in band Hermitian storage mode and estimate its \(L_{1}\) condition number. \\
\hline LFCQS & 240 & Computes the \(R^{T} R\) Cholesky factorization of a real symmetric positive definite matrix in band symmetric storage mode and estimate its \(L_{1}\) condition number. \\
\hline LFCRB & 219 & Computes the \(L U\) factorization of a real matrix in band storage mode and estimate its \(L_{1}\) condition number. \\
\hline LFCRG & 89 & Computes the \(L U\) factorization of a real general matrix and estimate its \(L_{1}\) condition number. \\
\hline LFCRT & 125 & Estimates the condition number of a real triangular matrix. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline LFCSF & 162 & Computes the \(U D U^{T}\) factorization of a real symmetric matrix and estimate its \(L_{1}\) condition number. \\
\hline LFDCB & 274 & Computes the determinant of a complex matrix given the \(L U\) factorization of the matrix in band storage mode. \\
\hline LFDCG & 119 & Computes the determinant of a complex general matrix given the \(L U\) factorization of the matrix. \\
\hline LFDCT & 134 & Computes the determinant of a complex triangular matrix. \\
\hline LFDDH & 190 & Computes the determinant of a complex Hermitian positive definite matrix given the \(R^{H} R\) Cholesky factorization of the matrix. \\
\hline LFDDS & 153 & Computes the determinant of a real symmetric positive definite matrix given the \(R^{H} R\) Cholesky factorization of the matrix. \\
\hline LFDHF & 207 & Computes the determinant of a complex Hermitian matrix given the \(U D U^{H}\) factorization of the matrix. \\
\hline LFDQH & 295 & Computes the determinant of a complex Hermitian positive definite matrix given the \(R^{H} R\) Cholesky factorization in band Hermitian storage mode. \\
\hline LFDQS & 250 & Computes the determinant of a real symmetric positive definite matrix given the \(R^{T} R\) Cholesky factorization of the band symmetric storage mode. \\
\hline LFDRB & 230 & Computes the determinant of a real matrix in band storage mode given the \(L U\) factorization of the matrix. \\
\hline LFDRG & 99 & Computes the determinant of a real general matrix given the \(L U\) factorization of the matrix. \\
\hline LFDRT & 127 & Computes the determinant of a real triangular matrix. \\
\hline LFDSF & 172 & Computes the determinant of a real symmetric matrix given the \(U D U^{T}\) factorization of the matrix. \\
\hline LFICB & 270 & Uses iterative refinement to improve the solution of a complex system of linear equations in band storage mode. \\
\hline LFICG & 116 & Uses iterative refinement to improve the solution of a complex general system of linear equations. \\
\hline LFIDH & 187 & Uses iterative refinement to improve the solution of a complex Hermitian positive definite system of linear equations. \\
\hline LFIDS & 150 & Uses iterative refinement to improve the solution of a real symmetric positive definite system of linear equations. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline LFIHF & 204 & Uses iterative refinement to improve the solution of a complex Hermitian system of linear equations. \\
\hline LFIQH & 292 & Uses iterative refinement to improve the solution of a complex Hermitian positive definite system of linear equations in band Hermitian storage mode. \\
\hline LFIQS & 247 & Uses iterative refinement to improve the solution of a real symmetric positive definite system of linear equations in band symmetric storage mode. \\
\hline LFIRB & 227 & Uses iterative refinement to improve the solution of a real system of linear equations in band storage mode. \\
\hline LFIRG & 96 & Uses iterative refinement to improve the solution of a real general system of linear equations. \\
\hline LFISF & 169 & Uses iterative refinement to improve the solution of a real symmetric system of linear equations. \\
\hline LFSCB & 268 & Solves a complex system of linear equations given the \(L U\) factorization of the coefficient matrix in band storage mode. \\
\hline LFSCG & 114 & Solves a complex general system of linear equations given the \(L U\) factorization of the coefficient matrix. \\
\hline LFSDH & 184 & Solves a complex Hermitian positive definite system of linear equations given the \(R^{H} R\) factorization of the coefficient matrix. \\
\hline LFSDS & 148 & Solves a real symmetric positive definite system of linear equations given the \(R^{T} R\) Choleksy factorization of the coefficient matrix. \\
\hline LFSHF & 202 & Solves a complex Hermitian system of linear equations given the \(U D U^{H}\) factorization of the coefficient matrix. \\
\hline LFSQH & 290 & Solves a complex Hermitian positive definite system of linear equations given the factorization of the coefficient matrix in band Hermitian storage mode. \\
\hline LFSQS & 245 & Solves a real symmetric positive definite system of linear equations given the factorization of the coefficient matrix in band symmetric storage mode. \\
\hline LFSRB & 225 & Solves a real system of linear equations given the \(L U\) factorization of the coefficient matrix in band storage mode. \\
\hline LFSRG & 94 & Solves a real general system of linear equations given the \(L U\) factorization of the coefficient matrix. \\
\hline LFSSF & 167 & Solves a real symmetric system of linear equations given the \(U D U^{T}\) factorization of the coefficient matrix. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline LFSXD & 336 & Solves a real sparse symmetric positive definite system of linear equations, given the Cholesky factorization of the coefficient matrix. \\
\hline LFSXG & 306 & Solves a sparse system of linear equations given the \(L U\) factorization of the coefficient matrix. \\
\hline LFSZD & 349 & Solves a complex sparse Hermitian positive definite system of linear equations, given the Cholesky factorization of the coefficient matrix. \\
\hline LFSZG & 319 & Solves a complex sparse system of linear equations given the \(L U\) factorization of the coefficient matrix. \\
\hline LFTCB & 265 & Computes the \(L U\) factorization of a complex matrix in band storage mode. \\
\hline LFTCG & 111 & Computes the \(L U\) factorization of a complex general matrix. \\
\hline LFTDH & 182 & Computes the \(R^{H} R\) factorization of a complex Hermitian positive definite matrix. \\
\hline LFTDS & 146 & Computes the \(R^{T} R\) Cholesky factorization of a real symmetric positive definite matrix. \\
\hline LFTHF & 200 & Computes the \(U D U^{H}\) factorization of a complex Hermitian matrix. \\
\hline LFTQH & 288 & Computes the \(R^{H} R\) factorization of a complex Hermitian positive definite matrix in band Hermitian storage mode. \\
\hline LFTQS & 243 & Computes the \(R^{T} R\) Cholesky factorization of a real symmetric positive definite matrix in band symmetric storage mode. \\
\hline LFTRB & 222 & Computes the \(L U\) factorization of a real matrix in band storage mode. \\
\hline LFTRG & 92 & Computes the \(L U\) factorization of a real general matrix. \\
\hline LFTSF & 164 & Computes the \(U D U^{T}\) factorization of a real symmetric matrix. \\
\hline LFTXG & 301 & Computes the \(L U\) factorization of a real general sparse matrix. \\
\hline LFTZG & 314 & Computes the \(L U\) factorization of a complex general sparse matrix. \\
\hline LINCG & 121 & Computes the inverse of a complex general matrix. \\
\hline LINCT & 136 & Computes the inverse of a complex triangular matrix. \\
\hline LINDS & 154 & Computes the inverse of a real symmetric positive definite matrix. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline LINRG & 101 & Computes the inverse of a real general matrix. \\
\hline LINRT & 128 & Computes the inverse of a real triangular matrix. \\
\hline LIN_EIG_GEN & 439 & Computes the eigenvalues of a self-adjoint matrix, \(A\). \\
\hline LIN_EIG_SELF & 432 & Computes the eigenvalues of a self-adjoint matrix, \(A\). \\
\hline LIN_GEIG_SELF & 448 & Computes the generalized eigenvalues of an \(n \times n\) matrix pencil, \(A v=\lambda B v\). \\
\hline LIN_SOL_GEN & 9 & Solves a general system of linear equations \(A x=b\). \\
\hline LIN_SOL_LSQ & 27 & Solves a rectangular system of linear equations \(A x \cong b\), in a least-squares sense. \\
\hline LIN_SOL_SELF & 17 & Solves a system of linear equations \(A x=b\), where \(A\) is a self-adjoint matrix. \\
\hline LIN_SOL_SVD & 36 & Solves a rectangular least-squares system of linear equations \(A x \cong b\) using singular value decomposition. \\
\hline LIN_SOL_TRI & 44 & Solves multiple systems of linear equations. \\
\hline LIN_SVD & 57 & Computes the singular value decomposition (SVD) of a rectangular matrix, \(A\). \\
\hline LNFXD & 331 & Computes the numerical Cholesky factorization of a sparse symmetrical matrix \(A\). \\
\hline LNFZD & 344 & Computes the numerical Cholesky factorization of a sparse Hermitian matrix \(A\). \\
\hline LQERR & 396 & Accumulates the orthogonal matrix \(Q\) from its factored form given the \(Q R\) factorization of a rectangular matrix \(A\). \\
\hline LQRRR & 392 & Computes the \(Q R\) decomposition, \(A P=Q R\), using Householder transformations. \\
\hline LQRRV & 381 & Computes the least-squares solution using Householder transformations applied in blocked form. \\
\hline LQRSL & 398 & Computes the coordinate transformation, projection, and complete the solution of the least-squares problem \(A x=b\). \\
\hline LSACB & 257 & Solves a complex system of linear equations in band storage mode with iterative refinement. \\
\hline LSACG & 103 & Solves a complex general system of linear equations with iterative refinement. \\
\hline LSADH & 173 & Solves a Hermitian positive definite system of linear equations with iterative refinement. \\
\hline LSADS & 138 & Solves a real symmetric positive definite system of linear equations with iterative refinement. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline LSAHF & 191 & Solves a complex Hermitian system of linear equations with iterative refinement. \\
\hline LSAQH & 276 & Solves a complex Hermitian positive definite system of linear equations in band Hermitian storage mode with iterative refinement. \\
\hline LSAQS & 232 & Solves a real symmetric positive definite system of linear equations in band symmetric storage mode with iterative refinement. \\
\hline LSARB & 213 & Solves a real system of linear equations in band storage mode with iterative refinement. \\
\hline LSARG & 83 & Solves a real general system of linear equations with iterative refinement. \\
\hline LSASF & 156 & Solves a real symmetric system of linear equations with iterative refinement. \\
\hline LSBRR & 385 & Solves a linear least-squares problem with iterative refinement. \\
\hline LSCXD & 327 & Performs the symbolic Cholesky factorization for a sparse symmetric matrix using a minimum degree ordering or a userspecified ordering, and set up the data structure for the numerical Cholesky factorization. \\
\hline LSGRR & 424 & Computes the generalized inverse of a real matrix. \\
\hline LSLCB & 259 & Solves a complex system of linear equations in band storage mode without iterative refinement. \\
\hline LSLCC & 356 & Solves a complex circulant linear system. \\
\hline LSLCG & 106 & Solves a complex general system of linear equations without iterative refinement. \\
\hline LSLCQ & 253 & Computes the \(L D U\) factorization of a complex tridiagonal matrix \(A\) using a cyclic reduction algorithm. \\
\hline LSLCR & 211 & Computes the \(L D U\) factorization of a real tridiagonal matrix \(A\) using a cyclic reduction algorithm. \\
\hline LSLCT & 130 & Solves a complex triangular system of linear equations. \\
\hline LSLDH & 176 & Solves a complex Hermitian positive definite system of linear equations without iterative refinement. \\
\hline LSLDS & 140 & Solves a real symmetric positive definite system of linear equations without iterative refinement. \\
\hline LSLHF & 194 & Solves a complex Hermitian system of linear equations without iterative refinement. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline LSLPB & 237 & Computes the \(R^{T} D R\) Cholesky factorization of a real symmetric positive definite matrix \(A\) in codiagonal band symmetric storage mode. Solve a system \(A x=b\). \\
\hline LSLQB & 281 & Computes the \(R^{H} D R\) Cholesky factorization of a complex hermitian positive-definite matrix \(A\) in codiagonal band hermitian storage mode. Solve a system \(A x=b\). \\
\hline LSLQH & 279 & Solves a complex Hermitian positive definite system of linearequations in band Hermitian storage mode without iterative refinement. \\
\hline LSLQS & 234 & Solves a real symmetric positive definite system of linear equations in band symmetric storage mode without iterative refinement. \\
\hline LSLRB & 216 & Solves a real system of linear equations in band storage mode without iterative refinement. \\
\hline LSLRG & 85 & Solves a real general system of linear equations without iterative refinement. \\
\hline LSLRT & 123 & Solves a real triangular system of linear equations. \\
\hline LSLSF & 159 & Solves a real symmetric system of linear equations without iterative refinement. \\
\hline LSLTC & 354 & Solves a complex Toeplitz linear system. \\
\hline LSLTO & 352 & Solves a real Toeplitz linear system. \\
\hline LSLTQ & 252 & Solves a complex tridiagonal system of linear equations. \\
\hline LSLTR & 209 & Solves a real tridiagonal system of linear equations. \\
\hline LSLXD & 323 & Solves a sparse system of symmetric positive definite linear algebraic equations by Gaussian elimination. \\
\hline LSLXG & 297 & Solves a sparse system of linear algebraic equations by Gaussian elimination. \\
\hline LSLZD & 340 & Solves a complex sparse Hermitian positive definite system of linear equations by Gaussian elimination. \\
\hline LSLZG & 309 & Solves a complex sparse system of linear equations by Gaussian elimination. \\
\hline LSQRR & 378 & Solves a linear least-squares problem without iterative refinement. \\
\hline LSVCR & 419 & Computes the singular value decomposition of a complex matrix. \\
\hline LSVRR & 415 & Computes the singular value decomposition of a real matrix. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline LUPCH & 409 & Updates the \(R^{T} R\) Cholesky factorization of a real symmetric positive definite matrix after a rank-one matrix is added. \\
\hline LUPQR & 402 & Computes an updated \(Q R\) factorization after the rank-one matrix \(\alpha x y^{T}\) is added. \\
\hline MCRCR & 1423 & Multiplies two complex rectangular matrices, \(A B\). \\
\hline MOLCH & 946 & Solves a system of partial differential equations of the form \(u_{t}=f\left(x, t, u, u_{x}, u_{x x}\right)\) using the method of lines. The solution is represented with cubic Hermite polynomials. \\
\hline MRRRR & 1421 & Multiplies two real rectangular matrices, \(A B\). \\
\hline MUCBV & 1436 & Multiplies a complex band matrix in band storage mode by a complex vector. \\
\hline MUCRV & 1435 & Multiplies a complex rectangular matrix by a complex vector. \\
\hline MURBV & 1433 & Multiplies a real band matrix in band storage mode by a real vector. \\
\hline MURRV & 1431 & Multiplies a real rectangular matrix by a vector. \\
\hline MXTXF & 1415 & Computes the transpose product of a matrix, \(A^{T} A\). \\
\hline MXTYF & 1416 & Multiplies the transpose of matrix \(A\) by matrix \(B, A^{T} B\). \\
\hline MXYTF & 1418 & Multiplies a matrx \(A\) by the transpose of a matrix \(B, A B^{T}\). \\
\hline NAN & 1486 & Returns, as a scalar function, a value corresponding to the IEEE 754 Standard format of floating point (ANSI/IEEE 1985) for NaN . . \\
\hline N1RTY & 1680 & Retrieves an error type for the most recently called IMSL routine. \\
\hline NDAYS & 1634 & Computes the number of days from January 1, 1900, to the given date. \\
\hline NDYIN & 1636 & Gives the date corresponding to the number of days since January 1, 1900. \\
\hline NEQBF & 1169 & Solves a system of nonlinear equations using factored secant update with a finite-difference approximation to the Jacobian. \\
\hline NEQBJ & 1174 & Solves a system of nonlinear equations using factored secant update with a user-supplied Jacobian. \\
\hline NEQNF & 1162 & Solves a system of nonlinear equations using a modified Powell hybrid algorithm and a finite-difference approximation to the Jacobian. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline NEQNJ & 1165 & Solves a system of nonlinear equations using a modified Powell hybrid algorithm with a user-supplied Jacobian. \\
\hline NNLPF & 1323 & Uses a sequential equality constrained QP method. \\
\hline NNLPG & 1329 & Uses a sequential equality constrained QP method. \\
\hline NORM & 1487 & Computes the norm of a rank-1 or rank-2 array. For rank3 arrays, the norms of each rank-2 array, in dimension 3, are computed. \\
\hline NR1CB & 1449 & Computes the 1-norm of a complex band matrix in band storage mode. \\
\hline NR1RB & 1447 & Computes the 1-norm of a real band matrix in band storage mode. \\
\hline NR1RR & 1444 & Computes the 1-norm of a real matrix. \\
\hline NR2RR & 1446 & Computes the Frobenius norm of a real rectangular matrix. \\
\hline NRIRR & 1443 & Computes the infinity norm of a real matrix. \\
\hline OPERATOR: .h. & 1472 & Computes transpose and conjugate transpose of a matrix. \\
\hline OPERATOR: .hx. & 1471 & Computes matrix-vector and matrix-matrix products. \\
\hline OPERATOR:.i. & 1473 & Computes the inverse matrix, for square non-singular matrices. \\
\hline OPERATOR:.ix. & 1474 & Computes the inverse matrix times a vector or matrix for square non-singular matrices. \\
\hline OPERATOR:..t. & 1472 & Computes transpose and conjugate transpose of a matrix. \\
\hline OPERATOR:.tx. & 1471 & Computes matrix-vector and matrix-matrix products. \\
\hline OPERATOR:.x. & 1471 & Computes matrix-vector and matrix-matrix products.. \\
\hline OPERATOR: . . xh. & 1471 & Computes matrix-vector and matrix-matrix products. \\
\hline OPERATOR:..xi. & 1474 & Computes the inverse matrix times a vector or matrix for square non-singular matrices. \\
\hline OPERATORS:.xt. & 1471 & Computes matrix-vector and matrix-matrix products. \\
\hline ORTH & 1488 & Orthogonalizes the columns of a rank-2 or rank-3 array. \\
\hline PCGRC & 359 & Solves a real symmetric definite linear system using a preconditioned conjugate gradient method with reverse communication. \\
\hline PARALLEL_NONNEGATIVE_LSQ & 67 & Solves a linear, non-negative constrained least-squares system. \\
\hline PARALLEL_BOUNDED_LSQ & 75 & Solves a linear least-squares system with bounds on the unknowns. \\
\hline PDE_1D_MG & 913 & Method of lines with Variable Griddings. \\
\hline
\end{tabular}
\(\left.\begin{array}{lll}\text { PERMA } & 1602 & \begin{array}{l}\text { Permutes the rows or columns of a matrix. } \\
\text { PERMU }\end{array} \\
\text { PGOPT } & 1600 & \begin{array}{l}\text { Rearranges the elements of an array as specified by a } \\
\text { permutation. }\end{array} \\
\text { PLOTP } & 1694 & \begin{array}{l}\text { Sets or retrieves page width and length for printing. } \\
\text { POLRG }\end{array} \\
\text { Prints a plot of up to 10 sets of points. }\end{array}\right]\)\begin{tabular}{l} 
PP1GD
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline QDAWO & 785 & Integrates a function containing a sine or a cosine. \\
\hline QDAWS & 793 & Integrates a function with algebraic-logarithmic singularities. \\
\hline QDDER & 694 & Evaluates the derivative of a function defined on a set of points using quadratic interpolation. \\
\hline QDNG & 799 & Integrates a smooth function using a nonadaptive rule. \\
\hline QDVAL & 692 & Evaluates a function defined on a set of points using quadratic interpolation. \\
\hline QMC & 809 & Integrates a function over a hyperrectangle using a quasi-Monte Carlo method. \\
\hline QPROG & 1307 & Solves a quadratic programming problem subject to linear equality/inequality constraints. \\
\hline QSINB & 1034 & Computes a sequence from its sine Fourier coefficients with only odd wave numbers. \\
\hline QSINF & 1032 & Computes the coefficients of the sine Fourier transform with only odd wave numbers. \\
\hline QSINI & 1037 & Computes parameters needed by QSINF and QSINB. \\
\hline RAND & 1489 & Computes a scalar, rank-1, rank-2 or rank-3 array of random numbers. \\
\hline RAND_GEN & 1639 & Generates a rank-1 array of random numbers. \\
\hline RANK & 1490 & Computes the mathematical rank of a rank-2 or rank-3 array. \\
\hline RATCH & 764 & Computes a rational weighted Chebyshev approximation to a continuous function on an interval. \\
\hline RCONV & 1059 & Computes the convolution of two real vectors. \\
\hline RCORL & 1068 & Computes the correlation of two real vectors. \\
\hline RCURV & 716 & Fits a polynomial curve using least squares. \\
\hline RECCF & 818 & Computes recurrence coefficients for various monic polynomials. \\
\hline RECQR & 821 & Computes recurrence coefficients for monic polynomials given a quadrature rule. \\
\hline RLINE & 713 & Fits a line to a set of data points using least squares. \\
\hline RNGET & 1648 & Retrieves the current value of the seed used in the IMSL random number generators. \\
\hline RNOPT & 1650 & Selects the uniform \((0,1)\) multiplicative congruential pseudorandom number generator. \\
\hline RNSET & 1649 & Initializes a random seed for use in the IMSL random number generators. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline RNUN & 1653 & Generates pseudorandom numbers from a uniform \((0,1)\) distribution. \\
\hline RNUNF & 1651 & Generates a pseudorandom number from a uniform \((0,1)\) distribution. \\
\hline SADD & 1370 & Adds a scalar to each component of a vector, \(x \leftarrow x+a\), all single precision. \\
\hline SASUM & 1373 & Sums the absolute values of the components of a singleprecision vector. \\
\hline SAXPY & 1370 & Computes the scalar times a vector plus a vector, \(y \leftarrow a x+y\), all single precision. \\
\hline ScaLaPACK_READ & 1545 & Reads matrix data from a file and transmits it into the two-dimensional block-cyclic form required by ScaLAPACK routines. \\
\hline ScaLaPACK_WRITE & 1547 & Writes the matrix data to a file. \\
\hline SCASUM & 1322 & Sums the absolute values of the real part together with the absolute values of the imaginary part of the components of a complex vector. \\
\hline SCNRM2 & 1322 & Computes the Euclidean norm of a complex vector. \\
\hline SCOPY & 1369 & Copies a vector \(x\) to a vector \(y\), both single precision. \\
\hline SDDOTA & 1321 & Computes the sum of a single-precision scalar, a singleprecision dot product and the double-precision accumulator, which is set to the result ACC \(\leftarrow\) ACC \(+a+\) \(x^{T} y\). \\
\hline SDDOTI & 1372 & Computes the sum of a single-precision scalar plus a singleprecision dot product using a double-precision accumulator, which is set to the result \(\mathrm{ACC} \leftarrow a+x^{T} y\). \\
\hline SDOT & 1370 & Computes the single-precision dot product \(x^{T} y\). \\
\hline SDSDOT & 1371 & Computes the sum of a single-precision scalar and a single precision dot product, \(a+x^{T} y\), using a doubleprecision accumulator. \\
\hline SGBMV & 1381 & \begin{tabular}{l}
Computes one of the matrix-vector operations:
\[
y \leftarrow \alpha A x+\beta y, \text { or } y \leftarrow \alpha A^{T} x+\beta y
\] \\
where \(A\) is a matrix stored in band storage mode.
\end{tabular} \\
\hline SGEMM & 1385 & Computes one of the matrix-matrix operations:
\[
C \leftarrow \alpha A B+\beta C, C \leftarrow \alpha A^{T} B+\beta C, C \leftarrow \alpha A B^{T}
\] \\
\hline & & \(+\beta C\), or \(C \leftarrow \alpha A^{T} B^{T}+\beta C\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline SGEMV & 1381 & Computes one of the matrix-vector operations: \(y \leftarrow \alpha A x+\beta y\), or \(y \leftarrow \alpha A^{T} x+\beta y\), \\
\hline SGER & 1383 & Computes the rank-one update of a real general matrix: \(A \leftarrow A+\alpha x y^{T}\). \\
\hline SHOW & 1571 & Prints rank-1 or rank-2 arrays of numbers in a readable format. \\
\hline SHPROD & 1372 & Computes the Hadamard product of two single-precision vectors. \\
\hline SINLP & 1081 & Computes the inverse Laplace transform of a complex function. \\
\hline SLCNT & 986 & Calculates the indices of eigenvalues of a Sturm-Liouville problem with boundary conditions (at regular points) in a specified subinterval of the real line, \([\alpha, \beta]\). \\
\hline SLEIG & 973 & Determines eigenvalues, eigenfunctions and/or spectral density functions for Sturm-Liouville problems in the form with boundary conditions (at regular points). \\
\hline SLPRS & 1301 & Solves a sparse linear programming problem via the revised simplex algorithm. \\
\hline SNRM2 & 1373 & Computes the Euclidean length or \(L_{2}\) norm of a singleprecision vector. \\
\hline SORT_REAL & 1604 & Sorts a rank-1 array of real numbers \(x\) so the \(y\) results are algebraically nondecreasing, \(y_{1} \leq y_{2} \leq \ldots y_{n}\). \\
\hline SPLEZ & 618 & Computes the values of a spline that either interpolates or fits user-supplied data. \\
\hline SPLINE_CONSTRAINTS & 562 & Returns the derived type array result. \\
\hline SPLINE_FITTING & 564 & Weighted least-squares fitting by B-splines to discrete One-Dimensional data is performed. \\
\hline SPLINE_VALUES & 563 & Returns an array result, given an array of input \\
\hline SPRDCT & 1373 & Multiplies the components of a single-precision vector. \\
\hline SRCH & 1618 & Searches a sorted vector for a given scalar and return its index. \\
\hline SROT & 1375 & Applies a Givens plane rotation in single precision. \\
\hline SROTG & 1374 & Constructs a Givens plane rotation in single precision. \\
\hline SROTM & 1377 & Applies a modified Givens plane rotation in single precision. \\
\hline SROTMG & 1376 & Constructs a modified Givens plane rotation in single precision. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline SSBMV & 1382 & \begin{tabular}{l}
Computes the matrix-vector operation
\[
y \leftarrow \alpha A x+\beta y
\] \\
where \(A\) is a symmetric matrix in band symmetric storage mode.
\end{tabular} \\
\hline SSCAL & 1369 & Multiplies a vector by a scalar, \(y \leftarrow a y\), both single precision. \\
\hline SSET & 1369 & Sets the components of a vector to a scalar, all single precision. \\
\hline SSRCH & 1622 & Searches a character vector, sorted in ascending ASCII order, for a given string and return its index. \\
\hline SSUB & 1370 & Subtracts each component of a vector from a scalar, \(x \leftarrow a-x\), all single precision. \\
\hline SSUM & 1372 & Sums the values of a single-precision vector. \\
\hline SSWAP & 1370 & Interchanges vectors \(x\) and \(y\), both single precision. \\
\hline SSYMM & 1385 & \begin{tabular}{l}
Computes one of the matrix-matrix operations:
\[
C \leftarrow \alpha A B+\beta C \text { or } C \leftarrow \alpha B A+\beta C,
\] \\
where \(A\) is a symmetric matrix and \(B\) and \(C\) are \(m\) by \(n\) matrices.
\end{tabular} \\
\hline SSYMV & 1382 & \begin{tabular}{l}
Computes the matrix-vector operation \(y \leftarrow \alpha A x+\beta y\), \\
where \(A\) is a symmetric matrix.
\end{tabular} \\
\hline SSYR & 1384 & Computes the rank-one update of a real symmetric matrix:
\[
A \leftarrow A+\alpha x x^{T}
\] \\
\hline SSYR2 & 1384 & Computes the rank-two update of a real symmetric matrix:
\[
A \leftarrow A+\alpha x y^{T}+\alpha y x^{T}
\] \\
\hline SSYR2K & 1386 & Computes one of the symmetric rank \(2 k\) operations: \(C \leftarrow \alpha A B^{T}+\alpha B A^{T}+\beta C\) or \(C \leftarrow \alpha A^{T} B+\alpha B^{T} A+\beta C\), where \(C\) is an \(n\) by \(n\) symmetric matrix and \(A\) and \(B\) are \(n\) by \(k\) matrices in the first case and \(k\) by \(n\) matrices in the second case. \\
\hline SSYRK & 1386 & \begin{tabular}{l}
Computes one of the symmetric rank \(k\) operations:
\[
C \leftarrow \alpha A A^{T}+\beta C \text { or } C \leftarrow \alpha A^{T} A+\beta C
\] \\
where \(C\) is an \(n\) by \(n\) symmetric matrix and \(A\) is an \(n\) by \(k\) matrix in the first case and a \(k\) by \(n\) matrix in the second case.
\end{tabular} \\
\hline STBMV & 1382 & \begin{tabular}{l}
Computes one of the matrix-vector operations:
\[
x \leftarrow A x \text { or } x \leftarrow A^{T} x,
\] \\
where \(A\) is a triangular matrix in band storage mode.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline STBSV & 1383 & \begin{tabular}{l}
Solves one of the triangular systems:
\[
x \leftarrow A^{-1} x \text { or } x \leftarrow\left(A^{-1}\right)^{T} x
\] \\
where \(A\) is a triangular matrix in band storage mode.
\end{tabular} \\
\hline STRMM & 1387 & \begin{tabular}{l}
Computes one of the matrix-matrix operations:
\[
B \leftarrow \alpha A B, B \leftarrow \alpha A^{T} B \text { or } B \leftarrow \alpha B A, B \leftarrow \alpha B A^{T}
\] \\
where \(B\) is an \(m\) by \(n\) matrix and \(A\) is a triangular matrix.
\end{tabular} \\
\hline STRMV & 1382 & \begin{tabular}{l}
Computes one of the matrix-vector operations:
\[
x \leftarrow A x \text { or } x \leftarrow A^{T} x
\] \\
where \(A\) is a triangular matrix.
\end{tabular} \\
\hline STRSM & 1387 & Solves one of the matrix equations:
\[
B \leftarrow \alpha A^{-1} B, B \leftarrow \alpha B A^{-1}, B \leftarrow \alpha\left(A^{-1}\right)^{T} B
\] \\
\hline STRSV & 1383 & \begin{tabular}{l}
or \(B \leftarrow \alpha B\left(A^{-1}\right)^{T}\) where \(B\) is an \(m\) by \(n\) matrix and \(A\) is a triangular matrix. Solves one of the triangular linear systems:
\[
x \leftarrow A^{-1} x \text { or } x \leftarrow\left(A^{-1}\right)^{T} x
\] \\
where \(A\) is a triangular matrix.
\end{tabular} \\
\hline SUMAG & 1664 & Sets or retrieves MATH/LIBRARY single-precision options. \\
\hline SURF & 710 & Computes a smooth bivariate interpolant to scattered data that is locally a quintic polynomial in two variables. \\
\hline SURFACE_CONSTRAINTS & 574 & Returns the derived type array result given optional input. \\
\hline SURFACE_FITTING & 577 & Weighted least-squares fitting by tensor product B-splines to discrete two-dimensional data is performed. \\
\hline SURFACE_VALUES & 575 & Returns a tensor product array result, given two arrays of independent variable values. \\
\hline SVCAL & 1369 & Multiplies a vector by a scalar and store the result in another vector, \(y \leftarrow a x\), all single precision. \\
\hline SVD & 1491 & Computes the singular value decomposition of a rank-2 or rank-3 array, \(A=U S V^{T}\). \\
\hline SVIBN & 1615 & Sorts an integer array by nondecreasing absolute value. \\
\hline SVIBP & 1617 & Sorts an integer array by nondecreasing absolute value and returns the permutation that rearranges the array. \\
\hline SVIGN & 1610 & Sorts an integer array by algebraically increasing value. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline SVIGP & 1611 & Sorts an integer array by algebraically increasing value and returns the permutation that rearranges the array. \\
\hline SVRBN & 1612 & Sorts a real array by nondecreasing absolute value. \\
\hline SVRBP & 1614 & Sorts a real array by nondecreasing absolute value and returns the permutation that rearranges the array. \\
\hline SVRGN & 1607 & Sorts a real array by algebraically increasing value. \\
\hline SVRGP & 1608 & Sorts a real array by algebraically increasing value and returns the permutation that rearranges the array. \\
\hline SXYZ & 1372 & Computes a single-precision \(x y z\) product. \\
\hline TDATE & 1633 & Gets today's date. \\
\hline TIMDY & 1632 & Gets time of day. \\
\hline TRNRR & 1413 & Transposes a rectangular matrix. \\
\hline TWODQ & 801 & Computes a two-dimensional iterated integral. \\
\hline UMACH & 1688 & Sets or retrieves input or output device unit numbers. \\
\hline UMAG & 1661 & Handles MATH/LIBRARY and STAT/LIBRARY type REAL and double precision options. \\
\hline UMCGF & 1219 & Minimizes a function of N variables using a conjugate gradient algorithm and a finite-difference gradient. \\
\hline UMCGG & 1223 & Minimizes a function of N variables using a conjugate gradient algorithm and a user-supplied gradient. \\
\hline UMIAH & 1213 & Minimizes a function of \(N\) variables using a modified Newton method and a user-supplied Hessian. \\
\hline UMIDH & 1208 & Minimizes a function of \(N\) variables using a modified Newton method and a finite-difference Hessian. \\
\hline UMINF & 1196 & Minimizes a function of \(N\) variables using a quasi-New method and a finite-difference gradient. \\
\hline UMING & 1202 & Minimizes a function of N variables using a quasi-New method and a user-supplied gradient. \\
\hline UMPOL & 1227 & Minimizes a function of N variables using a direct search polytope algorithm. \\
\hline UNIT & 1492 & Normalizes the columns of a rank-2 or rank-3 array so each has Euclidean length of value one. \\
\hline UNLSF & 1231 & Solves a nonlinear least squares problem using a modified Levenberg-Marquardt algorithm and a finite-difference Jacobian. \\
\hline UNLSJ & 1237 & Solves a nonlinear least squares problem using a modified Levenberg-Marquardt algorithm and a user-supplied Jacobian. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline UVMGS & 1193 & Finds the minimum point of a nonsmooth function of a single variable. \\
\hline UVMID & 1189 & Finds the minimum point of a smooth function of a single variable using both function evaluations and first derivative evaluations. \\
\hline UVMIF & 1186 & Finds the minimum point of a smooth function of a single variable using only function evaluations. \\
\hline VCONC & 1457 & Computes the convolution of two complex vectors. \\
\hline VCONR & 1455 & Computes the convolution of two real vectors. \\
\hline VERML & 1638 & Obtains IMSL MATH/LIBRARY-related version, system and license numbers. \\
\hline WRCRL & 1588 & Prints a complex rectangular matrix with a given format and labels. \\
\hline WRCRN & 1586 & Prints a complex rectangular matrix with integer row and column labels. \\
\hline WRIRL & 1583 & Prints an integer rectangular matrix with a given format and labels. \\
\hline WRIRN & 1581 & Prints an integer rectangular matrix with integer row and column labels. \\
\hline WROPT & 1591 & Sets or retrieves an option for printing a matrix. \\
\hline WRRRL & 1577 & Prints a real rectangular matrix with a given format and labels. \\
\hline WRRRN & 1575 & Prints a real rectangular matrix with integer row and column labels. \\
\hline ZANLY & 1153 & Finds the zeros of a univariate complex function using Müller's method. \\
\hline ZBREN & 1156 & Finds a zero of a real function that changes sign in a given interval. \\
\hline ZPLRC & 1148 & Finds the zeros of a polynomial with real coefficients using Laguerre's method. \\
\hline ZPOCC & 1152 & Finds the zeros of a polynomial with complex coefficients using the Jenkins-Traub three-stage algorithm. \\
\hline ZPORC & 1150 & Finds the zeros of a polynomial with real coefficients using the Jenkins-Traub three-stage algorithm. \\
\hline ZQADD & 1460 & Adds a double complex scalar to the accumulator in extended precision. \\
\hline ZQINI & 1460 & Initializes an extended-precision complex accumulator to a double complex scalar. \\
\hline
\end{tabular}
\begin{tabular}{lcl} 
ZQMUL & 1460 & \begin{tabular}{l} 
Multiplies double complex scalars using extended \\
precision.
\end{tabular} \\
ZQSTO & 1460 & \begin{tabular}{l} 
Stores a double complex approximation to an extended- \\
precision complex scalar.
\end{tabular} \\
ZREAL & 1159 & \begin{tabular}{l} 
Finds the real zeros of a real function using Müller's \\
method.
\end{tabular}
\end{tabular}

\title{
Appendix C: References
}

\section*{Aird and Howell}

Aird, Thomas J., and Byron W. Howell (1991), IMSL Technical Report 9103, IMSL, Houston.

\section*{Aird and Rice}

Aird, T.J., and J.R. Rice (1977), Systematic search in high dimensional sets, SIAM Journal on Numerical Analysis, 14, 296-312.

\section*{Akima}

Akima, H. (1970), A new method of interpolation and smooth curve fitting based on local procedures, Journal of the ACM, 17, 589-602.

Akima, H. (1978), A method of bivariate interpolation and smooth surface fitting for irregularly distributed data points, ACM Transactions on Mathematical Software, 4, 148-159.

\section*{Arushanian et al.}

Arushanian, O.B., M.K. Samarin, V.V. Voevodin, E.E. Tyrtyshikov, B.S. Garbow, J.M. Boyle, W.R. Cowell, and K.W. Dritz (1983), The TOEPLITZ Package Users' Guide, Argonne National Laboratory, Argonne, Illinois.

\section*{Ashcraft}

Ashcraft, C. (1987), A vector implementation of the multifrontal method for large sparse, symmetric positive definite linear systems, Technical Report ETA-TR-51, Engineering Technology Applications Division, Boeing Computer Services, Seattle, Washington.

\section*{Ashcraft et al.}

Ashcraft, C., R.Grimes, J. Lewis, B. Peyton, and H. Simon (1987), Progress in sparse matrix methods for large linear systems on vector supercomputers. Intern. J. Supercomputer Applic., 1(4), 10-29.

Atkinson
Atkinson, Ken (1978), An Introduction to Numerical Analysis, John Wiley \& Sons, New York.

\section*{Atchison and Hanson}

Atchison, M.A., and R.J. Hanson (1991), An Options Manager for the IMSL Fortran 77 Libraries, Technical Report 9101, IMSL, Houston.

\section*{Bischof et al.}

Bischof, C., J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling, D. Sorensen (1988), LAPACK Working Note \#5: Provisional Contents, Argonne National Laboratory Report ANL-88-38, Mathematics and Computer Science.

\section*{Bjorck}

Bjorck, Ake (1967), Iterative refinement of linear least squares solutions I, BIT, 7, 322-337.
Bjorck, Ake (1968), Iterative refinement of linear least squares solutions II, BIT, 8, 8-30.

\section*{Boisvert (1984)}

Boisvert, Ronald (1984), A fourth order accurate fast direct method for the Helmholtz equation, Elliptic Problem Solvers II, (edited by G. Birkhoff and A. Schoenstadt), Academic Press, Orlando, Florida, 35-44.

\section*{Boisvert, Howe, and Kahaner}

Boisvert, Ronald F., Sally E. Howe, and David K. Kahaner (1985), GAMS: A framework for the management of scientific software, ACM Transactions on Mathematical Software, 11, 313-355.

\section*{Boisvert, Howe, Kahaner, and Springmann}

Boisvert, Ronald F., Sally E. Howe, David K. Kahaner, and Jeanne L. Springmann (1990), Guide to Available Mathematical Software, NISTIR 90-4237, National Institute of Standards and Technology, Gaithersburg, Maryland.

\section*{Brankin et al.}

Brankin, R.W., I. Gladwell, and L.F. Shampine, RKSUITE: a Suite of Runge-Kutta Codes for the Initial Value Problem for ODEs, Softreport 91-1, Mathematics Department, Southern Methodist University, Dallas, Texas, 1991.

\section*{Brenan, Campbell, and Petzold}

Brenan, K.E., S.L. Campbell, L.R. Petzold (1989), Numerical Solution of Initial-Value Problems in Differential-Algebraic Equations, Elseview Science Publ. Co.

\section*{Brenner}

Brenner, N. (1973), Algorithm 467: Matrix transposition in place [F1], Communication of ACM, 16, 692-694.

\section*{Brent}

Brent, R.P. (1971), An algorithm with guaranteed convergence for finding a zero of a function, The Computer Journal, 14, 422-425.

Brent, Richard P. (1973), Algorithms for Minimization without Derivatives, Prentice-Hall, Inc., Englewood Cliffs, New Jersey.

\section*{Brigham}

Brigham, E. Oran (1974), The Fast Fourier Transform, Prentice-Hall, Englewood Cliffs, New Jersey.

\section*{Cheney}

Cheney, E.W. (1966), Introduction to Approximation Theory, McGraw-Hill, New York.

\section*{Cline et al.}

Cline, A.K., C.B. Moler, G.W. Stewart, and J.H. Wilkinson (1979), An estimate for the condition number of a matrix, SIAM Journal of Numerical Analysis, 16, 368-375.

\section*{Cody, Fraser, and Hart}

Cody, W.J., W. Fraser, and J.F. Hart (1968), Rational Chebyshev approximation using linear equations, Numerische Mathematik, 12, 242-251.

\section*{Cohen and Taylor}

Cohen, E. Richard, and Barry N. Taylor (1986), The 1986 Adjustment of the Fundamental Physical Constants, Codata Bulletin, Pergamon Press, New York.

\section*{Cooley and Tukey}

Cooley, J.W., and J.W. Tukey (1965), An algorithm for the machine computation of complex Fourier series, Mathematics of Computation, 19, 297-301.

\section*{Courant and Hilbert}

Courant, R., and D. Hilbert (1962), Methods of Mathematical Physics, Volume II, John Wiley \& Sons, New York, NY.

\section*{Craven and Wahba}

Craven, Peter, and Grace Wahba (1979), Smoothing noisy data with spline functions, Numerische Mathematik, 31, 377-403.

\section*{Crowe et al.}

Crowe, Keith, Yuan-An Fan, Jing Li, Dale Neaderhouser, and Phil Smith (1990), A direct sparse linear equation solver using linked list storage, IMSL Technical Report 9006, IMSL, Houston.

\section*{Crump}

Crump, Kenny S. (1976), Numerical inversion of Laplace transforms using a Fourier series approximation, Journal of the Association for Computing Machinery, 23, 89-96.

\section*{Davis and Rabinowitz}

Davis, Philip F., and Philip Rabinowitz (1984), Methods of Numerical Integration, Academic Press, Orlando, Florida.

\section*{de Boor}
de Boor, Carl (1978), A Practical Guide to Splines, Springer-Verlag, New York.

\section*{de Hoog, Knight, and Stokes}
de Hoog, F.R., J.H. Knight, and A.N. Stokes (1982), An improved method for numerical inversion of Laplace transforms. SIAM Journal on Scientific and Statistical Computing, 3, 357-366.

\section*{Dennis and Schnabel}

Dennis, J.E., Jr., and Robert B. Schnabel (1983), Numerical Methods for Unconstrained Optimization and Nonlinear Equations, Prentice-Hall, Englewood Cliffs, New Jersey.

\section*{Dongarra et al.}

Dongarra, J.J., and C.B. Moler, (1977) EISPACK - A package for solving matrix eigenvalue problems, Argonne National Laboratory, Argonne, Illinois.

Dongarra, J.J., J.R. Bunch, C.B. Moler, and G.W. Stewart (1979), LINPACK Users' Guide, SIAM, Philadelphia.
Dongarra, J.J., J. DuCroz, S. Hammarling, R. J. Hanson (1988), An Extended Set of Fortran basic linear algebra subprograms, ACM Transactions on Mathematical Software, 14, 1-17.

Dongarra, J.J., J. DuCroz, S. Hammarling, I. Duff (1990), A set of level 3 basic linear algebra subprograms, ACM Transactions on Mathematical Software, 16, 1-17.

\section*{Draper and Smith}

Draper, N.R., and H. Smith (1981), Applied Regression Analysis, second edition, John Wiley \& Sons, New York.

\section*{Du Croz et al.}

Du Croz, Jeremy, P. Mayes, G. and Radicati (1990), Factorization of band matrices using Level-3 BLAS, Proceedings of CONPAR 90 VAPP IV, Lecture Notes in Computer Science, Springer, Berlin, 222.

\section*{Duff and Reid}

Duff, I.S., and J.K. Reid (1983), The multifrontal solution of indefinite sparse symmetric linear equations. ACM Transactions on Mathematical Software, 9, 302-325.

Duff, I.S., and J.K. Reid (1984), The multifrontal solution of unsymmetric sets of linear equations. SIAM Journal on Scientific and Statistical Computing, 5, 633-641.

\section*{Duff et al.}

Duff, I.S., A.M. Erisman, and J.K. Reid (1986), Direct Methods for Sparse Matrices, Clarendon Press, Oxford.

\section*{Enright and Pryce}

Enright, W.H., and J.D. Pryce (1987), Two FORTRAN packages for assessing initial value methods, ACM Transactions on Mathematical Software, 13, 1-22.

\section*{Forsythe}

Forsythe, G.E. (1957), Generation and use of orthogonal polynomials for fitting data with a digital computer, SIAM Journal on Applied Mathematics, 5, 74-88.

\section*{Fox, Hall, and Schryer}

Fox, P.A., A.D. Hall, and N.L. Schryer (1978), The PORT mathematical subroutine library, ACM Transactions on Mathematical Software, 4, 104-126.

\section*{Garbow}

Garbow, B.S. (1978) CALGO Algorithm 535: The QZ algorithm to solve the generalized eigenvalue problem for complex matrices, ACM Transactions on Mathematical Software, 4, 404-410.

\section*{Garbow et al.}

Garbow, B.S., J.M. Boyle, J.J. Dongarra, and C.B. Moler (1972), Matrix eigensystem Routines: EISPACK Guide Extension, Springer-Verlag, New York.

Garbow, B.S., J.M. Boyle, J.J. Dongarra, and C.B. Moler (1977), Matrix Eigensystem RoutinesEISPACK Guide Extension, Springer-Verlag, New York.
Garbow, B.S., G. Giunta, J.N. Lyness, and A. Murli (1988), Software for an implementation of Weeks' method for the inverse Laplace transform problem, ACM Transactions of Mathematical Software, 14, 163-170.

\section*{Gautschi}

Gautschi, Walter (1968), Construction of Gauss-Christoffel quadrature formulas, Mathematics of Computation, 22, 251-270.

\section*{Gautschi and Milovanofic}

Gautschi, Walter, and Gradimir V. Milovanofic (1985), Gaussian quadrature involving Einstein and Fermi functions with an application to summation of series, Mathematics of Computation, 44, 177-190.

\section*{Gay}

Gay, David M. (1981), Computing optimal locally constrained steps, SIAM Journal on Scientific and Statistical Computing, 2, 186-197.

Gay, David M. (1983), Algorithm 611: Subroutine for unconstrained minimization using a model/trust-region approach, ACM Transactions on Mathematical Software, 9, 503-524.

\section*{Gear}

Gear, C.W. (1971), Numerical Initial Value Problems in Ordinary Differential Equations, Prentice-Hall, Englewood Cliffs, New Jersey.

\section*{Gear and Petzold}

Gear, C.W., and Linda R. Petzold (1984), ODE methods for the solutions of differential/algebraic equations, SIAM Journal Numerical Analysis, 21, \#4, 716.

\section*{George and Liu}

George, A., and J.W.H. Liu (1981), Computer Solution of Large Sparse Positive-definite Systems, Prentice-Hall, Englewood Cliffs, New Jersey.

\section*{Gill et al.}

Gill, Philip E., and Walter Murray (1976), Minimization subject to bounds on the variables, NPL Report NAC 72, National Physical Laboratory, England.

Gill, Philip E., Walter Murray, and Margaret Wright (1981), Practical Optimization, Academic Press, New York.

Gill, P.E., W. Murray, M.A. Saunders, and M.H. Wright (1985), Model building and practical aspects of nonlinear programming, in Computational Mathematical Programming, (edited by K. Schittkowski), NATO ASI Series, 15, Springer-Verlag, Berlin, Germany.

\section*{Goldfarb and Idnani}

Goldfarb, D., and A. Idnani (1983), A numerically stable dual method for solving strictly convex quadratic programs, Mathematical Programming, 27, 1-33.

\section*{Golub}

Golub, G.H. (1973), Some modified matrix eigenvalue problems, SIAM Review, 15, 318-334.

\section*{Golub and Van Loan}

Golub, Gene H., and Charles F. Van Loan (1983), Matrix Computations, Johns Hopkins University Press, Baltimore, Maryland.

Golub, Gene H., and Charles F. Van Loan (1989), Matrix Computations, 2d ed., Johns Hopkins University Press, Baltimore, Maryland.

\section*{Golub and Welsch}

Golub, G.H., and J.H. Welsch (1969), Calculation of Gaussian quadrature rules, Mathematics of Computation, 23, 221-230.

\section*{Gregory and Karney}

Gregory, Robert, and David Karney (1969), A Collection of Matrices for Testing Computational Algorithms, Wiley-Interscience, John Wiley \& Sons, New York.

\section*{Griffin and Redish}

Griffin, R., and K.A. Redish (1970), Remark on Algorithm 347: An efficient algorithm for sorting with minimal storage, Communications of the ACM, 13, 54.

\section*{Grosse}

Grosse, Eric (1980), Tensor spline approximation, Linear Algebra and its Applications, 34, 29-41.

\section*{Guerra and Tapia}

Guerra, V., and R. A. Tapia (1974), A local procedure for error detection and data smoothing, MRC Technical Summary Report 1452, Mathematics Research Center, University of Wisconsin, Madison.

\section*{Hageman and Young}

Hageman, Louis A., and David M.Young (1981), Applied Iterative Methods, Academic Press, New York.

\section*{Hanson}

Hanson, Richard J. (1986), Least squares with bounds and linear constraints, SIAM Journal Sci. Stat. Computing, 7, \#3.

Hanson, Richard.J. (1990), A cyclic reduction solver for the IMSL Mathematics Library, IMSL Technical Report 9002, IMSL, Houston.

\section*{Hanson et al.}

Hanson, Richard J., R. Lehoucq, J. Stolle, and A. Belmonte (1990), Improved performance of certain matrix eigenvalue computations for the IMSL/MATH Library, IMSL Technical Report 9007, IMSL, Houston.

\section*{Hartman}

Hartman, Philip (1964) Ordinary Differential Equations, John Wiley and Sons, New York, NY.

\section*{Hausman}

Hausman, Jr., R.F. (1971), Function Optimization on a Line Segment by Golden Section, Lawrence Radiation Laboratory, University of California, Livermore.

\section*{Hindmarsh}

Hindmarsh, A.C. (1974), GEAR: Ordinary differential equation system solver, Lawrence Livermore Laboratory Report UCID-30001, Revision 3.

\section*{Hull et al.}

Hull, T.E., W.H. Enright, and K.R. Jackson (1976), User's guide for DVERK - A subroutine for solving non-stiff ODEs, Department of Computer Science Technical Report 100, University of Toronto.

\section*{IEEE}

ANSI/IEEE Std 754-1985 (1985), IEEE Standard for Binary Floating-Point Arithmetic, The IEEE, Inc., New York.

\section*{IMSL (1991)}

IMSL (1991), IMSL STAT/LIBRARY User's Manual, Version 2.0, IMSL, Houston.

\section*{Irvine et al.}

Irvine, Larry D., Samuel P. Marin, and Philip W. Smith (1986), Constrained interpolation and smoothing, Constructive Approximation, 2, 129-151.

\section*{Jenkins}

Jenkins, M.A. (1975), Algorithm 493: Zeros of a real polynomial, ACM Transactions on Mathematical Software, 1, 178-189.

\section*{Jenkins and Traub}

Jenkins, M.A., and J.F. Traub (1970), A three-stage algorithm for real polynomials using quadratic iteration, SIAM Journal on Numerical Analysis, 7, 545-566.
Jenkins, M.A., and J.F. Traub (1970), A three-stage variable-shift iteration for polynomial zeros and its relation to generalized Rayleigh iteration, Numerische Mathematik, 14, 252-263.

Jenkins, M.A., and J.F. Traub (1972), Zeros of a complex polynomial, Communications of the ACM, 15, 97-99.

\section*{Kennedy and Gentle}

Kennedy, William J., Jr., and James E. Gentle (1980), Statistical Computing, Marcel Dekker, New York.

\section*{Kershaw}

Kershaw, D. (1982), Solution of tridiagonal linear systems and vectorization of the ICCG algorithm on the Cray-1, Parallel Computations, Academic Press, Inc., 85-99.

\section*{Knuth}

Knuth, Donald E. (1973), The Art of Computer Programming, Volume 3: Sorting and Searching, Addison-Wesley Publishing Company, Reading, Mass.

\section*{Lawson et al.}

Lawson, C.L., R.J. Hanson, D.R. Kincaid, and F.T. Krogh (1979), Basic linear algebra subprograms for Fortran usage, ACM Transactions on Mathematical Software, 5, 308-323.

\section*{Leavenworth}

Leavenworth, B. (1960), Algorithm 25: Real zeros of an arbitrary function, Communications of the ACM, 3, 602.

\section*{Levenberg}

Levenberg, K. (1944), A method for the solution of certain problems in least squares, Quarterly of Applied Mathematics, 2, 164-168.

\section*{Lewis et al.}

Lewis, P.A. W., A.S. Goodman, and J.M. Miller (1969), A pseudo-random number generator for the System/360, IBM Systems Journal, 8, 136-146.

\section*{Liepman}

Liepman, David S. (1964), Mathematical constants, in Handbook of Mathematical Functions, Dover Publications, New York.

\section*{Liu}

Liu, J.W.H. (1986), On the storage requirement in the out-of-core multifrontal method for sparse factorization. ACM Transactions on Mathematical Software, 12, 249-264.
Liu, J.W.H. (1987), A collection of routines for an implementation of the multifrontal method, Technical Report CS-87-10, Department of Computer Science, York University, North York, Ontario, Canada.

Liu, J.W.H. (1989), The multifrontal method and paging in sparse Cholesky factorization. ACM Transactions on Mathematical Software, 15, 310-325.

Liu, J.W.H. (1990), The multifrontal method for sparse matrix solution: theory and practice, Technical Report CS-90-04, Department of Computer Science, York University, North York, Ontario, Canada.

\section*{Liu and Ashcraft}

Liu, J., and C. Ashcraft (1987), A vector implementation of the multifrontal method for large sparse, symmetric positive definite linear systems, Technical Report ETA-TR-51, Engineering Technology Applications Division, Boeing Computer Services, Seattle, Washington.

\section*{Lyness and Giunta}

Lyness, J.N. and G. Giunta (1986), A modification of the Weeks Method for numerical inversion of the Laplace transform, Mathmetics of Computation, 47, 313-322.

\section*{Madsen and Sincovec}

Madsen, N.K., and R.F. Sincovec (1979), Algorithm 540: PDECOL, General collocation software for partial differential equations, ACM Transactions on Mathematical Software, 5, \#3, 326-351.

\section*{Marquardt}

Marquardt, D. (1963), An algorithm for least-squares estimation of nonlinear parameters, SIAM Journal on Applied Mathematics, 11, 431-441.

\section*{Martin and Wilkinson}

Martin, R.S., and J.W. Wilkinson (1968), Reduction of the symmetric eigenproblem \(A x=\lambda B x\) and related problems to standard form, Numerische Mathematik, 11, 99-119.

\section*{Micchelli et al.}

Micchelli, C.A., T.J. Rivlin, and S. Winograd (1976), The optimal recovery of smooth functions, Numerische Mathematik, 26, 279-285

Micchelli, C.A., Philip W. Smith, John Swetits, and Joseph D. Ward (1985), Constrained \(L_{p}\) approximation, Constructive Approximation, 1, 93-102.

\section*{Moler and Stewart}

Moler, C., and G.W. Stewart (1973), An algorithm for generalized matrix eigenvalue problems, SIAM Journal on Numerical Analysis, 10, 241-256.

\section*{More et al.}

More, Jorge, Burton Garbow, and Kenneth Hillstrom (1980), User guide for MINPACK-1, Argonne National Labs Report ANL-80-74, Argonne, Illinois.

\section*{Muller}

Muller, D.E. (1956), A method for solving algebraic equations using an automatic computer, Mathematical Tables and Aids to Computation, 10, 208-215.

\section*{Murtagh}

Murtagh, Bruce A. (1981), Advanced Linear Programming: Computation and Practice, McGrawHill, New York.

\section*{Murty}

Murty, Katta G. (1983), Linear Programming, John Wiley and Sons, New York.

\section*{Nelder and Mead}

Nelder, J.A., and R. Mead (1965), A simplex method for function minimization, Computer Journal 7, 308-313.

\section*{Neter and Wasserman}

Neter, John, and William Wasserman (1974), Applied Linear Statistical Models, Richard D. Irwin, Homewood, Ill.

\section*{Park and Miller}

Park, Stephen K., and Keith W. Miller (1988), Random number generators: good ones are hard to find, Communications of the ACM, 31, 1192-1201.

\section*{Parlett}

Parlett, B.N. (1980), The Symmetric Eigenvalue Problem, Prentice-Hall, Inc., Englewood Cliffs, New Jersey.

\section*{Pereyra}

Pereyra, Victor (1978), PASVA3: An adaptive finite-difference FORTRAN program for first order nonlinear boundary value problems, in Lecture Notes in Computer Science, 76, SpringerVerlag, Berlin, 67-88.

\section*{Petro}

Petro, R. (1970), Remark on Algorithm 347: An efficient algorithm for sorting with minimal storage, Communications of the ACM, 13, 624.

\section*{Petzold}

Petzold, L.R. (1982), A description of DASSL: A differential/ algebraic system solver, Proceedings of the IMACS World Congress, Montreal, Canada.

\section*{Piessens et al.}

Piessens, R., E. deDoncker-Kapenga, C.W. Uberhuber, and D.K. Kahaner (1983), QUADPACK, Springer-Verlag, New York.

\section*{Powell}

Powell, M.J.D. (1977), Restart procedures for the conjugate gradient method, Mathematical Programming, 12, 241-254.

Powell, M.J.D. (1978), A fast algorithm for nonlinearly constrained optimization calculations, in Numerical Analysis Proceedings, Dundee 1977, Lecture Notes in Mathematics, (edited by G.A. Watson), 630, Springer-Verlag, Berlin, Germany, 144-157.
Powell, M.J.D. (1983), ZQPCVX a FORTRAN subroutine for convex quadratic programming, DAMTP Report NA17, Cambridge, England.

Powell, M.J.D. (1985), On the quadratic programming algorithm of Goldfarb and Idnani, Mathematical Programming Study, 25, 46-61.

Powell, M.J.D. (1988), A tolerant algorithm for linearly constrained optimization calculations, DAMTP Report NA17, University of Cambridge, England.
Powell, M.J.D. (1989), TOLMIN: A fortran package for linearly constrained optimization calculations, DAMTP Report NA2, University of Cambridge, England.

\section*{Pruess and Fulton}

Pruess, S. and C.T. Fulton (1993), Mathematical Software for Sturm-Liouville Problems, \(A C M\) Transactions on Mathematical Software, 17, 3, 360-376.

\section*{Reinsch}

Reinsch, Christian H. (1967), Smoothing by spline functions, Numerische Mathematik, 10, 177-183.

\section*{Rice}

Rice, J.R. (1983), Numerical Methods, Software, and Analysis, McGraw-Hill, New York.

\section*{Saad and Schultz}

Saad, Y., and M.H. Schultz (1986), GMRES: a generalized minimal residual residual algorithm for solving nonsymmetric linear systems, SIAM J. Sci. Stat. Comput., 7, 856-869.

\section*{Schittkowski}

Schittkowski, K. (1987), More test examples for nonlinear programming codes, SpringerVerlag, Berlin, 74.

\section*{Schnabel}

Schnabel, Robert B. (1985), Finite Difference Derivatives - Theory and Practice, Report, National Bureau of Standards, Boulder, Colorado.

\section*{Schreiber and Van Loan}

Schreiber, R., and C. Van Loan (1989), A Storage-Efficient WY Representation for Products of Householder Transformations, SIAM J. Sci. Stat. Comp., Vol. 10, No. 1, pp. 53-57, January (1989).

\section*{Scott et al.}

Scott, M.R., L.F. Shampine, and G.M. Wing (1969), Invariant Embedding and the Calculation of Eigenvalues for Sturm-Liouville Systems, Computing, 4, 10-23.

\section*{Sewell}

Sewell, Granville (1982), IMSL software for differential equations in one space variable, IMSL Technical Report 8202, IMSL, Houston.

\section*{Shampine}

Shampine, L.F. (1975), Discrete least-squares polynomial fits, Communications of the ACM, 18, 179-180.

\section*{Shampine and Gear}

Shampine, L.F. and C.W. Gear (1979), A user's view of solving stiff ordinary differential equations, SIAM Review, 21, 1-17.

\section*{Sincovec and Madsen}

Sincovec, R.F., and N.K. Madsen (1975), Software for nonlinear partial differential equations, ACM Transactions on Mathematical Software, 1, \#3, 232-260.

\section*{Singleton}

Singleton, R.C. (1969), Algorithm 347: An efficient algorithm for sorting with minimal storage, Communications of the ACM, 12, 185-187.

\section*{Smith}

Smith, B.T. (1967), ZERPOL, A Zero Finding Algorithm for Polynomials Using Laguerre's Method, Department of Computer Science, University of Toronto.

\section*{Smith et al.}

Smith, B.T., J.M. Boyle, J.J. Dongarra, B.S. Garbow, Y. Ikebe, V.C. Klema, and C.B. Moler (1976), Matrix Eigensystem Routines - EISPACK Guide, Springer-Verlag, New York.

\section*{Spang}

Spang, III, H.A. (1962), A review of minimization techniques for non-linear functions, SIAM Review, 4, 357-359.

\section*{Stewart}

Stewart, G.W. (1973), Introduction to Matrix Computations, Academic Press, New York.
Stewart, G.W. (1976), The economical storage of plane rotations, Numerische Mathematik, 25, 137-139.

\section*{Stoer}

Stoer, J. (1985), Principles of sequential quadratic programming methods for solving nonlinear programs, in Computational Mathematical Programming, (edited by K. Schittkowski), NATO ASI Series, 15, Springer-Verlag, Berlin, Germany.

\section*{Stroud and Secrest}

Stroud, A.H., and D.H. Secrest (1963), Gaussian Quadrature Formulae, Prentice-Hall, Englewood Cliffs, New Jersey.

\section*{Titchmarsh}

Titchmarsh, E. Eigenfunction Expansions Associated with Second Order Differential Equations, Part I, 2d Ed., Oxford University Press, London, 1962.

\section*{Trench}

Trench, W.F. (1964), An algorithm for the inversion of finite Toeplitz matrices, Journal of the Society for Industrial and Applied Mathematics, 12, 515-522.

Walker
Walker, H.F. (1988), Implementation of the GMRES method using Householder transformations, SIAM J. Sci. Stat. Comput., 9, 152-163.

\section*{Washizu}

Washizu, K. (1968), Variational Methods in Elasticity and Plasticity, Pergamon Press, New York.

\section*{Watkins and Elsner}

Watkins, D.S., and L. Elsner (1990), Convergence of algorithms of decomposition type for the eigenvalue problem, Linear Algebra and Applications (to appear).

\section*{Weeks}

Weeks, W.T. (1966), Numerical inversion of Laplace transforms using Laguerre functions, \(J\). ACM, 13, 419-429.

\section*{Wilkinson}

Wilkinson, J.H. (1965),The Algebraic Eigenvalue Problem, Oxford University Press, London, 635.```

