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Usage Notes 
Unconstrained Minimization 
The unconstrained minimization problem can be stated as follows: 

� �min
nx

f x
�R

 

where f : Rn� R is at least continuous. The routines for unconstrained minimization are grouped 
into three categories: univariate functions (UV***), multivariate functions (UM***), and nonlinear 
least squares (UNLS*). 

For the univariate function routines, it is assumed that the function is unimodal within the 
specified interval. Otherwise, only a local minimum can be expected. For further discussion on 
unimodality, see Brent (1973). 

A quasi-Newton method is used for the multivariate function routines UMINF (page 1196) and 
UMING (page 1202), whereas UMIDH (page 1208) and UMIAH (page 1213) use a modified Newton 
algorithm. The routines UMCGF (page 1219) and UMCGG (page 1223) make use of a conjugate 
gradient approach, and UMPOL (page 1227) uses a polytope method. For more details on these 
algorithms, see the documentation for the corresponding routines. 

The nonlinear least squares routines use a modified Levenberg-Marquardt algorithm. If the 
nonlinear least squares problem is a nonlinear data-fitting problem, then software that is designed 
to deliver better statistical output may be useful; see IMSL (1991). 

These routines are designed to find only a local minimum point. However, a function may have 
many local minima. It is often possible to obtain a better local solution by trying different initial 
points and intervals. 

High precision arithmetic is recommended for the routines that use only function values. Also it is 
advised that the derivative-checking routines CH*** be used to ensure the accuracy of the user-
supplied derivative evaluation subroutines. 
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Minimization with Simple Bounds 
The minimization with simple bounds problem can be stated as follows: 

� �min
nx

f x
�R

 

subject to li � xi � ui, for i = 1, 2, �, n 

where f : Rn� R, and all the variables are not necessarily bounded. 

The routines BCO** use the same algorithms as the routines UMI**, and the routines BCLS* are 
the corresponding routines of UNLS*. The only difference is that an active set strategy is used to 
ensure that each variable stays within its bounds. The routine BCPOL (page 1271) uses a function 
comparison method similar to the one used by UMPOL (page 1227). Convergence for these 
polytope methods is not guaranteed; therefore, these routines should be used as a last alternative. 

Linearly Constrained Minimization 
The linearly constrained minimization problem can be stated as follows: 

� �min
nx

f x
�R

 

subject to Ax = b 

where f : Rn� R, A is an m � n coefficient matrix, and b is a vector of length m. If f(x) is linear, 
then the problem is a linear programming problem; if f(x) is quadratic, the problem is a quadratic 
programming problem. 

The routine DLPRS (page 1297) uses a revised simplex method to solve small- to medium-sized 
linear programming problems. No sparsity is assumed since the coefficients are stored in full 
matrix form. 

The routine QPROG (page 1307) is designed to solve convex quadratic programming problems 
using a dual quadratic programming algorithm. If the given Hessian is not positive definite, then 
QPROG modifies it to be positive definite. In this case, output should be interpreted with care. 

The routines LCONF (page 1310) and LCONG (page 1316) use an iterative method to solve the 
linearly constrained problem with a general objective function. For a detailed description of the 
algorithm, see Powell (1988, 1989). 

Nonlinearly Constrained Minimization 
The nonlinearly constrained minimization problem can be stated as follows: 

� �min
nx

f x
�R

 

subject to gi(x) = 0, for i = 1, 2, �, m� 

    gi(x) � 0, for i = m� + 1, �, m 

where f : Rn� R and gi : Rn� R, for i = 1, 2, �, m 
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The routines NNLPF (page 1323) and NNLPG (page 1329) use a sequential equality constrained 
quadratic programming method. A more complete discussion of this algorithm can be found in the 
documentation. 

Selection of Routines 
The following general guidelines are provided to aid in the selection of the appropriate routine. 

Unconstrained Minimization 
1. For the univariate case, use UVMID (page 1189) when the gradient is available, and use 

UVMIF (page 1182) when it is not. If discontinuities exist, then use UVMGS (page 1193). 

2. For the multivariate case, use UMCG* when storage is a problem, and use UMPOL (page 
1227) when the function is nonsmooth. Otherwise, use UMI** depending on the 
availability of the gradient and the Hessian. 

3. For least squares problems, use UNLSJ (page 1237) when the Jacobian is available, and 
use UNLSF (page 1231) when it is not. 

Minimization with Simple Bounds 
1. Use BCONF (page 1243) when only function values are available. When first 

derivatives are available, use either BCONG (page 1249) or BCODH (page 1257). If first 
and second derivatives are available, then use BCOAH (page 1263). 

2. For least squares, use BCLSF (page 1274) or BCLSJ (page 1281) depending on the 
availability of the Jacobian. 

3. Use BCPOL (page 1271) for nonsmooth functions that could not be solved satisfactorily 
by the other routines. 



 

 
 

IMSL MATH/LIBRARY Chapter 8: Optimization � 1185 

 

 

 

The following charts provide a quick reference to routines in this chapter: 

nonsmooth

UMCGF no derivative large-size

least squaresno Jacobian

no derivative

nonsmooth

UNLSF

UVMSG

UVMIF
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UNLSJ

UMPOL

UMINF

UMING
UMIDH

UVMID UMIAH

no first
derivative

no second

problem

derivative

UNCONSTRAINED
MINIMIZATION

univariate multivariate

smooth
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UVMIF 
Finds the minimum point of a smooth function of a single variable using only function 
evaluations. 

Required Arguments 
F — User-supplied FUNCTION to compute the value of the function to be minimized. The 

form is F(X), where 
X – The point at which the function is evaluated.   (Input)  
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X should not be changed by F. 
F – The computed function value at the point X.   (Output) 

F must be declared EXTERNAL in the calling program. 

XGUESS — An initial guess of the minimum point of F.   (Input) 

BOUND — A positive number that limits the amount by which X may be changed from its 
initial value.   (Input) 

X — The point at which a minimum value of F is found.   (Output) 

Optional Arguments 
STEP — An order of magnitude estimate of the required change in X.   (Input) 

Default: STEP = 1.0. 

XACC — The required absolute accuracy in the final value of X.   (Input)  
On a normal return there are points on either side of X within a distance XACC at which 
F is no less than F(X). 
Default: XACC = 1.e-4.  

MAXFN — Maximum number of function evaluations allowed.   (Input) 
Default: MAXFN = 1000. 

FORTRAN 90 Interface 
Generic: CALL UVMIF (F, XGUESS, BOUND, X [,…]) 

Specific: The specific interface names are S_UVMIF and D_UVMIF. 

FORTRAN 77 Interface 
Single: CALL UVMIF (F, XGUESS, STEP, BOUND, XACC, MAXFN, X) 

Double: The double precision name is DUVMIF. 

Example 

A minimum point of ex � 5x is found. 
      USE UVMIF_INT 
      USE UMACH_INT 
!                                  Declare variables 
      INTEGER    MAXFN, NOUT 
      REAL       BOUND, F, FX, STEP, X, XACC, XGUESS 
      EXTERNAL   F 
!                                  Initialize variables 
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      XGUESS = 0.0 
      XACC   = 0.001 
      BOUND  = 100.0 
      STEP   = 0.1 
      MAXFN  = 50 
! 
!                                 Find minimum for F = EXP(X) - 5X 
      CALL UVMIF (F, XGUESS, BOUND, X, STEP=STEP, XACC=XACC, MAXFN=MAXFN) 
      FX = F(X) 
!                                 Print results 
      CALL UMACH (2, NOUT) 
      WRITE (NOUT,99999) X, FX 
! 
99999 FORMAT (’   The minimum is at ’, 7X, F7.3, //, ’   The function ’ & 
            , ’value is ’, F7.3) 
! 
      END 
!                                 Real function: F = EXP(X) - 5.0*X 
      REAL FUNCTION F (X) 
      REAL       X 
! 
      REAL       EXP 
      INTRINSIC  EXP 
! 
      F = EXP(X) - 5.0E0*X 
! 
      RETURN 
      END 

Output 
The minimum is at          1.609 
 
The function value is  -3.047 

Comments 
Informational errors  

Type  Code  
   3    1  Computer rounding errors prevent further refinement of X. 
   3    2  The final value of X is at a bound. The minimum is probably beyond the 

bound. 
   4    3  The number of function evaluations has exceeded MAXFN. 

Description 
The routine UVMIF uses a safeguarded quadratic interpolation method to find a minimum point 
of a univariate function. Both the code and the underlying algorithm are based on the routine 
ZXLSF written by M.J.D. Powell at the University of Cambridge. 

The routine UVMIF finds the least value of a univariate function, f, that is specified by the 
function subroutine F. Other required data include an initial estimate of the solution, XGUESS , 
and a positive number BOUND. Let x� = XGUESS and b = BOUND, then x is restricted to the 
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interval [x� � b, x� + b]. Usually, the algorithm begins the search by moving from x� to  
x = x� + s, where s = STEP is also provided by the user and may be positive or negative. The first 
two function evaluations indicate the direction to the minimum point, and the search strides out 
along this direction until a bracket on a minimum point is found or until x reaches one of the 
bounds x� � b. During this stage, the step length increases by a factor of between two and nine 
per function evaluation; the factor depends on the position of the minimum point that is 
predicted by quadratic interpolation of the three most recent function values. 

When an interval containing a solution has been found, we will have three points, x�, x�, and x�, 
with x� < x� < x� and f (x�) � f (x�) and f (x�) � f (x�). There are three main ingredients in the 
technique for choosing the new x from these three points. They are (i) the estimate of the 
minimum point that is given by quadratic interpolation of the three function values, (ii) a 
tolerance parameter �, that depends on the closeness of f to a quadratic, and (iii) whether x� is 
near the center of the range between x� and x� or is relatively close to an end of this range. In 
outline, the new value of x is as near as possible to the predicted minimum point, subject to 
being at least � from x�, and subject to being in the longer interval between x� and x� or x� and x� 
when x� is particularly close to x� or x�. There is some elaboration, however, when the distance 
between these points is close to the required accuracy; when the distance is close to the machine 
precision; or when � is relatively large. 

The algorithm is intended to provide fast convergence when f has a positive and continuous 
second derivative at the minimum and to avoid gross inefficiencies in pathological cases, such 
as  

f (x) = x + 1.001|x| 

The algorithm can make � large automatically in the pathological cases. In this case, it is usual 
for a new value of x to be at the midpoint of the longer interval that is adjacent to the least 
calculated function value. The midpoint strategy is used frequently when changes to f are 
dominated by computer rounding errors, which will almost certainly happen if the user requests 
an accuracy that is less than the square root of the machine precision. In such cases, the routine 
claims to have achieved the required accuracy if it knows that there is a local minimum point 
within distance 	 of x, where 	 = XACC, even though the rounding errors in f may cause the 
existence of other local minimum points nearby. This difficulty is inevitable in minimization 
routines that use only function values, so high precision arithmetic is recommended. 

UVMID 
Finds the minimum point of a smooth function of a single variable using both function evaluations 
and first derivative evaluations. 

Required Arguments 
F — User-supplied FUNCTION to define the function to be minimized. The form is F(X), 

where 

X — The point at which the function is to be evaluated.   (Input) 
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F — The computed value of the function at X.   (Output) 

F must be declared EXTERNAL in the calling program. 

G — User-supplied FUNCTION to compute the derivative of the function. The form is G(X), 
where 

X — The point at which the derivative is to be computed.   (Input) 

G — The computed value of the derivative at X.   (Output) 

G must be declared EXTERNAL in the calling program. 

A — A is the lower endpoint of the interval in which the minimum point of F is to be located.   
(Input) 

B — B is the upper endpoint of the interval in which the minimum point of F is to be located.   
(Input) 

X — The point at which a minimum value of F is found.   (Output) 

Optional Arguments 
XGUESS — An initial guess of the minimum point of F.   (Input) 

Default: XGUESS = (a + b) / 2.0. 

ERRREL — The required relative accuracy in the final value of X.   (Input)  
This is the first stopping criterion. On a normal return, the solution X is in an interval 
that contains a local minimum and is less than or equal to MAX(1.0, ABS(X)) * ERRREL. 
When the given ERRREL is less than machine epsilon, SQRT(machine epsilon) is used 
as ERRREL. 
Default: ERRREL = 1.e-4. 

GTOL — The derivative tolerance used to decide if the current point is a local minimum.   
(Input)  
This is the second stopping criterion. X is returned as a solution when GX is less than or 
equal to GTOL. GTOL should be nonnegative, otherwise zero would be used. 
Default: GTOL = 1.e-4. 

MAXFN — Maximum number of function evaluations allowed.   (Input) 
Default: MAXFN = 1000. 

FX — The function value at point X.   (Output) 

GX — The derivative value at point X.   (Output) 
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FORTRAN 90 Interface 
Generic: CALL UVMID (F, G, A, B, X [,…]) 

Specific: The specific interface names are S_UVMID and D_UVMID. 

FORTRAN 77 Interface 
Single: CALL UVMID (F, G, XGUESS, ERRREL, GTOL, MAXFN, A, B, X, FX, 

GX) 

Double: The double precision name is DUVMID. 

Example 

A minimum point of ex � 5x is found. 
      USE UVMID_INT 
      USE UMACH_INT 
!                                  Declare variables 
      INTEGER    MAXFN, NOUT 
      REAL       A, B, ERRREL, F, FX, G, GTOL, GX, X, XGUESS 
      EXTERNAL   F, G 
!                                  Initialize variables 
      XGUESS = 0.0 
!                                 Set ERRREL to zero in order 
!                                 to use SQRT(machine epsilon) 
!                                 as relative error 
      ERRREL = 0.0 
      GTOL   = 0.0 
      A      = -10.0 
      B      = 10.0 
      MAXFN  = 50 
! 
!                                 Find minimum for F = EXP(X) - 5X 
      CALL UVMID (F, G, A, B, X, XGUESS=XGUESS, ERRREL=ERRREL,  & 
                 GTOL=FTOL, MAXFN=MAXFN, FX=FX, GX=GX) 
!                                 Print results 
      CALL UMACH (2, NOUT) 
      WRITE (NOUT,99999) X, FX, GX 
! 
99999 FORMAT (’   The minimum is at ’, 7X, F7.3, //, ’   The function ’ & 
            , ’value is ’, F7.3, //, ’   The derivative is ’, F7.3) 
! 
      END 
!                                 Real function: F = EXP(X) - 5.0*X 
      REAL FUNCTION F (X) 
      REAL       X 
! 
      REAL       EXP 
      INTRINSIC  EXP 
! 
      F = EXP(X) - 5.0E0*X 
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! 
      RETURN 
      END 
! 
      REAL FUNCTION G (X) 
      REAL       X 
! 
      REAL       EXP 
      INTRINSIC  EXP 
! 
      G = EXP(X) - 5.0E0 
      RETURN 
      END 

Output 
The minimum is at       1.609 
 
The function value is  -3.047 
 
The derivative is  -0.001 

Comments 
Informational errors 

Type  Code  
   3     1  The final value of X is at the lower bound. The minimum is probably 

beyond the bound. 
   3    2  The final value of X is at the upper bound. The minimum is probably 

beyond the bound. 
   4     3  The maximum number of function evaluations has been exceeded. 

Description 
The routine UVMID uses a descent method with either the secant method or cubic interpolation to 
find a minimum point of a univariate function. It starts with an initial guess and two endpoints. 
If any of the three points is a local minimum point and has least function value, the routine 
terminates with a solution. Otherwise, the point with least function value will be used as the 
starting point. 

From the starting point, say xc, the function value fc = f (xc), the derivative value gc = g(xc), and 
a new point xn defined by xn = xc � gc are computed. The function fn = f(xn), and the derivative 
gn = g(xn) are then evaluated. If either fn � fc or gn has the opposite sign of gc, then there exists a 
minimum point between xc and xn; and an initial interval is obtained. Otherwise, since xc is kept 
as the point that has lowest function value, an interchange between xn and xc is performed. The 
secant method is then used to get a new point 

( )n c
s c c

n c

g g
x x g

x x
�

� �

�
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Let xn 
 xs and repeat this process until an interval containing a minimum is found or one of the 
convergence criteria is satisfied. The convergence criteria are as follows: Criterion 1: 

c n cx x �� �  

 

Criterion 2: 

c gg ��  

where �c = max{1.0, |xc|}�, � is a relative error tolerance and �g is a gradient tolerance.  

When convergence is not achieved, a cubic interpolation is performed to obtain a new point. 
Function and derivative are then evaluated at that point; and accordingly, a smaller interval that 
contains a minimum point is chosen. A safeguarded method is used to ensure that the interval 
reduces by at least a fraction of the previous interval. Another cubic interpolation is then 
performed, and this procedure is repeated until one of the stopping criteria is met. 

UVMGS 
Finds the minimum point of a nonsmooth function of a single variable. 

 

Required Arguments 
F — User-supplied FUNCTION to compute the value of the function to be minimized. The 

form is F(X), where 

X – The point at which the function is evaluated.   (Input) 
X should not be changed by F. 

F – The computed function value at the point X.   (Output) 

F must be declared EXTERNAL in the calling program. 

A — On input, A is the lower endpoint of the interval in which the minimum of F is to be 
located. On output, A is the lower endpoint of the interval in which the minimum of F 
is located.   (Input/Output) 

B — On input, B is the upper endpoint of the interval in which the minimum of F is to be 
located. On output, B is the upper endpoint of the interval in which the minimum of F 
is located.   (Input/Output) 

XMIN — The approximate minimum point of the function F on the original interval (A, B).   
(Output) 
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Optional Arguments 
TOL — The allowable length of the final subinterval containing the minimum point.   (Input) 

Default: TOL = 1.e-4. 

FORTRAN 90 Interface 
Generic: CALL UVMGS (F, A, B, XMIN [,…]) 

Specific: The specific interface names are S_UVMGS and D_UVMGS. 

FORTRAN 77 Interface 
Single: CALL UVMGS (F, A, B, TOL, XMIN) 

Double: The double precision name is DUVMGS. 

Example 
A minimum point of 3x� � 2x + 4 is found. 

      USE UVMGS_INT 
      USE UMACH_INT 
!                                 Specification of variables 
      INTEGER    NOUT 
      REAL       A, B, FCN, FMIN, TOL, XMIN 
      EXTERNAL   FCN 
!                                 Initialize variables 
      A   = 0.0E0 
      B   = 5.0E0 
      TOL = 1.0E-3 
!                                 Minimize FCN 
      CALL UVMGS (FCN, A, B, XMIN, TOL=TOL) 
      FMIN = FCN(XMIN) 
!                                 Print results 
      CALL UMACH (2, NOUT) 
      WRITE (NOUT,99999) XMIN, FMIN, A, B 
99999 FORMAT (’   The minimum is at ’, F5.3, //, ’   The ’, & 
            ’function value is ’, F5.3, //, ’   The final ’, & 
            ’interval is (’, F6.4, ’,’, F6.4, ’)’, /) 
! 
      END 
! 
!                                 REAL FUNCTION: F = 3*X**2 - 2*X + 4 
      REAL FUNCTION FCN (X) 
      REAL       X 
! 
      FCN = 3.0E0*X*X - 2.0E0*X + 4.0E0 
! 
      RETURN 
      END 
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Output 
The minimum is at 0.333 
 
The function value is 3.667 
 
The final interval is (0.3331,0.3340) 
 

Comments 
1. Informational errors 

Type  Code 
   3    1 TOL is too small to be satisfied. 
   4    2 Due to rounding errors F does not appear to be unimodal. 

2. On exit from UVMGS without any error messages, the following conditions hold: (B-A) � 
TOL. 
A � XMIN and XMIN � B 
F(XMIN) � F(A) and F(XMIN) � F(B) 

3. On exit from UVMGS with error code 2, the following conditions hold: 
A � XMIN and XMIN � B 
F(XMIN) � F(A) and F(XMIN) � F(B) (only one equality can hold). 
Further analysis of the function F is necessary in order to determine whether it is not 
unimodal in the mathematical sense or whether it appears to be not unimodal to the 
routine due to rounding errors in which case the A, B, and XMIN returned may be 
acceptable. 

Description 
The routine UVMGS uses the golden section search technique to compute to the desired accuracy 
the independent variable value that minimizes a unimodal function of one independent variable, 
where a known finite interval contains the minimum. 

Let � = TOL. The number of iterations required to compute the minimizing value to accuracy � is 
the greatest integer less than or equal to 

� �� �
� �

ln /
1

ln 1
b a

c
� �

�

�

 

where a and b define the interval and  

� �3 5 / 2c � �  

The first two test points are v� and v� that are defined as 

v� = a + c(b � a), and v� = b � c(b � a) 
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If f(v�) < f(v�), then the minimizing value is in the interval (a, v�). In this case, b 
 v�, v� 
 v�, 
and v� 
 a + c(b � a). If f(v�) � f(v�), the minimizing value is in (v�, b). In this case, a 
 v�, v� 

 v�, and v� 
 b � c(b � a). 

The algorithm continues in an analogous manner where only one new test point is computed at 
each step. This process continues until the desired accuracy � is achieved. XMIN is set to the 
point producing the minimum value for the current iteration. 

Mathematically, the algorithm always produces the minimizing value to the desired accuracy; 
however, numerical problems may be encountered. If f is too flat in part of the region of interest, 
the function may appear to be constant to the computer in that region. Error code 2 indicates that 
this problem has occurred. The user may rectify the problem by relaxing the requirement on �, 
modifying (scaling, etc.) the form of f or executing the program in a higher precision. 

UMINF 
Minimizes a function of N variables using a quasi-Newton method and a finite-difference gradient. 

Required Arguments 
FCN — User-supplied SUBROUTINE to evaluate the function to be minimized. The usage is 

CALL FCN (N, X, F), where 

N – Length of X.   (Input) 

X – The point at which the function is evaluated.   (Input)  
X should not be changed by FCN. 

F – The computed function value at the point X.   (Output) 

FCN must be declared EXTERNAL in the calling program. 

X — Vector of length N containing the computed solution.   (Output) 

Optional Arguments 
N — Dimension of the problem.   (Input) 

Default: N = size (X,1). 

XGUESS — Vector of length N containing an initial guess of the computed solution.   (Input) 
Default: XGUESS = 0.0. 

XSCALE — Vector of length N containing the diagonal scaling matrix for the variables.   
(Input)  
XSCALE is used mainly in scaling the gradient and the distance between two points. In 
the absence of other information, set all entries to 1.0. 
Default: XSCALE = 1.0. 
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FSCALE — Scalar containing the function scaling.   (Input)  
FSCALE is used mainly in scaling the gradient. In the absence of other information, set 
FSCALE to 1.0. 
Default: FSCALE = 1.0. 

IPARAM — Parameter vector of length 7.   (Input/Output)  
Set IPARAM(1) to zero for default values of IPARAM and RPARAM. See Comment 4. 
Default: IPARAM = 0. 

RPARAM — Parameter vector of length 7.(Input/Output)  
See Comment 4. 

FVALUE — Scalar containing the value of the function at the computed solution.   (Output) 

FORTRAN 90 Interface 
Generic: CALL UMINF (FCN, X [,…]) 

Specific: The specific interface names are S_UMINF and D_UMINF. 

FORTRAN 77 Interface 
Single: CALL UMINF (FCN, N, XGUESS, XSCALE, FSCALE, IPARAM, RPARAM,  

X, FVALUE) 

Double: The double precision name is DUMINF. 

Example 
The function  

� � � � � �
2 22

2 1 1100 1f x x x x� � � �  

is minimized. 
      USE UMINF_INT 
      USE U4INF_INT 
      USE UMACH_INT 
      INTEGER    N 
      PARAMETER  (N=2) 
! 
      INTEGER    IPARAM(7), L, NOUT 
      REAL       F, RPARAM(7), X(N), XGUESS(N), & 
                XSCALE(N) 
      EXTERNAL   ROSBRK 
! 
      DATA XGUESS/-1.2E0, 1.0E0/ 
! 
!                                 Relax gradient tolerance stopping 
!                                 criterion 
      CALL U4INF (IPARAM, RPARAM) 
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      RPARAM(1) = 10.0E0*RPARAM(1) 
!                                 Minimize Rosenbrock function using 
!                                 initial guesses of -1.2 and 1.0 

CALL UMINF (ROSBRK, X, XGUESS=XGUESS, IPARAM=IPARAM, RPARAM=RPARAM, &   
FVALUE=F) 

!                                 Print results 
      CALL UMACH (2, NOUT) 
      WRITE (NOUT,99999) X, F, (IPARAM(L),L=3,5) 
! 
99999 FORMAT (’  The solution is ’, 6X, 2F8.3, //, ’  The function ’, & 
            ’value is ’, F8.3, //, ’  The number of iterations is ’, & 
            10X, I3, /, ’  The number of function evaluations is ’, & 
            I3, /, ’  The number of gradient evaluations is ’, I3) 
! 
      END 
! 
      SUBROUTINE ROSBRK (N, X, F) 
      INTEGER    N 
      REAL       X(N), F 
! 
      F = 1.0E2*(X(2)-X(1)*X(1))**2 + (1.0E0-X(1))**2 
! 
      RETURN 
      END 

Output 
The solution is          1.000   1.000 
 
The function value is    0.000 
 
The number of iterations is            15 
The number of function evaluations is  40 
The number of gradient evaluations is  19 

Comments 
1. Workspace may be explicitly provided, if desired, by use of U2INF/DU2INF. The 

reference is: 

CALL U2INF (FCN, N, XGUESS, XSCALE, FSCALE, IPARAM,  
RPARAM, X,FVALUE, WK) 

The additional argument is: 

WK — Work vector of length N(N + 8). WK contains the following information on 
output: The second N locations contain the last step taken. The third N locations 
contain the last Newton step. The fourth N locations contain an estimate of the 
gradient at the solution. The final N� locations contain the Cholesky 
factorization of a BFGS approximation to the Hessian at the solution. 

2. Informational errors 

Type Code 
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   3    1 Both the actual and predicted relative reductions in the function are 
less than or equal to the relative function convergence tolerance. 

   4    2 The iterates appear to be converging to a noncritical point. 
   4    3 Maximum number of iterations exceeded. 
   4    4 Maximum number of function evaluations exceeded. 
   4    5 Maximum number of gradient evaluations exceeded. 
   4    6 Five consecutive steps have been taken with the maximum step 

length. 
   2    7 Scaled step tolerance satisfied; the current point may be an 

approximate local solution, or the algorithm is making very slow 
progress and is not near a solution, or STEPTL is too big. 

   3    8 The last global step failed to locate a lower point than the current X 
value. 

3. The first stopping criterion for UMINF occurs when the infinity norm of the scaled 
gradient is less than the given gradient tolerance (RPARAM(1)). The second stopping 
criterion for UMINF occurs when the scaled distance between the last two steps is less 
than the step tolerance (RPARAM(2)). 

4. If the default parameters are desired for UMINF, then set IPARAM(1) to zero and call the 
routine UMINF. Otherwise, if any nondefault parameters are desired for IPARAM or 
RPARAM, then the following steps should be taken before calling UMINF: 

CALL U4INF (IPARAM, RPARAM) 
Set nondefault values for desired IPARAM, RPARAM elements. 

Note that the call to U4INF will set IPARAM and RPARAM to their default values so only 
nondefault values need to be set above. 

The following is a list of the parameters and the default values: 

IPARAM — Integer vector of length 7. 
IPARAM(1) = Initialization flag. 

IPARAM(2) = Number of good digits in the function. 
Default: Machine dependent. 

IPARAM(3) = Maximum number of iterations. 
Default: 100. 

IPARAM(4) = Maximum number of function evaluations. 
Default: 400. 

IPARAM(5) = Maximum number of gradient evaluations. 
Default: 400. 
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IPARAM(6) = Hessian initialization parameter. 
If IPARAM(6) = 0, the Hessian is initialized to the identity matrix; otherwise, it is 
initialized to a diagonal matrix containing  

� �� � 2max , s if t f s�  

on the diagonal where t = XGUESS, fs = FSCALE, and s = XSCALE. 
Default: 0. 

IPARAM(7) = Maximum number of Hessian evaluations. 
Default: Not used in UMINF. 

RPARAM — Real vector of length 7. 
RPARAM(1) = Scaled gradient tolerance. 
The i-th component of the scaled gradient at 
x is calculated as 

� �

� �� �

*max ,1/

max ,
i i i

s

g x s

f x f
 

where g = �f (x), s = XSCALE, and fs = FSCALE. 
Default:  

3,� �  

in double where � is the machine precision. 

RPARAM(2) = Scaled step tolerance. (STEPTL) 
The i-th component of the scaled step between two points x and y is computed as 

� �max ,1/
i i

i i

x y
x s
�

 

where s = XSCALE. 
Default: ��� where � is the machine precision. 

RPARAM(3) = Relative function tolerance. 
Default: max(10���, ����), max(10���, ����) in double where � is the machine 
precision. 

RPARAM(4) = Absolute function tolerance. 
Default: Not used in UMINF. 

RPARAM(5) = False convergence tolerance. 
Default: Not used in UMINF. 
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RPARAM(6) = Maximum allowable step size. 
Default: 1000 max(��, ��) where 

� �
2

1 2 21
XSCALE XGUESS, , ,  and n

i ii
s t s s t� �

�

� � � ��  

RPARAM(7) = Size of initial trust region radius. 
Default: Not used in UMINF. 

If double precision is required, then DU4INF is called, and RPARAM is declared double 
precision. 

5. Users wishing to override the default print/stop attributes associated with error 
messages issued by this routine are referred to “Error Handling” in the Introduction. 

Description 
The routine UMINF uses a quasi-Newton method to find the minimum of a function f(x) of n 
variables. Only function values are required. The problem is stated as follows: 

� �min
nx

f x
�R

 

Given a starting point xc, the search direction is computed according to the formula 

d = �B�� gc 

where B is a positive definite approximation of the Hessian and gc is the gradient evaluated at 
xc. A line search is then used to find a new point 

xn = xc + �d, � > 0 

such that 

f(xn) � f(xc) + �gT d, � � (0, 0.5) 

Finally, the optimality condition ||g(x)|| = � is checked where � is a gradient tolerance. 

When optimality is not achieved, B is updated according to the BFGS formula 
T T

T T

Bss B yyB B
s Bs y s

� � �  

where s = xn � xc and y = gn � gc. Another search direction is then computed to begin the next 
iteration. For more details, see Dennis and Schnabel (1983, Appendix A). 

Since a finite-difference method is used to estimate the gradient, for some single precision 
calculations, an inaccurate estimate of the gradient may cause the algorithm to terminate at a 
noncritical point. In such cases, high precision arithmetic is recommended. Also, whenever the 
exact gradient can be easily provided, IMSL routine UMING (page 1202) should be used instead. 



 

 
 

1202 � Chapter 8: Optimization IMSL MATH/LIBRARY 

 

 

 

UMING 
Minimizes a function of N variables using a quasi-Newton method and a user-supplied gradient. 

Required Arguments 
FCN — User-supplied SUBROUTINE to evaluate the function to be minimized. The usage is 

CALL FCN (N, X, F), where 

N – Length of X.   (Input) 

X – Vector of length N at which point the function is evaluated.   (Input)  
X should not be changed by FCN. 

F – The computed function value at the point X.   (Output) 

FCN must be declared EXTERNAL in the calling program. 

GRAD — User-supplied SUBROUTINE to compute the gradient at the point X. The usage is 
CALL GRAD (N, X, G), where 

N – Length of X and G.   (Input) 
X – Vector of length N at which point the function is evaluated.   (Input) 
X should not be changed by GRAD . 
G – The gradient evaluated at the point X.   (Output) 

GRAD must be declared EXTERNAL in the calling program. 

X — Vector of length N containing the computed solution.   (Output) 

Optional Arguments 
N — Dimension of the problem.   (Input) 

Default: N = size (X,1). 

XGUESS — Vector of length N containing the initial guess of the minimum.   (Input) 
Default: XGUESS = 0.0. 

XSCALE — Vector of length N containing the diagonal scaling matrix for the variables.   
(Input)  
XSCALE is used mainly in scaling the gradient and the distance between two points. In 
the absence of other information, set all entries to 1.0. 
Default: XSCALE = 1.0. 

FSCALE — Scalar containing the function scaling.   (Input)  
FSCALE is used mainly in scaling the gradient. In the absence of other information, set 
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FSCALE to 1.0. 
Default: FSCALE = 1.0. 

IPARAM — Parameter vector of length 7.   (Input/Output)  
Set IPARAM(1) to zero for default values of IPARAM and RPARAM. See Comment 4. 
Default: IPARAM = 0. 

RPARAM — Parameter vector of length 7.   (Input/Output)  
See Comment 4. 

FVALUE — Scalar containing the value of the function at the computed solution.   (Output) 

FORTRAN 90 Interface 
Generic: CALL UMING (FCN, GRAD, X [,…]) 

Specific: The specific interface names are S_UMING and D_UMING. 

FORTRAN 77 Interface 
Single: CALL UMING (FCN, GRAD, N, XGUESS, XSCALE, FSCALE, IPARAM,  

RPARAM, X, FVALUE) 

Double: The double precision name is DUMING. 

Example 
The function  

� � � � � �
2 22

2 1 1100 1f x x x x� � � �  

is minimized. Default values for parameters are used. 
      USE UMING_INT 
      USE UMACH_INT 
      INTEGER    N 
      PARAMETER  (N=2) 
! 
      INTEGER    IPARAM(7), L, NOUT 
      REAL       F, X(N), XGUESS(N) 
      EXTERNAL   ROSBRK, ROSGRD 
! 
      DATA XGUESS/-1.2E0, 1.0E0/ 
! 
      IPARAM(1) = 0 
!                                 Minimize Rosenbrock function using 
!                                 initial guesses of -1.2 and 1.0 
      CALL UMING (ROSBRK, ROSGRD, X, XGUESS=XGUESS, IPARAM=IPARAM, FVALUE=F) 
!                                 Print results 
      CALL UMACH (2, NOUT) 
      WRITE (NOUT,99999) X, F, (IPARAM(L),L=3,5) 
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! 
99999 FORMAT (’  The solution is ’, 6X, 2F8.3, //, ’  The function ’, & 
            ’value is ’, F8.3, //, ’  The number of iterations is ’, & 
            10X, I3, /, ’  The number of function evaluations is ’, & 
            I3, /, ’  The number of gradient evaluations is ’, I3) 
! 
      END 
! 
      SUBROUTINE ROSBRK (N, X, F) 
      INTEGER    N 
      REAL       X(N), F 
! 
      F = 1.0E2*(X(2)-X(1)*X(1))**2 + (1.0E0-X(1))**2 
! 
      RETURN 
      END 
! 
      SUBROUTINE ROSGRD (N, X, G) 
      INTEGER    N 
      REAL       X(N), G(N) 
! 
      G(1) = -4.0E2*(X(2)-X(1)*X(1))*X(1) - 2.0E0*(1.0E0-X(1)) 
      G(2) = 2.0E2*(X(2)-X(1)*X(1)) 
! 
      RETURN 
      END 

Output 
The solution is          1.000   1.000 
 
The function value is    0.000 
 
The number of iterations is            18 
The number of function evaluations is  31 
The number of gradient evaluations is  22 

Comments 
1. Workspace may be explicitly provided, if desired, by use of U2ING/DU2ING. The 

reference is: 

CALL U2ING (FCN, GRAD, N, XGUESS, XSCALE, FSCALE, IPARAM, 
RPARAM, X, FVALUE, WK) 

The additional argument is 

WK — Work vector of length N * (N + 8). WK contains the following information on 
output: The second N locations contain the last step taken. The third N locations 
contain the last Newton step. The fourth N locations contain an estimate of the 
gradient at the solution. The final N� locations contain the Cholesky factorization 
of a BFGS approximation to the Hessian at the solution. 

2. Informational errors 
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Type Code 
   3    1 Both the actual and predicted relative reductions in the function are 

less than or equal to the relative function convergence tolerance. 
   4    2 The iterates appear to be converging to a noncritical point. 
   4    3 Maximum number of iterations exceeded. 
   4    4 Maximum number of function evaluations exceeded. 
   4    5 Maximum number of gradient evaluations exceeded. 
   4    6 Five consecutive steps have been taken with the maximum step 

length. 
   2    7 Scaled step tolerance satisfied; the current point may be an 

approximate local solution, or the algorithm is making very slow 
progress and is not near a solution, or STEPTL is too big. 

   3    8 The last global step failed to locate a lower point than the current X 
value. 

3. The first stopping criterion for UMING occurs when the infinity norm of the scaled 
gradient is less than the given gradient tolerance (RPARAM(1)). The second stopping 
criterion for UMING occurs when the scaled distance between the last two steps is less 
than the step tolerance (RPARAM(2)). 

4. If the default parameters are desired for UMING, then set IPARAM(1) to zero and call 
routine UMING (page 1202). Otherwise, if any nondefault parameters are desired for 
IPARAM or RPARAM, then the following steps should be taken before calling UMING: 

 CALL U4INF (IPARAM, RPARAM) 
Set nondefault values for desired IPARAM, RPARAM elements. 

Note that the call to U4INF will set IPARAM and RPARAM to their default values so only 
nondefault values need to be set above. 

The following is a list of the parameters and the default values: 

IPARAM — Integer vector of length 7. 

IPARAM(1) = Initialization flag. 

IPARAM(2) = Number of good digits in the function. 
Default: Machine dependent. 

IPARAM(3) = Maximum number of iterations. 
Default: 100. 

IPARAM(4) = Maximum number of function evaluations. 
Default: 400. 

IPARAM(5) = Maximum number of gradient evaluations. 
Default: 400. 
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IPARAM(6) = Hessian initialization parameter 
If IPARAM(6) = 0, the Hessian is initialized to the identity matrix; otherwise, it is 
initialized to a diagonal matrix containing  

 � �� � 2max , s if t f s�  

on the diagonal where t = XGUESS, fs = FSCALE, and s = XSCALE. 
Default: 0. 

IPARAM(7) = Maximum number of Hessian evaluations. 
Default: Not used in UMING. 

RPARAM — Real vector of length 7. 
RPARAM(1) = Scaled gradient tolerance. 
The i-th component of the scaled gradient at 
x is calculated as 

� �

� �� �

* max ,1/

max ,
i i i

s

g x s

f x f
 

where g = �f (x), s = XSCALE, and fs = FSCALE. 
Default:  

3,� �  

in double where � is the machine precision. 

RPARAM(2) = Scaled step tolerance. (STEPTL) 
The i-th component of the scaled step between two points x and y is computed as 

� �max ,1/
i i

i i

x y
x s
�

 

where s = XSCALE. 
Default: ���� where � is the machine precision. 

RPARAM(3) = Relative function tolerance. 
Default: max(10���, ����), max(10���, ����) in double where � is the machine 
precision. 

RPARAM(4) = Absolute function tolerance. 
Default: Not used in UMING. 
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RPARAM(5) = False convergence tolerance. 
Default: Not used in UMING. 

RPARAM(6) = Maximum allowable step size. 
Default: 1000 max(��, ��) where 

� �
2

1 1

n
i ii

s t�
�

� �  

�� = || s ||�, s = XSCALE, and t = XGUESS. 

RPARAM(7) = Size of initial trust region radius. 
Default: Not used in UMING. 

If double precision is required, then DU4INF is called, and RPARAM is declared double 
precision. 

5. Users wishing to override the default print/stop attributes associated with error 
messages issued by this routine are referred to “Error Handling” in the Introduction. 

Description 
The routine UMING uses a quasi-Newton method to find the minimum of a function f(x) of n 
variables. Function values and first derivatives are required. The problem is stated as follows: 

� �min
nx

f x
�R

 

Given a starting point xc, the search direction is computed according to the formula 

d = �B�� gc 

where B is a positive definite approximation of the Hessian and gc is the gradient evaluated at 
xc. A line search is then used to find a new point 

xn = xc + �d, � > 0 

such that 

f(xn) � f(xc) + �gT d, � � (0, 0.5) 

Finally, the optimality condition ||g(x)|| = � is checked where � is a gradient tolerance. 

When optimality is not achieved, B is updated according to the BFGS formula 
T T

T T

Bss B yyB B
s Bs y s

� � �  

where s = xn � xc and y = gn � gc. Another search direction is then computed to begin the next 
iteration. For more details, see Dennis and Schnabel (1983, Appendix A). 
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UMIDH 
Minimizes a function of N variables using a modified Newton method and a finite-difference 
Hessian. 

Required Arguments 
FCN — User-supplied SUBROUTINE to evaluate the function to be minimized. The usage is 

CALL FCN (N, X, F), where 

N – Length of X.   (Input) 

X – Vector of length N at which point the function is evaluated.   (Input) 
X should not be changed by FCN. 

F – The computed function value at the point X.   (Output) 

FCN must be declared EXTERNAL in the calling program. 

GRAD — User-supplied SUBROUTINE to compute the gradient at the point X. The usage is 
CALL GRAD (N, X, G), where 

N – Length of X and G.   (Input) 

X – The point at which the gradient is evaluated.   (Input)  
X should not be changed by GRAD. 

G – The gradient evaluated at the point X.   (Output) 

GRAD must be declared EXTERNAL in the calling program. 

X — Vector of length N containing the computed solution.   (Output) 

Optional Arguments 
N — Dimension of the problem.   (Input) 

Default: N = size (X,1). 

XGUESS — Vector of length N containing initial guess.   (Input) 
Default: XGUESS = 0.0. 

XSCALE — Vector of length N containing the diagonal scaling matrix for the variables.   
(Input)  
XSCALE is used mainly in scaling the gradient and the distance between two points. In 
the absence of other information, set all entries to 1.0. 
Default: XSCALE = 1.0. 
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FSCALE — Scalar containing the function scaling.   (Input)  
FSCALE is used mainly in scaling the gradient. In the absence of other information, set 
FSCALE to 1.0. 
Default: FSCALE = 1.0. 

IPARAM — Parameter vector of length 7.   (Input/Output)  
Set IPARAM(1) to zero for default values of IPARAM and RPARAM. See Comment 4. 
Default: IPARAM = 0. 

RPARAM — Parameter vector of length 7.   (Input/Output)  
See Comment 4. 

FVALUE — Scalar containing the value of the function at the computed solution.   (Output) 

FORTRAN 90 Interface 
Generic: CALL UMIDH (FCN, GRAD, X [,…]) 

Specific: The specific interface names are S_UMIDH and D_UMIDH. 

FORTRAN 77 Interface 
Single: CALL UMIDH (FCN, GRAD, N, XGUESS, XSCALE, FSCALE, IPARAM,  

RPARAM, X, FVALUE) 

Double: The double precision name is DUMIDH. 

Example 
The function 

� � � � � �
2 22

2 1 1100 1f x x x x� � � �  

is minimized. Default values for parameters are used. 
      USE UMIDH_INT 
      USE UMACH_INT 
      INTEGER    N 
      PARAMETER  (N=2) 
! 
      INTEGER    IPARAM(7), L, NOUT 
      REAL       F, X(N), XGUESS(N) 
      EXTERNAL   ROSBRK, ROSGRD 
! 
      DATA XGUESS/-1.2E0, 1.0E0/ 
! 
      IPARAM(1) = 0 
!                                 Minimize Rosenbrock function using 
!                                 initial guesses of -1.2 and 1.0 
      CALL UMIDH (ROSBRK, ROSGRD, X, XGUESS=XGUESS, IPARAM=IPARAM, FVALUE=F) 
!                                 Print results 
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      CALL UMACH (2, NOUT) 
      WRITE (NOUT,99999) X, F, (IPARAM(L),L=3,5), IPARAM(7) 
! 
99999 FORMAT (’  The solution is ’, 6X, 2F8.3, //, ’  The function ’, & 
            ’value is ’, F8.3, //, ’  The number of iterations is ’, & 
            10X, I3, /, ’  The number of function evaluations is ’, & 
            I3, /, ’  The number of gradient evaluations is ’, I3, /, & 
            ’  The number of Hessian evaluations is  ’, I3) 
! 
      END 
! 
      SUBROUTINE ROSBRK (N, X, F) 
      INTEGER    N 
      REAL       X(N), F 
! 
      F = 1.0E2*(X(2)-X(1)*X(1))**2 + (1.0E0-X(1))**2 
! 
      RETURN 
      END 
! 
      SUBROUTINE ROSGRD (N, X, G) 
      INTEGER    N 
      REAL       X(N), G(N) 
! 
      G(1) = -4.0E2*(X(2)-X(1)*X(1))*X(1) - 2.0E0*(1.0E0-X(1)) 
      G(2) = 2.0E2*(X(2)-X(1)*X(1)) 
! 
      RETURN 
      END 

Output 
The solution is          1.000   1.000 
 
The function value is    0.000 
 
The number of iterations is            21 
The number of function evaluations is  30 
The number of gradient evaluations is  22 
The number of Hessian evaluations is   21 

Comments 
1. Workspace may be explicitly provided, if desired, by use of U2IDH/DU2IDH. The 

reference is: 

1CALL U2IDH (FCN, GRAD, N, XGUESS, XSCALE, FSCALE, IPARAM, 
RPARAM, X, FVALUE, WK) 

The additional argument is: 

WK — Work vector of length N * (N + 9). WK contains the following information on 
output: The second N locations contain the last step taken. The third N locations 
contain the last Newton step. The fourth N locations contain an estimate of the 
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gradient at the solution. The final N� locations contain the Hessian at the 
approximate solution. 

2. Informational errors 

Type Code 
   3    1 Both the actual and predicted relative reductions in the function are 

less than or equal to the relative function convergence tolerance. 
   4    2 The iterates appear to be converging to a noncritical point. 
   4    3 Maximum number of iterations exceeded. 
   4    4 Maximum number of function evaluations exceeded. 
   4    5 Maximum number of gradient evaluations exceeded. 
   4    6 Five consecutive steps have been taken with the maximum step 

length. 
   2    7 Scaled step tolerance satisfied; the current point may be an 

approximate local solution, or the algorithm is making very slow 
progress and is not near a solution, or STEPTL is too big. 

   4    7 Maximum number of Hessian evaluations exceeded. 
   3    8 The last global step failed to locate a lower point than the current X 

value. 

3. The first stopping criterion for UMIDH occurs when the norm of the gradient is less than 
the given gradient tolerance (RPARAM(1)). The second stopping criterion for UMIDH 
occurs when the scaled distance between the last two steps is less than the step 
tolerance (RPARAM(2)). 

4. If the default parameters are desired for UMIDH, then set IPARAM(1) to zero and call 
routine UMIDH. Otherwise, if any nondefault parameters are desired for IPARAM or 
RPARAM, then the following steps should be taken before calling UMIDH: 

CALL U4INF (IPARAM, RPARAM) 

Set nondefault values for desired IPARAM, RPARAM elements. 

Note that the call to U4INF will set IPARAM and RPARAM to their default values so only 
nondefault values need to be set above. 

The following is a list of the parameters and the default values: 

IPARAM — Integer vector of length 7. 
IPARAM(1) = Initialization flag. 

 IPARAM(2) = Number of good digits in the function. 
Default: Machine dependent. 

IPARAM(3) = Maximum number of iterations. 
Default: 100. 
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IPARAM(4) = Maximum number of function evaluations. 
Default: 400. 

IPARAM(5) = Maximum number of gradient evaluations. 
Default: 400. 

IPARAM(6) = Hessian initialization parameter 
Default: Not used in UMIDH. 

IPARAM(7) = Maximum number of Hessian evaluations. 
Default:100 

RPARAM — Real vector of length 7. 
 
RPARAM(1) = Scaled gradient tolerance. 
The i-th component of the scaled gradient at x is calculated as 

� �

� �� �

* max ,1/

max ,
i i i

s

g x s

f x f
 

where g = �f (x), s = XSCALE, and fs = FSCALE. 
Default:  

3,� �  

in double where � is the machine precision. 

 RPARAM(2) = Scaled step tolerance. (STEPTL) 

The i-th component of the scaled step between two points x and y is computed as 

� �max ,1/
i i

i i

x y
x s
�

 

 where s = XSCALE. 
Default: ���� where � is the machine precision. 

 RPARAM(3) = Relative function tolerance.   

  Default: max(10���, ����), max(10���, ����) in double where � is the machine  
 precision. 

 RPARAM(4) = Absolute function tolerance.   

   Default: Not used in UMIDH. 
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 RPARAM(5) = False convergence tolerance. 

   Default: 100� where � is the machine precision. 

 RPARAM(6) = Maximum allowable step size. 

  Default: 1000 max(��, ��) where 

� �
2

1 1

n
i ii

s t�
�

� �  

 �� = || s ||�, s = XSCALE, and t = XGUESS. 

 RPARAM(7) = Size of initial trust region radius. 

  Default: Based on initial scaled Cauchy step. 

If double precision is required, then DU4INF is called, and RPARAM is declared double 
precision. 

5. Users wishing to override the default print/stop attributes associated with error 
messages issued by this routine are referred to “Error Handling” in the Introduction. 

Description 
The routine UMIDH uses a modified Newton method to find the minimum of a function f (x) of n 
variables. First derivatives must be provided by the user. The algorithm computes an optimal 
locally constrained step (Gay 1981) with a trust region restriction on the step. It handles the case 
that the Hessian is indefinite and provides a way to deal with negative curvature. For more 
details, see Dennis and Schnabel (1983, Appendix A) and Gay (1983). 

Since a finite-difference method is used to estimate the Hessian for some single precision 
calculations, an inaccurate estimate of the Hessian may cause the algorithm to terminate at a 
noncritical point. In such cases, high precision arithmetic is recommended. Also, whenever the 
exact Hessian can be easily provided, IMSL routine UMIAH (page 1213) should be used instead. 

UMIAH 
Minimizes a function of N variables using a modified Newton method and a user-supplied 
Hessian. 

Required Arguments 
FCN — User-supplied SUBROUTINE to evaluate the function to be minimized. The usage is 

CALL FCN (N, X, F), where 

N – Length of X.   (Input) 
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X – Vector of length N at which point the function is evaluated.   (Input) 
X should not be changed by FCN. 

F – The computed function value at the point X.   (Output) 

FCN must be declared EXTERNAL in the calling program. 

GRAD — User-supplied SUBROUTINE to compute the gradient at the point X. The usage is 
CALL GRAD (N, X, G), where 

N – Length of X and G.   (Input) 

X – Vector of length N at which point the gradient is evaluated.   (Input)  
X should not be changed by GRAD. 

G – The gradient evaluated at the point X.   (Output) 

GRAD must be declared EXTERNAL in the calling program. 

HESS — User-supplied SUBROUTINE to compute the Hessian at the point X. The usage is 
CALL HESS (N, X, H, LDH), where 

N – Length of X.   (Input) 

X – Vector of length N at which point the Hessian is evaluated.   (Input)  
X should not be changed by HESS. 

H – The Hessian evaluated at the point X.   (Output) 

LDH – Leading dimension of H exactly as specified in the dimension statement of the 
calling program. LDH must be equal to N in this routine.   (Input) 

HESS must be declared EXTERNAL in the calling program. 

X — Vector of length N containing the computed solution.   (Output) 

Optional Arguments 
N — Dimension of the problem.   (Input) 

Default: N = size (X,1). 

XGUESS — Vector of length N containing initial guess.   (Input) 
Default: XGUESS = 0.0. 

XSCALE — Vector of length N containing the diagonal scaling matrix for the variables.   
(Input) 
XSCALE is used mainly in scaling the gradient and the distance between two points. In 
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the absence of other information, set all entries to 1.0. 
Default: XSCALE = 1.0. 

FSCALE — Scalar containing the function scaling.   (Input)  
FSCALE is used mainly in scaling the gradient. In the absence of other information, set 
FSCALE to 1.0. 
Default: FSCALE = 1.0. 

IPARAM — Parameter vector of length 7.   (Input/Output)  
Set IPARAM(1) to zero for default values of IPARAM and RPARAM. See Comment 4. 
Default: IPARAM = 0. 

RPARAM — Parameter vector of length 7.   (Input/Output)  
See Comment 4. 

FVALUE — Scalar containing the value of the function at the computed solution.   (Output) 

FORTRAN 90 Interface 
Generic: CALL UMIAH (FCN, GRAD, HESS, X, [,…]) 

Specific: The specific interface names are S_UMIAH and D_UMIAH. 

FORTRAN 77 Interface 
Single: CALL UMIAH (FCN, GRAD, HESS, N, XGUESS, XSCALE, FSCALE,  

IPARAM, RPARAM, X, FVALUE) 

Double: The double precision name is DUMIAH. 

Example 
The function 

� � � � � �
2 22

2 1 1100 1f x x x x� � � �  

is minimized. Default values for parameters are used. 
      USE UMIAH_INT 
      USE UMACH_INT 
      INTEGER    N 
      PARAMETER  (N=2) 
! 
      INTEGER    IPARAM(7), L, NOUT 
      REAL       F, FSCALE, RPARAM(7), X(N), & 
                XGUESS(N), XSCALE(N) 
      EXTERNAL   ROSBRK, ROSGRD, ROSHES 
! 
      DATA XGUESS/-1.2E0, 1.0E0/, XSCALE/1.0E0, 1.0E0/, FSCALE/1.0E0/ 
! 
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      IPARAM(1) = 0 
!                                 Minimize Rosenbrock function using 
!                                 initial guesses of -1.2 and 1.0 

CALL UMIAH (ROSBRK, ROSGRD, ROSHES, X, XGUESS=XGUESS, IPARAM=IPARAM, &  
FVALUE=F) 

!                                 Print results 
      CALL UMACH (2, NOUT) 
      WRITE (NOUT,99999) X, F, (IPARAM(L),L=3,5), IPARAM(7) 
! 
99999 FORMAT (’  The solution is ’, 6X, 2F8.3, //, ’  The function ’, & 
            ’value is ’, F8.3, //, ’  The number of iterations is ’, & 
            10X, I3, /, ’  The number of function evaluations is ’, & 
            I3, /, ’  The number of gradient evaluations is ’, I3, /, & 
            ’  The number of Hessian evaluations is  ’, I3) 
! 
      END 
! 
      SUBROUTINE ROSBRK (N, X, F) 
      INTEGER    N 
      REAL       X(N), F 
! 
      F = 1.0E2*(X(2)-X(1)*X(1))**2 + (1.0E0-X(1))**2 
! 
      RETURN 
      END 
! 
      SUBROUTINE ROSGRD (N, X, G) 
      INTEGER    N 
      REAL       X(N), G(N) 
! 
      G(1) = -4.0E2*(X(2)-X(1)*X(1))*X(1) - 2.0E0*(1.0E0-X(1)) 
      G(2) = 2.0E2*(X(2)-X(1)*X(1)) 
! 
      RETURN 
      END 
! 
      SUBROUTINE ROSHES (N, X, H, LDH) 
      INTEGER    N, LDH 
      REAL       X(N), H(LDH,N) 
! 
      H(1,1) = -4.0E2*X(2) + 1.2E3*X(1)*X(1) + 2.0E0 
      H(2,1) = -4.0E2*X(1) 
      H(1,2) = H(2,1) 
      H(2,2) = 2.0E2 
! 
      RETURN 
      END 

Output 
The solution is          1.000   1.000 
 
The function value is    0.000 
 
The number of iterations is            21 
The number of function evaluations is  31 
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The number of gradient evaluations is  22 
The number of Hessian evaluations is   21 

Comments 
1. Workspace may be explicitly provided, if desired, by use of U2IAH/DU2IAH. The 

reference is: 

CALL U2IAH (FCN, GRAD, HESS, N, XGUESS, XSCALE, FSCALE, IPARAM, 
RPARAM, X, FVALUE, WK) 

The additional argument is: 

WK — Work vector of length N * (N + 9). WK contains the following information on 
output: The second N locations contain the last step taken. The third N locations 
contain the last Newton step. The fourth N locations contain an estimate of the 
gradient at the solution. The final N� locations contain the Hessian at the 
approximate solution. 

2. Informational errors 

Type Code 
   3     1 Both the actual and predicted relative reductions in the function are 

less than or equal to the relative function convergence tolerance. 
   4    2 The iterates appear to be converging to a noncritical point. 
   4    3 Maximum number of iterations exceeded. 
   4    4 Maximum number of function evaluations exceeded. 
   4    5 Maximum number of gradient evaluations exceeded. 
   4    6 Five consecutive steps have been taken with the maximum step 

length. 
   2    7 Scaled step tolerance satisfied; the current point may be an 

approximate local solution, or the algorithm is making very slow 
progress and is not near a solution, or STEPTL is too big. 

   4    7 Maximum number of Hessian evaluations exceeded. 
   3    8 The last global step failed to locate a lower point than the current X 

value. 

3. The first stopping criterion for UMIAH occurs when the norm of the gradient is less than 
the given gradient tolerance (RPARAM(1)). The second stopping criterion for UMIAH 
occurs when the scaled distance between the last two steps is less than the step 
tolerance (RPARAM(2)). 

4. If the default parameters are desired for UMIAH, then set IPARAM(1) to zero and call the 
routine UMIAH. Otherwise, if any nondefault parameters are desired for IPARAM or 
RPARAM, then the following steps should be taken before calling UMIAH: 

CALL U4INF (IPARAM, RPARAM) 
Set nondefault values for desired IPARAM, RPARAM elements. 
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Note that the call to U4INF will set IPARAM and RPARAM to their default values so only 
nondefault values need to be set above. 

The following is a list of the parameters and the default values: 

IPARAM — Integer vector of length 7. 
IPARAM(1) = Initialization flag. 

IPARAM(2) = Number of good digits in the function. 
Default: Machine dependent. 

IPARAM(3) = Maximum number of iterations. 
Default: 100. 

IPARAM(4) = Maximum number of function evaluations. 
Default: 400. 

IPARAM(5) = Maximum number of gradient evaluations. 
Default: 400. 

IPARAM(6) = Hessian initialization parameter 
Default: Not used in UMIAH. 

IPARAM(7) = Maximum number of Hessian evaluations. 
Default: 100. 

RPARAM — Real vector of length 7. 
RPARAM(1) = Scaled gradient tolerance. 
The i-th component of the scaled gradient at x is calculated as 

� �

� �� �

max ,1/

max ,
i i i

s

g x s

f x f

�

 

 where g = �f (x), s = XSCALE, and fs = FSCALE. 
Default: 

3,� �  

 in double where � is the machine precision. 

RPARAM(2) = Scaled step tolerance. (STEPTL) 
The i-th component of the scaled step between two points x and y is computed as 

� �max ,1/
i i

i i

x y
x s
�
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 where s = XSCALE. 
Default: ���� where � is the machine precision. 

RPARAM(3) = Relative function tolerance. 
Default: max(10���, ����), max(10���, ����) in double where � is the machine 
precision. 

RPARAM(4) = Absolute function tolerance. 
Default: Not used in UMIAH. 

RPARAM(5) = False convergence tolerance. 
Default: 100� where � is the machine precision. 

RPARAM(6) = Maximum allowable step size. 
Default: 1000 max(��, ��) where 

� �
2

1 1

n
i ii

s t�
�

� �  

 �� = || s ||�, s = XSCALE, and t = XGUESS. 

RPARAM(7) = Size of initial trust region radius. 
Default: based on the initial scaled Cauchy step. 

If double precision is required, then DU4INF is called, and RPARAM is declared double 
precision. 

5. Users wishing to override the default print/stop attributes associated with error 
messages issued by this routine are referred to “Error Handling” in the Introduction. 

Description 
The routine UMIAH uses a modified Newton method to find the minimum of a function f(x) of n 
variables. First and second derivatives must be provided by the user. The algorithm computes an 
optimal locally constrained step (Gay 1981) with a trust region restriction on the step. This 
algorithm handles the case where the Hessian is indefinite and provides a way to deal with 
negative curvature. For more details, see Dennis and Schnabel (1983, Appendix A) and Gay 
(1983). 

UMCGF 
Minimizes a function of N variables using a conjugate gradient algorithm and a finite-difference 
gradient. 
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Required Arguments 
FCN — User-supplied SUBROUTINE to evaluate the function to be minimized. The usage is 

CALL FCN (N, X, F), where 

N – Length of X.   (Input) 

X – The point at which the function is evaluated.   (Input) 
X should not be changed by FCN. 

F – The computed function value at the point X.   (Output) 

FCN must be declared EXTERNAL in the calling program. 

DFPRED — A rough estimate of the expected reduction in the function.   (Input)  
DFPRED is used to determine the size of the initial change to X. 

X — Vector of length N containing the computed solution.   (Output) 

Optional Arguments 
N — Dimension of the problem.   (Input) 

Default: N = size (X,1). 

XGUESS — Vector of length N containing the initial guess of the minimum.   (Input) 
Default: XGUESS = 0.0. 

XSCALE — Vector of length N containing the diagonal scaling matrix for the variables.   
(Input) 
Default: XSCALE = 1.0. 

GRADTL — Convergence criterion.   (Input)  
The calculation ends when the sum of squares of the components of G is less than 
GRADTL. 
Default: GRADTL = 1.e-4. 

MAXFN — Maximum number of function evaluations.   (Input)  
If MAXFN is set to zero, then no restriction on the number of function evaluations is set. 
Default: MAXFN = 0. 

G — Vector of length N containing the components of the gradient at the final parameter 
estimates.   (Output) 

FVALUE — Scalar containing the value of the function at the computed solution.   (Output) 

FORTRAN 90 Interface 
Generic: CALL UMCGF (FCN, DFPRED, X [,…]) 
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Specific: The specific interface names are S_UMCGF and D_UMCGF. 

FORTRAN 77 Interface 
Single: CALL UMCGF (FCN, N, XGUESS, XSCALE, GRADTL, MAXFN, DFPRED,  

X, G, FVALUE) 

Double: The double precision name is DUMCGF. 

Example 
The function 

� � � � � �
2 22

2 1 1100 1f x x x x� � � �  

is minimized and the solution is printed. 
      USE UMCGF_INT 
      USE UMACH_INT 
!                                 Declaration of variables 
      INTEGER    N 
      PARAMETER  (N=2) 
! 
      INTEGER    I, MAXFN, NOUT 
      REAL       DFPRED, FVALUE, G(N), GRADTL, X(N), XGUESS(N) 
      EXTERNAL   ROSBRK 
! 
      DATA XGUESS/-1.2E0, 1.0E0/ 
! 
      DFPRED = 0.2 
      GRADTL = 1.0E-6 
      MAXFN  = 100 
!                                 Minimize the Rosenbrock function 
      CALL UMCGF (ROSBRK, DFPRED, X, XGUESS=XGUESS, GRADTL=GRADTL, & 
                 G=G, FVALUE=FVALUE) 
!                                 Print the results 
      CALL UMACH (2, NOUT) 
      WRITE (NOUT,99999) (X(I),I=1,N), FVALUE, (G(I),I=1,N) 
99999 FORMAT (’  The solution is ’, 2F8.3, //, ’  The function ’, & 
            ’evaluated at the solution is ’, F8.3, //, ’  The ’, & 
            ’gradient is ’, 2F8.3, /) 
! 
      END 
! 
      SUBROUTINE ROSBRK (N, X, F) 
      INTEGER    N 
      REAL       X(N), F 
! 
      F = 1.0E2*(X(2)-X(1)*X(1))**2 + (1.0E0-X(1))**2 
      RETURN 
      END 
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Output 
The solution is    0.999   0.998 
 
The function evaluated at the solution is    0.000 
 
The gradient is   -0.001   0.000 

Comments 
1. Workspace may be explicitly provided, if desired, by use of U2CGF/DU2CGF. The 

reference is: 

CALL U2CGF (FCN, N, XGUESS, XSCALE, GRADTL, MAXFN, DFPRED, X, G, 
FVALUE, S, RSS, RSG, GINIT, XOPT, GOPT) 

The additional arguments are as follows: 

S — Vector of length N used for the search direction in each iteration. 

RSS — Vector of length N containing conjugacy information. 

RSG — Vector of length N containing conjugacy information. 

GINIT — Vector of length N containing the gradient values at the start of an iteration. 

XOPT — Vector of length N containing the parameter values that yield the least 
calculated value for FVALUE. 

GOPT — Vector of length N containing the gradient values that yield the least 
calculated value for FVALUE. 

2. Informational errors 

Type Code 
   4    1 The line search of an integration was abandoned. This error may be 

caused by an error in gradient. 
   4    2 The calculation cannot continue because the search is uphill. 
   4    3 The iteration was terminated because MAXFN was exceeded. 
   3    4 The calculation was terminated because two consecutive iterations 

failed to reduce the function. 

3. Because of the close relation between the conjugate-gradient method and the method of 
steepest descent, it is very helpful to choose the scale of the variables in a way that 
balances the magnitudes of the components of a typical gradient vector. It can be 
particularly inefficient if a few components of the gradient are much larger than the 
rest. 

4. If the value of the parameter GRADTL in the argument list of the routine is set to zero, 
then the subroutine will continue its calculation until it stops reducing the objective 
function. In this case, the usual behavior is that changes in the objective function 
become dominated by computer rounding errors before precision is lost in the gradient 
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vector. Therefore, because the point of view has been taken that the user requires the 
least possible value of the function, a value of the objective function that is small due 
to computer rounding errors can prevent further progress. Hence, the precision in the 
final values of the variables may be only about half the number of significant digits in 
the computer arithmetic, but the least value of FVALUE is usually found to be quite 
accurate. 

Description 
The routine UMCGF uses a conjugate gradient method to find the minimum of a function f (x) of 
n variables. Only function values are required. 

The routine is based on the version of the conjugate gradient algorithm described in Powell 
(1977). The main advantage of the conjugate gradient technique is that it provides a fast rate of 
convergence without the storage of any matrices. Therefore, it is particularly suitable for 
unconstrained minimization calculations where the number of variables is so large that matrices 
of dimension n cannot be stored in the main memory of the computer. For smaller problems, 
however, a routine such as routine UMINF (page 1196), is usually more efficient because each 
iteration makes use of additional information from previous iterations. 

Since a finite-difference method is used to estimate the gradient for some single precision 
calculations, an inaccurate estimate of the gradient may cause the algorithm to terminate at a 
noncritical point. In such cases, high precision arithmetic is recommended. Also, whenever the 
exact gradient can be easily provided, routine UMCGG (page 1223) should be used instead. 

UMCGG 
Minimizes a function of N variables using a conjugate gradient algorithm and a user-supplied 
gradient. 

Required Arguments 
FCN — User-supplied SUBROUTINE to evaluate the function to be minimized. The usage is 

CALL FCN (N, X, F), where 

N – Length of X.   (Input) 

X – The point at which the function is evaluated.   (Input) 
X should not be changed by FCN. 

F – The computed function value at the point X.   (Output) 

FCN must be declared EXTERNAL in the calling program. 

GRAD — User-supplied SUBROUTINE to compute the gradient at the point X. The usage is 
CALL GRAD (N, X, G), where 

N – Length of X and G.   (Input) 
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X – The point at which the gradient is evaluated.   (Input)  
X should not be changed by GRAD. 

G – The gradient evaluated at the point X.   (Output) 

GRAD must be declared EXTERNAL in the calling program. 

DFPRED — A rough estimate of the expected reduction in the function.   (Input) DFPRED is 
used to determine the size of the initial change to X. 

X — Vector of length N containing the computed solution.   (Output) 

Optional Arguments 
N — Dimension of the problem.   (Input) 

Default: N = size (X,1). 

XGUESS — Vector of length N containing the initial guess of the minimum.   (Input) 
Default: XGUESS = 0.0. 

GRADTL — Convergence criterion.   (Input)  
The calculation ends when the sum of squares of the components of G is less than 
GRADTL. 
Default: GRADTL = 1.e-4. 

MAXFN — Maximum number of function evaluations.   (Input) 
Default: MAXFN = 100. 

G — Vector of length N containing the components of the gradient at the final parameter 
estimates.   (Output) 

FVALUE — Scalar containing the value of the function at the computed solution.   (Output) 

FORTRAN 90 Interface 
Generic: CALL UMCGG (FCN, GRAD, DFPRED, X [,…]) 

Specific: The specific interface names are S_UMCGG and D_UMCGG. 

FORTRAN 77 Interface 
Single: CALL UMCGG (FCN, GRAD, N, XGUESS, GRADTL, MAXFN, DFPRED, X,  

G, FVALUE) 

Double: The double precision name is DUMCGG. 
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Example 
The function 

� � � � � �
2 22

2 1 1100 1f x x x x� � � �  

is minimized and the solution is printed. 
      USE UMCGG_INT 
      USE UMACH_INT 
!                                 Declaration of variables 
      INTEGER    N 
      PARAMETER  (N=2) 
! 
      INTEGER    I, NOUT 
      REAL       DFPRED, FVALUE, G(N), GRADTL, X(N), & 
                XGUESS(N) 
      EXTERNAL   ROSBRK, ROSGRD 
! 
      DATA XGUESS/-1.2E0, 1.0E0/ 
! 
      DFPRED = 0.2 
      GRADTL = 1.0E-7 
!                                 Minimize the Rosenbrock function 
      CALL UMCGG (ROSBRK, ROSGRD, DFPRED, X, XGUESS=XGUESS, & 
                 GRADTL=GRADTL, G=G, FVALUE=FVALUE) 
!                                 Print the results 
      CALL UMACH (2, NOUT) 
      WRITE (NOUT,99999) (X(I),I=1,N), FVALUE, (G(I),I=1,N) 
99999 FORMAT (’  The solution is ’, 2F8.3, //, ’  The function ’, & 
            ’evaluated at the solution is ’, F8.3, //, ’  The ’, & 
            ’gradient is ’, 2F8.3, /) 
! 
      END 
! 
      SUBROUTINE ROSBRK (N, X, F) 
      INTEGER    N 
      REAL       X(N), F 
! 
      F = 1.0E2*(X(2)-X(1)*X(1))**2 + (1.0E0-X(1))**2 
      RETURN 
      END 
! 
      SUBROUTINE ROSGRD (N, X, G) 
      INTEGER    N 
      REAL       X(N), G(N) 
! 
      G(1) = -4.0E2*(X(2)-X(1)*X(1))*X(1) - 2.0E0*(1.0E0-X(1)) 
      G(2) = 2.0E2*(X(2)-X(1)*X(1)) 
! 
      RETURN 
      END 
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Output 
The solution is    1.000   1.000 
 
The function evaluated at the solution is    0.000 
 
The gradient is    0.000   0.000 

Comments 
1. Workspace may be explicitly provided, if desired, by use of U2CGG/DU2CGG. The 

reference is: 

CALL U2CGG (FCN, GRAD, N, XGUESS, GRADTL, MAXFN, DFPRED, X, G, 
FVALUE, S, RSS, RSG, GINIT, XOPT, GOPT) 

The additional arguments are as follows: 

S — Vector of length N used for the search direction in each iteration. 

RSS — Vector of length N containing conjugacy information. 

RSG — Vector of length N containing conjugacy information. 

GINIT — Vector of length N containing the gradient values at the start on an iteration. 

XOPT — Vector of length N containing the parameter values which yield the least 
calculated value for FVALUE. 

GOPT — Vector of length N containing the gradient values which yield the least 
calculated value for FVALUE. 

2. Informational errors 

Type Code 
   4 1 The line search of an integration was abandoned. This error may be 

caused by an error in gradient. 
   4 2 The calculation cannot continue because the search is uphill. 
   4 3 The iteration was terminated because MAXFN was exceeded. 
   3 4 The calculation was terminated because two consecutive iterations 

failed to reduce the function. 

3. The routine includes no thorough checks on the part of the user program that calculates 
the derivatives of the objective function. Therefore, because derivative calculation is a 
frequent source of error, the user should verify independently the correctness of the 
derivatives that are given to the routine. 

4. Because of the close relation between the conjugate-gradient method and the method of 
steepest descent, it is very helpful to choose the scale of the variables in a way that 
balances the magnitudes of the components of a typical gradient vector. It can be 
particularly inefficient if a few components of the gradient are much larger than the 
rest. 
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5. If the value of the parameter GRADTL in the argument list of the routine is set to zero, 
then the subroutine will continue its calculation until it stops reducing the objective 
function. In this case, the usual behavior is that changes in the objective function 
become dominated by computer rounding errors before precision is lost in the gradient 
vector. Therefore, because the point of view has been taken that the user requires the 
least possible value of the function, a value of the objective function that is small due 
to computer rounding errors can prevent further progress. Hence, the precision in the 
final values of the variables may be only about half the number of significant digits in 
the computer arithmetic, but the least value of FVALUE is usually found to be quite 
accurate. 

Description 
The routine UMCGG uses a conjugate gradient method to find the minimum of a function f (x) of 
n variables. Function values and first derivatives are required. 

The routine is based on the version of the conjugate gradient algorithm described in Powell 
(1977). The main advantage of the conjugate gradient technique is that it provides a fast rate of 
convergence without the storage of any matrices. Therefore, it is particularly suitable for 
unconstrained minimization calculations where the number of variables is so large that matrices 
of dimension n cannot be stored in the main memory of the computer. For smaller problems, 
however, a subroutine such as IMSL routine UMING (page 1202), is usually more efficient 
because each iteration makes use of additional information from previous iterations. 

UMPOL 
Minimizes a function of N variables using a direct search polytope algorithm. 

Required Arguments 
FCN — User-supplied SUBROUTINE to evaluate the function to be minimized. The usage is 

CALL FCN (N, X, F), where 

N – Length of X.   (Input) 

X – Vector of length N at which point the function is evaluated.   (Input) 
X should not be changed by FCN. 

F – The computed function value at the point X.   (Output) 

FCN must be declared EXTERNAL in the calling program. 

X — Real vector of length N containing the best estimate of the minimum found.   (Output) 

Optional Arguments 
N — Dimension of the problem.   (Input) 

Default: N = size (X,1). 
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XGUESS — Real vector of length N which contains an initial guess to the minimum.   (Input) 
Default: XGUESS = 0.0. 

S — On input, real scalar containing the length of each side of the initial simplex.   
(Input/Output)  
If no reasonable information about S is known, S could be set to a number less than or 
equal to zero and UMPOL will generate the starting simplex from the initial guess with a 
random number generator. On output, the average distance from the vertices to the 
centroid that is taken to be the solution; see Comment 4. 
Default: S = 0.0. 

FTOL — First convergence criterion.   (Input)  
The algorithm stops when a relative error in the function values is less than FTOL, i.e. 
when (F(worst) � F(best)) < FTOL * (1 + ABS(F(best))) where F(worst) and F(best) are 
the function values of the current worst and best points, respectively. Second 
convergence criterion. The algorithm stops when the standard deviation of the function 
values at the N + 1 current points is less than FTOL. If the subroutine terminates 
prematurely, try again with a smaller value for FTOL. 
Default: FTOL = 1.e-7. 

MAXFCN — On input, maximum allowed number of function evaluations.   (Input/ Output) 
On output, actual number of function evaluations needed. 
Default: MAXFCN = 200. 

FVALUE — Function value at the computed solution.   (Output) 

FORTRAN 90 Interface 
Generic: CALL UMPOL (FCN, X [,…]) 

Specific: The specific interface names are S_UMPOL and D_UMPOL. 

FORTRAN 77 Interface 
Single: CALL UMPOL (FCN, N, XGUESS, S, FTOL, MAXFCN, X, FVALUE) 

Double: The double precision name is DUMPOL. 

Example 
The function 

� � � � � �
2 22

2 1 1100 1f x x x x� � � �  

is minimized and the solution is printed. 
      USE UMPOL_INT 
      USE UMACH_INT 
!                                 Variable declarations 
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      INTEGER    N 
      PARAMETER  (N=2) 
! 
      INTEGER    K, NOUT 
      REAL       FTOL, FVALUE, S, X(N), XGUESS(N) 
      EXTERNAL   FCN 
! 
!                                 Initializations 
!                                 XGUESS = ( -1.2, 1.0) 
! 
      DATA XGUESS/-1.2, 1.0/ 
! 
      FTOL   = 1.0E-10 
      S      = 1.0 
! 
      CALL UMPOL (FCN, X, XGUESS=XGUESS, S=S, FTOL=FTOL,& 
                  FVALUE=FVALUE) 
! 
      CALL UMACH (2, NOUT) 
      WRITE (NOUT,99999) (X(K),K=1,N), FVALUE 
99999 FORMAT (’  The best estimate for the minimum value of the’, /, & 
            ’  function is X = (’, 2(2X,F4.2), ’)’, /, ’  with ’, & 
            ’function value FVALUE = ’, E12.6) 
! 
      END 
!                                 External function to be minimized 
      SUBROUTINE FCN (N, X, F) 
      INTEGER    N 
      REAL       X(N), F 
! 
      F = 100.0*(X(1)*X(1)-X(2))**2 + (1.0-X(1))**2 
      RETURN 
      END 

Output 
The best estimate for the minimum value of the 
function is X = (  1.00  1.00) 
with function value FVALUE = 0.502496E-10 

Comments 
1. Workspace may be explicitly provided, if desired, by use of U2POL/DU2POL. The 

reference is: 

CALL U2POL (FCN, N, XGUESS, S, FTOL, MAXFCN, X,  
FVALUE, WK) 

The additional argument is: 

WK — Real work vector of length N**2 + 5 * N + 1. 

2. Informational error 

Type Code 
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   4    1 Maximum number of function evaluations exceeded. 

3. Since UMPOL uses only function value information at each step to determine a new 
approximate minimum, it could be quite ineficient on smooth problems compared to 
other methods such as those implemented in routine UMINF that takes into account 
derivative information at each iteration. Hence, routine UMPOL should only be used as a 
last resort. Briefly, a set of N + 1 points in an N-dimensional space is called a simplex. 
The minimization process iterates by replacing the point with the largest function value 
by a new point with a smaller function value. The iteration continues until all the points 
cluster sufficiently close to a minimum. 

4. The value returned in S is useful for assessing the flatness of the function near the 
computed minimum. The larger its value for a given value of FTOL, the flatter the 
function tends to be in the neighborhood of the returned point. 

Description 
The routine UMPOL uses the polytope algorithm to find a minimum point of a function f(x) of n 
variables. The polytope method is based on function comparison; no smoothness is assumed. It 
starts with n + 1 points x�, x�, �, xn + 1. At each iteration, a new point is generated to replace the 
worst point xj, which has the largest function value among these n + 1 points. The new point is 
constructed by the following formula: 

xk = c + �(c � xj) 

where 

1
i j ic x

n �
� �  

and � (� > 0) is the reflection coefficient. 

When xk is a best point, that is f(xk) � f(xi) for i = 1, �, n + 1, an expansion point is computed  
xe = c + �(xk � c) where �(� > 1) is called the expansion coefficient. If the new point is a worst 
point, then the polytope would be contracted to get a better new point. If the contraction step is 
unsuccessful, the polytope is shrunk by moving the vertices halfway toward current best point. 
This procedure is repeated until one of the following stopping criteria is satisfied: 

Criterion 1: 

fbest � fworst � �f (1. + |fbest|) 

Criterion 2:  
1

1
1 2

1
( )

1

n
n jj

i f
i

f
f

n
�

�

�

�

�

� �

�

�
�  

where fi = f (xi), fj = f (xj), and �f is a given tolerance. For a complete description, see Nelder and 
Mead (1965) or Gill et al. (1981). 
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UNLSF 
Solves a nonlinear least-squares problem using a modified Levenberg-Marquardt algorithm and a 
finite-difference Jacobian. 

Required Arguments 
FCN — User-supplied SUBROUTINE to evaluate the function that defines the least-squares 

problem. The usage is CALL FCN (M, N, X, F), where 

M – Length of F.   (Input) 

N – Length of X.   (Input) 

X – Vector of length N at which point the function is evaluated.   (Input) 
X should not be changed by FCN. 

F – Vector of length M containing the function values at X.   (Output) 

FCN must be declared EXTERNAL in the calling program. 

M — Number of functions.   (Input) 

X — Vector of length N containing the approximate solution.   (Output) 

Optional Arguments 
N — Number of variables. N must be less than or equal to M.   (Input) 

Default: N = size (X,1). 

XGUESS — Vector of length N containing the initial guess.   (Input) 
Default: NDEG = size (COEFF,1) – 1. 

XSCALE — Vector of length N containing the diagonal scaling matrix for the variables.   
(Input)  
XSCALE is used mainly in scaling the gradient and the distance between two points. By 
default, the values for XSCALE are set internally. See IPARAM(6) in Comment 4. 
Default: XSCALE = 1.0. 

FSCALE — Vector of length M containing the diagonal scaling matrix for the functions.   
(Input)  
FSCALE is used mainly in scaling the gradient. In the absence of other information, set 
all entries to 1.0. 
Default: FSCALE = 1.0. 
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IPARAM — Parameter vector of length 6.   (Input/Output)  
Set IPARAM(1) to zero for default values of IPARAM and RPARAM. See Comment 4. 
Default: IPARAM = 0. 

RPARAM — Parameter vector of length 7.   (Input/Output)  
See Comment 4. 

FVEC — Vector of length M containing the residuals at the approximate solution.   (Output) 

FJAC — M by N matrix containing a finite difference approximate Jacobian at the 
approximate solution.   (Output) 

LDFJAC — Leading dimension of FJAC exactly as specified in the dimension statement of 
the calling program.   (Input) 
Default: LDFJAC = size (FJAC,1). 

FORTRAN 90 Interface 
Generic: CALL UNLSF (FCN, M, X [,…]) 

Specific: The specific interface names are S_UNLSF and D_UNLSF. 

FORTRAN 77 Interface 
Single: CALL UNLSF (FCN, M, N, XGUESS, XSCALE, FSCALE, IPARAM,  

RPARAM, X, FVEC, FJAC, LDFJAC) 

Double: The double precision name is DUNLSF. 

Example 
The nonlinear least squares problem 

� �
2

2
2

1

1min
2 i

x i
f x

�
�

�
R

 

where 

� � � � � � � �2
1 2 1 2 110  and  1f x x x f x x� � � �  

is solved. RPARAM(4) is changed to a non-default value. 
      USE UNLSF_INT 
      USE UMACH_INT 
      USE U4LSF_INT 
!                                 Declaration of variables 
      INTEGER    LDFJAC, M, N 
      PARAMETER  (LDFJAC=2, M=2, N=2) 
! 
      INTEGER    IPARAM(6), NOUT 
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      REAL       FVEC(M), RPARAM(7),X(N), XGUESS(N) 
      EXTERNAL   ROSBCK 
!                                 Compute the least squares for the 
!                                 Rosenbrock function. 
      DATA XGUESS/-1.2E0, 1.0E0/ 
! 
!                                 Relax the first stopping criterion by 
!                                 calling U4LSF and scaling the 
!                                 absolute function tolerance by 10. 
      CALL U4LSF (IPARAM, RPARAM) 
      RPARAM(4) = 10.0E0*RPARAM(4) 
! 

CALL UNLSF (ROSBCK, M, X,XGUESS=XGUESS, IPARAM=IPARAM, & 
RPARAM=RPARAM, FVEC=FVEC) 

!                                 Print results 
      CALL UMACH (2, NOUT) 
      WRITE (NOUT,99999) X, FVEC, IPARAM(3), IPARAM(4) 
! 
99999 FORMAT (’  The solution is ’, 2F9.4, //, ’  The function ’, & 
            ’evaluated at the solution is ’, /, 18X, 2F9.4, //, & 
            ’  The number of iterations is ’, 10X, I3, /, ’  The ’, & 
            ’number of function evaluations is ’, I3, /) 
      END 
! 
      SUBROUTINE ROSBCK (M, N, X, F) 
      INTEGER    M, N 
      REAL       X(N), F(M) 
! 
      F(1) = 10.0E0*(X(2)-X(1)*X(1)) 
      F(2) = 1.0E0 - X(1) 
      RETURN 
      END 

Output 
The solution is    1.0000   1.0000 
 
The function evaluated at the solution is 
0.0000   0.0000 
 
The number of iterations is            24 
The number of function evaluations is  33 

Comments 
1. Workspace may be explicitly provided, if desired, by use of U2LSF/DU2LSF. The 

reference is: 

CALL U2LSF (FCN, M, N, XGUESS, XSCALE, FSCALE, IPARAM, RPARAM, 
X, FVEC, FJAC, LDFJAC, WK, IWK) 

The additional arguments are as follows: 

WK — Real work vector of length 9 * N + 3 * M � 1. WK contains the following 
information on output: The second N locations contain the last step taken. The 
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third N locations contain the last Gauss-Newton step. The fourth N locations 
contain an estimate of the gradient at the solution. 

IWK — Integer work vector of length N containing the permutations used in the QR 
factorization of the Jacobian at the solution. 

2. Informational errors 

Type Code 
   3    1 Both the actual and predicted relative reductions in the function are 

less than or equal to the relative function convergence tolerance. 
   3    2 The iterates appear to be converging to a noncritical point. 
   4    3 Maximum number of iterations exceeded. 
   4    4 Maximum number of function evaluations exceeded. 
   3    6 Five consecutive steps have been taken with the maximum step 

length. 
   2    7 Scaled step tolerance satisfied; the current point may be an 

approximate local solution, or the algorithm is making very slow 
progress and is not near a solution, or STEPTL is too big. 

3. The first stopping criterion for UNLSF occurs when the norm of the function is less than 
the absolute function tolerance (RPARAM(4)). The second stopping criterion occurs 
when the norm of the scaled gradient is less than the given gradient tolerance 
(RPARAM(1)). The third stopping criterion for UNLSF occurs when the scaled distance 
between the last two steps is less than the step tolerance (RPARAM(2)). 

4. If the default parameters are desired for UNLSF, then set IPARAM(1) to zero and call the 
routine UNLSF. Otherwise, if any nondefault parameters are desired for IPARAM or 
RPARAM, then the following steps should be taken before calling UNLSF: 

CALL U4LSF (IPARAM, RPARAM) 
Set nondefault values for desired IPARAM, RPARAM elements. 

Note that the call to U4LSF will set IPARAM and RPARAM to their default values so only 
nondefault values need to be set above. 

The following is a list of the parameters and the default values: 

IPARAM — Integer vector of length 6. 

IPARAM(1) = Initialization flag. 

IPARAM(2) = Number of good digits in the function. 
Default: Machine dependent. 

IPARAM(3) = Maximum number of iterations. 
Default: 100. 



 

 
 

IMSL MATH/LIBRARY Chapter 8: Optimization � 1235 

 

 

 

IPARAM(4) = Maximum number of function evaluations. 
Default: 400. 

IPARAM(5) = Maximum number of Jacobian evaluations. 
Default: Not used in UNLSF. 

IPARAM(6) = Internal variable scaling flag. 
If IPARAM(6) = 1, then the values for XSCALE are set internally. 
Default: 1. 

RPARAM — Real vector of length 7. 
RPARAM(1) = Scaled gradient tolerance. 
The i-th component of the scaled gradient at x is calculated as 

� �

� �
2

2

max ,1/i i ig x s

F x

�

 

 where 

� � � �� � � �
2T

i s ii
g J x F x f� �  

 J(x) is the Jacobian, s = XSCALE, and fs = FSCALE. 
Default:  

3,� �  

 in double where � is the machine precision. 

RPARAM(2) = Scaled step tolerance. (STEPTL) 
The i-th component of the scaled step between two points x and y is computed as 

� �max ,1/
i i

i i

x y
x s
�

 

 where s = XSCALE. 
Default: ���� where � is the machine precision. 

RPARAM(3) = Relative function tolerance. 
Default: max(10���, ����), max (10���, ����) in double where � is the machine 
precision. 

RPARAM(4) = Absolute function tolerance. 
Default: max (10���, ��), max(10���, ��) in double where � is the machine 
precision. 
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RPARAM(5) = False convergence tolerance. 
Default: 100� where � is the machine precision. 

RPARAM(6) = Maximum allowable step size. 
Default: 1000 max(��, ��) where 

� �
2

1 1

n
i ii

s t�
�

� �  

 �� = || s ||�, s = XSCALE, and t = XGUESS. 

RPARAM(7) = Size of initial trust region radius. 
Default: based on the initial scaled Cauchy step. 

If double precision is desired, then DU4LSF is called and RPARAM is declared double            
           precision. 

5. Users wishing to override the default print/stop attributes associated with error 
messages issued by this routine are referred to “Error Handling” in the Introduction. 

Description 
The routine UNLSF is based on the MINPACK routine LMDIF by Moré et al. (1980). It uses a 
modified Levenberg-Marquardt method to solve nonlinear least squares problems. The problem 
is stated as follows: 

� � � � � �
2

1

1 1min
2 2n

m
T

i
x i

F x F x f x
�

�

� �
R

 

where m � n, F : Rn� Rm, and fi(x) is the i-th component function of F(x). From a current 
point, the algorithm uses the trust region approach: 

� � � �� �
2

min
n

n
c c n c

x
F x J x x x

�

� �

R
 

subject to  ||xn � xc||� � 	c 

to get a new point xn, which is computed as 

� � � �� � � � � �
1T T

n c c c c c cx x J x J x I J x F x�

�

� � �  

where �c = 0 if 	c � ||(J(xc)T J(xc))�� J(xc)T F(xc)||� and �c > 0 otherwise. F(xc) and J(xc) are the 
function values and the Jacobian evaluated at the current point xc. This procedure is repeated 
until the stopping criteria are satisfied. For more details, see Levenberg (1944), Marquardt 
(1963), or Dennis and Schnabel (1983, Chapter 10). 

Since a finite-difference method is used to estimate the Jacobian for some single precision 
calculations, an inaccurate estimate of the Jacobian may cause the algorithm to terminate at a 



 

 
 

IMSL MATH/LIBRARY Chapter 8: Optimization � 1237 

 

 

 

noncritical point. In such cases, high precision arithmetic is recommended. Also, whenever the 
exact Jacobian can be easily provided, routine UNLSJ (page 1237) should be used instead. 

UNLSJ 
Solves a nonlinear least squares problem using a modified Levenberg-Marquardt algorithm and a 
user-supplied Jacobian. 

Required Arguments 
FCN — User-supplied SUBROUTINE to evaluate the function which defines the least-squares 

problem. The usage is CALL FCN (M, N, X, F), where 

M – Length of F.   (Input) 
N – Length of X.   (Input) 
X – Vector of length N at which point the function is evaluated.   (Input) 
X should not be changed by FCN. 
F – Vector of length M containing the function values at X.   (Output) 

FCN must be declared EXTERNAL in the calling program. 

JAC — User-supplied SUBROUTINE to evaluate the Jacobian at a point X. The usage is CALL 
JAC (M, N, X, FJAC, LDFJAC), where 

M – Length of F.   (Input) 
N – Length of X.   (Input) 
X – Vector of length N at which point the Jacobian is evaluated.   (Input)  
X should not be changed by JAC. 
FJAC – The computed M by N Jacobian at the point X.   (Output) 
LDFJAC – Leading dimension of FJAC.   (Input) 

JAC must be declared EXTERNAL in the calling program. 

M — Number of functions.   (Input) 

X — Vector of length N containing the approximate solution.   (Output) 

Optional Arguments 
N — Number of variables. N must be less than or equal to M.   (Input) 

Default: N = size (X,1). 

XGUESS — Vector of length N containing the initial guess.   (Input) 
Default: XGUESS = 0.0. 

XSCALE — Vector of length N containing the diagonal scaling matrix for the variables.   
(Input)  
XSCALE is used mainly in scaling the gradient and the distance between two points. By 
default, the values for XSCALE are set internally. See IPARAM(6) in Comment 4. 
Default: XSCALE = 1.0. 
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FSCALE — Vector of length M containing the diagonal scaling matrix for the functions.   
(Input)  
FSCALE is used mainly in scaling the gradient. In the absence of other information, set 
all entries to 1.0. 
Default: FSCALE = 1.0. 

IPARAM — Parameter vector of length 6.   (Input/Output)  
Set IPARAM(1) to zero for default values of IPARAM and RPARAM. See Comment 4. 
Default: IPARAM = 0. 

RPARAM — Parameter vector of length 7.   (Input/Output)  
See Comment 4. 

FVEC — Vector of length M containing the residuals at the approximate solution.   (Output) 

FJAC — M by N matrix containing a finite-difference approximate Jacobian at the 
approximate solution.   (Output) 

LDFJAC — Leading dimension of FJAC exactly as specified in the dimension statement of 
the calling program.   (Input) 
Default: LDFJAC = size (FJAC,1). 

FORTRAN 90 Interface 
Generic: CALL UNLSJ (FCN, JAC, M, X [,…]) 

Specific: The specific interface names are S_UNLSJ and D_UNLSJ. 

FORTRAN 77 Interface 
Single: CALL UNLSJ (FCN, JAC, M, N, XGUESS, XSCALE, FSCALE, IPARAM,  

RPARAM, X, FVEC, FJAC, LDFJAC) 

Double: The double precision name is DUNLSJ. 

Example 

The nonlinear least-squares problem 

� �
2

2
2

1

1min
2 i

x i

f x
�

�

�
R

 

where 

� � � � � � � �2
1 2 1 2 110  and  1f x x x f x x� � � �  

is solved; default values for parameters are used. 
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      USE UNLSJ_INT 
      USE UMACH_INT 
!                                 Declaration of variables 
      INTEGER    LDFJAC, M, N 
      PARAMETER  (LDFJAC=2, M=2, N=2) 
! 
      INTEGER    IPARAM(6), NOUT 
      REAL       FVEC(M), X(N), XGUESS(N) 
      EXTERNAL   ROSBCK, ROSJAC 
!                                 Compute the least squares for the 
!                                 Rosenbrock function. 
      DATA XGUESS/-1.2E0, 1.0E0/ 
      IPARAM(1) = 0 
! 
      CALL UNLSJ (ROSBCK, ROSJAC, M, X, XGUESS=XGUESS, & 
                 IPARAM=IPARAM, FVEC=FVEC) 
!                                 Print results 
      CALL UMACH (2, NOUT) 
      WRITE (NOUT,99999) X, FVEC, IPARAM(3), IPARAM(4), IPARAM(5) 
! 
99999 FORMAT (’  The solution is ’, 2F9.4, //, ’  The function ’, & 
            ’evaluated at the solution is ’, /, 18X, 2F9.4, //, & 
            ’  The number of iterations is ’, 10X, I3, /, ’  The ’, & 
            ’number of function evaluations is ’, I3, /, ’  The ’, & 
            ’number of Jacobian evaluations is ’, I3, /) 
      END 
! 
      SUBROUTINE ROSBCK (M, N, X, F) 
      INTEGER    M, N 
      REAL       X(N), F(M) 
! 
      F(1) = 10.0E0*(X(2)-X(1)*X(1)) 
      F(2) = 1.0E0 - X(1) 
      RETURN 
      END 
! 
      SUBROUTINE ROSJAC (M, N, X, FJAC, LDFJAC) 
      INTEGER    M, N, LDFJAC 
      REAL       X(N), FJAC(LDFJAC,N) 
! 
      FJAC(1,1) = -20.0E0*X(1) 
      FJAC(2,1) = -1.0E0 
      FJAC(1,2) = 10.0E0 
      FJAC(2,2) = 0.0E0 
      RETURN 
      END 

Output 
The solution is    1.0000   1.0000 
 
The function evaluated at the solution is 
0.0000   0.0000 
 
The number of iterations is            23 
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The number of function evaluations is  32 
The number of Jacobian evaluations is  24 

Comments 
1. Workspace may be explicitly provided, if desired, by use of U2LSJ/DU2LSJ. The 

reference is: 

CALL U2LSJ (FCN, JAC, M, N, XGUESS, XSCALE, FSCALE, IPARAM, 
RPARAM, X, FVEC, FJAC, LDFJAC, WK, IWK) 

The additional arguments are as follows: 

WK — Work vector of length 9 * N + 3 * M � 1. WK contains the following information 
on output: The second N locations contain the last step taken. The third N 
locations contain the last Gauss-Newton step. The fourth N locations contain an 
estimate of the gradient at the solution. 

IWK — Work vector of length N containing the permutations used in the QR 
factorization of the Jacobian at the solution. 

2. Informational errors 

Type Code 
   3    1 Both the actual and predicted relative reductions in the function are 

less than or equal to the relative function convergence tolerance. 
   3    2 The iterates appear to be converging to a noncritical point. 
   4    3 Maximum number of iterations exceeded. 
   4    4 Maximum number of function evaluations exceeded. 
   4    5 Maximum number of Jacobian evaluations exceeded. 
   3    6 Five consecutive steps have been taken with the maximum step 

length. 
   2    7 Scaled step tolerance satisfied; the current point may be an 

approximate local solution, or the algorithm is making very slow 
progress and is not near a solution, or STEPTL is too big. 

3. The first stopping criterion for UNLSJ occurs when the norm of the function is less than 
the absolute function tolerance (RPARAM(4)). The second stopping criterion occurs 
when the norm of the scaled gradient is less than the given gradient tolerance 
(RPARAM(1)). The third stopping criterion for UNLSJ occurs when the scaled distance 
between the last two steps is less than the step tolerance (RPARAM(2)). 

4. If the default parameters are desired for UNLSJ, then set IPARAM(1) to zero and call the 
routine UNLSJ. Otherwise, if any nondefault parameters are desired for IPARAM or 
RPARAM, then the following steps should be taken before calling UNLSJ: 

CALL U4LSF (IPARAM, RPARAM) 
Set nondefault values for desired IPARAM, RPARAM elements. 
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Note that the call to U4LSF will set IPARAM and RPARAM to their default values, so only 
nondefault values need to be set above. 

The following is a list of the parameters and the default values: 

IPARAM — Integer vector of length 6. 
IPARAM(1) = Initialization flag. 

IPARAM(2) = Number of good digits in the function. 
Default: Machine dependent. 

IPARAM(3) = Maximum number of iterations. 
Default: 100. 

IPARAM(4) = Maximum number of function evaluations. 
Default: 400. 

IPARAM(5) = Maximum number of Jacobian evaluations. 
Default: 100. 

IPARAM(6) = Internal variable scaling flag. 
If IPARAM(6) = 1, then the values for XSCALE are set internally. 
Default: 1. 

RPARAM — Real vector of length 7. 

RPARAM(1) = Scaled gradient tolerance. 
The i-th component of the scaled gradient at x is calculated as 

� �

� �
2

2

max ,1/i i ig x s

F x

�

 

 where 

� � � �� � � �
2T

i s ii
g J x F x f� �  

 J(x) is the Jacobian, s = XSCALE, and fs = FSCALE. 
Default: 

3,� �  

 in double where � is the machine precision. 

RPARAM(2) = Scaled step tolerance. (STEPTL) 
The i-th component of the scaled step between two points x and y is computed as 
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 where s = XSCALE. 
Default: ���� where � is the machine precision. 

RPARAM(3) = Relative function tolerance. 
Default: max(10���, ����), max (10���, ����) in double where � is the machine 
precision. 

RPARAM(4) = Absolute function tolerance. 
Default: max (10���, ��), max(10���, ��) in double where � is the machine 
precision. 

RPARAM(5) = False convergence tolerance. 
Default: 100� where � is the machine precision. 

RPARAM(6) = Maximum allowable step size. 
Default: 1000 max(��, ��) where 

� �
2

1 1

n
i ii

s t�
�

�  

 �� = || s ||�, s = XSCALE, and t = XGUESS. 

RPARAM(7) = Size of initial trust region radius. 
Default: based on the initial scaled Cauchy step. 

If double precision is desired, then DU4LSF is called and RPARAM is declared double  
           precision. 

5. Users wishing to override the default print/stop attributes associated with error 
messages issued by this routine are referred to “Error Handling” in the Introduction. 

Description 
The routine UNLSJ is based on the MINPACK routine LMDER by Moré et al. (1980). It uses a 
modified Levenberg-Marquardt method to solve nonlinear least squares problems. The problem 
is stated as follows: 

� � � � � �
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1

1 1min
2 2n

m
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F x F x f x
�

�

� �
R

 

where  m � n, F : Rn� Rm, and fi(x) is the i-th component function of F(x). From a current 
point, the algorithm uses the trust region approach: 
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subject to  ||xn � xc||� � 	c 

to get a new point xn, which is computed as 

� � � �� � � � � �
1T T

n c c c c c cx x J x J x I J x F x�

�

� � �  

where �c = 0 if 	c � ||(J(xc)T J(xc))�� J(xc)T F (xc)||� and �c > 0 otherwise. F(xc) and J(xc) are the 
function values and the Jacobian evaluated at the current point xc. This procedure is repeated 
until the stopping criteria are satisfied. For more details, see Levenberg (1944), 
Marquardt(1963), or Dennis and Schnabel (1983, Chapter 10). 

BCONF 
Minimizes a function of N variables subject to bounds on the variables using a quasi-Newton 
method and a finite-difference gradient. 

Required Arguments 
FCN — User-supplied SUBROUTINE to evaluate the function to be minimized. The usage is 

CALL FCN (N, X, F), where 

N – Length of X.   (Input) 

X – Vector of length N at which point the function is evaluated.   (Input) 
X should not be changed by FCN. 

F – The computed function value at the point X.   (Output) 

FCN must be declared EXTERNAL in the calling program. 

IBTYPE — Scalar indicating the types of bounds on variables.   (Input)  

IBTYPE Action 

0  User will supply all the bounds. 

1  All variables are nonnegative. 

2  All variables are nonpositive. 

3  User supplies only the bounds on 1st variable, all other variables will have 
 the same bounds. 

XLB — Vector of length N containing the lower bounds on variables.   (Input, if IBTYPE = 0; 
output, if IBTYPE = 1 or 2; input/output, if IBTYPE = 3) 
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XUB — Vector of length N containing the upper bounds on variables.   (Input, if IBTYPE = 0; 
output, if IBTYPE = 1 or 2; input/output, if IBTYPE = 3) 

X — Vector of length N containing the computed solution.   (Output) 

Optional Arguments 
N — Dimension of the problem.   (Input) 

Default: N = size (X,1). 

XGUESS — Vector of length N containing an initial guess of the computed solution.   (Input) 
Default: XGUESS = 0.0. 

XSCALE — Vector of length N containing the diagonal scaling matrix for the variables.   
(Input)  
XSCALE is used mainly in scaling the gradient and the distance between two points. In 
the absence of other information, set all entries to 1.0. 
Default: XSCALE = 1.0. 

FSCALE — Scalar containing the function scaling.   (Input)  
FSCALE is used mainly in scaling the gradient. In the absence of other information, set 
FSCALE to 1.0. 
Default: FSCALE = 1.0. 

IPARAM — Parameter vector of length 7.   (Input/Output)  
Set IPARAM(1) to zero for default values of IPARAM and RPARAM. See Comment 4. 
Default: IPARAM = 0. 

RPARAM — Parameter vector of length 7.   (Input/Output)  
See Comment 4. 

FVALUE — Scalar containing the value of the function at the computed solution.   (Output) 

FORTRAN 90 Interface 
Generic: CALL BCONF (FCN, IBTYPE, XLB, XUB, X [,…]) 

Specific: The specific interface names are S_BCONF and D_BCONF. 

FORTRAN 77 Interface 
Single: CALL BCONF (FCN, N, XGUESS, IBTYPE, XLB, XUB, XSCALE, 

FSCALE, IPARAM, RPARAM, X, FVALUE) 

Double: The double precision name is DBCONF. 
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Example 
The problem  

� � � � � �
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is solved with an initial guess (�1.2, 1.0) and default values for parameters. 
      USE BCONF_INT 
      USE UMACH_INT 
      INTEGER    N 
      PARAMETER  (N=2) 
! 
      INTEGER    IPARAM(7), ITP, L, NOUT 
      REAL       F, FSCALE, RPARAM(7), X(N), XGUESS(N), & 
                XLB(N), XSCALE(N), XUB(N) 
      EXTERNAL   ROSBRK 
! 
      DATA XGUESS/-1.2E0, 1.0E0/ 
      DATA XLB/-2.0E0, -1.0E0/, XUB/0.5E0, 2.0E0/ 
!                                 All the bounds are provided 
      ITP = 0 
!                                 Default parameters are used 
      IPARAM(1) = 0 
!                                 Minimize Rosenbrock function using 
!                                 initial guesses of -1.2 and 1.0 
      CALL BCONF (ROSBRK, ITP, XLB, XUB, X, XGUESS=XGUESS,  & 
                 IPARAM=IPARAM, FVALUE=F) 
!                                 Print results 
      CALL UMACH (2, NOUT) 
      WRITE (NOUT,99999) X, F, (IPARAM(L),L=3,5) 
! 
99999 FORMAT (’  The solution is ’, 6X, 2F8.3, //, ’  The function ’, & 
            ’value is ’, F8.3, //, ’  The number of iterations is ’, & 
            10X, I3, /, ’  The number of function evaluations is ’, & 
            I3, /, ’  The number of gradient evaluations is ’, I3) 
! 
      END 
! 
      SUBROUTINE ROSBRK (N, X, F) 
      INTEGER    N 
      REAL       X(N), F 
! 
      F = 1.0E2*(X(2)-X(1)*X(1))**2 + (1.0E0-X(1))**2 
! 
      RETURN 
      END 

Output 
The solution is          0.500   0.250 
 
The function value is    0.250 
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The number of iterations is            24 
The number of function evaluations is  34 
The number of gradient evaluations is  26 

Comments 
1. Workspace may be explicitly provided, if desired, by use of B2ONF/DB2ONF. The 

reference is: 

CALL B2ONF (FCN, N, XGUESS, IBTYPE, XLB, XUB,  
     XSCALE, FSCALE, IPARAM, RPARAM, X, FVALUE, WK, IWK) 

The additional arguments are as follows: 

WK — Real work vector of length N * (2 * N + 8). WK contains the following 
information on output: The second N locations contain the last step taken. The 
third N locations contain the last Newton step. The fourth N locations contain an 
estimate of the gradient at the solution. The final N� locations contain a BFGS 
approximation to the Hessian at the solution. 

IWK — Work vector of length N stored in column order. Only the lower triangular 
portion of the matrix is stored in WK. The values returned in the upper triangle 
should be ignored. 

2. Informational errors 

Type Code 
   3    1 Both the actual and predicted relative reductions in the function are 

less than or equal to the relative function convergence tolerance. 
   4    2 The iterates appear to be converging to a noncritical point. 
   4    3 Maximum number of iterations exceeded. 
   4    4 Maximum number of function evaluations exceeded. 
   4    5 Maximum number of gradient evaluations exceeded. 
   4    6 Five consecutive steps have been taken with the maximum step 

length. 
   2    7 Scaled step tolerance satisfied; the current point may be an 

approximate local solution, or the algorithm is making very slow 
progress and is not near a solution, or STEPTL is too big. 

   3    8 The last global step failed to locate a lower point than the current X 
value. 

3. The first stopping criterion for BCONF occurs when the norm of the gradient is less than 
the given gradient tolerance (RPARAM(1)). The second stopping criterion for BCONF 
occurs when the scaled distance between the last two steps is less than the step 
tolerance (RPARAM(2)). 

4. If the default parameters are desired for BCONF, then set IPARAM(1) to zero and call the 
routine BCONF. Otherwise, if any nondefault parameters are desired for IPARAM or 
RPARAM, then the following steps should be taken before calling BCONF: 
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CALL U4INF (IPARAM, RPARAM) 

Set nondefault values for desired IPARAM, RPARAM elements. 

Note that the call to U4INF will set IPARAM and RPARAM to their default values so only 
nondefault values need to be set above. 

The following is a list of the parameters and the default values: 

IPARAM — Integer vector of length 7. 
IPARAM(1) = Initialization flag. 

IPARAM(2) = Number of good digits in the function. 
Default: Machine dependent. 

IPARAM(3) = Maximum number of iterations. 
Default: 100. 

IPARAM(4) = Maximum number of function evaluations. 
Default: 400. 

IPARAM(5) = Maximum number of gradient evaluations. 
Default: 400. 

IPARAM(6) = Hessian initialization parameter. 
If IPARAM(6) = 0, the Hessian is initialized to the identity matrix; otherwise,  
it is initialized to a diagonal matrix containing 

� �� � 2max , s if t f s�  

 on the diagonal where t = XGUESS, fs = FSCALE, and s = XSCALE. 
Default: 0. 

IPARAM(7) = Maximum number of Hessian evaluations. 
Default: Not used in BCONF. 

RPARAM — Real vector of length 7. 
RPARAM(1) = Scaled gradient tolerance. 
The i-th component of the scaled gradient at x is calculated as 

� �

� �� �

max ,1/

max ,
i i i

s

g x s

f x f

�

 

 where g = �f(x), s = XSCALE, and fs = FSCALE. 
Default: 
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 in double where � is the machine precision. 

RPARAM(2) = Scaled step tolerance. (STEPTL) 
The i-th component of the scaled step between two points x and y is computed as 

� �max ,1/
i i

i i

x y
x s
�

 

 where s = XSCALE. 
Default: ���� where � is the machine precision. 

RPARAM(3) = Relative function tolerance. 
Default: max(10���, ����), max (10���, ����) in double where � is the machine 
precision. 

RPARAM(4) = Absolute function tolerance. 
Default: Not used in BCONF. 

RPARAM(5) = False convergence �	
�����. 
Default: 100� where � is the machine precision. 

RPARAM(6) = Maximum allowable step size. 
Default: 1000 max(��, ��) where 

� �
2

1 1

n
i ii

s t�
�

�  

 �� = || s ||�, s = XSCALE, and t = XGUESS. 

RPARAM(7) = Size of initial trust region radius. 
Default: based on the initial scaled Cauchy step. 

If double precision is required, then DU4INF is called and RPARAM is declared double 
precision. 

5. Users wishing to override the default print/stop attributes associated with error 
messages issued by this routine are referred to “Error Handling” in the Introduction. 

Description 
The routine BCONF uses a quasi-Newton method and an active set strategy to solve minimization 
problems subject to simple bounds on the variables. The problem is stated as follows:  

� �min
nx

f x
�R
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subject to l � x � u 

From a given starting point xc, an active set IA, which contains the indices of the variables at 
their bounds, is built. A variable is called a “free variable” if it is not in the active set. The 
routine then computes the search direction for the free variables according to the formula 

d = �B�� gc 

where B is a positive definite approximation of the Hessian and gc is the gradient evaluated at 
xc; both are computed with respect to the free variables. The search direction for the variables in 
IA is set to zero. A line search is used to find a new point xn , 

xn = xc + �d, � � (0, 1] 

such that  

f (xn) � f (xc) + �gT d, � � (0, 0.5) 

Finally, the optimality conditions 

||g(xi)|| � �, li < xi< ui 

g(xi) < 0,  xi = ui 

g(xi) > 0, xi = li 

are checked, where � is a gradient tolerance. When optimality is not achieved, B is updated 
according to the BFGS formula: 

T T

T T

Bss B yyB B
s Bs y s

� � �  

where s = xn � xc and y = gn � gc. Another search direction is then computed to begin the next 
iteration. 

The active set is changed only when a free variable hits its bounds during an iteration or the 
optimality condition is met for the free variables but not for all variables in IA, the active set. In 
the latter case, a variable that violates the optimality condition will be dropped out of IA. For 
more details on the quasi-Newton method and line search, see Dennis and Schnabel (1983). For 
more detailed information on active set strategy, see Gill and Murray (1976). 

Since a finite-difference method is used to estimate the gradient for some single precision 
calculations, an inaccurate estimate of the gradient may cause the algorithm to terminate at a 
noncritical point. In such cases, high precision arithmetic is recommended. Also, whenever the 
exact gradient can be easily provided, routine BCONG (page 1249) should be used instead. 

BCONG 
Minimizes a function of N variables subject to bounds on the variables using a quasi-Newton 
method and a user-supplied gradient. 
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Required Arguments 
FCN — User-supplied SUBROUTINE to evaluate the function to be minimized. The usage is 

CALL FCN (N, X, F), where 

N – Length of X.   (Input) 

X – Vector of length N at which point the function is evaluated.   (Input) 
X should not be changed by FCN. 

F – The computed function value at the point X.   (Output) 

FCN must be declared EXTERNAL in the calling program. 

GRAD — User-supplied SUBROUTINE to compute the gradient at the point X. The usage is 
CALL GRAD (N, X, G), where 

N – Length of X and G.   (Input) 

X – Vector of length N at which point the gradient is evaluated.   (Input) 
X should not be changed by GRAD. 

G – The gradient evaluated at the point X.   (Output) 

GRAD must be declared EXTERNAL in the calling program. 

IBTYPE — Scalar indicating the types of bounds on variables.   (Input)  

IBTYPE  Action 

0   User will supply all the bounds. 

1   All variables are nonnegative. 

2   All variables are nonpositive. 

3   User supplies only the bounds on 1st variable, all other variables 
  will have the same bounds. 

XLB — Vector of length N containing the lower bounds on variables.   (Input, if IBTYPE = 0; 
output, if IBTYPE = 1 or 2; input/output, if IBTYPE = 3) 

XUB — Vector of length N containing the upper bounds on variables.   (Input, if IBTYPE = 0; 
output, if IBTYPE = 1 or 2; input/output, if IBTYPE = 3) 

X — Vector of length N containing the computed solution.   (Output) 
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Optional Arguments 
N — Dimension of the problem.   (Input) 

Default: N = size (X,1). 

XGUESS — Vector of length N containing the initial guess of the minimum.   (Input) 
Default: XGUESS = 0.0. 

XSCALE — Vector of length N containing the diagonal scaling matrix for the variables.   
(Input)  
XSCALE is used mainly in scaling the gradient and the distance between two points. In 
the absence of other information, set all entries to 1.0. 
Default: XSCALE = 1.0. 

FSCALE — Scalar containing the function scaling.   (Input)  
FSCALE is used mainly in scaling the gradient. In the absence of other information, set 
FSCALE to 1.0. 
Default: FSCALE = 1.0. 

IPARAM — Parameter vector of length 7.   (Input/Output)  
Set IPARAM(1) to zero for default values of IPARAM and RPARAM. See Comment 4. 
Default: IPARAM = 0. 

RPARAM — Parameter vector of length 7.   (Input/Output)  
See Comment 4. 

FVALUE — Scalar containing the value of the function at the computed solution.   (Output) 

FORTRAN 90 Interface 
Generic: CALL BCONG (FCN, GRAD, IBTYPE, XLB, XUB, X [,…]) 

Specific: The specific interface names are S_BCONG and D_BCONG. 

FORTRAN 77 Interface 
Single: CALL BCONG (FCN, GRAD, N, XGUESS, IBTYPE, XLB, XUB, XSCALE,  

FSCALE, IPARAM, RPARAM, X, FVALUE) 

Double: The double precision name is DBCONG. 

Example 
The problem 
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is solved with an initial guess (�1.2, 1.0), and default values for parameters. 
      USE BCONG_INT 
      USE UMACH_INT 
      INTEGER    N 
      PARAMETER  (N=2) 
! 
      INTEGER    IPARAM(7), ITP, L, NOUT 
      REAL       F, X(N), XGUESS(N), XLB(N), XUB(N) 
      EXTERNAL   ROSBRK, ROSGRD 
! 
      DATA XGUESS/-1.2E0, 1.0E0/ 
      DATA XLB/-2.0E0, -1.0E0/, XUB/0.5E0, 2.0E0/ 
!                                 All the bounds are provided 
      ITP = 0 
!                                 Default parameters are used 
      IPARAM(1) = 0 
!                                 Minimize Rosenbrock function using 
!                                 initial guesses of -1.2 and 1.0 
      CALL BCONG (ROSBRK, ROSGRD, ITP, XLB, XUB, X, XGUESS=XGUESS, & 
                 IPARAM=IPARAM, FVALUE=F) 
!                                 Print results 
      CALL UMACH (2, NOUT) 
      WRITE (NOUT,99999) X, F, (IPARAM(L),L=3,5) 
! 
99999 FORMAT (’  The solution is ’, 6X, 2F8.3, //, ’  The function ’, & 
            ’value is ’, F8.3, //, ’  The number of iterations is ’, & 
            10X, I3, /, ’  The number of function evaluations is ’, & 
            I3, /, ’  The number of gradient evaluations is ’, I3) 
! 
      END 
! 
      SUBROUTINE ROSBRK (N, X, F) 
      INTEGER    N 
      REAL       X(N), F 
! 
      F = 1.0E2*(X(2)-X(1)*X(1))**2 + (1.0E0-X(1))**2 
! 
      RETURN 
      END 
! 
      SUBROUTINE ROSGRD (N, X, G) 
      INTEGER    N 
      REAL       X(N), G(N) 
! 
      G(1) = -4.0E2*(X(2)-X(1)*X(1))*X(1) - 2.0E0*(1.0E0-X(1)) 
      G(2) = 2.0E2*(X(2)-X(1)*X(1)) 
! 
      RETURN 
      END 
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Output 
The solution is          0.500   0.250 
 
The function value is    0.250 
 
The number of iterations is            22 
The number of function evaluations is  32 
The number of gradient evaluations is  23 

Comments 
1. Workspace may be explicitly provided, if desired, by use of B2ONG/DB2ONG. The 

reference is: 

 CALL B2ONG (FCN, GRAD, N, XGUESS, IBTYPE, XLB, XUB, XSCALE, 
FSCALE, IPARAM, RPARAM, X, FVALUE, WK, IWK) 

The additional arguments are as follows: 

WK — Real work vector of length N * (2 * N + 8). WK contains the following 
information on output: The second N locations contain the last step taken. The 
third N locations contain the last Newton step. The fourth N locations contain an 
estimate of the gradient at the solution. The final N� locations contain a BFGS 
approximation to the Hessian at the solution. 

IWK — Work vector of length N stored in column order. Only the lower triangular 
portion of the matrix is stored in WK. The values returned in the upper triangle 
should be ignored. 

2. Informational errors 

Type Code 

    3    1 Both the actual and predicted relative reductions in the function are less 
than or equal to the relative function convergence tolerance. 

    4    2 The iterates appear to be converging to a noncritical point. 

    4     3 Maximum number of iterations exceeded. 

    4    4  Maximum number of function evaluations exceeded. 

    4    5  Maximum number of gradient evaluations exceeded. 

    4    6 Five consecutive steps have been taken with the maximum step length. 

    2    7  Scaled step tolerance satisfied; the current point may be an approximate 
local solution, or the algorithm is making very slow progress and is not near a solution, 
or  STEPTL is too big. 
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3    8 The last global step failed to locate a lower point than the current X value. 

3. The first stopping criterion for BCONG occurs when the norm of the gradient is less than 
the given gradient tolerance (RPARAM(1)). The second stopping criterion for BCONG 
occurs when the scaled distance between the last two steps is less than the step 
tolerance (RPARAM(2)). 

4. If the default parameters are desired for BCONG, then set IPARAM (1) to zero and call 
the routine BCONG. Otherwise, if any nondefault parameters are desired for IPARAM or 
RPARAM, then the following steps should be taken before calling BCONG: 

CALL U4INF (IPARAM, RPARAM) 

Set nondefault values for desired IPARAM, RPARAM elements. 

Note that the call to U4INF will set IPARAM and RPARAM to their default values so only 
nondefault values need to be set above. 

The following is a list of the parameters and the default values: 

IPARAM — Integer vector of length 7. 
IPARAM(1) = Initialization flag. 

IPARAM(2) = Number of good digits in the function. 
Default: Machine dependent. 

IPARAM(3) = Maximum number of iterations. 
Default: 100. 

IPARAM(4) = Maximum number of function evaluations. 
Default: 400. 

IPARAM(5) = Maximum number of gradient evaluations. 
Default: 400. 

IPARAM(6) = Hessian initialization parameter. 
If IPARAM(6) = 0, the Hessian is initialized to the identity matrix; otherwise, it 
is initialized to a diagonal matrix containing 

� �� � 2max , s if t f s�  

on the diagonal where t = XGUESS, fs = FSCALE, and s = XSCALE. 
Default: 0. 

IPARAM(7) = Maximum number of Hessian evaluations. 
Default: Not used in BCONG. 
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RPARAM — Real vector of length 7. 
RPARAM(1) = Scaled gradient tolerance. 
The i-th component of the scaled gradient at x is calculated as 

� �

� �� �

max ,1/

max ,
i i i

s

g x s

f x f

�

 

where g = �f (x), s = XSCALE, and fs = FSCALE. 
Default: 

3,� �  

in double where � is the machine precision. 

RPARAM(2) = Scaled step tolerance. (STEPTL) 
The i-th component of the scaled step between two points x and y is computed as 

� �max ,1/
i i

i i

x y
x s
�

 

where s = XSCALE. 
Default: ���� where � is the machine precision. 

RPARAM(3) = Relative function tolerance. 
Default: max(10���, ����), max (10���, ����) in double where � is the machine precision. 

RPARAM(4) = Absolute function tolerance. 
Default: Not used in BCONG. 

RPARAM(5) = False convergence tolerance. 
Default: 100� where � is the machine precision. 

RPARAM(6) = Maximum allowable step size. 
Default: 1000 max(��, ��) where 

� �
2

1 1

n
i ii

s t�
�

�  

�� = || s ||�, s = XSCALE, and t = XGUESS. 

RPARAM(7) = Size of initial trust region radius. 
Default: based on the initial scaled Cauchy step. 

If double precision is required, then DU4INF is called and RPARAM is declared double 
precision. 
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5. Users wishing to override the default print/stop attributes associated with error 
messages issued by this routine are referred to “Error Handling” in the Introduction. 

Description 
The routine BCONG uses a quasi-Newton method and an active set strategy to solve minimization 
problems subject to simple bounds on the variables. The problem is stated as follows: 

� �min
nx

f x
�R

 

subject to  l � x � u 

From a given starting point xc, an active set IA, which contains the indices of the variables at 
their bounds, is built. A variable is called a “free variable” if it is not in the active set. The 
routine then computes the search direction for the free variables according to the formula 

d = �B�� gc 

where B is a positive definite approximation of the Hessian and gc is the gradient evaluated at 
xc; both are computed with respect to the free variables. The search direction for the variables in 
IA is set to zero. A line search is used to find a new point xn , 

xn = xc + �d, � � (0, 1] 

such that  

f (xn) � f (xc) + �gT d, � � (0, 0.5) 

Finally, the optimality conditions 

||g(xi)|| � �, li < xi< ui 

g(xi) < 0, xi = ui 

g(xi) > 0, xi = li 

are checked, where � is a gradient tolerance. When optimality is not achieved, B is updated 
according to the BFGS formula: 

T T

T T

Bss B yyB B
s Bs y s

� � �  

where s = xn � xc and y = gn � gc. Another search direction is then computed to begin the next 
iteration. 

The active set is changed only when a free variable hits its bounds during an iteration or the 
optimality condition is met for the free variables but not for all variables in IA, the active set. In 
the latter case, a variable that violates the optimality condition will be dropped out of IA. For 
more details on the quasi-Newton method and line search, see Dennis and Schnabel (1983). For 
more detailed information on active set strategy, see Gill and Murray (1976). 
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BCODH 
Minimizes a function of N variables subject to bounds on the variables using a modified Newton 
method and a finite-difference Hessian. 

Required Arguments 
FCN — User-supplied SUBROUTINE to evaluate the function to be minimized. The usage is 

CALL FCN (N, X, F), where 

N – Length of X.   (Input) 

X – Vector of length N at which point the function is evaluated.   (Input) 
X should not be changed by FCN. 

F – The computed function value at the point X.   (Output) 

FCN must be declared EXTERNAL in the calling program. 

GRAD — User-supplied SUBROUTINE to compute the gradient at the point X. The usage is 
CALL GRAD (N, X, G), where 

N – Length of X and G.   (Input) 

X – Vector of length N at which point the gradient is evaluated.   (Input) 
X should not be changed by GRAD. 

G – The gradient evaluated at the point X.   (Output) 

GRAD must be declared EXTERNAL in the calling program. 

IBTYPE — Scalar indicating the types of bounds on variables.   (Input)  

IBTYPE Action 

 0   User will supply all the bounds.  

 1  All variables are nonnegative. 

 2  All variables are nonpositive. 

 3  User supplies only the bounds on 1st variable, all other variables will have 
 the same bounds. 

XLB — Vector of length N containing the lower bounds on the variables.   (Input) 

XUB — Vector of length N containing the upper bounds on the variables.   (Input) 



 

 
 

1258 � Chapter 8: Optimization IMSL MATH/LIBRARY 

 

 

 

X — Vector of length N containing the computed solution.   (Output) 

Optional Arguments 
N — Dimension of the problem.   (Input) 

Default: N = size (X,1). 

XGUESS — Vector of length N containing the initial guess of the minimum.   (Input) 
Default: XGUESS = 0.0. 

XSCALE — Vector of length N containing the diagonal scaling matrix for the variables.   
(Input)  
XSCALE is used mainly in scaling the gradient and the distance between two points. In 
the absence of other information, set all entries to 1.0. 
Default: XSCALE = 1.0. 

FSCALE — Scalar containing the function scaling.   (Input)  
FSCALE is used mainly in scaling the gradient. In the absence of other information, set 
FSCALE to 1.0. 
Default: FSCALE = 1.0. 

IPARAM — Parameter vector of length 7.   (Input/Output)  
Set IPARAM(1) to zero for default values of IPARAM and RPARAM. See Comment 4. 
Default: IPARAM = 0. 

RPARAM — Parameter vector of length 7.   (Input/Output)  
See Comment 4. 

FVALUE — Scalar containing the value of the function at the computed solution.   (Output) 

FORTRAN 90 Interface 
Generic: CALL BCODH (FCN, GRAD, IBTYPE, XLB, XUB, X [,…]) 

Specific: The specific interface names are S_BCODH and D_BCODH. 

FORTRAN 77 Interface 
Single: CALL BCODH (FCN, GRAD, N, XGUESS, IBTYPE, XLB, XUB, XSCALE, 

FSCALE, IPARAM, RPARAM, X, FVALUE) 

Double: The double precision name is DBCODH. 

Example 

The problem 
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1

2

min 100 1

subject to 2 0.5
1 2

f x x x x

x
x

� � � �

� � �

� � �

 

is solved with an initial guess (�1.2, 1.0), and default values for parameters. 
      USE BCODH_INT 
      USE UMACH_INT 
      INTEGER    N 
      PARAMETER  (N=2) 
! 
      INTEGER    IP, IPARAM(7), L, NOUT 
      REAL       F, X(N), XGUESS(N), XLB(N), XUB(N) 
      EXTERNAL   ROSBRK, ROSGRD 
! 
      DATA XGUESS/-1.2E0, 1.0E0/ 
      DATA XLB/-2.0E0, -1.0E0/, XUB/0.5E0, 2.0E0/ 
! 
      IPARAM(1) = 0 
      IP        = 0 
!                                 Minimize Rosenbrock function using 
!                                 initial guesses of -1.2 and 1.0 
      CALL BCODH (ROSBRK, ROSGRD, IP, XLB, XUB, X, XGUESS=XGUESS, & 
                 IPARAM=IPARAM, FVALUE=F) 
!                                 Print results 
      CALL UMACH (2, NOUT) 
      WRITE (NOUT,99999) X, F, (IPARAM(L),L=3,5) 
! 
99999 FORMAT (’  The solution is ’, 6X, 2F8.3, //, ’  The function ’, & 
            ’value is ’, F8.3, //, ’  The number of iterations is ’, & 
            10X, I3, /, ’  The number of function evaluations is ’, & 
            I3, /, ’  The number of gradient evaluations is ’, I3) 
! 
      END 
! 
      SUBROUTINE ROSBRK (N, X, F) 
      INTEGER    N 
      REAL       X(N), F 
! 
      F = 1.0E2*(X(2)-X(1)*X(1))**2 + (1.0E0-X(1))**2 
! 
      RETURN 
      END 
      SUBROUTINE ROSGRD (N, X, G) 
      INTEGER    N 
      REAL       X(N), G(N) 
! 
      G(1) = -4.0E2*(X(2)-X(1)*X(1))*X(1) - 2.0E0*(1.0E0-X(1)) 
      G(2) = 2.0E2*(X(2)-X(1)*X(1)) 
! 
      RETURN 
      END 
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Output 
The solution is          0.500   0.250 
 
The function value is    0.250 
 
The number of iterations is            17 
The number of function evaluations is  26 
The number of gradient evaluations is  18 

Comments 
1. Workspace may be explicitly provided, if desired, by use of B2ODH/DB2ODH. The 

reference is: 

CALL B2ODH (FCN, GRAD, N, XGUESS, IBTYPE, XLB, XUB, XSCALE, 
FSCALE, IPARAM, RPARAM, X, FVALUE, WK, IWK) 

The additional arguments are as follows: 

WK — Real work vector of length N * (N + 8). WK contains the following 
information on output: The second N locations contain the last step taken. The 
third N locations contain the last Newton step. The fourth N locations contain an 
estimate of the gradient at the solution. The final N� locations contain the 
Hessian at the approximate solution. 

IWK — Integer work vector of length N. 

2. Informational errors 

Type Code  
   3    1 Both the actual and predicted relative reductions in the function are 

less than or equal to the relative function convergence tolerance. 
   4    2 The iterates appear to be converging to a noncritical point. 
   4    3 Maximum number of iterations exceeded. 
   4    4 Maximum number of function evaluations exceeded. 
   4    5 Maximum number of gradient evaluations exceeded. 
   4    6 Five consecutive steps have been taken with the maximum step 

length. 
   2    7 Scaled step tolerance satisfied; the current point may be an 

approximate local solution, or the algorithm is making very slow 
progress and is not near a solution, or STEPTL is too big. 

   4    7 Maximum number of Hessian evaluations exceeded. 

3. The first stopping criterion for BCODH occurs when the norm of the gradient is less than 
the given gradient tolerance (RPARAM(1)). The second stopping criterion for BCODH 
occurs when the scaled distance between the last two steps is less than the step 
tolerance (RPARAM(2)). 

4. If the default parameters are desired for BCODH, then set IPARAM(1) to zero and call the 
routine BCODH. Otherwise, if any nondefault parameters are desired for IPARAM or 
RPARAM; then the following steps should be taken before calling BCODH: 
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CALL U4INF (IPARAM, RPARAM) 
Set nondefault values for desired IPARAM, RPARAM elements. 

Note that the call to U4INF will set IPARAM and RPARAM to their default values so only 
nondefault values need to be set above. 

The following is a list of the parameters and the default values: 

IPARAM — Integer vector of length 7. 
IPARAM(1) = Initialization flag. 

IPARAM(2) = Number of good digits in the function. 
Default: Machine dependent. 

IPARAM(3) = Maximum number of iterations. 
Default: 100. 

IPARAM(4) = Maximum number of function evaluations. 
Default: 400. 

IPARAM(5) = Maximum number of gradient evaluations. 
Default: 400. 

IPARAM(6) = Hessian initialization parameter. 
Default: Not used in BCODH. 

IPARAM(7) = Maximum number of Hessian evaluations. 
Default: 100. 

RPARAM — Real vector of length 7. 
RPARAM(1) = Scaled gradient tolerance. 
The i-th component of the scaled gradient at x is calculated as 

� �

� �� �

max ,1/

max ,
i i i

s

g x s

f x f

�

 

where g = �f (x), s = XSCALE, and fs = FSCALE. 
Default: 

3,� �  

in double where � is the machine precision. 

RPARAM(2) = Scaled step tolerance. (STEPTL) 
The i-th component of the scaled step between two points x and y is computed as 
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� �max ,1/
i i

i i

x y
x s
�

 

where s = XSCALE. 
Default: ���� where � is the machine precision. 

RPARAM(3) = Relative function tolerance. 
Default: max(10���, ����), max (10���, ����) in double where � is the machine precision. 

RPARAM(4) = Absolute function tolerance. 
Default: Not used in BCODH. 

RPARAM(5) = False convergence tolerance. 
Default: 100� where � is the machine precision. 

RPARAM(6) = Maximum allowable step size. 
Default: 1000 max(��, ��) where 

� �
2

1 1

n
i ii

s t�
�

�  

�� = || s ||�, s = XSCALE, and t = XGUESS. 

RPARAM(7) = Size of initial trust region radius. 
Default: based on the initial scaled Cauchy step. 

If double precision is required, then DU4INF is called and RPARAM is declared double 
precision. 

5. Users wishing to override the default print/stop attributes associated with error 
messages issued by this routine are referred to “Error Handling” in the Introduction. 

Description 
The routine BCODH uses a modified Newton method and an active set strategy to solve 
minimization problems subject to simple bounds on the variables. The problem is stated as 

� �min
nx

f x
�R

 

subject to l � x � u 

From a given starting point xc, an active set IA, which contains the indices of the variables at 
their bounds, is built. A variable is called a “free variable” if it is not in the active set. The 
routine then computes the search direction for the free variables according to the formula 

d = �H�� gc 
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where H is the Hessian and gc is the gradient evaluated at xc; both are computed with respect to 
the free variables. The search direction for the variables in IA is set to zero. A line search is used 
to find a new point xn , 

xn = xc + �d, � � (0, 1] 

such that  

f (xn) � f (xc) + �gT d, � � (0, 0.5) 

Finally, the optimality conditions 

||g(xi)|| � �, li < xi < ui 

g(xi) < 0, xi = ui 

g(xi) > 0, xi = li 

are checked where � is a gradient tolerance. When optimality is not achieved, another search 
direction is computed to begin the next iteration. This process is repeated until the optimality 
criterion is met. 

The active set is changed only when a free variable hits its bounds during an iteration or the 
optimality condition is met for the free variables but not for all variables in IA, the active set. In 
the latter case, a variable that violates the optimality condition will be dropped out of IA. For 
more details on the modified Newton method and line search, see Dennis and Schnabel (1983). 
For more detailed information on active set strategy, see Gill and Murray (1976). 

Since a finite-difference method is used to estimate the Hessian for some single precision 
calculations, an inaccurate estimate of the Hessian may cause the algorithm to terminate at a 
noncritical point. In such cases, high precision arithmetic is recommended. Also, whenever the 
exact Hessian can be easily provided, routine BCOAH (page 1263) should be used instead. 

BCOAH 
Minimizes a function of N variables subject to bounds on the variables using a modified Newton 
method and a user-supplied Hessian. 

Required Arguments 
FCN — User-supplied SUBROUTINE to evaluate the function to be minimized. The usage is 

CALL FCN (N, X, F), where 

N – Length of X.   (Input) 

X – Vector of length N at which point the function is evaluated.   (Input) 
X should not be changed by FCN. 

F – The computed function value at the point X.   (Output) 

FCN must be declared EXTERNAL in the calling program. 
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GRAD — User-supplied SUBROUTINE to compute the gradient at the point X. The usage is 
CALL GRAD (N, X, G), where 

N – Length of X and G.   (Input) 

X – Vector of length N at which point the gradient is evaluated.   (Input) 
X should not be changed by GRAD. 

G – The gradient evaluated at the point X.   (Output) 

GRAD must be declared EXTERNAL in the calling program. 

HESS — User-supplied SUBROUTINE to compute the Hessian at the point X. The usage is 
CALL HESS (N, X, H, LDH), where 

N – Length of X.   (Input) 

X – Vector of length N at which point the Hessian is evaluated.   (Input)  
X should not be changed by HESS. 

H – The Hessian evaluated at the point X.   (Output) 

LDH – Leading dimension of H exactly as specified in the dimension statement of the 
calling program.   (Input) 

HESS must be declared EXTERNAL in the calling program. 

IBTYPE — Scalar indicating the types of bounds on variables.   (Input)  

IBTYPE Action 

0  User will supply all the bounds. 

1  All variables are nonnegative. 

2  All variables are nonpositive. 

3  User supplies only the bounds on 1st variable, all other variables will have
 the same bounds. 

XLB — Vector of length N containing the lower bounds on the variables.   (Input) 

XUB — Vector of length N containing the upper bounds on the variables.   (Input) 

X — Vector of length N containing the computed solution.   (Output) 
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Optional Arguments 
N — Dimension of the problem.   (Input) 

Default: N = size (X,1). 

XGUESS — Vector of length N containing the initial guess.   (Input) 
Default: XGUESS = 0.0. 

XSCALE — Vector of length N containing the diagonal scaling matrix for the variables.   
(Input)  
XSCALE is used mainly in scaling the gradient and the distance between two points. In 
the absence of other information, set all entries to 1.0. 
Default: XSCALE = 1.0. 

FSCALE — Scalar containing the function scaling.   (Input)  
FSCALE is used mainly in scaling the gradient. In the absence of other information, set 
FSCALE to 1.0. 
Default: FSCALE = 1.0. 

IPARAM — Parameter vector of length 7.   (Input/Output)  
Set IPARAM(1) to zero for default values of IPARAM and RPARAM. See Comment 4. 
Default: IPARAM = 0. 

RPARAM — Parameter vector of length 7.   (Input/Output)  
See Comment 4. 

FVALUE — Scalar containing the value of the function at the computed solution.   (Output) 

FORTRAN 90 Interface 
Generic: CALL BCOAH (FCN, GRAD, HESS, IBTYPE, XLB, XUB, X [,…]) 

Specific: The specific interface names are S_BCOAH and D_BCOAH. 

FORTRAN 77 Interface 
Single: CALL BCOAH (FCN, GRAD, HESS, N, XGUESS, IBTYPE, XLB, XUB,  

XSCALE, FSCALE, IPARAM, RPARAM, X, FVALUE) 

Double: The double precision name is DBCOAH. 

Example 
The problem 
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is solved with an initial guess (�1.2, 1.0), and default values for parameters. 
      USE BCOAH_INT 
      USE UMACH_INT 
      INTEGER    N 
      PARAMETER  (N=2) 
! 
      INTEGER    IP, IPARAM(7), L, NOUT 
      REAL       F, X(N), XGUESS(N), XLB(N), XUB(N) 
      EXTERNAL   ROSBRK, ROSGRD, ROSHES 
! 
      DATA XGUESS/-1.2E0, 1.0E0/ 
      DATA XLB/-2.0E0, -1.0E0/, XUB/0.5E0, 2.0E0/ 
! 
      IPARAM(1) = 0 
      IP        = 0 
!                                 Minimize Rosenbrock function using 
!                                 initial guesses of -1.2 and 1.0 
      CALL BCOAH (ROSBRK, ROSGRD, ROSHES, IP, XLB, XUB, X, & 
                 XGUESS=XGUESS,IPARAM=IPARAM, FVALUE=F) 
!                                 Print results 
      CALL UMACH (2, NOUT) 
      WRITE (NOUT,99999) X, F, (IPARAM(L),L=3,5), IPARAM(7) 
! 
99999 FORMAT (’  The solution is ’, 6X, 2F8.3, //, ’  The function ’, & 
            ’value is ’, F8.3, //, ’  The number of iterations is ’, & 
            10X, I3, /, ’  The number of function evaluations is ’, & 
            I3, /, ’  The number of gradient evaluations is ’, I3, /, & 
            ’  The number of Hessian evaluations is  ’, I3) 
! 
      END 
! 
      SUBROUTINE ROSBRK (N, X, F) 
      INTEGER    N 
      REAL       X(N), F 
! 
      F = 1.0E2*(X(2)-X(1)*X(1))**2 + (1.0E0-X(1))**2 
! 
      RETURN 
      END 
! 
      SUBROUTINE ROSGRD (N, X, G) 
      INTEGER    N 
      REAL       X(N), G(N) 
! 
      G(1) = -4.0E2*(X(2)-X(1)*X(1))*X(1) - 2.0E0*(1.0E0-X(1)) 
      G(2) = 2.0E2*(X(2)-X(1)*X(1)) 
! 
      RETURN 
      END 
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! 
      SUBROUTINE ROSHES (N, X, H, LDH) 
      INTEGER    N, LDH 
      REAL       X(N), H(LDH,N) 
! 
      H(1,1) = -4.0E2*X(2) + 1.2E3*X(1)*X(1) + 2.0E0 
      H(2,1) = -4.0E2*X(1) 
      H(1,2) = H(2,1) 
      H(2,2) = 2.0E2 
! 
      RETURN 
      END 

Output 
The solution is          0.500   0.250 
 
The function value is    0.250 
 
The number of iterations is            18 
The number of function evaluations is  29 
The number of gradient evaluations is  19 
The number of Hessian evaluations is   18 

Comments 
1. Workspace may be explicitly provided, if desired, by use of B2OAH/DB2OAH. The 

reference is: 

CALL B2OAH (FCN, GRAD, HESS, N, XGUESS, IBTYPE, XLB,  
            XUB, XSCALE, FSCALE, IPARAM, RPARAM, X,  
            FVALUE, WK, IWK) 

 

 

The additional arguments are as follows: 

WK — Work vector of length N * (N + 8). WK contains the following information on 
output: The second N locations contain the last step taken. The third N locations 
contain the last Newton step. The fourth N locations contain an estimate of the 
gradient at the solution. The final N� locations contain the Hessian at the 
approximate solution. 

IWK — Work vector of length N. 

2. Informational errors 

Type Code 
   3    1 Both the actual and predicted relative reductions in the function are 

less than or equal to the relative function convergence tolerance. 
   4    2 The iterates appear to be converging to a noncritical point. 
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   4    3 Maximum number of iterations exceeded. 
   4     4 Maximum number of function evaluations exceeded. 
   4    5 Maximum number of gradient evaluations exceeded. 
   4     6 Five consecutive steps have been taken with the maximum step 

length. 
   2    7 Scaled step tolerance satisfied; the current point may be an 

approximate local solution, or the algorithm is making very slow 
progress and is not near a solution, or STEPTL is too big. 

   4     7 Maximum number of Hessian evaluations exceeded. 
   3    8 The last global step failed to locate a lower point than the current X 

value. 

3. The first stopping criterion for BCOAH occurs when the norm of the gradient is less than 
the given gradient tolerance (RPARAM(1)). The second stopping criterion for BCOAH 
occurs when the scaled distance between the last two steps is less than the step 
tolerance (RPARAM(2)). 

4. If the default parameters are desired for BCOAH, then set IPARAM(1) to zero and call the 
routine BCOAH. Otherwise, if any nondefault parameters are desired for IPARAM or 
RPARAM, then the following steps should be taken before calling BCOAH: 

CALL U4INF (IPARAM, RPARAM) 
Set nondefault values for desired IPARAM, RPARAM elements. 

Note that the call to U4INF will set IPARAM and RPARAM to their default values so only 
nondefault values need to be set above. 

The following is a list of the parameters and the default values: 

IPARAM — Integer vector of length 7. 
IPARAM(1) = Initialization flag. 

IPARAM(2) = Number of good digits in the function. 
Default: Machine dependent. 

IPARAM(3) = Maximum number of iterations. 
Default: 100. 

IPARAM(4) = Maximum number of function evaluations. 
Default: 400. 

IPARAM(5) = Maximum number of gradient evaluations. 
Default: 400. 

IPARAM(6) = Hessian initialization parameter. 
Default: Not used in BCOAH. 
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IPARAM(7) = Maximum number of Hessian evaluations. 
Default: 100. 

RPARAM — Real vector of length 7. 
RPARAM(1) = Scaled gradient tolerance. 
The i-th component of the scaled gradient at x is calculated as 

� �

� �� �

max ,1/

max ,
i i i

s

g x s

f x f

�

 

where g = �f(x), s = XSCALE, and fs = FSCALE. 
Default: 

3,� �  

in double where � is the machine precision. 

RPARAM(2) = Scaled step tolerance. (STEPTL) 
The i-th component of the scaled step between two points x and y is computed as 

� �max ,1/
i i

i i

x y
x s
�

 

where s = XSCALE. 
Default: ���� where � is the machine precision. 

RPARAM(3) = Relative function tolerance. 
Default: max(10���, ����), max (10���, ����) in double where � is the machine precision. 

RPARAM(4) = Absolute function tolerance. 
Default: Not used in BCOAH. 

RPARAM(5) = False convergence tolerance. 
Default: 100� where � is the machine precision. 

RPARAM(6) = Maximum allowable step size. 
Default: 1000 max(��, ��) where 

� �
2

1 1

n
i ii

s t�
�

�  

�� = || s ||�, s = XSCALE, and t = XGUESS. 

RPARAM(7) = Size of initial trust region radius. 
Default: based on the initial scaled Cauchy step. 
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If double precision is required, then DU4INF is called and RPARAM is declared double 
precision. 

5. Users wishing to override the default print/stop attributes associated with error 
messages issued by this routine are referred to “Error Handling” in the Introduction. 

Description 
The routine BCOAH uses a modified Newton method and an active set strategy to solve 
minimization problems subject to simple bounds on the variables. The problem is stated as 
follows: 

� �min
nx

f x
�R

 

subject to l � x � u 

From a given starting point xc, an active set IA, which contains the indices of the variables at 
their bounds, is built. A variable is called a “free variable” if it is not in the active set. The 
routine then computes the search direction for the free variables according to the formula 

d = �H�� gc 

where H is the Hessian and gc is the gradient evaluated at xc; both are computed with respect to 
the free variables. The search direction for the variables in IA is set to zero. A line search is used 
to find a new point xn , 

xn = xc + �d, � � (0, 1] 

such that  

f(xn) � f(xc) + �gT d, � � (0, 0.5) 

Finally, the optimality conditions 

||g(xi)|| � �, li < xi< ui 

g(xi) < 0, xi = ui 

g(xi) > 0, xi = li 

are checked where � is a gradient tolerance. When optimality is not achieved, another search 
direction is computed to begin the next iteration. This process is repeated until the optimality 
criterion is met. 

The active set is changed only when a free variable hits its bounds during an iteration or the 
optimality condition is met for the free variables but not for all variables in IA, the active set. In 
the latter case, a variable that violates the optimality condition will be dropped out of IA. For 
more details on the modified Newton method and line search, see Dennis and Schnabel (1983). 
For more detailed information on active set strategy, see Gill and Murray (1976). 



 

 
 

IMSL MATH/LIBRARY Chapter 8: Optimization � 1271 

 

 

 

BCPOL 
Minimizes a function of N variables subject to bounds on the variables using a direct search 
complex algorithm. 

Required Arguments 
FCN — User-supplied SUBROUTINE to evaluate the function to be minimized. The usage is 

CALL FCN (N, X, F), where 

N – Length of X.   (Input) 

X – Vector of length N at which point the function is evaluated.   (Input) 
X should not be changed by FCN. 

F – The computed function value at the point X.   (Output) 

FCN must be declared EXTERNAL in the calling program. 

IBTYPE — Scalar indicating the types of bounds on variables.   (Input)  

IBTYPE Action 

0  User will supply all the bounds. 

1  All variables are nonnegative. 

2  All variables are nonpositive. 

3  User supplies only the bounds on the first, variable. All other variables will 
have the same bounds. 

XLB — Vector of length N containing the lower bounds on the variables.   (Input, if IBTYPE 
= 0; output, if IBTYPE = 1 or 2; input/output, if IBTYPE = 3) 

XUB — Vector of length N containing the upper bounds on the variables.   (Input, if IBTYPE 
= 0; output, if IBTYPE = 1 or 2; input/output, if IBTYPE = 3) 

X — Real vector of length N containing the best estimate of the minimum found.   (Output) 

Optional Arguments 
N — The number of variables.   (Input) 

Default: N = size (XGUESS,1). 

XGUESS — Real vector of length N that contains an initial guess to the minimum.   (Input) 
Default: XGUESS = 0.0. 



 

 
 

1272 � Chapter 8: Optimization IMSL MATH/LIBRARY 

 

 

 

FTOL — First convergence criterion.   (Input)  
The algorithm stops when a relative error in the function values is less than FTOL, i.e. 
when (F(worst) � F(best)) < FTOL * (1 + ABS(F(best))) where F(worst) and F(best) are 
the function values of the current worst and best point, respectively. Second 
convergence criterion. The algorithm stops when the standard deviation of the function 
values at the 2 * N current points is less than FTOL. If the subroutine terminates 
prematurely, try again with a smaller value FTOL. 
Default: FTOL = 1.0e-4 for single and 1.0d-8 for double precision. 

MAXFCN — On input, maximum allowed number of function evaluations.   (Input/ Output) 
On output, actual number of function evaluations needed. 
Default: MAXFCN = 300. 

FVALUE — Function value at the computed solution.   (Output) 

FORTRAN 90 Interface 
Generic: CALL BCPOL (FCN, IBTYPE, XLB, XUB, X [,…]) 

Specific: The specific interface names are S_BCPOL and D_BCPOL. 

FORTRAN 77 Interface 
Single: CALL BCPOL (FCN, N, XGUESS, IBTYPE, XLB, XUB, FTOL, MAXFCN,  

X, FVALUE) 

Double: The double precision name is DBCPOL. 

 

Example 
The problem 

� � � � � �
2 22

2 1 1

1

2

min 100 1

subject to 2 0.5
1 2

f x x x x

x
x

� � � �

� � �

� � �

 

is solved with an initial guess (�1.2, 1.0), and the solution is printed. 
      USE BCPOL_INT 
      USE UMACH_INT 
!                                 Variable declarations 
      INTEGER    N 
      PARAMETER  (N=2) 
! 
      INTEGER    IBTYPE, K, NOUT 
      REAL       FTOL, FVALUE, X(N), XGUESS(N), XLB(N), XUB(N) 
      EXTERNAL   FCN 



 

 
 

IMSL MATH/LIBRARY Chapter 8: Optimization � 1273 

 

 

 

! 
!                                 Initializations 
!                                 XGUESS = (-1.2,  1.0) 
!                                 XLB    = (-2.0, -1.0) 
!                                 XUB    = ( 0.5,  2.0) 
      DATA  XGUESS/-1.2, 1.0/, XLB/-2.0E0, -1.0E0/, XUB/0.5E0, 2.0E0/ 
! 
      FTOL   = 1.0E-5 
      IBTYPE = 0 
! 
      CALL BCPOL (FCN, IBTYPE, XLB, XUB, X, XGUESS=XGUESS, FTOL=FTOL, & 
                 FVALUE=FVALUE) 
! 
      CALL UMACH (2, NOUT) 
      WRITE (NOUT,99999) (X(K),K=1,N), FVALUE 
99999 FORMAT (’  The best estimate for the minimum value of the’, /, & 
            ’  function is X = (’, 2(2X,F4.2), ’)’, /, ’  with ’, & 
            ’function value FVALUE = ’, E12.6) 
! 
      END 
!                                 External function to be minimized 
      SUBROUTINE FCN (N, X, F) 
      INTEGER    N 
      REAL       X(N), F 
! 
      F = 100.0*(X(2)-X(1)*X(1))**2 + (1.0-X(1))**2 
      RETURN 
      END 

Output 
The best estimate for the minimum value of the 
function is X = (  0.50  0.25) 
with function value FVALUE = 0.250002E+00 

Comments 
1. Workspace may be explicitly provided, if desired, by use of B2POL/DB2POL. The 

reference is: 

CALL B2POL (FCN, N, XGUESS, IBTYPE, XLB, XUB, FTOL,  
            MAXFCN, X, FVALUE, WK) 

The additional argument is: 

WK — Real work vector of length 2 * N**2 + 5 * N 

2. Informational error 

Type Code 
   3    1 The maximum number of function evaluations is exceeded. 

3. Since BCPOL uses only function-value information at each step to determine a new 
approximate minimum, it could be quite inefficient on smooth problems compared to 
other methods such as those implemented in routine BCONF (page 1243), which takes 
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into account derivative information at each iteration. Hence, routine BCPOL should only 
be used as a last resort. Briefly, a set of 2 * N points in an N-dimensional space is called 
a complex. The minimization process iterates by replacing the point with the largest 
function value by a new point with a smaller function value. The iteration continues 
until all the points cluster sufficiently close to a minimum. 

Description 
The routine BCPOL uses the complex method to find a minimum point of a function of n 
variables. The method is based on function comparison; no smoothness is assumed. It starts with 
2n points x�, x�, �, x�n. At each iteration, a new point is generated to replace the worst point xj, 
which has the largest function value among these 2n points. The new point is constructed by the 
following formula: 

xk = c + �(c � xj) 

where  

1
2 1 i j ic x

n �
�

�

�  

and � (� > 0) is the reflection coefficient. 

When xk is a best point, that is, when f (xk) � f (xi) for i = 1, �, 2n, an expansion point is 
computed xe = c + �(xk � c), where �(� > 1) is called the expansion coefficient. If the new point 
is a worst point, then the complex would be contracted to get a better new point. If the 
contraction step is unsuccessful, the complex is shrunk by moving the vertices halfway toward 
the current best point. Whenever the new point generated is beyond the bound, it will be set to 
the bound. This procedure is repeated until one of the following stopping criteria is satisfied: 

Criterion 1: 

fbest � fworst � �f(1. + |fbest|) 

 

Criterion 2:  
2

2
1 2

1
( )

2

n
n jj

i f
i

f
f

n
�

�

�

� �
�

�  

where fi = f(xi), fj = f(xj), and �f is a given tolerance. For a complete description, see Nelder and 
Mead (1965) or Gill et al. (1981). 

BCLSF 
Solves a nonlinear least squares problem subject to bounds on the variables using a modified 
Levenberg-Marquardt algorithm and a finite-difference Jacobian. 
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Required Arguments 
FCN — User-supplied SUBROUTINE to evaluate the function to be minimized. The usage is 

CALL FCN (M, N, X, F), where 

M – Length of F.   (Input) 

N – Length of X.   (Input) 

X – The point at which the function is evaluated.   (Input)  
X should not be changed by FCN. 

F – The computed function at the point X.   (Output) 

FCN must be declared EXTERNAL in the calling program. 

M — Number of functions.   (Input) 

IBTYPE — Scalar indicating the types of bounds on variables.   (Input)  

IBTYPE Action 

0  User will supply all the bounds. 

1  All variables are nonnegative. 

2  All variables are nonpositive. 

3  User supplies only the bounds on 1st variable, all other variables will have 
 the same bounds. 

XLB — Vector of length N containing the lower bounds on variables.   (Input, if IBTYPE = 0; 
output, if IBTYPE = 1 or 2; input/output, if IBTYPE = 3) 

XUB — Vector of length N containing the upper bounds on variables.   (Input, if IBTYPE = 0; 
output, if IBTYPE = 1 or 2; input/output, if IBTYPE = 3) 

X — Vector of length N containing the approximate solution.   (Output) 

Optional Arguments 
N — Number of variables.   (Input)  

N must be less than or equal to M. 
Default: N = size (X,1). 

XGUESS — Vector of length N containing the initial guess.   (Input) 
Default: XGUESS = 0.0. 
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XSCALE — Vector of length N containing the diagonal scaling matrix for the variables.   
(Input)  
XSCALE is used mainly in scaling the gradient and the distance between two points. By 
default, the values for XSCALE are set internally. See IPARAM(6) in Comment 4. 

FSCALE — Vector of length M containing the diagonal scaling matrix for the functions.   
(Input)  
FSCALE is used mainly in scaling the gradient. In the absence of other information, set 
all entries to 1.0. 
Default: FSCALE = 1.0. 

IPARAM — Parameter vector of length 6.   (Input/Output)  
Set IPARAM(1) to zero for default values of IPARAM and RPARAM. See Comment 4. 
Default: IPARAM= 0. 

RPARAM — Parameter vector of length 7.   (Input/Output)  
See Comment 4. 

FVEC — Vector of length M containing the residuals at the approximate solution.   (Output) 

FJAC — M by N matrix containing a finite difference approximate Jacobian at the 
approximate solution.   (Output) 

LDFJAC — Leading dimension of FJAC exactly as specified in the dimension statement of 
the calling program.   (Input) 
Default: LDFJAC = size (FJAC ,1). 

FORTRAN 90 Interface 
Generic: CALL BCLSF (FCN, M, IBTYPE, XLB, XUB, X [,…]) 

Specific: The specific interface names are S_BCLSF and D_BCLSF. 

FORTRAN 77 Interface 
Single: CALL BCLSF (FCN, M, N, XGUESS, IBTYPE, XLB, XUB, XSCALE,  

FSCALE, IPARAM, RPARAM, X, FVEC, FJAC, LDFJAC) 

Double: The double precision name is DBCLSF. 

Example 
The nonlinear least squares problem 

� �
2

2
2

1

1min
2 i

x i
f x

�
�

�
R

 

subject to �2 � x� � 0.5 
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 �1 � x� � 2 

where 

� � � � � � � �2
1 2 1 2 110  and  1f x x x f x x� � � �  

is solved with an initial guess (�1.2, 1.0) and default values for parameters. 
      USE BCLSF_INT 
      USE UMACH_INT 
!                                 Declaration of variables 
      INTEGER    M, N 
      PARAMETER  (M=2, N=2) 
! 
      INTEGER    IPARAM(7), ITP, NOUT 
      REAL       FSCALE(M), FVEC(M), X(N), XGUESS(N), XLB(N), XS(N), XUB(N) 
      EXTERNAL   ROSBCK 
!                                 Compute the least squares for the 
!                                 Rosenbrock function. 
      DATA XGUESS/-1.2E0, 1.0E0/ 
      DATA XLB/-2.0E0, -1.0E0/, XUB/0.5E0, 2.0E0/ 
!                                 All the bounds are provided 
      ITP = 0 
!                                 Default parameters are used 
      IPARAM(1) = 0 
! 
      CALL BCLSF (ROSBCK, M, ITP, XLB, XUB, X, XGUESS=XGUESS, & 
                 IPARAM=IPARAM, FVEC=FVEC) 
!                                 Print results 
      CALL UMACH (2, NOUT) 
      WRITE (NOUT,99999) X, FVEC, IPARAM(3), IPARAM(4) 
! 
99999 FORMAT (’  The solution is ’, 2F9.4, //, ’  The function ’, & 
            ’evaluated at the solution is ’, /, 18X, 2F9.4, //, & 
            ’  The number of iterations is ’, 10X, I3, /, ’  The ’, & 
            ’number of function evaluations is ’, I3, /) 
      END 
! 
      SUBROUTINE ROSBCK (M, N, X, F) 
      INTEGER    M, N 
      REAL       X(N), F(M) 
! 
      F(1) = 1.0E1*(X(2)-X(1)*X(1)) 
      F(2) = 1.0E0 - X(1) 
      RETURN 
      END 

Output 
The solution is    0.5000   0.2500 
 
The function evaluated at the solution is 
0.0000   0.5000 
 
The number of iterations is            15 
The number of function evaluations is  20 
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Comments 
1. Workspace may be explicitly provided, if desired, by use of B2LSF/DB2LSF. The 

reference is: 

CALL B2LSF (FCN, M, N, XGUESS, IBTYPE, XLB, XUB, XSCALE, FSCALE, 
IPARAM, RPARAM, X, FVEC, FJAC, LDFJAC, WK, IWK) 

The additional arguments are as follows: 

WK — Work vector of length 11 * N + 3 * M � 1. WK contains the following 
information on output: The second N locations contain the last step taken. The 
third N locations contain the last Gauss-Newton step. The fourth N locations 
contain an estimate of the gradient at the solution. 

IWK — Work vector of length 2 * N containing the permutations used in the QR 
factorization of the Jacobian at the solution. 

2. Informational errors 

Type Code 
    3    1 Both the actual and predicted relative reductions in the function are 

less than or equal to the relative function convergence tolerance. 
   3     2 The iterates appear to be converging to a noncritical point. 
   4     3 Maximum number of iterations exceeded. 
   4     4 Maximum number of function evaluations exceeded. 
   3     6  Five consecutive steps have been taken with the maximum step 

length. 
   2    7 Scaled step tolerance satisfied; the current point may be an 

approximate local solution, or the algorithm is making very slow 
progress and is not near a solution, or STEPTL is too big. 

3. The first stopping criterion for BCLSF occurs when the norm of the function is less than 
the absolute function tolerance. The second stopping criterion occurs when the norm of 
the scaled gradient is less than the given gradient tolerance. The third stopping criterion 
for BCLSF occurs when the scaled distance between the last two steps is less than the 
step tolerance. 

4. If the default parameters are desired for BCLSF, then set IPARAM(1) to zero and call the 
routine BCLSF. Otherwise, if any nondefault parameters are desired for IPARAM or 
RPARAM, then the following steps should be taken before calling BCLSF: 

CALL U4LSF (IPARAM, RPARAM) 
Set nondefault values for desired IPARAM, RPARAM elements. 

Note that the call to U4LSF will set IPARAM and RPARAM to their default values so only 
nondefault values need to be set above. 

The following is a list of the parameters and the default values: 
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IPARAM — Integer vector of length 6. 
IPARAM(1) = Initialization flag. 

IPARAM(2) = Number of good digits in the function. 
Default: Machine dependent. 

IPARAM(3) = Maximum number of iterations. 
Default: 100. 

IPARAM(4) = Maximum number of function evaluations. 
Default: 400. 

IPARAM(5) = Maximum number of Jacobian evaluations. 
Default: 100. 

IPARAM(6) = Internal variable scaling flag. 
If IPARAM(6) = 1, then the values for XSCALE are set internally. 
Default: 1. 

RPARAM — Real vector of length 7. 
RPARAM(1) = Scaled gradient tolerance. 
The i-th component of the scaled gradient at x is calculated as 

� �

� �
2

2

max ,1/i i ig x s

F x

�

 

where 

� � � �� � � �
2T

i s ii
g J x F x f� �  

J(x) is the Jacobian, s = XSCALE, and fs = FSCALE. 
Default: 

3,� �  

in double where � is the machine precision. 

RPARAM(2) = Scaled step tolerance. (STEPTL) 
The i-th component of the scaled step between two points x and y is computed as 

� �max ,1/
i i

i i

x y
x s
�

 

where s = XSCALE. 
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Default: ���� where � is the machine precision. 

RPARAM(3) = Relative function tolerance. 
Default: max(10���� ������ max(10���, ����) in double where � is the machine precision. 

RPARAM(4) = Absolute function tolerance. 
Default: max (10���, ��), max(10�	�, ��) in double where � is the machine precision. 

RPARAM(5) = False convergence tolerance. 
Default: 100 � where � is the machine precision. 

RPARAM(6) = Maximum allowable step size. 
Default: 1000 max(��, ��) where  

� �
2

1 1

n
i ii

s t�
�

� �  

�2 = ||s||2, s = XSCALE, and t = XGUESS. 

RPARAM(7) = Size of initial trust region radius. 
Default: based on the initial scaled Cauchy step. 

If double precision is desired, then DU4LSF is called and RPARAM is declared double 
precision. 

5. Users wishing to override the default print/stop attributes associated with error 
messages issued by this routine are referred to “Error Handling” in the Introduction. 

Description 
The routine BCLSF uses a modified Levenberg-Marquardt method and an active set strategy to 
solve nonlinear least squares problems subject to simple bounds on the variables. The problem 
is stated as follows: 

� � � � � �
2

1

1 1min
2 2n

m
T

i
x i

F x F x f x
�

�

� �
R

 

subject to l � x � u 

where m � n, F : Rn� Rm, and fi(x) is the i-th component function of F(x). From a given 
starting point, an active set IA, which contains the indices of the variables at their bounds, is 
built. A variable is called a “free variable” if it is not in the active set. The routine then 
computes the search direction for the free variables according to the formula 

d = � (JT J + �I)�� JT F 

where � is the Levenberg-Marquardt parameter, F = F (x), and J is the Jacobian with respect to 
the free variables. The search direction for the variables in IA is set to zero. The trust region 
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approach discussed by Dennis and Schnabel (1983) is used to find the new point. Finally, the 
optimality conditions are checked. The conditions are 

||g(xi)|| � �, li < xi< ui 

g(xi) < 0,  xi = ui 

g(xi) > 0, xi = li 

where � is a gradient tolerance. This process is repeated until the optimality criterion is 
achieved. 

The active set is changed only when a free variable hits its bounds during an iteration or the 
optimality condition is met for the free variables but not for all variables in IA, the active set. In 
the latter case, a variable that violates the optimality condition will be dropped out of IA. For 
more detail on the Levenberg-Marquardt method, see Levenberg (1944), or Marquardt (1963). 
For more detailed information on active set strategy, see Gill and Murray (1976). 

Since a finite-difference method is used to estimate the Jacobian for some single precision 
calculations, an inaccurate estimate of the Jacobian may cause the algorithm to terminate at a 
noncritical point. In such cases, high precision arithmetic is recommended. Also, whenever the 
exact Jacobian can be easily provided, routine BCLSJ (page 1281) should be used instead. 

BCLSJ 
Solves a nonlinear least squares problem subject to bounds on the variables using a modified 
Levenberg-Marquardt algorithm and a user-supplied Jacobian. 

Required Arguments 
FCN — User-supplied SUBROUTINE to evaluate the function to be minimized. The usage is 

CALL FCN (M, N, X, F), where 

M – Length of F.   (Input) 

N – Length of X.   (Input) 

X – The point at which the function is evaluated.   (Input)  
X should not be changed by FCN. 

F – The computed function at the point X.   (Output) 

FCN must be declared EXTERNAL in the calling program. 

JAC — User-supplied SUBROUTINE to evaluate the Jacobian at a point X. The usage is CALL 
JAC (M, N, X, FJAC, LDFJAC), where 

M – Length of F.   (Input) 

N – Length of X.   (Input) 
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X – The point at which the function is evaluated.   (Input)  
X should not be changed by FCN. 

FJAC – The computed M by N Jacobian at the point X.   (Output) 

LDFJAC – Leading dimension of FJAC.   (Input) 

JAC must be declared EXTERNAL in the calling program. 

M — Number of functions.   (Input) 

IBTYPE — Scalar indicating the types of bounds on variables.   (Input)  

IBTYPE Action 

0  User will supply all the bounds. 

1  All variables are nonnegative. 

2  All variables are nonpositive. 

3  User supplies only the bounds on 1st variable, all other variables will have 
the same bounds. 

XLB — Vector of length N containing the lower bounds on variables.   (Input, if IBTYPE = 0; 
output, if IBTYPE = 1 or 2; input/output, if IBTYPE = 3) 

XUB — Vector of length N containing the upper bounds on variables.   (Input, if IBTYPE = 0; 
output, if IBTYPE = 1 or 2; input/output, if IBTYPE = 3) 

X — Vector of length N containing the approximate solution.   (Output) 

Optional Arguments 
N — Number of variables.   (Input)  

N must be less than or equal to M. 
Default: N = size (X,1). 

XGUESS — Vector of length N containing the initial guess.   (Input) 
Default: XGUESS = 0.0. 

XSCALE — Vector of length N containing the diagonal scaling matrix for the variables.   
(Input)  
XSCALE is used mainly in scaling the gradient and the distance between two points. By 
default, the values for XSCALE are set internally. See IPARAM(6) in Comment 4. 
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FSCALE — Vector of length M containing the diagonal scaling matrix for the functions.   
(Input)  
FSCALE is used mainly in scaling the gradient. In the absence of other information, set 
all entries to 1.0. 
Default: FSCALE = 1.0. 

IPARAM — Parameter vector of length 6.   (Input/Output)  
Set IPARAM(1) to zero for default values of IPARAM and RPARAM. See Comment 4. 
Default: IPARAM= 0. 

RPARAM — Parameter vector of length 7.   (Input/Output)  
See Comment 4. 

FVEC — Vector of length M containing the residuals at the approximate solution.   (Output) 

FJAC — M by N matrix containing a finite difference approximate Jacobian at the 
approximate solution.   (Output) 

LDFJAC — Leading dimension of FJAC exactly as specified in the dimension statement of 
the calling program.   (Input) 
Default: LDFJAC size = (FJAC,1). 

FORTRAN 90 Interface 
Generic: CALL BCLSJ (FCN, JAC, M, IBTYPE, XLB, XUB, X [,…]) 

Specific: The specific interface names are S_BCLSJ and D_BCLSJ. 

FORTRAN 77 Interface 
Single: CALL BCLSJ (FCN, JAC, M, N, XGUESS, IBTYPE, XLB, XUB,  

XSCALE, FSCALE, IPARAM, RPARAM, X, FVEC, FJAC,  
LDFJAC) 

Double: The double precision name is DBCLSJ. 

Example 
The nonlinear least squares problem 

� �
2

2
2

1

1min
2 i

x i
f x

�
�

�
R

 

subject to �2 � x� � 0.5 

 �1 � x� � 2 

where 
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� � � � � � � �2
1 2 1 2 110  and  1f x x x f x x� � � �  

is solved with an initial guess ( �1.2, 1.0) and default values for parameters. 
      USE BCLSJ_INT 
      USE UMACH_INT 
!                                 Declaration of variables 
      INTEGER    LDFJAC, M, N 
      PARAMETER  (LDFJAC=2, M=2, N=2) 
! 
      INTEGER    IPARAM(7), ITP, NOUT 
      REAL       FVEC(M), RPARAM(7), X(N), XGUESS(N), XLB(N), XUB(N) 
      EXTERNAL   ROSBCK, ROSJAC 
!                                 Compute the least squares for the 
!                                 Rosenbrock function. 
      DATA XGUESS/-1.2E0, 1.0E0/ 
      DATA XLB/-2.0E0, -1.0E0/, XUB/0.5E0, 2.0E0/ 
!                                 All the bounds are provided 
      ITP = 0 
!                                 Default parameters are used 
      IPARAM(1) = 0 
! 
      CALL BCLSJ (ROSBCK,ROSJAC,M,ITP,XLB,XUB,X,XGUESS=XGUESS, & 
                  IPARAM=IPARAM, FVEC=FVEC) 
!                                 Print results 
      CALL UMACH (2, NOUT) 
      WRITE (NOUT,99999) X, FVEC, IPARAM(3), IPARAM(4) 
! 
99999 FORMAT (’  The solution is ’, 2F9.4, //, ’  The function ’, & 
            ’evaluated at the solution is ’, /, 18X, 2F9.4, //, & 
            ’  The number of iterations is ’, 10X, I3, /, ’  The ’, & 
            ’number of function evaluations is ’, I3, /) 
      END 
! 
      SUBROUTINE ROSBCK (M, N, X, F) 
      INTEGER    M, N 
      REAL       X(N), F(M) 
! 
      F(1) = 1.0E1*(X(2)-X(1)*X(1)) 
      F(2) = 1.0E0 - X(1) 
      RETURN 
      END 
! 
      SUBROUTINE ROSJAC (M, N, X, FJAC, LDFJAC) 
      INTEGER    M, N, LDFJAC 
      REAL       X(N), FJAC(LDFJAC,N) 
! 
      FJAC(1,1) = -20.0E0*X(1) 
      FJAC(2,1) = -1.0E0 
      FJAC(1,2) = 10.0E0 
      FJAC(2,2) = 0.0E0 
      RETURN 
      END 
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Output 
The solution is    0.5000   0.2500 
 
The function evaluated at the solution is 
0.0000   0.5000 
 
The number of iterations is            13 
The number of function evaluations is  21 

Comments 
1. Workspace may be explicitly provided, if desired, by use of B2LSJ/DB2LSJ. The 

reference is: 

CALL B2LSJ (FCN, JAC, M, N, XGUESS, IBTYPE, XLB, XUB, XSCALE, 
FSCALE, IPARAM, RPARAM, X, FVEC, FJAC, LDFJAC, WK, IWK) 

The additional arguments are as follows: 

WK — Work vector of length 11 * N + 3 * M � 1. WK contains the following 
information on output: The second N locations contain the last step taken. The 
third N locations contain the last Gauss-Newton step. The fourth N locations 
contain an estimate of the gradient at the solution. 

IWK — Work vector of length 2 * N containing the permutations used in the QR 
factorization of the Jacobian at the solution. 

2. Informational errors 

Type Code 
   3    1 Both the actual and predicted relative reductions in the function are 

less than or equal to the relative function convergence tolerance. 
   3    2 The iterates appear to be converging to a noncritical point. 
   4    3 Maximum number of iterations exceeded. 
   4    4 Maximum number of function evaluations exceeded. 
   3    6 Five consecutive steps have been taken with the maximum step 

length. 
   4    5 Maximum number of Jacobian evaluations exceeded. 
   2    7 Scaled step tolerance satisfied; the current point may be an 

approximate local solution, or the algorithm is making very slow 
progress and is not near a solution, or STEPTL is too big. 

3. The first stopping criterion for BCLSJ occurs when the norm of the function is less than 
the absolute function tolerance. The second stopping criterion occurs when the norm of 
the scaled gradient is less than the given gradient tolerance. The third stopping criterion 
for BCLSJ occurs when the scaled distance between the last two steps is less than the 
step tolerance. 

4. If the default parameters are desired for BCLSJ, then set IPARAM(1) to zero and call the 
routine BCLSJ. Otherwise, if any nondefault parameters are desired for IPARAM or 
RPARAM, then the following steps should be taken before calling BCLSJ: 
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CALL U4LSF (IPARAM, RPARAM) 
Set nondefault values for desired IPARAM, RPARAM elements. 

Note that the call to U4LSF will set IPARAM and RPARAM to their default values so only 
nondefault values need to be set above. 

The following is a list of the parameters and the default values: 

IPARAM — Integer vector of length 6. 
IPARAM(1) = Initialization flag. 

IPARAM(2) = Number of good digits in the function. 
Default: Machine dependent. 

IPARAM(3) = Maximum number of iterations. 
Default: 100. 

IPARAM(4) = Maximum number of function evaluations. 
Default: 400. 

IPARAM(5) = Maximum number of Jacobian evaluations. 
Default: 100. 

IPARAM(6) = Internal variable scaling flag. 

If IPARAM(6) = 1, then the values for XSCALE are set internally. 
Default: 1. 

RPARAM — Real vector of length 7. 
RPARAM(1) = Scaled gradient tolerance. 
The i-th component of the scaled gradient at x is calculated as 

� �

� �
2

2

max ,1/i i ig x s

F x

�

 

where 

� � � �� � � �
2T

i s ii
g J x F x f� �  

J(x) is the Jacobian, s = XSCALE, and fs = FSCALE. 
Default: 

3,� �  

in double where � is the machine precision. 
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RPARAM(2) = Scaled step tolerance. (STEPTL) 
The i-th component of the scaled step 
between two points x and y is computed as 

� �max ,1/
i i

i i

x y
x s
�

 

where s = XSCALE. 

Default: ���� where � is the machine precision. 

RPARAM(3) = Relative function tolerance. 
Default: max(10���, ����), max(10���, ����) in double where � is the machine precision. 

RPARAM(4) = Absolute function tolerance. 
Default: max (10���, ��), max(10���, ��) in double where � is the machine precision. 

RPARAM(5) = False convergence tolerance. 
Default: 100� where � is the machine precision. 

RPARAM(6) = Maximum allowable step size. 
Default: 1000 max(��, ��) where 

� �
2

1 1

n
i ii

s t�
�

� �  

�2 = ||s||2, s = XSCALE, and t = XGUESS. 

RPARAM(7) = Size of initial trust region radius. 
Default: based on the initial scaled Cauchy step. 

If double precision is desired, then DU4LSF is called and RPARAM is declared double 
precision. 

5. Users wishing to override the default print/stop attributes associated with error 
messages issued by this routine are referred to ERROR HANDLING in the Introduction. 

Description 
The routine BCLSJ uses a modified Levenberg-Marquardt method and an active set strategy to 
solve nonlinear least squares problems subject to simple bounds on the variables. The problem 
is stated as follows: 

� � � � � �
2

1

1 1min
2 2n

m
T

i
x i

F x F x f x
�

�

� �
R

 

subject to l � x � u 
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where m � n, F : Rn� Rm, and fi(x) is the i-th component function of F(x). From a given 
starting point, an active set IA, which contains the indices of the variables at their bounds, is 
built. A variable is called a “free variable” if it is not in the active set. The routine then 
computes the search direction for the free variables according to the formula 

d = � (JT J + �I)�� JT F 

where is the Levenberg-Marquardt parameter, F = F (x), and J is the Jacobian with respect to the 
free variables. The search direction for the variables in IA is set to zero. The trust region 
approach discussed by Dennis and Schnabel (1983) is used to find the new point. Finally, the 
optimality conditions are checked. The conditions are 

||g(xi)|| � �, li < xi< ui 

g(xi) < 0,  xi = ui 

g(xi) > 0, xi = li 

where � is a gradient tolerance. This process is repeated until the optimality criterion is 
achieved. 

The active set is changed only when a free variable hits its bounds during an iteration or the 
optimality condition is met for the free variables but not for all variables in IA, the active set. In 
the latter case, a variable that violates the optimality condition will be dropped out of IA. For 
more detail on the Levenberg-Marquardt method, see Levenberg (1944) or Marquardt (1963). 
For more detailed information on active set strategy, see Gill and Murray (1976). 

BCNLS 
Solves a nonlinear least-squares problem subject to bounds on the variables and general linear 
constraints. 

Required Arguments 
FCN — User-supplied SUBROUTINE to evaluate the function to be minimized. The usage is 

CALL FCN (M, N, X, F), where 
M � Number of functions.   (Input) 
N � Number of variables.   (Input) 
X � Array of length N containing the point at which the function will be evaluated.   
(Input) 
F � Array of length M containing the computed function at the point X.   (Output) 
The routine FCN must be declared EXTERNAL in the calling program. 

M — Number of functions.   (Input) 

C — MCON � N matrix containing the coefficients of the MCON general linear constraints.   
(Input) 

BL — Vector of length MCON containing the lower limit of the general constraints.   (Input). 
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BU — Vector of length MCON containing the upper limit of the general constraints.   (Input). 

IRTYPE — Vector of length MCON indicating the types of general constraints in the matrix C.   
(Input) 
Let R(I) = C(I, 1)*X(1) + � + C(I, N)*X(N). Then the value of IRTYPE(I) 
signifies the following: 

 IRTYPE(I)  I-th CONSTRAINT 
   0      BL(I).EQ.R(I).EQ.BU(I) 
   1     R(I).LE.BU(I) 
   2     R(I).GE.BL(I) 
   3     BL(I).LE.R(I).LE.BU(I) 

XLB — Vector of length N containing the lower bounds on variables; if there is no lower 
bound on a variable, then 1.0E30 should be set as the lower bound.   (Input) 

XUB — Vector of length N containing the upper bounds on variables; if there is no upper 
bound on a variable, then �1.0E30 should be set as the upper bound.   (Input) 

X — Vector of length N containing the approximate solution.   (Output) 

Optional Arguments 
N — Number of variables.   (Input) 

Default: N = size (C,2). 

MCON — The number of general linear constraints for the system, not including simple 
bounds.   (Input) 
Default: MCON = size (C,1). 

LDC — Leading dimension of C exactly as specified in the dimension statement of the calling 
program.   (Input) 
LDC must be at least MCON. 
Default: LDC = size (C,1). 

XGUESS — Vector of length N containing the initial guess.   (Input) 
Default: XGUESS = 0.0. 

RNORM — The Euclidean length of components of the function f (x) after the approximate 
solution has been found.   (Output). 

ISTAT — Scalar indicating further information about the approximate solution X.   (Output) 
See the Comments section for a description of the tolerances and the vectors IPARAM 
and RPARAM. 

ISTAT Meaning 
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1 The function f (x) has a length less than TOLF = RPARAM(1). This is the expected 
value for ISTAT when an actual zero value of f (x) is anticipated. 

2 The function f (x) has reached a local minimum. This is the expected value for 
ISTAT when a nonzero value of f (x) is anticipated. 

3 A small change (absolute) was noted for the vector x. A full model problem step 
was taken. The condition for ISTAT = 2 may also be satisfied, so that a 
minimum has been found. However, this test is made before the test for 
ISTAT = 2. 

4 A small change (relative) was noted for the vector x. A full model problem step 
was taken. The condition for ISTAT = 2 may also be satisfied, so that a 
minimum has been found. However, this test is made before the test for 
ISTAT = 2. 

5 The number of terms in the quadratic model is being restricted by the amount of 
storage allowed for that purpose. It is suggested, but not required, that 
additional storage be given for the quadratic model parameters. This is 
accessed through the vector  
IPARAM, documented below. 

6 Return for evaluation of function and Jacobian if reverse  
communication is desired. See the Comments below. 

FORTRAN 90 Interface 
Generic: CALL BCNLS (FCN, M, C, BL, BU, IRTYPE, XLB, XUB, X [,…]) 

Specific: The specific interface names are S_BCNLS and D_BCNLS. 

FORTRAN 77 Interface 
Single: CALL BCNLS (FCN, M, N, MCON, C, LDC, BL, BU, IRTYPE,  

XLB, XUB, XGUESS, X, RNORM, ISTAT) 

Double: The double precision name is DBCNLS. 

Example 1 
This example finds the four variables x1, x2, x3, x4 that are in the model function 

� � 2 4
1 3

x t x th t x e x e� �  

There are values of h(t) at five values of t. 
h(0.05) = 2.206 

h(0.1) = 1.994 
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h(0.4) = 1.35 

h(0.5) = 1.216 

h(1.0) = 0.7358 

There are also the constraints that x2, x4 � 0, x1, x3 � 0, and x2 and x4 must be separated by at 
least 0.05. Nothing more about the values of the parameters is known so the initial guess is 0. 

      USE BCNLS_INT 
      USE UMACH_INT 
      USE WRRRN_INT 
      INTEGER    MCON, N 
      PARAMETER  (MCON=1, N=4) 
!                                  SPECIFICATIONS FOR PARAMETERS 
      INTEGER    LDC, M 
      PARAMETER  (M=5, LDC=MCON) 
!                                  SPECIFICATIONS FOR LOCAL VARIABLES 
      INTEGER    IRTYPE(MCON), NOUT 
      REAL       BL(MCON), C(MCON,N), RNORM, X(N), XLB(N), & 
                XUB(N) 
!                                  SPECIFICATIONS FOR SUBROUTINES 
!                                  SPECIFICATIONS FOR FUNCTIONS 
      EXTERNAL   FCN 
! 
      CALL UMACH (2, NOUT) 
!                                  Define the separation between x(2) 
!                                  and x(4) 
      C(1,1) = 0.0 
      C(1,2) = 1.0 
      C(1,3) = 0.0 
      C(1,4) = -1.0 
      BL(1) = 0.05 
      IRTYPE(1) = 2 
!                                  Set lower bounds on variables 
      XLB(1) = 0.0 
      XLB(2) = 1.0E30 
      XLB(3) = 0.0 
      XLB(4) = 1.0E30 
!                                  Set upper bounds on variables 
      XUB(1) = -1.0E30 
      XUB(2) = 0.0 
      XUB(3) = -1.0E30 
      XUB(4) = 0.0 
! 
      CALL BCNLS (FCN, M, C, BL, BL, IRTYPE, XLB, XUB, X, RNORM=RNORM) 

      CALL WRRRN ('X', X, 1, N, 1) 
      WRITE (NOUT,99999) RNORM 
99999 FORMAT (/, 'rnorm = ', E10.5) 
      END 
! 
      SUBROUTINE FCN (M, N, X, F) 
!                                  SPECIFICATIONS FOR ARGUMENTS 
      INTEGER    M, N 
      REAL       X(*), F(*) 
!                                  SPECIFICATIONS FOR LOCAL VARIABLES 
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      INTEGER    I 
!                                  SPECIFICATIONS FOR SAVE VARIABLES 
      REAL       H(5), T(5) 
      SAVE       H, T 
!                                  SPECIFICATIONS FOR INTRINSICS 
      INTRINSIC  EXP 
      REAL       EXP 
! 
      DATA T/0.05, 0.1, 0.4, 0.5, 1.0/ 
      DATA H/2.206, 1.994, 1.35, 1.216, 0.7358/ 
! 
      DO 10  I=1, M 
         F(I) = X(1)*EXP(X(2)*T(I)) + X(3)*EXP(X(4)*T(I)) - H(I) 
   10 CONTINUE 
      RETURN 
      END 
 

Output 
                   X 
       1       2       3       4 
   1.999  -1.000   0.500  -9.954  
rnorm = .42425E-03  

Comments 
1. Workspace may be explicitly provided, if desired, by use of B2NLS/DB2NLS. The 

reference is: 

CALL B2NLS (FCN, M, N, MCON, C, LDC, BL, BU, IRTYPE, XLB, XUB, 
XGUESS, X, RNORM,ISTAT, IPARAM, RPARAM, JAC, F, FJ, LDFJ, 
IWORK, LIWORK, WORK, LWORK) 

The additional arguments are as follows: 

IPARAM — Integer vector of length six used to change certain default attributes of 
BCNLS.   (Input). 
If the default parameters are desired for BCNLS, set IPARAM(1) to zero. 
Otherwise, if any nondefault parameters are desired for IPARAM or RPARAM, the 
following steps should be taken before calling B2NLS: 

CALL B7NLS (IPARAM, RPARAM) 
Set nondefault values for IPARAM and RPARAM. 

If double precision is being used, DB7NLS should be called instead. Following is a list 
of parameters and the default values. 

IPARAM(1) = Initialization flag. 

IPARAM(2) = ITMAX, the maximum number of iterations allowed. 
Default: 75 
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IPARAM(3) = a flag that suppresses the use of the quadratic model in the inner loop. If 
set to one, then the quadratic model is never used. Otherwise use the quadratic model 
where appropriate. This option decreases the amount of workspace as well as the 
computing overhead required. A user may wish to determine if the application really 
requires the use of the quadratic model. 
Default: 0 

IPARAM(4) = NTERMS, one more than the maximum number of terms used in the 
quadratic model. 
Default: 5 

IPARAM(5) = RCSTAT, a flag that determines whether forward or reverse 
communication is used. If set to zero, forward communication through functions FCN 
and JAC is used. If set to one, reverse communication is used, and the dummy routines 
B10LS/DB10LS and B11LS/DB11LS may be used in place of FCN and JAC, 
respectively. When BCNLS returns with ISTAT = 6, arrays F and FJ are filled with f(x) 
and the Jacobian of f(x), respectively. BCNLS is then called again. 
Default: 0 

IPARAM(6) = a flag that determines whether the analytic Jacobian, as supplied in JAC, 
is used, or if a finite difference approximation is computed. If set to zero, JAC is not 
accessed and finite differences are used.  If set to one, JAC is used to compute the 
Jacobian.  
Default: 0 

RPARAM — Real vector of length 7 used to change certain default attributes of 
BCNLS.   (Input) 

For the description of RPARAM, we make the following definitions: 
FC current value of the length of f (x) 
FB best value of length of f (x) 
FL value of length of f (x) at the previous step 
PV predicted value of length of f (x), after the step is taken, using  
                the approximating model  
� machine epsilon = amach(4) 

The conditions |FB � PV| � TOLSNR*FB and |FC � PV| � TOLP*FB and |FC � FL| � 
TOLSNR*FB together with taking a full model step, must be satisfied before the 
condition ISTAT = 2 is returned. (Decreasing any of the values for TOLF, TOLD, TOLX, 
TOLSNR, or TOLP will likely increase the number of iterations required for 
convergence.) 
RPARAM(1) = TOLF, tolerance used for stopping when FC � TOLF. 
Default : min(1.E 5, )��  
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RPARAM(2) = TOLX, tolerance for stopping when change to x values has length less than 
or equal to TOLX*length of x values. 
Default : min(1.E 5, )��  

RPARAM(3) = TOLD, tolerance for stopping when change to x values has length less than 
pr equal to TOLD. 
Default : min(1.E 5, )��  

RPARAM(4) = TOLSNR, tolerance used in stopping condition ISTAT = 2. 
Default: 1.E�5 

RPARAM(5) = TOLP, tolerance used in stopping condition ISTAT = 2. 
Default: 1.E�5 

RPARAM(6) = TOLUSE, tolerance used to avoid values of x in the quadratic model's 
interpolation of previous points. Decreasing this value may result in more terms being 
included in the quadratic model. 
Default : �  

RPARAM(7) = COND, largest condition number to allow when solving for the quadratic 
model coefficients. Increasing this value may result in more terms being included in 
the quadratic model. 
Default: 30 

JAC — User-supplied SUBROUTINE to evaluate the Jacobian. The usage is  
CALL JAC(M, N, X, FJAC, LDFJAC), where 
M � Number of functions.   (Input) 
N � Number of variables.   (Input) 
X � Array of length N containing the point at which the Jacobian will be evaluated.   
(Input) 
FJAC � The computed M � N Jacobian at the point X.   (Output) 
LDFJAC � Leading dimension of the array FJAC.   (Input) 
The routine JAC must be declared EXTERNAL in the calling program. 

F — Real vector of length N used to pass f(x) if reverse communication  
(IPARAM(4)) is enabled.   (Input) 

FJ — Real array of size M � N used to store the Jacobian matrix of f(x) if reverse 
communication (IPARAM(4)) is enabled.   (Input)  
Specifically,  

� �, i

j

f
FJ i j

x
�

�
�  
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LDFJ — Leading dimension of FJ exactly as specified in the dimension statement of the 
calling program.   (Input) 

IWORK — Integer work vector of length LIWORK. 

LIWORK — Length of work vector IWORK. LIWORK must be at least  
5MCON + 12N + 47 + MAX(M, N) 

WORK — Real work vector of length LWORK 

LWORK — Length of work vector WORK. LWORK must be at least 41N + 6M + 11MCON + (M + 
MCON)(N + 1) + NA(NA + 7) + 8 MAX(M, N) + 99. Where NA = MCON + 
2N + 6. 

2. Informational errors 

Type Code 
   3    1 The function f (x) has reached a value that may be a local minimum. 

However, the bounds on the trust region defining the size of the step 
are being hit at each step. Thus, the situation is suspect. (Situations of 
this type can occur when the solution is at infinity at some of the 
components of the unknowns, x). 

   3    2 The model problem solver has noted a value for the linear or 
quadratic model problem residual vector length that is greater than or 
equal to the current value of the function, i.e. the Euclidean length of 
f (x). This situation probably means that the evaluation of f (x) has 
more uncertainty or noise than is possible to account for in the 
tolerances used to not a local minimum. The value of x is suspect, but 
a minimum has probably been found. 

   3    3 More than ITMAX iterations were taken to obtain the solution. The 
value obtained for x is suspect, although it is the best set of x values 
that occurred in the entire computation. The value of ITMAX can be 
increased though the IPARAM vector. 

Description 
The routine BCNLS solves the nonlinear least squares problem 

� �
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BCNLS is based on the routine DQED by R.J. Hanson and F.T. Krogh. The section of BCNLS that 
approximates, using finite differences, the Jacobian of f(x) is a modification of JACBF by D.E. 
Salane. 
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Example 2 
This example solves the same problem as the last example, but reverse communication is used 
to evaluate f(x) and the Jacobian of f(x). The use of the quadratic model is turned off. 

 
      USE B2NLS_INT 
      USE UMACH_INT 
      USE WRRRN_INT 
      INTEGER    LDC, LDFJ, M, MCON, N 
      PARAMETER  (M=5, MCON=1, N=4, LDC=MCON, LDFJ=M) 
!                                  Specifications for local variables 
      INTEGER    I, IPARAM(6), IRTYPE(MCON), ISTAT, IWORK(1000), & 
                LIWORK, LWORK, NOUT 
      REAL       BL(MCON), C(MCON,N), F(M), FJ(M,N), RNORM, RPARAM(7), & 
                WORK(1000), X(N), XGUESS(N), XLB(N), XUB(N) 
      REAL       H(5), T(5) 
      SAVE       H, T 
      INTRINSIC  EXP 
      REAL       EXP 
!                                  Specifications for subroutines 
      EXTERNAL   B7NLS 
!                                  Specifications for functions 
      EXTERNAL   B10LS, B11LS 
! 
      DATA T/0.05, 0.1, 0.4, 0.5, 1.0/ 
      DATA H/2.206, 1.994, 1.35, 1.216, 0.7358/ 
! 
      CALL UMACH (2, NOUT) 
!                                  Define the separation between x(2) 
!                                  and x(4) 
      C(1,1)    = 0.0 
      C(1,2)    = 1.0 
      C(1,3)    = 0.0 
      C(1,4)    = -1.0 
      BL(1)     = 0.05 
      IRTYPE(1) = 2 
!                                  Set lower bounds on variables 
      XLB(1) = 0.0 
      XLB(2) = 1.0E30 
      XLB(3) = 0.0 
      XLB(4) = 1.0E30 
!                                  Set upper bounds on variables 
      XUB(1) = -1.0E30 
      XUB(2) = 0.0 
      XUB(3) = -1.0E30 
      XUB(4) = 0.0 
!                                  Set initial guess to 0.0 
      XGUESS = 0.0E0 
!                                  Call B7NLS to set default parameters 
      CALL B7NLS (IPARAM, RPARAM) 
!                                  Suppress the use of the quadratic 
!                                  model, evaluate functions and 
!                                  Jacobian by reverse communication 
      IPARAM(3) = 1 
      IPARAM(5) = 1 
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      IPARAM(6) = 1 
      LWORK     = 1000 
      LIWORK    = 1000 
!                                  Specify dummy routines for FCN 
!                                  and JAC since we are using reverse 
!                                  communication 
   10 CONTINUE 
      CALL B2NLS (B10LS, M, N, MCON, C, LDC, BL, BL, IRTYPE, XLB, & 
                 XUB, XGUESS, X, RNORM, ISTAT, IPARAM, RPARAM, & 
                 B11LS, F, FJ, LDFJ, IWORK, LIWORK, WORK, LWORK) 
! 
!                                  Evaluate functions if the routine 
!                                  returns with ISTAT = 6 
      IF (ISTAT .EQ. 6) THEN 
         DO 20  I=1, M 
            FJ(I,1) = EXP(X(2)*T(I)) 
            FJ(I,2) = T(I)*X(1)*FJ(I,1) 
            FJ(I,3) = EXP(X(4)*T(I)) 
            FJ(I,4) = T(I)*X(3)*FJ(I,3) 
            F(I) = X(1)*FJ(I,1) + X(3)*FJ(I,3) - H(I) 
   20    CONTINUE 
         GO TO 10 
      END IF 
! 
      CALL WRRRN ('X', X, 1, N, 1) 
      WRITE (NOUT,99999) RNORM 
99999 FORMAT (/, 'rnorm = ', E10.5) 
      END 

      Output 
                   X 
       1       2       3       4 
   1.999  -1.000   0.500  -9.954  
rnorm = .42413E-03  
 

DLPRS 
Solves a linear programming problem via the revised simplex algorithm. 

Required Arguments 
A — M by NVAR matrix containing the coefficients of the M constraints.   (Input) 

BL — Vector of length M containing the lower limit of the general constraints; if there is no 
lower limit on the I-th constraint, then BL(I) is not referenced.   (Input) 

BU — Vector of length M containing the upper limit of the general constraints; if there is no 
upper limit on the I-th constraint, then BU(I) is not referenced; if there are no range 
constraints, BL and BU can share the same storage locations.   (Input) 
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C — Vector of length NVAR containing the coefficients of the objective function.   (Input) 

IRTYPE — Vector of length M indicating the types of general constraints in the matrix A.   
(Input)  
Let R(I) = A(I, 1) * XSOL(1) + � + A(I, NVAR) * XSOL(NVAR). Then, the value of 
IRTYPE(I) signifies the following:  

IRTYPE(I)   I-th Constraint 

0          BL(I).EQ.R(I).EQ.BU(I) 

1          R(I).LE.BU(I) 

2          R(I).GE.BL(I) 

3          BL(I).LE.R(I).LE.BU(I) 

OBJ — Value of the objective function.   (Output) 

XSOL — Vector of length NVAR containing the primal solution.   (Output) 

DSOL — Vector of length M containing the dual solution.   (Output) 

Optional Arguments 
M — Number of constraints.   (Input) 

Default: M = size (A,1). 

NVAR — Number of variables.   (Input) 
Default: NVAR = size (A,2). 

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling 
program.   (Input)  
LDA must be at least M. 
Default: LDA = size (A,1). 

XLB — Vector of length NVAR containing the lower bound on the variables; if there is no 
lower bound on a variable, then 1.0E30 should be set as the lower bound.   (Input) 
Default: XLB = 0.0. 

XUB — Vector of length NVAR containing the upper bound on the variables; if there is no 
upper bound on a variable, then �1.0E30 should be set as the upper bound.   (Input) 
Default: XUB = 3.4e38 for single precision and 1.79d + 308 for double precision. 

FORTRAN 90 Interface 
Generic: CALL DLPRS (A, BL, BU, C, IRTYPE, OBJ, XSOL, DSOL [,…]) 
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Specific: The specific interface names are S_DLPRS and D_DLPRS. 

FORTRAN 77 Interface 
Single: CALL DLPRS (M, NVAR, A, LDA, BL, BU, C, IRTYPE, XLB, XUB,  

     OBJ, XSOL, DSOL) 

Double: The double precision name is DDLPRS. 

Example 
A linear programming problem is solved. 

      USE DLPRS_INT 
      USE UMACH_INT 
      USE SSCAL_INT 
      INTEGER    LDA, M, NVAR 
      PARAMETER  (M=2, NVAR=2, LDA=M) 
!                                 M = number of constraints 
!                                 NVAR = number of variables 
! 
      INTEGER    I, IRTYPE(M), NOUT 
      REAL       A(LDA,NVAR), B(M), C(NVAR), DSOL(M), OBJ, XLB(NVAR), & 
                XSOL(NVAR), XUB(NVAR) 
! 
!                                 Set values for the following problem 
! 
!                                 Max 1.0*XSOL(1) + 3.0*XSOL(2) 
! 
!                                 XSOL(1) + XSOL(2) .LE. 1.5 
!                                 XSOL(1) + XSOL(2) .GE. 0.5 
! 
!                                 0 .LE. XSOL(1) .LE. 1 
!                                 0 .LE. XSOL(2) .LE. 1 
! 
      DATA XLB/2*0.0/, XUB/2*1.0/ 
      DATA A/4*1.0/, B/1.5, .5/, C/1.0, 3.0/ 
      DATA IRTYPE/1, 2/ 
!                                 To maximize, C must be multiplied by 
!                                 -1. 
      CALL SSCAL (NVAR, -1.0E0, C, 1) 
!                                 Solve the LP problem.  Since there is 
!                                 no range constraint, only B is 
!                                 needed. 
      CALL DLPRS (A, B, B, C, IRTYPE, OBJ, XSOL, DSOL, & 
                 XUB=XUB) 
!                                 OBJ must be multiplied by -1 to get 
!                                 the true maximum. 
      OBJ = -OBJ 
!                                 DSOL must be multiplied by -1 for 
!                                 maximization. 
      CALL SSCAL (M, -1.0E0, DSOL, 1) 
!                                 Print results 
      CALL UMACH (2, NOUT) 
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      WRITE (NOUT,99999) OBJ, (XSOL(I),I=1,NVAR), (DSOL(I),I=1,M) 
! 
99999 FORMAT (//, ’   Objective       = ’, F9.4, //, ’   Primal ’,& 
             ’Solution =’, 2F9.4, //, ’   Dual solution   =’, 2F9.4) 
! 
      END 

Output 
Objective       =    3.5000 
 
Primal Solution =   0.5000   1.0000 
 
Dual solution   =   1.0000   0.0000 

Comments 
1. Workspace may be explicitly provided, if desired, by use of D2PRS/DD2PRS. The 

reference is: 

CALL D2PRS (M, NVAR, A, LDA, BL, BU, C, IRTYPE, XLB, XUB, OBJ, 
XSOL, DSOL, AWK, LDAWK, WK, IWK) 

 

 

The additional arguments are as follows: 

AWK — Real work array of dimension 1 by 1. (AWK is not used in the new 
implementation of the revised simplex algorithm. It is retained merely for 
calling sequence consistency.) 

LDAWK — Leading dimension of AWK exactly as specified in the dimension statement 
of the calling program. LDAWK should be 1. (LDAWK is not used in the new 
implementation of the revised simplex algorithm. It is retained merely for 
calling sequence consistency.) 

WK — Real work vector of length M * (M + 28). 

IWK — Integer work vector of length 29 * M + 3 * NVAR. 

2. Informational errors 

Type Code 
   3    1 The problem is unbounded. 
   4    2 Maximum number of iterations exceeded. 
   3    3 The problem is infeasible. 
   4    4 Moved to a vertex that is poorly conditioned; using double precision 

may help. 
   4    5 The bounds are inconsistent. 



 

 
 

IMSL MATH/LIBRARY Chapter 8: Optimization � 1301 

 

 

 

Description 
The routine DLPRS uses a revised simplex method to solve linear programming problems, i.e., 
problems of the form 

min
n

T

x
c x

�R
 

subject to bl � Ax � bu 

xl � x � xu 

where c is the objective coefficient vector, A is the coefficient matrix, and the vectors bl, bu, xl 
and xu are the lower and upper bounds on the constraints and the variables, respectively. 

For a complete description of the revised simplex method, see Murtagh (1981) or Murty (1983). 

SLPRS 
Solves a sparse linear programming problem via the revised simplex algorithm. 

Required Arguments 
A — Vector of length NZ containing the coefficients of the M constraints.   (Input) 

IROW — Vector of length NZ containing the row numbers of the corresponding element in A.   
(Input) 

JCOL — Vector of length NZ containing the column numbers of the corresponding elements 
in A. (Input) 

BL — Vector of length M containing the lower limit of the general constraints; if there is no 
lower limit on the I-th constraint, then BL(I) is not referenced.   (Input) 

BU — Vector of length M containing the upper lower limit of the general constraints; if there 
is no upper limit on the I-th constraint, then BU(I) is not referenced.   (Input) 

C — Vector of length NVAR containing the coefficients of the objective function.   (Input) 

IRTYPE — Vector of length M indicating the types of general constraints in the matrix A.   
(Input) 
Let R(I) = A(I, 1)*XSOL(1) + � + A(I, NVAR)*XSOL(NVAR) 

IRTYPE(I)  I-th CONSTRAINT 
    0  BL(I) = R(I) = BU(I) 
    1  R(I) � BU(I) 
    2  R(I) � BL(I) 
    3  BL(I) � R(I) � BU(I) 

OBJ — Value of the objective function.   (Output) 
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XSOL — Vector of length NVAR containing the primal solution.   (Output) 

DSOL — Vector of length M containing the dual solution.   (Output) 

Optional Arguments 
M — Number of constraints.   (Input) 

Default: M = size (IRTYPE,1). 

NVAR — Number of variables.   (Input) 
Default: NVAR = size (C,1). 

NZ — Number of nonzero coefficients in the matrix A.   (Input) 
Default: NZ = size (A,1). 

XLB — Vector of length NVAR containing the lower bound on the variables; if there is no 
lower bound on a variable, then 1.0E30 should be set as the lower bound.   (Input) 
Default: XLB = 0.0. 

XUB — Vector of length NVAR containing the upper bound on the variables; if there is no 
upper bound on a variable, then �1.0E30 should be set as the upper bound.   (Input) 
Default: XLB = 3.4e38 for single precision and 1.79d + 308 for double precision. 

FORTRAN 90 Interface 
Generic: CALL SLPRS (A, IROW, JCOL, BL, BU, C, IRTYPE,                   

OBJ, XSOL, DSOL [,…]) 

Specific: The specific interface names are S_SLPRS and D_SLPRS. 

FORTRAN 77 Interface 
Single: CALL SLPRS (M, NVAR, NZ, A, IROW, JCOL, BL, BU, C, IRTYPE, 

XLB, XUB, OBJ, XSOL, DSOL) 

Double: The double precision name is DSLPRS. 

Example 
Solve a linear programming problem, with 

0 0.5
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1
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A
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defined in sparse coordinate format. 
      USE SLPRS_INT 
      USE UMACH_INT 
      INTEGER    M, NVAR 
      PARAMETER  (M=200, NVAR=200) 
!                                  Specifications for local variables 
      INTEGER    INDEX, IROW(3*M), J, JCOL(3*M), NOUT, NZ 
      REAL       A(3*M), DSOL(M), OBJ, XSOL(NVAR) 
      INTEGER    IRTYPE(M) 
      REAL       B(M), C(NVAR), XL(NVAR), XU(NVAR) 
!                                  Specifications for subroutines 
      DATA B/199*1.7, 1.0/ 
      DATA C/-1.0, -2.0, -3.0, -4.0, -5.0, -6.0, -7.0, -8.0, -9.0, & 
      -10.0, 190*-1.0/ 
      DATA XL/200*0.1/ 
      DATA XU/200*2.0/ 
      DATA IRTYPE/200*1/ 
! 
      CALL UMACH (2, NOUT) 
!                                  Define A 
      INDEX = 1 
      DO 10  J=2, M 
!                                  Superdiagonal element 
         IROW(INDEX) = J - 1 
         JCOL(INDEX) = J 
         A(INDEX)    = 0.5 
!                                  Diagonal element 
         IROW(INDEX+1) = J 
         JCOL(INDEX+1) = J 
         A(INDEX+1) = 1.0 
         INDEX      = INDEX + 2 
   10 CONTINUE 
      NZ = INDEX - 1 
! 
! 
      XL(4) = 0.2 
      CALL SLPRS (A, IROW, JCOL, B, B, C, IRTYPE, OBJ, XSOL, DSOL, & 
                  NZ=NZ, XLB=XL, XUB=XU) 
! 
      WRITE (NOUT,99999) OBJ 
! 
99999 FORMAT (/, 'The value of the objective function is ', E12.6) 
! 
      END 
 

Output 
The value of the objective function is -.280971E+03  

Comments 
Workspace may be explicitly provided, if desired, by use of S2PRS/DS2PRS. The  

reference is: 
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CALL S2PRS (M, NVAR, NZ, A, IROW, JCOL, BL, BU, C, 
            IRTYPE, XLB, XUB, OBJ, XSOL, DSOL, 
            IPARAM, RPARAM, COLSCL, ROWSCL, WORK, 
            LW, IWORK, LIW) 

The additional arguments are as follows: 

IPARAM — Integer parameter vector of length 12. If the default parameters are 
desired for SLPRS, then set IPARAM(1) to zero and call the routine SLPRS. 
Otherwise, if any nondefault parameters are desired for IPARAM or RPARAM, then 
the following steps should be taken before calling SLPRS: 

CALL S5PRS (IPARAM, RPARAM) 
Set nondefault values for IPARAM and RPARAM. 

Note that the call to S5PRS will set IPARAM and RPARAM to their default values so only 
nondefault values need to be set above.  

IPARAM(1) = 0 indicates that a minimization problem is solved. If set to 1, a 
maximization problem is solved. 
Default: 0 

IPARAM(2) = switch indicating the maximum number of iterations to be taken before 
returning to the user. If set to zero, the maximum number of iterations taken is set to 
3*(NVARS+M). If positive, that value is used as the iteration limit. 
Default: IPARAM(2) = 0 

IPARAM(3) = indicator for choosing how columns are selected to enter the basis. If set 
to zero, the routine uses the steepest edge pricing strategy which is the best local move. 
If set to one, the minimum reduced cost pricing strategy is used. The steepest edge 
pricing strategy generally uses fewer iterations than the minimum reduced cost pricing, 
but each iteration costs more in terms of the amount of calculation performed. 
However, this is very problem-dependent.  
Default: IPARAM(3) = 0 

IPARAM(4) = MXITBR, the number of iterations between recalculating the error in the 
primal solution is used to monitor the error in solving the linear system. This is an 
expensive calculation and every tenth iteration is generally enough. 
Default: IPARAM(4) = 10 

IPARAM(5) = NPP, the number of negative reduced costs (at most) to be found at each 
iteration of choosing a variable to enter the basis. If set to zero, NPP = NVARS will be 
used, implying that all of the reduced costs are computed at each such step. This 
“Partial pricing” may increase the total number of iterations required. However, it 
decreases the number of calculation required at each iteration. The effect on overall 
efficiency is very problem-dependent. If set to some positive number, that value is used 
as NPP. 
Default: IPARAM(5) = 0 
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IPARAM(6) = IREDFQ, the number of steps between basis matrix redecompositions. 
Redecompositions also occur whenever the linear systems for the primal and dual 
systems have lost half their working precision. 
Default: IPARAM(6) = 50 

IPARAM(7) = LAMAT, the length of the portion of WORK that is allocated to sparse matrix 
storage and decomposition. LAMAT must be greater than NZ + NVARS + 4. 
Default: LAMAT = NZ + NVARS + 5 

IPARAM(8) = LBM, then length of the portion of IWORK that is allocated to sparse matrix 
storage and decomposition. LBM must be positive. 
Default: LBM = 8*M 

IPARAM(9) = switch indicating that partial results should be saved after the maximum 
number of iterations, IPARAM(2), or at the optimum. If IPARAM(9) is not zero, data 
essential to continuing the calculation is saved to a file, attached to unit number 
IPARAM(9). The data saved includes all the information about the sparse matrix A and 
information about the current basis. If IPARAM(9) is set to zero, partial results are not 
saved. It is the responsibility of the calling program to open the output file.  

IPARAM(10) = switch indicating that partial results have been computed and stored on 
unit number IPARAM(10), if greater than zero. If IPARAM(10) is zero, a new problem is 
started. 
Default: IPARAM(10) = 0 

IPARAM(11) = switch indicating that the user supplies scale factors for the columns of 
the matrix A. If IPARAM(11) = 0, SLPRS computes the scale factors as the reciprocals of 
the max norm of each column. If IPARAM(11) is set to one, element I of the vector 
COLSCL is used as the scale factor for column I of the matrix A. The scaling is implicit, 
so no input data is actually changed. 
Default: IPARAM(11) = 0 

IPARAM(12) = switch indicating that the user supplied scale factors for the rows of the 
matrix A. If IPARAM(12) is set to zero, no row scaling is one. If IPARAM(12) is set to 1, 
element I of the vector ROWSCL is used as the scale factor for row I of the matrix A. 
The scaling is implicit, so no input data is actually changed. 
Default: IPARAM(12) = 0 

RPARAM — Real parameter vector of length 7. 
RPARAM(1) = COSTSC, a scale factor for the vector of costs. Normally  
SLPRS computes this scale factor to be the reciprocal of the max norm if the 
vector costs after the column scaling has been applied. If RPARAM(1) is zero, 
SLPRS compute COSTSC. 
Default: RPARAM(1) = 0.0 

RPARAM(2) = ASMALL, the smallest magnitude of nonzero entries in the matrix A. If 
RPARAM(2) is nonzero, checking is done to ensure that all elements of A are at least as 
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large as RPARAM(2). Otherwise, no checking is done. 
Default: RPARAM(2) = 0.0 

RPARAM(3) = ABIG, the largest magnitude of nonzero entries in the matrix A. If 
RPARAM(3) is nonzero, checking is done to ensure that all elements of A are no larger 
than RPARAM(3). Otherwise, no checking is done. 
Default: RPARAM(3) = 0.0 

RPARAM(4) = TOLLS, the relative tolerance used in checking if the residuals are 
feasible. RPARAM(4) is nonzero, that value is used as TOLLS, otherwise the default 
value is used. 
Default: TOLLS = 1000.0*amach(4) 

RPARAM(5) = PHI, the scaling factor used to scale the reduced cost error estimates. In 
some environments, it may be necessary to reset PHI to the range [0.01, 0.1], 
particularly on machines with short word length and working precision when solving a 
large problem. If RPARAM(5) is nonzero, that value is used as PHI, otherwise the default 
value is used. 
Default: PHI = 1.0 

RPARAM(6) = TOLABS, an absolute error test on feasibility. Normally a relative test is 
used with TOLLS (see RPARAM(4)). If this test fails, an absolute test will be applied 
using the value TOLABS. 
Default: TOLABS = 0.0 

RPARAM(7) = pivot tolerance of the underlying sparse factorization routine. If 
RPARAM(7) is set to zero, the default pivot tolerance is used, otherwise, the RPARAM(7) 
is used. 
Default: RPARAM(7) = 0.1 

COLSCL — Array of length NVARS containing column scale factors for the matrix A.   
(Input). 
COLSCL is not used if IPARAM(11) is set to zero. 

ROWSCL — Array of length M containing row scale factors for the matrix A.   (Input)  
ROWSCL is not used if IPARAM(12) is set to zero. 

WORK — Work array of length LW. 

LW — Length of real work array. LW must be at least  
2 + 2NZ + 9NVAR + 27M + MAX(NZ + NVAR + 8, 4NVAR + 7). 

IWORK — Integer work array of length LIW. 

LIW — Length of integer work array. LIW must be at least  
1 + 3NVAR + 41M + MAX(NZ + NVAR + 8, 4NVAR + 7). 
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Description 
This subroutine solves problems of the form 

min cTx 

subject to 

,l u

l u

b Ax b
x x x
� �

� �

 

where c is the objective coefficient vector, A is the coefficient matrix, and the vectors bl, bu, xl, 
and xu are the lower and upper bounds on the constraints and the variables, respectively. SLPRS 
is designed to take advantage of sparsity in A. The routine is based on DPLO by Hanson and 
Hiebert. 

QPROG 
Solves a quadratic programming problem subject to linear equality/inequality constraints. 

Required Arguments 
NEQ — The number of linear equality constraints.   (Input) 

A — NCON by NVAR matrix.   (Input) 
The matrix contains the equality contraints in the first NEQ rows followed by the 
inequality constraints. 

B — Vector of length NCON containing right-hand sides of the linear constraints.   (Input) 

G — Vector of length NVAR containing the coefficients of the linear term of the objective 
function.   (Input) 

H — NVAR by NVAR matrix containing the Hessian matrix of the objective function.   (Input) 
H should be symmetric positive definite; if H is not positive definite, the algorithm 
attempts to solve the QP problem with H replaced by a H + DIAGNL * I such that H + 
DIAGNL * I is positive definite. See Comment 3. 

SOL — Vector of length NVAR containing solution.   (Output) 

Optional Arguments 
NVAR — The number of variables.   (Input) 

Default: NVAR = size (A,2). 

NCON — The number of linear constraints.   (Input) 
Default: NCON = size (A,1). 
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LDA — Leading dimension of A exactly as specified in the dimension statement of the calling 
program.   (Input) 
Default: LDA = size (A,1). 

LDH — Leading dimension of H exactly as specified in the dimension statement of the calling 
program.   (Input) 
Default: LDH = size (H,1). 

DIAGNL — Scalar equal to the multiple of the identity matrix added to H to give a positive 
definite matrix.   (Output) 

NACT — Final number of active constraints.   (Output) 

IACT — Vector of length NVAR containing the indices of the final active constraints in the 
first NACT positions.   (Output) 

ALAMDA — Vector of length NVAR containing the Lagrange multiplier estimates of the final 
active constraints in the first NACT positions.   (Output) 

FORTRAN 90 Interface 
Generic: CALL QPROG (NEQ, A, B, G, H, SOL [,…]) 

Specific: The specific interface names are S_QPROG and D_QPROG. 

FORTRAN 77 Interface 
Single: CALL QPROG (NVAR, NCON, NEQ, A, LDA, B, G, H, LDH, DIAGNL,  

SOL, NACT, IACT, ALAMDA) 

Double: The double precision name is DQPROG. 

Example 
The quadratic programming problem  

min f x x x x x x x x x x x
x x x x x
x x x

b g � � � � � � � �

� � � � �

� � � �

1
2

2
2

3
2

4
2

5
2

2 3 4 5 1

1 2 3 4 5

3 4 5

2 2 2
5

2 2 3
subject to   

is solved. 
 

      USE QPROG_INT 
      USE UMACH_INT 
!                                 Declare variables 
      INTEGER    LDA, LDH, NCON, NEQ, NVAR 
      PARAMETER  (NCON=2, NEQ=2, NVAR=5, LDA=NCON, LDH=NVAR) 
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! 
      INTEGER    K, NACT, NOUT 
      REAL       A(LDA,NVAR), ALAMDA(NVAR), B(NCON), G(NVAR), & 
                H(LDH,LDH), SOL(NVAR) 
! 
!                                 Set values of A, B, G and H. 
!                                 A = ( 1.0  1.0  1.0  1.0  1.0) 
!                                     ( 0.0  0.0  1.0 -2.0 -2.0) 
! 
!                                 B = ( 5.0 -3.0) 
! 
!                                 G = (-2.0  0.0  0.0  0.0  0.0) 
! 
!                                 H = ( 2.0  0.0  0.0  0.0  0.0) 
!                                     ( 0.0  2.0 -2.0  0.0  0.0) 
!                                     ( 0.0 -2.0  2.0  0.0  0.0) 
!                                     ( 0.0  0.0  0.0  2.0 -2.0) 
!                                     ( 0.0  0.0  0.0 -2.0  2.0) 
! 
      DATA A/1.0, 0.0, 1.0, 0.0, 1.0, 1.0, 1.0, -2.0, 1.0, -2.0/ 
      DATA B/5.0, -3.0/ 
      DATA G/-2.0, 4*0.0/ 
      DATA H/2.0, 5*0.0, 2.0, -2.0, 3*0.0, -2.0, 2.0, 5*0.0, 2.0, & 
          -2.0, 3*0.0, -2.0, 2.0/ 
! 
      CALL QPROG (NEQ, A, B, G, H, SOL) 
! 
      CALL UMACH (2, NOUT) 
      WRITE (NOUT,99999) (SOL(K),K=1,NVAR) 
99999 FORMAT (’  The solution vector is’, /, ’  SOL = (’, 5F6.1, & 
            ’  )’) 
! 
      END 

Output 
The solution vector is 
SOL = (   1.0   1.0   1.0   1.0   1.0  ) 

Comments 
1. Workspace may be explicitly provided, if desired, by use of Q2ROG/DQ2ROG. The 

reference is: 

CALL Q2ROG (NVAR, NCON, NEQ, A, LDA, B, G, H, LDH,  
     DIAGNL, SOL, NACT, IACT, ALAMDA, WK) 

The additional argument is: 

WK — Work vector of length (3 * NVAR**2 + 11 * NVAR)/2 + NCON. 

2. Informational errors 

Type Code 
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   3    1 Due to the effect of computer rounding error, a change in the 
variables fail to improve the objective function value; usually the 
solution is close to optimum. 

   4    2 The system of equations is inconsistent. There is no solution. 

3. If a perturbation of H, H + DIAGNL * I, was used in the QP problem, then H + DIAGNL * 
I should also be used in the definition of the Lagrange multipliers. 

Description 
The routine QPROG is based on M.J.D. Powell’s implementation of the Goldfarb and Idnani 
(1983) dual quadratic programming (QP) algorithm for convex QP problems subject to general 
linear equality/inequality constraints, i.e., problems of the form 

1min
2n

T T

x
g x x Hx

�

�

R
 

subject to A�x = b� 

  A�x � b� 

given the vectors b�, b�, and g and the matrices H, A�, and A�. H is required to be positive 
definite. In this case, a unique x solves the problem or the constraints are inconsistent. If H is not 
positive definite, a positive definite perturbation of H is used in place of H. For more details, see 
Powell (1983, 1985). 

LCONF 
Minimizes a general objective function subject to linear equality/inequality constraints. 

Required Arguments 
FCN — User-supplied SUBROUTINE to evaluate the function to be minimized. The usage is 

CALL FCN (N, X, F), where 

N – Value of NVAR.   (Input) 

X – Vector of length N at which point the function is evaluated.   (Input) 
X should not be changed by FCN. 

F – The computed function value at the point X.   (Output) 

FCN must be declared EXTERNAL in the calling program. 

NEQ — The number of linear equality constraints.   (Input) 

A — NCON by NVAR matrix.   (Input)  
The matrix contains the equality constraint gradients in the first NEQ rows, followed by 
the inequality constraint gradients. 
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B — Vector of length NCON containing right-hand sides of the linear constraints.   (Input)  
Specifically, the constraints on the variables X(I), I = 1, �, NVAR are A(K, 1) * X(1) + 
� + A(K, NVAR) * X(NVAR).EQ.B(K), K = 1, �, NEQ.A(K, 1) * X(1) + � + A(K, NVAR) 
* X(NVAR).LE.B(K), K = NEQ + 1, �, NCON. Note that the data that define the equality 
constraints come before the data of the inequalities. 

XLB — Vector of length NVAR containing the lower bounds on the variables; choose a very 
large negative value if a component should be unbounded below or set  
XLB(I) = XUB(I) to freeze the I-th variable.   (Input)  
Specifically, these simple bounds are XLB(I).LE.X(I), I = 1, �, NVAR. 

XUB — Vector of length NVAR containing the upper bounds on the variables; choose a very 
large positive value if a component should be unbounded above.   (Input)  
Specifically, these simple bounds are X(I).LE.XUB(I), I = 1, �, NVAR. 

SOL — Vector of length NVAR containing solution.   (Output) 

Optional Arguments 
NVAR — The number of variables.   (Input) 

Default: NVAR = size (A,2). 

NCON — The number of linear constraints (excluding simple bounds).   (Input) 
Default: NCON = size (A,1). 

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling 
program.   (Input) 
Default: LDA = size (A,1). 

XGUESS — Vector of length NVAR containing the initial guess of the minimum.   (Input) 
Default: XGUESS = 0.0. 

ACC — The nonnegative tolerance on the first order conditions at the calculated solution.   
(Input) 
Default: ACC = 1.e-4 for single precision and 1.d-8 for double precision. 

MAXFCN — On input, maximum number of function evaluations allowed.   (Input/ Output) 
On output, actual number of function evaluations needed. 
Default: MAXFCN = 400. 

OBJ — Value of the objective function.   (Output) 

NACT — Final number of active constraints.   (Output) 

IACT — Vector containing the indices of the final active constraints in the first NACT 
positions.   (Output)  
Its length must be at least NCON + 2 * NVAR. 
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ALAMDA — Vector of length NVAR containing the Lagrange multiplier estimates of the final 
active constraints in the first NACT positions.   (Output) 

FORTRAN 90 Interface 
Generic: CALL LCONF (FCN, NEQ, A, B, XLB, XUB, SOL [,…]) 

Specific: The specific interface names are S_LCONF and D_LCONF. 

FORTRAN 77 Interface 
Single: CALL LCONF (FCN, NVAR, NCON, NEQ, A, LDA, B, XLB, XUB,  

XGUESS, ACC, MAXFCN, SOL, OBJ, NACT, IACT,  
ALAMDA) 

Double: The double precision name is DLCONF. 

Example 
The problem from Schittkowski (1987) 

min f(x) = �x�x�x� 

subject to       �x� � 2x� � 2x� � 0 

                         x� +2x� + 2x� � 72 

           0 � x� � 20 

            0 � x� � 11 

             0 � x� � 42 

is solved with an initial guess x� = 10, x� = 10 and x� = 10. 
      USE LCONF_INT 
      USE UMACH_INT 
!                                 Declaration of variables 
      INTEGER    NCON, NEQ, NVAR 
      PARAMETER  (NCON=2, NEQ=0, NVAR=3) 
! 
      INTEGER    MAXFCN, NOUT 
      REAL       A(NCON,NVAR), ACC, B(NCON), OBJ, & 
                SOL(NVAR), XGUESS(NVAR), XLB(NVAR), XUB(NVAR) 
      EXTERNAL   FCN 
! 
!                                 Set values for the following problem. 
! 
!                                 Min  -X(1)*X(2)*X(3) 
! 
!                                 -X(1) - 2*X(2) - 2*X(3)  .LE.   0 
!                                  X(1) + 2*X(2) + 2*X(3)  .LE.  72 
! 
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!                                 0  .LE.  X(1)  .LE.  20 
!                                 0  .LE.  X(2)  .LE.  11 
!                                 0  .LE.  X(3)  .LE.  42 
! 
      DATA A/-1.0, 1.0, -2.0, 2.0, -2.0, 2.0/, B/0.0, 72.0/ 
      DATA XLB/3*0.0/, XUB/20.0, 11.0, 42.0/, XGUESS/3*10.0/ 
      DATA ACC/0.0/, MAXFCN/400/ 
! 
      CALL UMACH (2, NOUT) 
! 
      CALL LCONF (FCN, NEQ, A, B, XLB, XUB, SOL, XGUESS=XGUESS,  & 
                 MAXFCN=MAXFCN, ACC=ACC, OBJ=OBJ) 
! 
      WRITE (NOUT,99998) ’Solution:’ 
      WRITE (NOUT,99999) SOL 
      WRITE (NOUT,99998) ’Function value at solution:’ 
      WRITE (NOUT,99999) OBJ 
      WRITE (NOUT,99998) ’Number of function evaluations:’, MAXFCN 
      STOP 
99998 FORMAT (//, ’ ’, A, I4) 
99999 FORMAT (1X, 5F16.6) 
      END 
! 
      SUBROUTINE FCN (N, X, F) 
      INTEGER    N 
      REAL       X(*), F 
! 
      F = -X(1)*X(2)*X(3) 
      RETURN 
      END 

Output 
Solution: 
 20.000000       11.000000       15.000000 
 
Function value at solution: 
-3300.000000 
 
Number of function evaluations:   5 

Comments 
1. Workspace may be explicitly provided, if desired, by use of L2ONF/DL2ONF. The 

reference is: 

CALL L2ONF (FCN, NVAR, NCON, NEQ, A, LDA, B, XLB, XUB, XGUESS, 
ACC, MAXFCN, SOL, OBJ, NACT, IACT, ALAMDA, IPRINT, INFO, WK) 

The additional arguments are as follows: 

IPRINT — Print option (see Comment 3).   (Input) 

INFO — Informational flag (see Comment 3).   (Output) 
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WK — Real work vector of length NVAR**2 + 11 * NVAR + NCON. 

2. Informational errors 

Type Code 
   4    4 The equality constraints are inconsistent. 
   4    5 The equality constraints and the bounds on the variables are found to 

be inconsistent. 
   4    6 No vector X satisfies all of the constraints. In particular, the current 

active constraints prevent any change in X that reduces the sum of 
constraint violations. 

   4    7 Maximum number of function evaluations exceeded. 
   4    9 The variables are determined by the equality constraints. 

3. The following are descriptions of the arguments IPRINT and INFO: 

IPRINT — This argument must be set by the user to specify the frequency of printing during 
the execution of the routine LCONF. There is no printed output if IPRINT = 0. 
Otherwise, after ensuring feasibility, information is given every IABS(IPRINT) 
iterations and whenever a parameter called TOL is reduced. The printing provides the 
values of X(.), F(.) and G(.) = GRAD(F) if IPRINT is positive. If IPRINT is negative, 
this information is augmented by the current values of IACT(K) K = 1, �, NACT, 
PAR(K) K = 1, �, NACT and RESKT(I) I = 1, �, N. The reason for returning to the 
calling program is also displayed when IPRINT is nonzero. 

INFO — On exit from L2ONF, INFO will have one of the following integer values to indicate 
the reason for leaving the routine: 

INFO = 1 SOL is feasible, and the condition that depends on ACC is satisfied. 

INFO = 2 SOL is feasible, and rounding errors are preventing further progress. 

INFO = 3 SOL is feasible, but the objective function fails to decrease although a 
decrease is predicted by the current gradient vector. 

INFO = 4  In this case, the calculation cannot begin because LDA is less than NCON or 
because the lower bound on a variable is greater than the upper bound. 

INFO = 5 This value indicates that the equality constraints are inconsistent. These 
constraints include any components of X(.) that are frozen by setting 
XL(I) = XU(I). 

INFO = 6 In this case there is an error return because the equality constraints and the 
bounds on the variables are found to be inconsistent. 

INFO = 7 This value indicates that there is no vector of variables that satisfies all of 
the constraints. Specifically, when this return or an INFO = 6 return occurs, the 
current active constraints (whose indices are IACT(K), K = 1, �, NACT) prevent 
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any change in X(.) that reduces the sum of constraint violations. Bounds are only 
included in this sum if INFO = 6. 

INFO = 8 Maximum number of function evaluations exceeded. 

INFO = 9 The variables are determined by the equality constraints. 

Description 
The routine LCONF is based on M.J.D. Powell’s TOLMIN, which solves linearly constrained 
optimization problems, i.e., problems of the form 

� �min
nx

f x
�R

 

subject to      A�x = b� 

                  A�x � b� 

                   xl � x � xu 

given the vectors b�, b�, xl and xu and the matrices A�, and A�. 

The algorithm starts by checking the equality constraints for inconsistency and redundancy. If 
the equality constraints are consistent, the method will revise x�, the initial guess provided by 
the user, to satisfy 

A�x = b� 

Next, x� is adjusted to satisfy the simple bounds and inequality constraints. This is done by 
solving a sequence of quadratic programming subproblems to minimize the sum of the 
constraint or bound violations. 

Now, for each iteration with a feasible xk, let Jk be the set of indices of inequality constraints 
that have small residuals. Here, the simple bounds are treated as inequality constraints. Let Ik be 
the set of indices of active constraints. The following quadratic programming problem 

� � � �
1min
2

k T k T kf x d f x d B d� � �  

subject to     ajd =  0  j � Ik 

                 ajd � 0  j � Jk 

is solved to get (dk, �k) where aj is a row vector representing either a constraint in A�or A� or a 
bound constraint on x. In the latter case, the aj = ei for the bound constraint xi � (xu)i and aj = �ei 
for the constraint �xi � ( �xl)i. Here, ei is a vector with a 1 as the i-th component, and zeroes 

elsewhere. �k are the Lagrange multipliers, and Bk is a positive definite approximation to the 
second derivative ��f(xk). 
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After the search direction dk is obtained, a line search is performed to locate a better point. The 
new point xk+1= xk + �kdk has to satisfy the conditions 

� � � � � � � �0.1
Tk k k k k k kf x d f x d f x� �� � � �  

and 

� � � � � � � �0.7
T Tk k k k k kd f x d d f x�� � � �  

The main idea in forming the set Jk is that, if any of the inequality constraints restricts the step-

length �k, then its index is not in Jk. Therefore, small steps are likely to be avoided. 

Finally, the second derivative approximation, Bk , is updated by the BFGS formula, if the 
condition  

� � � � � � 0
Tk k k k kd f x d f x�� � �� �  

holds. Let xk 
 xk+�, and start another iteration. 

 

The iteration repeats until the stopping criterion 

� �
2

k k kf x A � �� � �  

is satisfied; here, � is a user-supplied tolerance. For more details, see Powell (1988, 1989). 

Since a finite-difference method is used to estimate the gradient for some single precision 
calculations, an inaccurate estimate of the gradient may cause the algorithm to terminate at a 
noncritical point. In such cases, high precision arithmetic is recommended. Also, whenever the 
exact gradient can be easily provided, routine LCONG (page 1316) should be used instead. 

LCONG 
Minimizes a general objective function subject to linear equality/inequality constraints. 

Required Arguments 
FCN — User-supplied SUBROUTINE to evaluate the function to be minimized. The usage is 

CALL FCN (N, X, F), where 

N – Value of NVAR.   (Input) 

X – Vector of length N at which point the function is evaluated.   (Input) 
X should not be changed by FCN. 

F – The computed function value at the point X.   (Output) 

FCN must be declared EXTERNAL in the calling program. 
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GRAD — User-supplied SUBROUTINE to compute the gradient at the point X. The usage is 
CALL GRAD (N, X, G), where 

N – Value of NVAR.   (Input) 

X – Vector of length N at which point the function is evaluated.   (Input) 
X should not be changed by GRAD. 

G – Vector of length N containing the values of the gradient of the objective function 
evaluated at the point X.   (Output) 

GRAD must be declared EXTERNAL in the calling program. 

NEQ — The number of linear equality constraints.   (Input) 

A — NCON by NVAR matrix.   (Input)  
The matrix contains the equality constraint gradients in the first NEQ rows, followed by 
the inequality constraint gradients. 

B — Vector of length NCON containing right-hand sides of the linear constraints.   (Input)  
Specifically, the constraints on the variables X(I), I = 1, �, NVAR are A(K, 1) * X(1) + 
� + A(K, NVAR) * X(NVAR).EQ.B(K), K = 1, �, NEQ.A(K, 1) * X(1) + � + A(K, NVAR) 
* X(NVAR).LE.B(K), K = NEQ + 1, �, NCON. Note that the data that define the equality 
constraints come before the data of the inequalities. 

XLB — Vector of length NVAR containing the lower bounds on the variables; choose a very 
large negative value if a component should be unbounded below or set XLB(I) = 
XUB(I) to freeze the I-th variable.   (Input)  
Specifically, these simple bounds are XLB(I).LE.X(I), I = 1, �, NVAR. 

XUB — Vector of length NVAR containing the upper bounds on the variables; choose a very 
large positive value if a component should be unbounded above.   (Input)  
Specifically, these simple bounds are X(I).LE. XUB(I), I = 1, �, NVAR. 

SOL — Vector of length NVAR containing solution.   (Output) 

Optional Arguments 
NVAR — The number of variables.   (Input) 

Default: NVAR = size (A,2). 

NCON — The number of linear constraints (excluding simple bounds).   (Input) 
Default: NCON = size (A,1). 

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling 
program.   (Input) 
Default: LDA = size (A,1). 
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XGUESS — Vector of length NVAR containing the initial guess of the minimum.   (Input) 
Default: XGUESS = 0.0. 

ACC — The nonnegative tolerance on the first order conditions at the calculated solution.   
(Input) 
Default: ACC = 1.e-4 for single precision and 1.d-8 for double precision. 

MAXFCN — On input, maximum number of function evaluations allowed.(Input/ Output)  
On output, actual number of function evaluations needed. 
Default: MAXFCN = 400. 

OBJ — Value of the objective function.   (Output) 

NACT — Final number of active constraints.   (Output) 

IACT — Vector containing the indices of the final active constraints in the first NACT 
positions.   (Output)  
Its length must be at least NCON + 2 * NVAR. 

ALAMDA — Vector of length NVAR containing the Lagrange multiplier estimates of the final 
active constraints in the first NACT positions.   (Output) 

FORTRAN 90 Interface 
Generic: CALL LCONG (FCN, GRAD, NEQ, A, B, XLB, XUB, SOL [,…]) 

Specific: The specific interface names are S_LCONG and D_LCONG. 

FORTRAN 77 Interface 
Single: CALL LCONG (FCN, GRAD, NVAR, NCON, NEQ, A, LDA, B, XLB,  

XUB, XGUESS, ACC, MAXFCN, SOL, OBJ, NACT, IACT,  
ALAMDA) 

Double: The double precision name is DLCONG. 

Example 
The problem from Schittkowski (1987) 

min f(x) = �x�x�x� 

subject to �x� � 2x� � 2x� � 0 

   x� +2x� + 2x� � 72 

  0 � x� � 20 

  0 � x� � 11 
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  0 � x� � 42 

is solved with an initial guess x� = 10, x� = 10 and x� = 10. 
      USE LCONG_INT 
      USE UMACH_INT 
!                                 Declaration of variables 
      INTEGER    NCON, NEQ, NVAR 
      PARAMETER  (NCON=2, NEQ=0, NVAR=3) 
! 
      INTEGER    MAXFCN, NOUT 
      REAL       A(NCON,NVAR), ACC, B(NCON), OBJ, & 
                 SOL(NVAR), XGUESS(NVAR), XLB(NVAR), XUB(NVAR) 
      EXTERNAL   FCN, GRAD 
! 
!                                 Set values for the following problem. 
! 
!                                 Min  -X(1)*X(2)*X(3) 
! 
!                                 -X(1) - 2*X(2) - 2*X(3)  .LE.   0 
!                                  X(1) + 2*X(2) + 2*X(3)  .LE.  72 
! 
!                                 0  .LE.  X(1)  .LE.  20 
!                                 0  .LE.  X(2)  .LE.  11 
!                                 0  .LE.  X(3)  .LE.  42 
! 
      DATA A/-1.0, 1.0, -2.0, 2.0, -2.0, 2.0/, B/0.0, 72.0/ 
      DATA XLB/3*0.0/, XUB/20.0, 11.0, 42.0/, XGUESS/3*10.0/ 
      DATA ACC/0.0/, MAXFCN/400/ 
! 
      CALL UMACH (2, NOUT) 
! 
      CALL LCONG (FCN, GRAD, NEQ, A, B, XLB, XUB, SOL, XGUESS=XGUESS, & 
                  ACC=ACC, MAXFCN=MAXFCN, OBJ=OBJ) 
! 
      WRITE (NOUT,99998) ’Solution:’ 
      WRITE (NOUT,99999) SOL 
      WRITE (NOUT,99998) ’Function value at solution:’ 
      WRITE (NOUT,99999) OBJ 
      WRITE (NOUT,99998) ’Number of function evaluations:’, MAXFCN 
      STOP 
99998 FORMAT (//, ’ ’, A, I4) 
99999 FORMAT (1X, 5F16.6) 
      END 
! 
      SUBROUTINE FCN (N, X, F) 
      INTEGER    N 
      REAL       X(*), F 
! 
      F = -X(1)*X(2)*X(3) 
      RETURN 
      END 
! 
      SUBROUTINE GRAD (N, X, G) 
      INTEGER    N 
      REAL       X(*), G(*) 
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! 
      G(1) = -X(2)*X(3) 
      G(2) = -X(1)*X(3) 
      G(3) = -X(1)*X(2) 
      RETURN 
      END 

Output 
Solution: 
20.000000       11.000000       15.000000 
 
Function value at solution: 
-3300.000000 
 
Number of function evaluations:   5 

Comments 
1. Workspace may be explicitly provided, if desired, by use of L2ONG/DL2ONG. The 

reference is: 

CALL L2ONG (FCN, GRAD, NVAR, NCON, NEQ, A, LDA, B, XLB, XUB, 
XGUESS, ACC, MAXFCN, SOL, OBJ, NACT, IACT, ALAMDA, IPRINT,  
INFO, WK) 

The additional arguments are as follows: 

IPRINT — Print option (see Comment 3).   (Input) 

INFO — Informational flag (see Comment 3).   (Output) 

WK — Real work vector of length NVAR**2 + 11 * NVAR + NCON. 

2. Informational errors 

Type Code 
   4    4 The equality constraints are inconsistent. 
   4     5 The equality constraints and the bounds on the variables are found to 

be inconsistent. 
   4    6 No vector X satisfies all of the constraints. In particular, the current 

active constraints prevent any change in X that reduces the sum of 
constraint violations. 

   4    7 Maximum number of function evaluations exceeded. 
   4    9 The variables are determined by the equality constraints. 

3. The following are descriptions of the arguments IPRINT and INFO: 

IPRINT — This argument must be set by the user to specify the frequency of printing 
during the execution of the routine LCONG. There is no printed output if IPRINT 
= 0. Otherwise, after ensuring feasibility, information is given every 
IABS(IPRINT) iterations and whenever a parameter called TOL is reduced. The 
printing provides the values of X(.), F(.) and G(.) = GRAD(F) if IPRINT is 
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positive. If IPRINT is negative, this information is augmented by the current 
values of IACT(K) K = 1, �,  
NACT, PAR(K) K = 1, �, NACT and RESKT(I) I = 1, �, N. The reason for 
returning to the calling program is also displayed when IPRINT is nonzero. 

INFO —  On exit from L2ONG, INFO will have one of the following integer 
  values to indicate the reason for leaving the routine: 

INFO = 1 SOL is feasible and the condition that depends on ACC is satisfied. 

INFO = 2 SOL is feasible and rounding errors are preventing further progress. 

INFO = 3 SOL is feasible but the objective function fails to decrease although 
  a decrease is predicted by the current gradient vector. 

INFO = 4 In this case, the calculation cannot begin because LDA is less than 
  NCON or because the lower bound on a variable is greater than the 
  upper bound. 

INFO = 5 This value indicates that the equality constraints are inconsistent. 
  These constraints include any components of X(.) that are frozen 
  by setting XL(I) = XU(I). 

INFO = 6 In this case, there is an error return because the equality constraints 
  and the bounds on the variables are found to be inconsistent. 

INFO = 7 This value indicates that there is no vector of variables that  
  satisfies all of the constraints. Specifically, when this return or an 
  INFO = 6 return occurs, the current active constraints (whose  
  indices are IACT(K), K = 1, �, NACT) prevent any change in X(.) 
  that reduces the sum of constraint violations, where only bounds 
  are included in this sum if INFO = 6. 

INFO = 8 Maximum number of function evaluations exceeded. 

INFO = 9 The variables are determined by the equality constraints. 

Description 
The routine LCONG is based on M.J.D. Powell’s TOLMIN, which solves linearly constrained 
optimization problems, i.e., problems of the form 

� �min
nx

f x
�R

 

subject to A�x = b� 

  A�x � b� 
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  xl � x � xu 

given the vectors b�, b�, xl and xu and the matrices A�, and A�. 

The algorithm starts by checking the equality constraints for inconsistency and redundancy. If 
the equality constraints are consistent, the method will revise x�, the initial guess provided by 
the user, to satisfy 

A�x = b� 

Next, x� is adjusted to satisfy the simple bounds and inequality constraints. This is done by 
solving a sequence of quadratic programming subproblems to minimize the sum of the 
constraint or bound violations. 

Now, for each iteration with a feasible xk, let Jk be the set of indices of inequality constraints 
that have small residuals. Here, the simple bounds are treated as inequality constraints. Let Ik be 
the set of indices of active constraints. The following quadratic programming problem 

� � � �
1min
2

k T k T kf x d f x d B d� � �  

subject to ajd = 0 j � Ik 

  ajd � 0 j � Jk 

is solved to get (dk, �k) where aj is a row vector representing either a constraint in A�or A� or a 
bound constraint on x. In the latter case, the aj = ei for the bound constraint xi � (xu)i and  
aj = � ei for the constraint � xi � ( � xl)i. Here, ei is a vector with a 1 as the i-th component, and 

zeroes elsewhere. �k are the Lagrange multipliers, and Bk is a positive definite approximation to 
the second derivative ��f(xk). 

After the search direction dk is obtained, a line search is performed to locate a better point. The 
new point xk+1= xk + �kdk has to satisfy the conditions 

� � � � � � � �0.1
Tk k k k k k kf x d f x d f x� �� � � �  

and 

� � � � � � � �0.7
T Tk k k k k kd f x d d f x�� � � �  

The main idea in forming the set Jk is that, if any of the inequality constraints restricts the step-

length �k, then its index is not in Jk. Therefore, small steps are likely to be avoided. 

Finally, the second derivative approximation, Bk, is updated by the BFGS formula, if the 
condition  

� � � � � � 0
Tk k k k kd f x d f x�� � �� �  

holds. Let xk 
 xk+1, and start another iteration. 
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The iteration repeats until the stopping criterion 

� �
2

k k kf x A � �� � �  

is satisfied; here, � is a user-supplied tolerance. For more details, see Powell (1988, 1989).  

NNLPF 
Solves a general nonlinear programming problem using a sequential equality constrained quadratic 
programming method. 

Required Arguments 
FCN — User-supplied SUBROUTINE to evaluate the objective function and constraints at a 

given point. The internal usage is CALL FCN (X, IACT, RESULT, IERR),  
where 

           X – The point at which the objective function or  constraint is evaluated.   (Input) 

IACT – Integer indicating  whether evaluation of the objective function is requested or 
evaluation of a constraint is requested.  If IACT is zero, then an objective 
function evaluation is requested.  If IACT is nonzero then the value if IACT 
indicates the index of the constraint to evaluate.   (Input) 

RESULT – If IACT is zero,  then RESULT is the computed function value at the point 
X.   If IACT is nonzero, then RESULT is the computed constraint value at the 
point X.     (Output) 

IERR – Logical variable.  On input IERR is set to .FALSE.  If an error or other 
undesirable condition occurs during evaluation, then IERR should be set to 
.TRUE.  Setting IERR to .TRUE.  will result in the step size being reduced and 
the step being tried again.  (If IERR is set to .TRUE. for XGUESS, then an error is 
issued.) 

The routine FCN must be use-associated in a user module that uses NNLPF_INT, or else 
declared  EXTERNAL in the calling program. If FCN is a separately compiled routine, not 
in a module, then it must be declared EXTERNAL. 

M — Total number of constraints.  (Input) 

ME — Number of equality constraints.  (Input) 

IBTYPE — Scalar indicating the types of bounds on variables.   (Input)  

IBTYPE Action 

0  User will supply all the bounds. 
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1  All variables are nonnegative. 

2  All variables are nonpositive. 

3  User supplies only the bounds on 1st variable; all other variables will have 
 the same bounds. 

XLB — Vector of length N containing the lower bounds on variables.   (Input, if IBTYPE = 0; 
output, if IBTYPE = 1 or 2; input/output, if IBTYPE = 3)  
If there is no lower bound for a variable, then the corresponding XLB value should be 
set to �Huge(X(1)). 

XUB — Vector of length N containing the upper bounds on variables.   (Input, if IBTYPE = 0; 
output, if IBTYPE = 1 or 2; input/output, if IBTYPE = 3). 
If there is no upper bound for a variable, then the corresponding XUB value should be 
set to Huge(X(1)). 

X — Vector of length N containing the computed solution.   (Output) 

Optional Arguments 
N — Number of variables.   (Input) 

Default: N = size(X). 

XGUESS — Vector of length N containing an initial guess of the solution.   (Input) 
Default: XGUESS = X, (with the smallest value of 

2
X ) that satisfies the bounds. 

XSCALE — Vector of length N setting the internal scaling of the variables.  The initial value 
given and the objective function and gradient evaluations however are always in the 
original unscaled variables.  The first internal variable is obtained by dividing values 
X(I) by XSCALE(I).  (Input) 
In the absence of other information, set all entries to 1.0. 
Default: XSCALE(:) = 1.0. 

IPRINT — Parameter indicating the desired output level.   (Input) 

IPRINT Action 

0  No output printed. 

1  One line of intermediate results is printed in each iteration. 

2  Lines of intermediate results summarizing the most important data  for each 
step are printed. 
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3        Lines of detailed intermediate results showing all primal and dual variables, 
the relevant values from the working set, progress in the backtracking and 
etc are printed 

4        Lines of detailed intermediate results showing all primal and dual variables, 
the relevant values from the working set, progress in the backtracking, the 
gradients in the working set, the quasi-Newton updated and etc are printed. 

 Default: IPRINT = 0. 

MAXITN — Maximum number of iterations allowed.   (Input) 
Default: MAXITN = 200. 

EPSDIF — Relative precision in gradients. (Input)  
Default: EPSDIF = epsilon(x(1)) 

TAU0 — A universal bound describing how much the unscaled penalty-term may deviate 
from zero. (Input)  
NNLPF assumes that within the region described by 

� � � �� �
1 1

min 0,
e

e

M M

i i
i i M

g x g x
� � �

� �� � TAU0  

all functions may be evaluated safely. The initial guess, however, may violate these 
requirements. In that case an initial feasibility improvement phase is run by NNLPF 
until such a point is found. A small TAU0 diminishes the efficiency of  NNLPF, because 
the iterates then will follow the boundary of the feasible set closely. Conversely, a large 
TAU0 may degrade the reliability of the code.  
Default TAU0 = 1.E0 

DEL0 — In the initial phase of minimization a constraint is considered binding if 

� �

� �� �max 1,
i

i

g x

g x
�

�

DEL0            1, ,ei M M� � �  

Good values are between .01 and 1.0. If DEL0 is chosen too small then identification 
of the correct set of binding constraints may be delayed. Contrary, if DEL0 is too large, 
then the method will often escape to the full regularized SQP method, using individual 
slack variables for any active constraint, which is quite costly. For well-scaled 
problems DEL0=1.0 is reasonable.  (Input) 
Default: DEL0 = .5*TAU0 

EPSFCN – Relative precision of the function evaluation routine. (Input) 
Default: EPSFCN = epsilon(x(1)) 

IDTYPE – Type of numerical differentiation to be used. (Input) 
Default: IDTYPE = 1 
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IDTYPE Action 

1  Use a forward difference quotient with discretization stepsize   
 0.1(EPSFCN���� componentwise relative. 

2  Use the symmetric difference quotient with discretization stepsize 
 0.1(EPSFCN���) componentwise relative 

3  Use the sixth order approximation computing a Richardson extrapolation of 
 three symmetric difference quotient values.  This uses a discretization 
 stepsize 0.01(EPSFCN���) 

TAUBND – Amount by which bounds may be violated during  numerical differentiation.  
Bounds are violated by TAUBND (at most) only if a variable is on a bound  and finite 
differences are taken for gradient evaluations.  (Input) 
Default: TAUBND = 1.E0 

SMALLW — Scalar containing the error allowed in the multipliers.  For example, a negative 
multiplier of an inequality constraint is accepted (as zero) if its absolute value is less 
than SMALLW.   (Input)  
Default: SMALLW = exp(2*log(epsilon(x(1)/3))) 

DELMIN — Scalar which defines allowable constraint violations of the final accepted result.   
Constraints are satisfied if |gi(x)| � DELMIN , and gj(x) � (-DELMIN ) respectively. 
(Input)  
Default: DELMIN = min(DEL0/10, max(EPSDIF, min(DEL0/10,  
max(1.E-6*DEL0, SMALLW)) 

SCFMAX — Scalar containing the bound for the internal automatic scaling of the objective 
function.   (Intput)  
Default: SCFMAX = 1.0E4 

FVALUE — Scalar containing the value of the objective function at the computed solution.   
(Output) 

FORTRAN 90 Interface 
Generic: CALL NNLPF (FCN, M, ME, IBTYPE, XLB, XUB, X [,…]) 

Specific: The specific interface names are S_NNLPF and D_NNLPF . 

Example 
The problem 
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� � � � � �

� �

� �

2 2
1 2

1 1 2

2 2
2 1 2

min 2 1

subject to  2 1 0

/ 4 1 0

F x x x

g x x x

g x x x

� � � �

� � � �

� � � � �

 

is solved. 
      USE NNLPF_INT 
      USE WRRRN_INT 
      INTEGER    IBTYPE, M, ME 
      PARAMETER  (IBTYPE=0, M=2, ME=1) 
! 
      REAL(KIND(1E0)) FVALUE, X(2), XGUESS(2), XLB(2), XUB(2) 
      EXTERNAL FCN, GRAD 
!                                    
      XLB = -HUGE(X(1)) 
      XUB = HUGE(X(1)) 
! 
      CALL NNLPF (FCN, M, ME, IBTYPE, XLB, XUB, X) 
! 
      CALL WRRRN ('The solution is', X) 
      END 
 
      SUBROUTINE FCN (X, IACT, RESULT, IERR) 
      INTEGER    IACT 
      REAL(KIND(1E0)) X(*), RESULT 
      LOGICAL IERR 
!    
      SELECT CASE (IACT) 
      CASE(0)  
         RESULT = (X(1)-2.0E0)**2 + (X(2)-1.0E0)**2 
      CASE(1) 
         RESULT = X(1) - 2.0E0*X(2) + 1.0E0 
      CASE(2) 
         RESULT = -(X(1)**2)/4.0E0 - X(2)**2 + 1.0E0 
      END SELECT 
      RETURN 
      END     

Output 
The solution is 
 1   0.8229 
 2   0.9114 

Comments 
1. Informational errors 

Type Code 
   4    1 Constraint evaluation returns an error with current point. 
   4    2 Objective evaluation returns an error with current point. 
   4    3 Working set is singular in dual extended QP. 
   4    4 QP problem is seemingly infeasible. 
   4    5 A stationary point located. 
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 4    6 A stationary point located or termination criteria too strong. 
 4    7 Maximum number of iterations exceeded. 
 4    8 Stationary point not feasible. 
 4    9 Very slow primal progress. 
 4   10 The problem is singular.  
 4   11 Matrix of gradients of binding constraints is singular or very ill-

conditioned.  
 4   12 Small changes in the penalty function. 

Description 
The routine NNLPF provides an interface to a licensed version of subroutine DONLP2, a 
FORTRAN code developed by Peter Spellucci (1998). It uses a sequential equality constrained 
quadratic programming method with an active set technique, and an alternative usage of a fully 
regularized mixed constrained subproblem in case of nonregular constraints (i.e. linear 
dependent gradients in the “working sets”). It uses a slightly modified version of the Pantoja-
Mayne update for the Hessian of the Lagrangian, variable dual scaling and an improved 
Armjijo-type stepsize algorithm. Bounds on the variables are treated in a gradient-projection 
like fashion. Details may be found in the following two papers:  

P. Spellucci: An SQP method for general nonlinear programs using only equality constrained 
subproblems. Math. Prog. 82, (1998), 413-448. 

P. Spellucci: A new technique for inconsistent problems in the SQP method. Math. Meth. of 
Oper. Res. 47, (1998), 355-500. (published by Physica Verlag, Heidelberg, Germany). 

The problem is stated as follows: 

� �min
nx

f x
�R

 

� �

� �

subject to 0, for 1, ,

0, for 1, ,
j e

j e

l u

g x j m

g x j m m

x x x

� �

� � �

� �

�

�  

 

Although default values are provided for optional input arguments, it may be necessary to adjust 
these values for some problems. Through the use of optional arguments, NNLPF allows for 
several parameters of the algorithm to be adjusted to account for specific characteristics of 
problems.   The DONLP2 Users Guide provides detailed descriptions of these parameters as 
well as strategies for maximizing the perfomance of the algorithm.  The DONLP2 Users Guide 
is available in the “help” subdirectory of the main IMSL product installation directory. In 
addition, the following are a number of guidelines to consider when using NNLPF. 

�� A good initial starting point is very problem specific and should be provided by the 
calling program whenever possible.  See optional argument  XGUESS. 

�� Gradient approximation methods can have an effect on the success of NNLPF.  
Selecting a higher order appoximation method may be necessary for some problems. 
See optional argument  IDTYPE. 
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�� If a two sided constraint ( )i i il g x u� � is transformed into two constraints 2 ( ) 0ig x �  
and 2 1( ) 0ig x

�
� , then choose � �1

2DEL0 ( ) / {1, }i i iu l max g x� � � , or at least try to 
provide an estimate for that value.  This will increase the efficiency of the algorithm.  
See optional argument  DEL0. 

�� The parameter IERR provided in the interface to the user supplied function FCN can be 
very useful in cases when evaluation is requested at a point that is not possible or 
reasonable.   For example, if evaluation at the requested point would result in a floating 
point exception, then setting IERR to .TRUE. and returning without performing the 
evaluation will avoid the exception.   NNLPF will then reduce the stepsize and try the 
step again.  Note, if IERR is set to .TRUE. for the initial guess, then an error is issued. 

NNLPG 
Solves a general nonlinear programming problem using a sequential equality constrained quadratic 
programming method with user supplied gradients. 

Required Arguments 
FCN — User-supplied SUBROUTINE to evaluate the objective function and constraints at a 

given point. The internal usage is CALL FCN (X, IACT, RESULT, IERR),  
where 

           X – The point at which the objective function or  constraint is evaluated.   (Input) 

IACT – Integer indicating  whether evaluation of the objective function is requested or 
evaluation of a constraint is requested.  If IACT is zero, then an objective 
function evaluation is requested.  If IACT is nonzero then the value if IACT 
indicates the index of the constraint to evaluate.   (Input) 

RESULT – If IACT is zero,  then RESULT is the computed objective function value at 
the point X.   If IACT is nonzero, then RESULT is the computed constraint value 
at the point X.     (Output) 

IERR – Logical variable.  On input IERR is set to .FALSE.  If an error or other 
undesirable condition occurs during evaluation, then IERR should be set to 
.TRUE.  Setting IERR to .TRUE.  will result in the step size being reduced and 
the step being tried again.  (If IERR is set to .TRUE. for XGUESS, then an error is 
issued.) 

The routine FCN must be use-associated in a user module that uses NNLPG_INT, or else 
declared  EXTERNAL in the calling program. If FCN is a separately compiled routine, not 
in a module, then it must be declared EXTERNAL. 

GRAD — User-supplied SUBROUTINE to evaluate the gradients at a given point. The usage is 
CALL GRAD (X, IACT, RESULT), where 
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           X – The point at which the gradient of the objective function or gradient of a constraint 
is evaluated.   (Input) 

IACT – Integer indicating  whether evaluation of the function gradient is requested or 
evaluation of a constraint gradient is requested.  If IACT is zero, then an 
objective function gradient evaluation is requested.  If IACT is nonzero then the 
value if IACT indicates the index of the constraint gradient to evaluate.   
(Input)RESULT – If IACT is zero,  then RESULT is the computed gradient of the 
objective function at the point X.   If IACT is nonzero, then RESULT is the 
computed gradient of the requested constraint value at the point X.     (Output) 

The routine GRAD must be use-associated in a user module that uses NNLPG_INT, or 
else declared  EXTERNAL in the calling program.  If GRAD is a separately compiled 
routine, not in a module, then is must be declared EXTERNAL 

M — Total number of constraints. (Input) 

ME — Number of equality constraints. (Input) 

IBTYPE — Scalar indicating the types of bounds on variables.   (Input)  

IBTYPE Action 

0  User will supply all the bounds. 

1  All variables are nonnegative. 

2  All variables are nonpositive. 

3  User supplies only the bounds on 1st variable, all other variables will have 
 the same bounds. 

XLB — Vector of length N containing the lower bounds on the variables.   (Input, if  
IBTYPE = 0; output, if IBTYPE = 1 or 2; input/output, if IBTYPE = 3) If there is no 
lower bound on a variable, then the corresponding XLB value should be set to  
�huge(x(1)). 

XUB — Vector of length N containing the upper bounds on the variables.   (Input, if IBTYPE 
= 0; output, if IBTYPE = 1 or 2; input/output, if IBTYPE = 3) If there is no upper bound 
on a variable, then the corresponding XUB value should be set to huge(x(1)). 

X — Vector of length N containing the computed solution.   (Output) 

Optional Arguments 
N — Number of variables.   (Input) 

Default: N = size(X). 
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IPRINT — Parameter indicating the desired output level.   (Input) 

IPRINT Action 

0  No output printed. 

1  One line of intermediate results is printed in each iteration. 

2  Lines of intermediate results summarizing the most important data  for each 
step are printed. 

 3 Lines of detailed intermediate results showing all primal and dual variables, 
the relevant values from the working set, progress in the backtracking and 
etc are printed 

4 Lines of detailed intermediate results showing all primal and dual variables, 
the relevant values from the working set, progress in the backtracking, the 
gradients in the working set, the quasi-Newton updated and etc are printed. 

 Default: IPRINT = 0. 

MAXITN — Maximum number of iterations allowed.   (Input) 
Default: MAXITN = 200. 

XGUESS — Vector of length N containing an initial guess of the solution.   (Input) 
Default: XGUESS = X, (with the smallest value of 

2
X ) that satisfies the bounds. 

TAU0 — A universal bound describing how much the unscaled penalty-term may deviate 
from zero. (Input)  
NNLPG assumes that within the region described by 

� � � �� �
1 1

min 0,
e

e

M M

i i
i i M

g x g x
� � �

� �� � TAU0  

all functions may be evaluated safely. The initial guess however, may violate these 
requirements. In that case an initial feasibility improvement phase is run by NNLPG 
until such a point is found. A small TAU0 diminishes the efficiency of  NNLPG, because 
the iterates then will follow the boundary of the feasible set closely. Conversely, a large 
TAU0 may degrade the reliability of the code. 
Default: TAU0 = 1.E0 

DEL0 — In the initial phase of minimization a constraint is considered binding if 

� �

� �� �max 1,
i

i

g x

g x
�

�

DEL0           1, ,ei M M� � �  
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Good values are between .01 and 1.0. If DEL0 is chosen too small then identification 
of the correct set of binding constraints may be delayed. Contrary, if DEL0 is too large, 
then the method will often escape to the full regularized SQP method, using individual 
slack variables for any active constraint, which is quite costly. For well-scaled 
problems DEL0=1.0 is reasonable.  (Input) 
Default: DEL0 = .5*TAU0 

SMALLW — Scalar containing the error allowed in the multipliers.  For example, a negative 
multiplier of an inequality constraint is accepted (as zero) if its absolute value is less 
than SMALLW.   (Input)  
Default: SMALLW = exp(2*log(epsilon(x(1)/3))) 

DELMIN — Scalar which defines allowable constraint violations of the final accepted result.   
Constraints are satisfied if |gi(x)| � DELMIN , and gj(x) � (-DELMIN ) respectively. 
(Input)  
Default: DELMIN = min(DEL0/10, max(EPSDIF, min(DEL0/10,  
max(1.E-6*DEL0, SMALLW)) 

SCFMAX — Scalar containing the bound for the internal automatic scaling of the objective 
function.   (Intput)  
Default: SCFMAX = 1.0E4 

FVALUE — Scalar containing the value of the objective function at the computed solution.   
(Output) 

FORTRAN 90 Interface 
Generic: CALL NNLPG (FCN, GRAD, M, ME, IBTYPE, XLB, XUB, X [,…]) 

Specific: The specific interface names are S_NNLPG and D_NNLPG. 

Example 1 

The problem 

� � � � � �

� �

� �

2 2
1 2

1 1 2

2 2
2 1 2

min 2 1

subject to  2 1 0

/ 4 1 0

F x x x

g x x x

g x x x

� � � �

� � � �

� � � � �

 

is solved. 
      USE NNLPG_INT 
      USE WRRRN_INT 
      INTEGER    IBTYPE, M, ME 
      PARAMETER  (IBTYPE=0, M=2, ME=1) 
! 
      REAL(KIND(1E0)) FVALUE, X(2), XGUESS(2), XLB(2), XUB(2) 
      EXTERNAL FCN, GRAD 
!                                    
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      XLB = -HUGE(X(1)) 
      XUB = HUGE(X(1)) 
! 
      CALL NNLPG (FCN, GRAD, M, ME, IBTYPE, XLB, XUB, X) 
! 
      CALL WRRRN ('The solution is', X) 
      END 
 
      SUBROUTINE FCN (X, IACT, RESULT, IERR) 
      INTEGER    IACT 
      REAL(KIND(1E0)) X(*), RESULT 
      LOGICAL IERR 
!    
      SELECT CASE (IACT) 
      CASE(0)  
         RESULT = (X(1)-2.0E0)**2 + (X(2)-1.0E0)**2 
      CASE(1) 
         RESULT = X(1) - 2.0E0*X(2) + 1.0E0 
      CASE(2) 
         RESULT = -(X(1)**2)/4.0E0 - X(2)**2 + 1.0E0 
      END SELECT 
      RETURN 
      END     
 
      SUBROUTINE GRAD (X, IACT, RESULT) 
      INTEGER    IACT 
      REAL(KIND(1E0)) X(*),RESULT(*) 
! 
      SELECT CASE (IACT) 
      CASE(0)  
         RESULT (1) = 2.0E0*(X(1)-2.0E0) 
         RESULT (2) = 2.0E0*(X(2)-1.0E0) 
      CASE(1) 
         RESULT (1) = 1.0E0 
         RESULT (2) = -2.0E0 
      CASE(2) 
         RESULT (1) = -0.5E0*X(1) 
         RESULT (2) = -2.0E0*X(2) 
      END SELECT 
      RETURN 
      END 

Output 
 The solution is 
 1   0.8229 
 2   0.9114 

Comments 
1. Informational errors 

Type Code 
   4    1 Constraint evaluation returns an error with current point. 
   4    2 Objective evaluation returns an error with current point. 
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   4    3 Working set is singular in dual extended QP. 
   4    4 QP problem is seemingly infeasible. 
   4    5 A stationary point located. 
 4    6 A stationary point located or termination criteria too strong. 
 4    7 Maximum number of iterations exceeded. 
 4    8 Stationary point not feasible. 
 4    9 Very slow primal progress. 
 4   10 The problem is singular.  
 4   11 Matrix of gradients of binding constraints is singular or very ill-

conditioned.  
 4   12 Small changes in the penalty function. 

. 

Description 
The routine NNLPG provides an interface to a licensed version of subroutine DONLP2, a 
FORTRAN code developed by Peter Spellucci (1998). It uses a sequential equality constrained 
quadratic programming method with an active set technique, and an alternative usage of a fully 
regularized mixed constrained subproblem in case of nonregular constraints (i.e. linear 
dependent gradients in the “working sets”). It uses a slightly modified version of the Pantoja-
Mayne update for the Hessian of the Lagrangian, variable dual scaling and an improved 
Armjijo-type stepsize algorithm. Bounds on the variables are treated in a gradient-projection 
like fashion. Details may be found in the following two papers:  

P. Spellucci: An SQP method for general nonlinear programs using only equality constrained 
subproblems. Math. Prog. 82, (1998), 413-448. 

P. Spellucci: A new technique for inconsistent problems in the SQP method. Math. Meth. of 
Oper. Res. 47, (1998), 355-500. (published by Physica Verlag, Heidelberg, Germany). 

The problem is stated as follows: 

� �min
nx

f x
�R

 

� �

� �

subject to 0, for 1, ,

0, for 1, ,
j e

j e

l u

g x j m

g x j m m

x x x

� �

� � �

� �

�

�  

Although default values are provided for optional input arguments, it may be necessary to adjust 
these values for some problems. Through the use of optional arguments, NNLPG allows for 
several parameters of the algorithm to be adjusted to account for specific characteristics of 
problems.   The DONLP2 Users Guide provides detailed descriptions of these parameters as 
well as strategies for maximizing the perfomance of the algorithm.  The DONLP2 Users Guide 
is available in the “help” subdirectory of the main IMSL product installation directory. In 
addition, the following are a number of guidelines to consider when using NNLPG. 

�� A good initial starting point is very problem specific and should be provided by the 
calling program whenever possible.  See optional argument  XGUESS. 
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�� If a two sided constraint ( )i i il g x u� � is transformed into two constraints 2 ( ) 0ig x �  
and 2 1( ) 0ig x

�
� , then choose � �1

2DEL0 ( ) / {1, }i i iu l max g x� � � , or at least try to 
provide an estimate for that value.  This will increase the efficiency of the algorithm.  
See optional argument  DEL0. 

�� The parameter IERR provided in the interface to the user supplied function FCN can be 
very useful in cases when evaluation is requested at a point that is not possible or 
reasonable.   For example, if evaluation at the requested point would result in a floating 
point exception, then setting IERR to .TRUE. and returning without performing the 
evaluation will avoid the exception.   NNLPG will then reduce the stepsize and try the 
step again.  Note, if IERR is set to .TRUE. for the initial guess, then an error is issued. 

Example 2 

The same problem from Example 1 is solved, but here we use central differences to compute the 
gradient of the first constraint.  This example demonstrates how NNLPG can be used in cases 
when analytic gradients are known for only a portion of the constraints and/or objective 
function.   The subroutine CDGRD is used to compute an approximation to the gradient of the 
first constraint. 

             
      USE NNLPG_INT 
      USE CDGRD_INT 
      USE WRRRN_INT 
      INTEGER    IBTYPE, M, ME 
      PARAMETER  (IBTYPE=0, M=2, ME=1) 
! 
      REAL(KIND(1E0)) FVALUE, X(2), XGUESS(2), XLB(2), XUB(2) 
      EXTERNAL FCN, GRAD 
!                                    
      XLB = -HUGE(X(1)) 
      XUB = HUGE(X(1)) 
! 
      CALL NNLPG (FCN, GRAD, M, ME, IBTYPE, XLB, XUB, X) 
! 
      CALL WRRRN ('The solution is', X) 
      END 
 
      SUBROUTINE FCN (X, IACT, RESULT, IERR) 
      INTEGER    IACT 
      REAL(KIND(1E0)) X(2), RESULT 
      LOGICAL IERR 
      EXTERNAL CONSTR1 
!    
      SELECT CASE (IACT) 
      CASE(0)  
         RESULT = (X(1)-2.0E0)**2 + (X(2)-1.0E0)**2 
      CASE(1) 
         CALL CONSTR1(2, X, RESULT) 
      CASE(2) 
         RESULT = -(X(1)**2)/4.0E0 - X(2)**2 + 1.0E0 
      END SELECT 
      RETURN 
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      END 
 
      SUBROUTINE GRAD (X, IACT, RESULT) 
      USE CDGRD_INT 
      INTEGER    IACT 
      REAL(KIND(1E0)) X(2),RESULT(2) 
      EXTERNAL CONSTR1 
! 
      SELECT CASE (IACT) 
      CASE(0)  
         RESULT (1) = 2.0E0*(X(1)-2.0E0) 
         RESULT (2) = 2.0E0*(X(2)-1.0E0) 
      CASE(1) 
         CALL CDGRD(CONSTR1, X, RESULT) 
      CASE(2) 
         RESULT (1) = -0.5E0*X(1) 
         RESULT (2) = -2.0E0*X(2) 
      END SELECT 
      RETURN 
      END 
 
      SUBROUTINE CONSTR1 (N, X, RESULT) 
      INTEGER N 
      REAL(KIND(1E0)) X(*), RESULT 
      RESULT = X(1) - 2.0E0*X(2) + 1.0E0 
      RETURN 
      END 

Output 
 The solution is 
 1   0.8229 
 2   0.9114 

CDGRD 
Approximates the gradient using central differences. 

Required Arguments 
FCN — User-supplied SUBROUTINE to evaluate the function to be minimized. The usage is 

CALL FCN (N, X, F), where 

N – Length of X.   (Input) 

X – The point at which the function is evaluated.   (Input)  
X should not be changed by FCN. 

F – The computed function value at the point X.   (Output) 

FCN must be declared EXTERNAL in the calling program. 
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XC — Vector of length N containing the point at which the gradient is to be estimated.   
(Input) 

GC — Vector of length N containing the estimated gradient at XC.   (Output) 

Optional Arguments 
N — Dimension of the problem.   (Input) 

Default: N = size (XC,1). 

XSCALE — Vector of length N containing the diagonal scaling matrix for the variables.   
(Input)  
In the absence of other information, set all entries to 1.0. 
Default: XSCALE = 1.0. 

EPSFCN — Estimate for the relative noise in the function.   (Input)  
EPSFCN must be less than or equal to 0.1. In the absence of other information, set 
EPSFCN to 0.0. 
Default: EPSFCN = 0.0. 

FORTRAN 90 Interface 
Generic: CALL CDGRD (FCN, XC, GC [,…]) 

Specific: The specific interface names are S_CDGRD and D_CDGRD. 

FORTRAN 77 Interface 
Single: CALL CDGRD (FCN, N, XC, XSCALE, EPSFCN, GC) 

Double: The double precision name is DCDGRD. 

Example 
In this example, the gradient of f(x) = x��� x�x� � 2 is estimated by the finite-difference method 
at the point (1.0, 1.0). 

      USE CDGRD_INT 
      USE UMACH_INT 
      INTEGER    I, N, NOUT 
      PARAMETER  (N=2) 
      REAL       EPSFCN, GC(N), XC(N) 
      EXTERNAL   FCN 
!                                  Initialization. 
      DATA XC/2*1.0E0/ 
!                                  Set function noise. 
      EPSFCN = 0.01 
! 
      CALL CDGRD (FCN, XC, GC, EPSFCN=EPSFCN) 



 

 
 

1338 � Chapter 8: Optimization IMSL MATH/LIBRARY 

 

 

 

! 
      CALL UMACH (2, NOUT) 
      WRITE (NOUT,99999) (GC(I),I=1,N) 
99999 FORMAT (’  The gradient is’, 2F8.2, /) 
! 
      END 
! 
      SUBROUTINE FCN (N, X, F) 
      INTEGER    N 
      REAL       X(N), F 
! 
      F = X(1) - X(1)*X(2) - 2.0E0 
! 
      RETURN 
      END 

Output 
The gradient is    0.00   -1.00 

Comments 
This is Description A5.6.4, Dennis and Schnabel, 1983, page 323. 

Description 
The routine CDGRD uses the following finite-difference formula to estimate the gradient of a 
function of n variables at x: 

� � � �
    for 1, ,

2
i i i i

i

f x h e f x h e
i n

h
� � �

� �  

where hi = ���� max{|xi|, 1/si} sign(xi), � is the machine epsilon, si is the scaling factor of the i-th 
variable, and ei is the i-th unit vector. For more details, see Dennis and Schnabel (1983). 

Since the finite-difference method has truncation error, cancellation error, and rounding error, 
users should be aware of possible poor performance. When possible, high precision arithmetic is 
recommended. 

FDGRD 
Approximates the gradient using forward differences. 

Required Arguments 
FCN — User-supplied SUBROUTINE to evaluate the function to be minimized. The usage is 

CALL FCN (N, X, F), where 

N – Length of X.   (Input) 

X – The point at which the function is evaluated.   (Input)  
X should not be changed by FCN. 
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F – The computed function value at the point X.   (Output) 

FCN must be declared EXTERNAL in the calling program. 

XC — Vector of length N containing the point at which the gradient is to be estimated.   
(Input) 

FC — Scalar containing the value of the function at XC.   (Input) 

GC — Vector of length N containing the estimated gradient at XC.   (Output) 

Optional Arguments 
N — Dimension of the problem.   (Input) 

Default: N = size (XC,1). 

XSCALE — Vector of length N containing the diagonal scaling matrix for the variables.   
(Input)  
In the absence of other information, set all entries to 1.0. 
Default: XSCALE = 1.0. 

EPSFCN — Estimate of the relative noise in the function.   (Input)  
EPSFCN must be less than or equal to 0.1. In the absence of other information, set 
EPSFCN to 0.0. 
Default: EPSFCN = 0.0. 

FORTRAN 90 Interface 
Generic: CALL FDGRD (FCN, XC, FC, GC [,…]) 

Specific: The specific interface names are S_FDGRD and D_FDGRD. 

FORTRAN 77 Interface 
Single: CALL FDGRD (FCN, XC, FC, GC, N, XSCALE, EPSFCN) 

Double: The double precision name is DFDGRD. 

Example 
In this example, the gradient of f(x) = x� � x�x� � 2 is estimated by the finite-difference method 
at the point (1.0, 1.0). 

      USE FDGRD_INT 
      USE UMACH_INT 
      INTEGER    I, N, NOUT 
      PARAMETER  (N=2) 
      REAL       EPSFCN, FC, GC(N), XC(N) 
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      EXTERNAL   FCN 
!                                  Initialization. 
      DATA XC/2*1.0E0/ 
!                                  Set function noise. 
      EPSFCN = 0.01 
!                                  Get function value at current 
!                                  point. 
      CALL FCN (N, XC, FC) 
! 
      CALL FDGRD (FCN, XC, FC, GC, EPSFCN=EPSFCN) 
! 
      CALL UMACH (2, NOUT) 
      WRITE (NOUT,99999) (GC(I),I=1,N) 
99999 FORMAT (’  The gradient is’, 2F8.2, /) 
! 
      END 
! 
      SUBROUTINE FCN (N, X, F) 
      INTEGER    N 
      REAL       X(N), F 
! 
      F = X(1) - X(1)*X(2) - 2.0E0 
! 
      RETURN 
      END 

Output 
The gradient is    0.00   -1.00 

Comments 
This is Description A5.6.3, Dennis and Schnabel, 1983, page 322. 

Description 
The routine FDGRD uses the following finite-difference formula to estimate the gradient of a 
function of n variables at x: 

� � � �
    for 1, ,i i

i

f x h e f x
i n

h
� �

� �  

where hi = ���� max{|xi|, 1/si} sign(xi), � is the machine epsilon, ei is the i-th unit vector, and si is 
the scaling factor of the i-th variable. For more details, see Dennis and Schnabel (1983). 

Since the finite-difference method has truncation error, cancellation error, and rounding error, 
users should be aware of possible poor performance. When possible, high precision arithmetic is 
recommended. When accuracy of the gradient is important, IMSL routine CDGRD (page 1336) 
should be used. 

FDHES 
Approximates the Hessian using forward differences and function values. 
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Required Arguments 
FCN — User-supplied SUBROUTINE to evaluate the function to be minimized. The usage is 

CALL FCN (N, X, F), where 

N – Length of X.   (Input) 

X – The point at which the function is evaluated.   (Input)  
X should not be changed by FCN. 

F – The computed function value at the point X.   (Output) 

FCN must be declared EXTERNAL in the calling program. 

XC — Vector of length N containing the point at which the Hessian is to be approximated.   
(Input) 

FC — Function value at XC.   (Input) 

H — N by N matrix containing the finite difference approximation to the Hessian in the lower 
triangle.   (Output) 

Optional Arguments 
N — Dimension of the problem.   (Input) 

Default: N = size (XC,1). 

XSCALE — Vector of length N containing the diagonal scaling matrix for the variables.   
(Input)  
In the absence of other information, set all entries to 1.0. 
Default: XSCALE = 1.0. 

EPSFCN — Estimate of the relative noise in the function.   (Input)  
EPSFCN must be less than or equal to 0.1. In the absence of other information, set 
EPSFCN to 0.0. 
Default: EPSFCN = 0.0. 

LDH — Row dimension of H exactly as specified in the dimension statement of the calling 
program.   (Input) 
Default: LDH = size (H,1). 

FORTRAN 90 Interface 
Generic: CALL FDHES (FCN, XC, FC, H [,…]) 

Specific: The specific interface names are S_FDHES and D_FDHES. 
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FORTRAN 77 Interface 
Single: CALL FDHES (FCN, N, XC, XSCALE, FC, EPSFCN, H, LDH) 

Double: The double precision name is DFDHES. 

Example 
The Hessian is estimated for the following function at (1, �1) 

� � 2
1 1 2 2f x x x x� � �  

      USE FDHES_INT 
      USE UMACH_INT 

!                                 Declaration of variables 
      INTEGER    N, LDHES, NOUT 
      PARAMETER  (N=2, LDHES=2) 
      REAL       XC(N), FVALUE, HES(LDHES,N), EPSFCN 
      EXTERNAL   FCN 
!                                   Initialization 
      DATA XC/1.0E0,-1.0E0/ 
!                                   Set function noise 
      EPSFCN = 0.001 
!                                   Evaluate the function at 
!                                   current point 
      CALL FCN (N, XC, FVALUE) 
!                                 Get Hessian forward difference 
!                                 approximation 
      CALL FDHES (FCN, XC, FVALUE, HES, EPSFCN=EPSFCN) 
! 
      CALL UMACH (2, NOUT) 
      WRITE (NOUT,99999) ((HES(I,J),J=1,I),I=1,N) 
99999 FORMAT (’  The lower triangle of the Hessian is’, /,& 
               5X,F10.2,/,5X,2F10.2,/) 
! 
      END 
! 
      SUBROUTINE FCN (N, X, F) 
!                                  SPECIFICATIONS FOR ARGUMENTS 
      INTEGER N 
      REAL    X(N), F 
! 
      F = X(1)*(X(1) - X(2)) - 2.0E0 
! 
      RETURN 
      END 

Output 
 The lower triangle of the Hessian is 
  2.00 
 -1.00      0.00 
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Comments 
1. Workspace may be explicitly provided, if desired, by use of F2HES/DF2HES. The 

reference is: 

CALL F2HES (FCN, N, XC, XSCALE, FC, EPSFCN, H, LDH, WK1, WK2) 

The additional arguments are as follows: 

WK1 — Real work vector of length N. 

WK2 — Real work vector of length N. 

2. This is Description A5.6.2 from Dennis and Schnabel, 1983; page 321. 

Description 
The routine FDHES uses the following finite-difference formula to estimate the Hessian matrix 
of function f at x: 

� � � � � � � �i i j j i i j j

i j

f x h e h e f x h e f x h e f x

h h

� � � � � � �

 

where hi = �����max{|xi|, 1/si} sign(xi), hj = ���� max{|xj|, 1/si} sign(xj), � is the machine epsilon or 
user-supplied estimate of the relative noise, si and sj are the scaling factors of the i-th and j-th 
variables, and ei and ej are the i-th and j-th unit vectors, respectively. For more details, see 
Dennis and Schnabel (1983). 

Since the finite-difference method has truncation error, cancellation error, and rounding error, 
users should be aware of possible poor performance. When possible, high precision arithmetic is 
recommended. 

GDHES 
Approximates the Hessian using forward differences and a user-supplied gradient. 

Required Arguments 
GRAD — User-supplied SUBROUTINE to compute the gradient at the point X. The usage is 

CALL GRAD (N, X, G), where 

N – Length of X and G.   (Input) 

X – The point at which the gradient is evaluated.   (Input)  
X should not be changed by GRAD. 

G – The gradient evaluated at the point X.   (Output) 
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GRAD must be declared EXTERNAL in the calling program. 

XC — Vector of length N containing the point at which the Hessian is to be estimated.   
(Input) 

GC — Vector of length N containing the gradient of the function at XC.   (Input) 

H — N by N matrix containing the finite-difference approximation to the Hessian in the lower 
triangular part and diagonal.   (Output) 

Optional Arguments 
N — Dimension of the problem.   (Input) 

Default: N = size (XC,1). 

XSCALE — Vector of length N containing the diagonal scaling matrix for the variables.   
(Input)  
In the absence of other information, set all entries to 1.0. 
Default: XSCALE = 1.0. 

EPSFCN — Estimate of the relative noise in the function.   (Input)  
EPSFCN must be less than or equal to 0.1. In the absence of other information, set 
EPSFCN to 0.0. 
Default: EPSFCN = 0.0. 

LDH — Leading dimension of H exactly as specified in the dimension statement of the calling 
program.   (Input) 
Default: LDH = size (H,1). 

FORTRAN 90 Interface 
Generic: CALL GDHES (GRAD, XC, GC, H [,…]) 

Specific: The specific interface names are S_GDHES and D_GDHES. 

FORTRAN 77 Interface 
Single: CALL GDHES (GRAD, N, XC, XSCALE, GC, EPSFCN, H, LDH) 

Double: The double precision name is DGDHES. 

Example 
The Hessian is estimated by the finite-difference method at point (1.0, 1.0) from the following 
gradient functions: 
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2 1 1

2 2
1

g x x
g x x

� �

� �

 

      USE GDHES_INT 
      USE UMACH_INT 
!                                 Declaration of variables 
      INTEGER    N, LDHES, NOUT 
      PARAMETER  (N=2, LDHES=2) 
      REAL       XC(N), GC(N), HES(LDHES,N) 
      EXTERNAL   GRAD 
! 
      DATA XC/2*1.0E0/ 
!                                 Set function noise 
!                                 Evaluate the gradient at the 
!                                 current point 
      CALL GRAD (N, XC, GC) 
!                                 Get Hessian forward-difference 
!                                 approximation 
      CALL GDHES (GRAD, XC, GC, HES) 
! 
      CALL UMACH (2, NOUT) 
      WRITE (NOUT,99999) ((HES(I,J),J=1,N),I=1,N) 
99999 FORMAT (’  THE HESSIAN IS’, /, 2(5X,2F10.2,/),/) 
! 
      END 
! 
      SUBROUTINE GRAD (N, X, G) 
!                                  SPECIFICATIONS FOR ARGUMENTS 
      INTEGER N 
      REAL    X(N), G(N) 
! 
      G(1) = 2.0E0*X(1)*X(2) - 2.0E0 
      G(2) = X(1)*X(1) + 1.0E0 
! 
      RETURN 
      END 

Output 
 THE HESSIAN IS 
 2.00      2.00 
 2.00      0.00 

Comments 
1. Workspace may be explicitly provided, if desired, by use of G2HES/DG2HES. The 

reference is: 

CALL G2HES (GRAD, N, XC, XSCALE, GC, EPSFCN, H, LDH, WK) 

The additional argument is 

WK — Work vector of length N. 

2. This is Description A5.6.1, Dennis and Schnabel, 1983; page 320. 
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Description 
The routine GDHES uses the following finite-difference formula to estimate the Hessian matrix 
of function F at x: 

� � � �j j

j

g x h e g x

h

� �

 

where hj = ���� max{|xj|, 1/sj} sign(xj), � is the machine epsilon, sj is the scaling factor of the j-th 
variable, g is the analytic gradient of F at x, and ej is the j-th unit vector. For more details, see 
Dennis and Schnabel (1983). 

Since the finite-difference method has truncation error, cancellation error, and rounding error, 
users should be aware of possible poor performance. When possible, high precision arithmetic is 
recommended. 

FDJAC 
Approximates the Jacobian of M functions in N unknowns using forward differences. 

 

Required Arguments 
FCN — User-supplied SUBROUTINE to evaluate the function to be minimized. The usage is 

CALL FCN (M, N, X, F), where 

M – Length of F.   (Input) 

N – Length of X.   (Input) 

X – The point at which the function is evaluated.   (Input)  
X should not be changed by FCN. 

F – The computed function at the point X.   (Output) 

FCN must be declared EXTERNAL in the calling program. 

XC — Vector of length N containing the point at which the gradient is to be estimated.   
(Input) 

FC — Vector of length M containing the function values at XC.   (Input) 

FJAC — M by N matrix containing the estimated Jacobian at XC.   (Output) 

Optional Arguments 
M — The number of functions.   (Input) 

Default: M = size (FC,1). 
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N — The number of variables.   (Input) 
Default: N = size (XC,1). 

XSCALE — Vector of length N containing the diagonal scaling matrix for the variables.   
(Input)  
In the absence of other information, set all entries to 1.0. 
Default: XSCALE = 1.0. 

EPSFCN — Estimate for the relative noise in the function.   (Input)  
EPSFCN must be less than or equal to 0.1. In the absence of other information, set 
EPSFCN to 0.0. 
Default: EPSFCN = 0.0. 

LDFJAC — Leading dimension of FJAC exactly as specified in the dimension statement of 
the calling program.   (Input) 
Default: LDFJAC = size (FJAC,1). 

FORTRAN 90 Interface 
Generic: CALL FDJAC (FCN, XC, FC, FJAC [,…]) 

Specific: The specific interface names are S_FDJAC and D_FDJAC. 

FORTRAN 77 Interface 
Single: CALL FDJAC (FCN, M, N, XC, XSCALE, FC, EPSFCN, FJAC,  

LDFJAC) 

Double: The double precision name is DFDJAC. 

Example 
In this example, the Jacobian matrix of 

� �

� �
1 1 2

2 1 1 2

2

1

f x x x

f x x x x

� �

� � �

 

is estimated by the finite-difference method at the point (1.0, 1.0). 
      USE FDJAC_INT 
      USE UMACH_INT 
!                                 Declaration of variables 
      INTEGER   N, M, LDFJAC, NOUT 
      PARAMETER (N=2, M=2, LDFJAC=2) 
      REAL      FJAC(LDFJAC,N), XC(N), FC(M), EPSFCN 
      EXTERNAL  FCN 
! 
      DATA XC/2*1.0E0/ 
!                                 Set function noise 
      EPSFCN = 0.01 
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!                                 Evaluate the function at the 
!                                 current point 
      CALL FCN (M, N, XC, FC) 
!                                 Get Jacobian forward-difference 
!                                 approximation 
      CALL FDJAC (FCN, XC, FC, FJAC, EPSFCN=EPFSCN) 
!                                 Print results 
      CALL UMACH (2, NOUT) 
      WRITE (NOUT,99999) ((FJAC(I,J),J=1,N),I=1,M) 
99999 FORMAT (’  The Jacobian is’, /, 2(5X,2F10.2,/),/) 
! 
      END 
! 
      SUBROUTINE FCN (M, N, X, F) 
!                                  SPECIFICATIONS FOR ARGUMENTS 
      INTEGER M, N 
      REAL    X(N), F(M) 
! 
      F(1) = X(1)*X(2) - 2.0E0 
      F(2) = X(1) - X(1)*X(2) + 1.0E0 
! 
      RETURN 
      END 

Output 
 The Jacobian is 
 1.00      1.00 
 0.00     -1.00 

Comments 
1. Workspace may be explicitly provided, if desired, by use of F2JAC/DF2JAC. The 

reference is: 

CALL F2JAC (FCN, M, N, XC, XSCALE, FC, EPSFCN, FJAC, LDFJAC, WK) 

The additional argument is: 

WK — Work vector of length M. 

2. This is Description A5.4.1, Dennis and Schnabel, 1983, page 314. 

Description 
The routine FDJAC uses the following finite-difference formula to estimate the Jacobian matrix 
of function f at x: 

� � � �j j

j

f x h e f x

h

� �

 

where ej is the j-th unit vector, hj = ���� max{|xj|, 1/sj} sign(xj), � is the machine epsilon, and sj is 
the scaling factor of the j-th variable. For more details, see Dennis and Schnabel (1983). 
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Since the finite-difference method has truncation error, cancellation error, and rounding error, 
users should be aware of possible poor performance. When possible, high precision arithmetic is 
recommended. 

CHGRD 
Checks a user-supplied gradient of a function. 

Required Arguments 
FCN — User-supplied SUBROUTINE to evaluate the function of which the gradient will be 

checked. The usage is CALL FCN (N, X, F), where 

N – Length of X.   (Input) 

X – The point at which the function is evaluated.   (Input) 
X should not be changed by FCN. 

F – The computed function value at the point X.   (Output) 

FCN must be declared EXTERNAL in the calling program. 

GRAD — Vector of length N containing the estimated gradient at X.   (Input) 

X — Vector of length N containing the point at which the gradient is to be checked.   (Input) 

INFO — Integer vector of length N.   (Output)  

INFO(I) = 0 means the user-supplied gradient is a poor estimate of the numerical 
gradient at the point X(I). 

INFO(I) = 1 means the user-supplied gradient is a good estimate of the numerical 
gradient at the point X(I). 

INFO(I) = 2 means the user-supplied gradient disagrees with the numerical gradient at 
the point X(I), but it might be impossible to calculate the numerical gradient. 

INFO(I) = 3 means the user-supplied gradient and the numerical gradient are both zero 
at X(I), and, therefore, the gradient should be rechecked at a different point. 

Optional Arguments 
N — Dimension of the problem.   (Input) 

Default: N = size (X,1). 
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FORTRAN 90 Interface 
Generic: CALL CHGRD (FCN, GRAD, X, INFO [,…]) 

Specific: The specific interface names are S_CHGRD and D_CHGRD. 

FORTRAN 77 Interface 
Single: CALL CHGRD (FCN, GRAD, N, X, INFO) 

Double: The double precision name is DCHGRD. 

Example 
The user-supplied gradient of 

� � � �3 42 /
2

t x x
if x x x e� �

� �  

at (625, 1, 3.125, 0.25) is checked where t = 2.125. 
      USE CHGRD_INT 
      USE WRIRN_INT 
!                              Declare variables 
      INTEGER    N 
      PARAMETER  (N=4) 
! 
      INTEGER    INFO(N) 
      REAL       GRAD(N), X(N) 
      EXTERNAL   DRIV, FCN 
! 
!                              Input values for point X 
!                              X = (625.0, 1.0, 3.125, .25) 
! 
      DATA X/625.0E0, 1.0E0, 3.125E0, 0.25E0/ 
! 
      CALL DRIV (N, X, GRAD) 
! 
      CALL CHGRD (FCN, GRAD, X, INFO) 
      CALL WRIRN (’The information vector’, INFO, 1, N, 1) 
! 
      END 
! 
      SUBROUTINE FCN (N, X, FX) 
      INTEGER    N 
      REAL       X(N), FX 
! 
      REAL       EXP 
      INTRINSIC  EXP 
! 
      FX = X(1) + X(2)*EXP(-1.0E0*(2.125E0-X(3))**2/X(4)) 
      RETURN 
      END 
! 
      SUBROUTINE DRIV (N, X, GRAD) 
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      INTEGER    N 
      REAL       X(N), GRAD(N) 
! 
      REAL       EXP 
      INTRINSIC  EXP 
! 
      GRAD(1) = 1.0E0 
      GRAD(2) = EXP(-1.0E0*(2.125E0-X(3))**2/X(4)) 
      GRAD(3) = X(2)*EXP(-1.0E0*(2.125E0-X(3))**2/X(4))*2.0E0/X(4)* & 
               (2.125-X(3)) 
      GRAD(4) = X(2)*EXP(-1.0E0*(2.125E0-X(3))**2/X(4))* & 
               (2.125E0-X(3))**2/(X(4)*X(4)) 
      RETURN 
      END 

Output 
 The information vector 
 1   2   3   4 
 1   1   1   1 

Comments 
1. Workspace may be explicitly provided, if desired, by use of C2GRD/DC2GRD. The 

reference is: 

CALL C2GRD (FCN, GRAD, N, X, INFO, FX, XSCALE, EPSFCN, XNEW) 

The additional arguments are as follows: 

FX — The functional value at X. 

XSCALE — Real vector of length N containing the diagonal scaling matrix. 

EPSFCN — The relative “noise” of the function FCN. 

XNEW — Real work vector of length N. 

2. Informational errors 

Type Code 
   4    1 The user-supplied gradient is a poor estimate of the numerical 

gradient. 

Description 
The routine CHGRD uses the following finite-difference formula to estimate the gradient of a 
function of n variables at x: 

� �
� � � �

for =1, ,i i
i

i

f x h e f x
g x i n

h
� �

� �  
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where hi = ���� max{|xi|, 1/si} sign(xi), � is the machine epsilon, ei is the i-th unit vector, and si is 
the scaling factor of the i-th variable. 

The routine CHGRD checks the user-supplied gradient �f(x) by comparing it with the finite-
difference gradient g(x). If 

� � � �� � � �� �i i i
g x f x f x�� � � �  

where � = ����, then (�f(x))i, which is the i-th element of �f(x), is declared correct; otherwise, 
CHGRD computes the bounds of calculation error and approximation error. When both bounds 
are too small to account for the difference, (�f(x))i is reported as incorrect. In the case of a large 
error bound, CHGRD uses a nearly optimal stepsize to recompute gi(x) and reports that (�f(x))i is 
correct if 

� � � �� � � �� �2i i i
g x f x f x�� � � �  

Otherwise, (�f(x))i is considered incorrect unless the error bound for the optimal step is greater 
than � |(�f(x))i|. In this case, the numeric gradient may be impossible to compute correctly. For 
more details, see Schnabel (1985). 

CHHES 
Checks a user-supplied Hessian of an analytic function. 

Required Arguments 
GRAD — User-supplied SUBROUTINE to compute the gradient at the point X. The usage is 

CALL GRAD (N, X, G), where 

N – Length of X and G.   (Input) 

X – The point at which the gradient is evaluated. X should not be changed by GRAD.   
(Input) 

G – The gradient evaluated at the point X.   (Output) 

GRAD must be declared EXTERNAL in the calling program. 

HESS — User-supplied SUBROUTINE to compute the Hessian at the point X. The usage is 
CALL HESS (N, X, H, LDH), where 

N – Length of X.   (Input) 

X – The point at which the Hessian is evaluated.   (Input) 
X should not be changed by HESS. 

H – The Hessian evaluated at the point X.   (Output) 



 

 
 

IMSL MATH/LIBRARY Chapter 8: Optimization � 1353 

 

 

 

LDH – Leading dimension of H exactly as specified in in the dimension statement of the 
calling program.   (Input) 

HESS must be declared EXTERNAL in the calling program. 

X — Vector of length N containing the point at which the Hessian is to be checked.   (Input) 

INFO — Integer matrix of dimension N by N.   (Output) 

INFO(I, J) = 0 means the Hessian is a poor estimate for function I at the point X(J). 

INFO(I, J) = 1 means the Hessian is a good estimate for function I at the point X(J). 

INFO(I, J) = 2 means the Hessian disagrees with the numerical Hessian for function I 
at the point X(J), but it might be impossible to calculate the numerical Hessian. 

INFO(I, J) = 3 means the Hessian for function I at the point X(J) and the numerical 
Hessian are both zero, and, therefore, the gradient should be rechecked at a 
different point. 

Optional Arguments 
N — Dimension of the problem.   (Input) 

Default: N = size (X,1). 

LDINFO — Leading dimension of INFO exactly as specified in the dimension statement of 
the calling program.   (Input) 
Default: LDINFO = size (INFO,1). 

FORTRAN 90 Interface 
Generic: CALL CHHES (GRAD, HESS, X, INFO [,…]) 

Specific:  The specific interface names are S_CHHES and D_CHHES. 

FORTRAN 77 Interface 
Single: CALL CHHES (GRAD, HESS, N, X, INFO, LDINFO) 

Double: The double precision name is DCHHES. 

Example 
The user-supplied Hessian of 

� � � � � �
2 22

2 1 1100 1f x x x x� � � �  
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at (�1.2, 1.0) is checked, and the error is found. 
      USE CHHES_INT 
      INTEGER    LDINFO, N 
      PARAMETER  (N=2, LDINFO=N) 
! 
      INTEGER    INFO(LDINFO,N) 
      REAL       X(N) 
      EXTERNAL   GRD, HES 
! 
!                                Input values for X 
!                                  X = (-1.2, 1.0) 
! 
      DATA X/-1.2, 1.0/ 
! 
      CALL CHHES (GRD, HES, X, INFO) 
! 
      END 
! 
      SUBROUTINE GRD (N, X, UG) 
      INTEGER    N 
      REAL       X(N), UG(N) 
! 
      UG(1) = -400.0*X(1)*(X(2)-X(1)*X(1)) + 2.0*X(1) - 2.0 
      UG(2) = 200.0*X(2) - 200.0*X(1)*X(1) 
      RETURN 
      END 
! 
      SUBROUTINE HES (N, X, HX, LDHS) 
      INTEGER    N, LDHS 
      REAL       X(N), HX(LDHS,N) 
! 
      HX(1,1) = -400.0*X(2) + 1200.0*X(1)*X(1) + 2.0 
      HX(1,2) = -400.0*X(1) 
      HX(2,1) = -400.0*X(1) 
!                                 A sign change is made to HX(2,2) 
! 
      HX(2,2) = -200.0 
      RETURN 
      END 

Output 
*** FATAL    ERROR 1 from CHHES.  The Hessian evaluation with respect to 
***          X(2) and X(2) is a poor estimate. 

Comments 
Workspace may be explicitly provided, if desired, by use of C2HES/DC2HES. The reference is 

CALL C2HES (GRAD, HESS, N, X, INFO, LDINFO, G, HX, HS,  
     XSCALE, EPSFCN, INFT, NEWX) 

The additional arguments are as follows: 

G — Vector of length N containing the value of the gradient GRD at X. 
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HX — Real matrix of dimension N by N containing the Hessian evaluated at X. 

HS — Real work vector of length N. 

XSCALE — Vector of length N used to store the diagonal scaling matrix for the 
variables. 

EPSFCN — Estimate of the relative noise in the function. 

INFT — Vector of length N. For I = 1 through N, INFT contains information about the 
Jacobian. 

NEWX — Real work array of length N. 

Description 
The routine CHHES uses the following finite-difference formula to estimate the Hessian of a 
function of n variables at x: 

� � � � � �� � / for 1, ,ij i j j i jB x g x h e g x h j n� � � � �  

where hj = ����max{|xj|, 1/sj} sign(xj), � is the machine epsilon, ej is the j-th unit vector, sj is the 
scaling factor of the j-th variable, and gi(x) is the gradient of the function with respect to the i-th 
variable. 

Next, CHHES checks the user-supplied Hessian H(x) by comparing it with the finite difference 
approximation B(x). If 

|Bij(x) � Hij(x)| < � |Hij(x)| 

where � = ����, then Hij(x) is declared correct; otherwise, CHHES computes the bounds of 
calculation error and approximation error. When both bounds are too small to account for the 
difference, Hij(x) is reported as incorrect. In the case of a large error bound, CHHES uses a nearly 
optimal stepsize to recompute Bij(x) and reports that Bij(x) is correct if 

|Bij(x) � Hij(x)| < 2� |Hij(x)| 

Otherwise, Hij(x) is considered incorrect unless the error bound for the optimal step is greater 
than � |Hij(x)|. In this case, the numeric approximation may be impossible to compute correctly. 
For more details, see Schnabel (1985). 

CHJAC 
Checks a user-supplied Jacobian of a system of equations with M functions in N unknowns. 

Required Arguments 
FCN — User-supplied SUBROUTINE to evaluate the function to be minimized. The usage is 

CALL FCN (M, N, X, F), where 
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M – Length of F.   (Input) 

N – Length of X.   (Input) 

X – The point at which the function is evaluated.   (Input)  
X should not be changed by FCN. 

F – The computed function value at the point X.   (Output) 

FCN must be declared EXTERNAL in the calling program. 

JAC — User-supplied SUBROUTINE to evaluate the Jacobian at a point X. The usage is CALL 
JAC (M, N, X, FJAC, LDFJAC), where 

M – Length of F.   (Input) 

N – Length of X.   (Input) 

X – The point at which the function is evaluated.   (Input)  
X should not be changed by FCN. 

FJAC – The computed M by N Jacobian at the point X.   (Output) 

LDFJAC – Leading dimension of FJAC.   (Input) 

JAC must be declared EXTERNAL in the calling program. 

X — Vector of length N containing the point at which the Jacobian is to be checked.   (Input) 

INFO — Integer matrix of dimension M by N.   (Output)  

INFO(I, J) = 0 means the user-supplied Jacobian is a poor estimate for function I at 
the point X(J). 

INFO(I, J) = 1 means the user-supplied Jacobian is a good estimate for function I at 
the point X(J). 

INFO(I, J) = 2 means the user-supplied Jacobian disagrees with the numerical Jacobian 
for function I at the point X(J), but it might be impossible to calculate the 
numerical Jacobian. 

INFO(I, J) = 3 means the user-supplied Jacobian for function I at the point X(J) and 
the numerical Jacobian are both zero. Therefore, the gradient should be 
rechecked at a different point. 
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Optional Arguments 
M — The number of functions in the system of equations.   (Input) 

Default: M = size (INFO,1). 

N — The number of unknowns in the system of equations.   (Input) 
Default: N = size (X,1). 

LDINFO — Leading dimension of INFO exactly as specified in the dimension statement of 
the calling program.   (Input) 
Default: LDINFO = size (INFO,1). 

FORTRAN 90 Interface 
Generic: CALL CHJAC (FCN, JAC, X, INFO [,…]) 

Specific: The specific interface names are S_CHJAC and D_CHJAC. 

FORTRAN 77 Interface 
Single: CALL CHJAC (FCN, JAC, M, N, X, INFO, LDINFO) 

Double: The double precision name is DCHJAC. 

Example 
The user-supplied Jacobian of 

� �
1 1

2
2 2 1

1

10

f x

f x x

� �

� �

 

at (�1.2, 1.0) is checked. 
      USE CHJAC_INT 
      USE WRIRN_INT 
      INTEGER    LDINFO, N 
      PARAMETER  (M=2,N=2,LDINFO=M) 
! 
      INTEGER    INFO(LDINFO,N) 
      REAL       X(N) 
      EXTERNAL   FCN, JAC 
! 
!                                 Input value for X 
!                                    X = (-1.2, 1.0) 
! 
      DATA X/-1.2, 1.0/ 
! 
      CALL CHJAC (FCN, JAC, X, INFO) 
      CALL WRIRN (’The information matrix’, INFO) 
! 
      END 
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! 
      SUBROUTINE FCN (M, N, X, F) 
      INTEGER    M, N 
      REAL       X(N), F(M) 
! 
      F(1) = 1.0 - X(1) 
      F(2) = 10.0*(X(2)-X(1)*X(1)) 
      RETURN 
      END 
! 
      SUBROUTINE JAC (M, N, X, FJAC, LDFJAC) 
      INTEGER    M, N, LDFJAC 
      REAL       X(N), FJAC(LDFJAC,N) 
! 
      FJAC(1,1) = -1.0 
      FJAC(1,2) = 0.0 
      FJAC(2,1) = -20.0*X(1) 
      FJAC(2,2) = 10.0 
      RETURN 
      END 

Output 
*** WARNING  ERROR 2 from C2JAC.  The numerical value of the Jacobian 
***          evaluation for function 1 at the point X(2) = 1.000000E+00 and 
***          the user-supplied value are both zero.  The Jacobian for this 
***          function should probably be re-checked at another value for 
***          this point. 
 
The information matrix 
    1   2 
1   1   3 
2   1   1 

Comments 
1. Workspace may be explicitly provided, if desired, by use of C2JAC/DC2JAC. The 

reference is: 

CALL C2JAC (FCN, JAC, N, X, INFO, LDINFO, FX, FJAC,  
     GRAD, XSCALE, EPSFCN, INFT, NEWX) 

The additional arguments are as follows: 

FX — Vector of length M containing the value of each function in FCN at X. 

FJAC — Real matrix of dimension M by N containing the Jacobian of FCN evaluated at 
X. 

GRAD — Real work vector of length N used to store the gradient of each function in 
FCN. 

XSCALE — Vector of length N used to store the diagonal scaling matrix for the 
variables. 
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EPSFCN — Estimate of the relative noise in the function. 

INFT — Vector of length N. For I = 1 through N, INFT contains information about the 
Jacobian. 

NEWX — Real work array of length N. 

2. Informational errors 

Type Code 
   4    1 The user-supplied Jacobian is a poor estimate of the numerical 

Jacobian. 

Description 
The routine CHJAC uses the following finite-difference formula to estimate the gradient of the i-
th function of n variables at x: 

gij(x) = (fi(x + hjej) � fi(x))/hj for j = 1, �, n 

where hj = ����max{|xj|, 1/sj} sign(xj), � is the machine epsilon, ej is the j-th unit vector, and sj is 
the scaling factor of the j-th variable. 

Next, CHJAC checks the user-supplied Jacobian J(x) by comparing it with the finite difference 
gradient gi(x). If 

|gij(x) � Jij(x)| < � |Jij(x)| 

where � = ����, then Jij(x) is declared correct; otherwise, CHJAC computes the bounds of 
calculation error and approximation error. When both bounds are too small to account for the 
difference, Jij(x) is reported as incorrect. In the case of a large error bound, CHJAC uses a nearly 
optimal stepsize to recompute gij(x) and reports that Jij(x) is correct if 

|gij(x) � Jij(x)| < 2� |Jij(x)| 

Otherwise, Jij(x) is considered incorrect unless the error bound for the optimal step is greater 
than � |Jij(x)|. In this case, the numeric gradient may be impossible to compute correctly. For 
more details, see Schnabel (1985). 

GGUES 
Generates points in an N-dimensional space. 

Required Arguments 
A — Vector of length N.   (Input) 

See B. 
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B — Real vector of length N.   (Input)  
A and B define the rectangular region in which the points will be generated, i.e.,  
A(I) < S(I) < B(I) for I = 1, 2, �, N. Note that if B(I) < A(I), then B(I) < S(I) < A(I). 

K — The number of points to be generated.   (Input) 

IDO — Initialization parameter.   (Input/Output)  
IDO must be set to zero for the first call. GGUES resets IDO to 1 and returns the first 
generated point in S. Subsequent calls should be made with IDO = 1. 

S — Vector of length N containing the generated point.   (Output)  
Each call results in the next generated point being stored in S. 

Optional Arguments 
N — Dimension of the space.   (Input) 

Default: N = size (B,1). 

FORTRAN 90 Interface 
Generic: CALL GGUES (A, B, K, IDO, S [,…]) 

Specific: The specific interface names are S_GGUES and D_GGUES. 

FORTRAN 77 Interface 
Single: CALL GGUES (N, A, B, K, IDO, S) 

Double: The double precision name is DGGUES. 

Example 
We want to search the rectangle with vertices at coordinates (1, 1), (3, 1), (3, 2), and (1, 2) ten 
times for a global optimum of a nonlinear function. To do this, we need to generate starting 
points. The following example illustrates the use of GGUES in this process: 

      USE GGUES_INT 
      USE UMACH_INT 
!                             Variable Declarations 
      INTEGER    N 
      PARAMETER  (N=2) 
! 
      INTEGER    IDO, J, K, NOUT 
      REAL       A(N), B(N), S(N) 
!                             Initializations 
! 
!                             A   = ( 1.0, 1.0) 
!                             B   = ( 3.0, 2.0) 
! 
      DATA A/1.0, 1.0/ 
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      DATA B/3.0, 2.0/ 
! 
      CALL UMACH (2, NOUT) 
      WRITE (NOUT,99998) 
99998 FORMAT (’  Point Number’, 7X, ’Generated Point’) 
! 
      K = 10 
      IDO = 0 
      DO 10  J=1, K 
         CALL GGUES (A, B, K, IDO, S) 
! 
         WRITE (NOUT,99999) J, S(1), S(2) 
99999    FORMAT (1X, I7, 14X, ’(’, F4.1, ’,’, F6.3, ’)’) 
! 
   10 CONTINUE 
! 
      END 

Output 
Point Number       Generated Point 

 1              ( 1.5, 1.125) 
 2              ( 2.0, 1.500) 
 3              ( 2.5, 1.750) 
 4              ( 1.5, 1.375) 
 5              ( 2.0, 1.750) 
 6              ( 1.5, 1.625) 
 7              ( 2.5, 1.250) 
 8              ( 1.5, 1.875) 
 9              ( 2.0, 1.250) 
10              ( 2.5, 1.500) 

Comments 
1. Workspace may be explicitly provided, if desired, by use of G2UES/DG2UES. The 

reference is: 

CALL G2UES (N, A, B, K, IDO, S, WK, IWK) 

The additional arguments are: 

WK — Work vector of length N. WK must be preserved between calls to G2UES. 

IWK — Work vector of length 10. IWK must be preserved between calls to G2UES. 

2. Informational error 

Type Code 
   4    1 Attempt to generate more than K points. 

3. The routine GGUES may be used with any nonlinear optimization routine that requires 
starting points. The rectangle to be searched (defined by A, B, and N) must be 
determined; and the number of starting points, K, must be chosen. One possible use for 
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GGUES would be to call GGUES to generate a point in the chosen rectangle. Then, call 
the nonlinear optimization routine using this point as an initial guess for the solution. 
Repeat this process K times. The number of iterations that the optimization routine is 
allowed to perform should be quite small (5 to 10) during this search process. The best 
(or best several) point(s) found during the search may be used as an initial guess to 
allow the optimization routine to determine the optimum more accurately. In this 
manner, an N dimensional rectangle may be effectively searched for a global optimum 
of a nonlinear function. The choice of K depends upon the nonlinearity of the function 
being optimized. A function with many local optima requires a larger value than a 
function with only a few local optima. 

Description 
The routine GGUES generates starting points for algorithms that optimize functions of several 
variables�or, almost equivalently�algorithms that solve simultaneous nonlinear equations. 

The routine GGUES is based on systematic placement of points to optimize the dispersion of the 
set. For more details, see Aird and Rice (1977). 
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Appendix B: Alphabetical Summary 
of Routines 

IMSL MATH/LIBRARY 
ACBCB 1441 Adds two complex band matrices, both in band storage 

mode. 

ACHAR 1624 Returns a character given its ASCII value. 

AMACH 1685 Retrieves single-precision machine constants. 

ARBRB 1438 Adds two band matrices, both in band storage mode. 

BCLSF 1274 Solves a nonlinear least squares problem subject to 
bounds on the variables using a modified Levenberg-
Marquardt algorithm and a finite-difference Jacobian. 

BCLSJ 1281 Solves a nonlinear least squares problem subject to 
bounds on the variables using a modified Levenberg-
Marquardt algorithm and a user-supplied Jacobian. 

BCNLS 1288 Solves a nonlinear least-squares problem subject to 
bounds on the variables and general linear constraints. 

BCOAH 1263 Minimizes a function of N variables subject to bounds the 
variables using a modified Newton method and a user-
supplied Hessian. 

BCODH 1257 Minimizes a function of N variables subject to bounds the 
variables using a modified Newton method and a finite-
difference Hessian. 

BCONF 1243 Minimizes a function of N variables subject to bounds the 
variables using a quasi-Newton method and a finite-
difference gradient. 

BCONG 1249 Minimizes a function of N variables subject to bounds the 
variables using a quasi-Newton method and a user-
supplied gradient. 

BCPOL 1271 Minimizes a function of N variables subject to bounds the 
variables using a direct search complex algorithm. 
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BLINF 1427 Computes the bilinear form xTAy. 

BS1GD 656 Evaluates the derivative of a spline on a grid, given its B-
spline representation. 

BS2DR 653 Evaluates the derivative of a two-dimensional tensor-
product spline, given its tensor-product B-spline 
representation. 

BS2GD 656 Evaluates the derivative of a two-dimensional tensor-
product spline, given its tensor-product B-spline 
representation on a grid. 

BS2IG 661 Evaluates the integral of a tensor-product spline on a 
rectangular domain, given its tensor-product B-spline 
representation. 

BS2IN 631 Computes a two-dimensional tensor-product spline 
interpolant, returning the tensor-product B-spline 
coefficients. 

BS2VL 651 Evaluates a two-dimensional tensor-product spline, given 
its tensor-product B-spline representation. 

BS3DR 666 Evaluates the derivative of a three-dimensional tensor-
product spline, given its tensor-product B-spline 
representation. 

BS3GD 670 Evaluates the derivative of a three-dimensional tensor-
product spline, given its tensor-product B-spline 
representation on a grid. 

BS3IG 676 Evaluates the integral of a tensor-product spline in three 
dimensions over a three-dimensional rectangle, given its 
tensorproduct B-spline representation. 

BS3IN 635 Computes a three-dimensional tensor-product spline 
interpolant, returning the tensor-product B-spline 
coefficients. 

BS3VL 664 Evaluates a three-dimensional tensor-product spline, 
given its tensor-product B-spline representation. 

BSCPP 680 Converts a spline in B-spline representation to piecewise 
polynomial representation. 

BSDER 643 Evaluates the derivative of a spline, given its B-spline 
representation. 

BSINT 622 Computes the spline interpolant, returning the B-spline 
coefficients. 

BSITG 649 Evaluates the integral of a spline, given its B-spline 
representation. 
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BSLS2 743 Computes a two-dimensional tensor-product spline 
approximant using least squares, returning the tensor-
product B-spline coefficients. 

BSLS3 748 Computes a three-dimensional tensor-product spline 
approximant using least squares, returning the tensor-
product B-spline coefficients. 

BSLSQ 725 Computes the least-squares spline approximation, and 
return the B-spline coefficients. 

BSNAK 625 Computes the ‘not-a-knot’ spline knot sequence. 

BSOPK 628 Computes the ‘optimal’ spline knot sequence. 

BSVAL 641 Evaluates a spline, given its B-spline representation. 

BSVLS 729 Computes the variable knot B-spline least squares 
approximation to given data. 

BVPFD 870 Solves a (parameterized) system of differential equations 
with boundary conditions at two points, using a variable 
order, variable step size finite-difference method with 
deferred corrections. 

BVPMS 882 Solves a (parameterized) system of differential equations 
with boundary conditions at two points, using a multiple-
shooting method. 

CADD 1319 Adds a scalar to each component of a vector, x � x + a, 
all complex. 

CAXPY 1320 Computes the scalar times a vector plus a vector, y � ax 
+ y, all complex. 

CCBCB 1393 Copies a complex band matrix stored in complex band 
storage mode. 

CCBCG 1400 Converts a complex matrix in band storage mode to a 
complex matrix in full storage mode. 

CCGCB 1398 Converts a complex general matrix to a matrix in 
complex band storage mode. 

CCGCG 1390 Copies a complex general matrix. 

CCONV 1064 Computes the convolution of two complex vectors. 

CCOPY 1319 Copies a vector x to a vector y, both complex. 

CCORL 1073 Computes the correlation of two complex vectors. 

CDGRD 1336 Approximates the gradient using central differences. 

CDOTC 1320 Computes the complex conjugate dot product, x . yT

CDOTU 1320 Computes the complex dot product xTy. 
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CGBMV 1330 Computes one of the matrix-vector operations: 
y Ax y y A x y y AT T
� � � � � �� � � � � �, ,  or y , 

where A is a matrix stored in band storage mode. 

CGEMM 1333 Computes one of the matrix-matrix operations: 
C AB C C A B C C AB

C C A B C C AB C

C A B C C A B C

C A B C C A B C

T T

T T T

T T T

T T T T

� � � � �

� � � � �

� � � �

� � � �

� � � � �

� � � � �

� � � �

� � � �

, ,

, ,

, ,

,

 or 

 or 

,
 

CGEMV 1329 Computes one of the matrix-vector operations: 
y Ax y y A x y y AT T
� � � � � �� � � � � �, ,  or y , 

CGERC 1384 Computes the rank-one update of a complex general 
matrix: 
A A xy T
� �� . 

CGERU 1384 Computes the rank-one update of a complex general 
matrix: 

. A A xyT
� ��

CHBCB 1411 Copies a complex Hermitian band matrix stored in band 
Hermitian storage mode to a complex band matrix stored 
in band storage mode. 

CHBMV 1381 Computes the matrix-vector operation 
, 

where A is an Hermitian band matrix in band Hermitian 
storage. 

y Ax� �� �y

C

y

CHEMM 1385 Computes one of the matrix-matrix operations: 
, 

where A is an Hermitian matrix and B and C are m by n 
matrices. 

C AB C C BA� � �� � � � or +

CHEMV 1381 Computes the matrix-vector operation 
, 

where A is an Hermitian matrix. 
y Ax� �� �

CHER 1384 Computes the rank-one update of an Hermitian matrix: 
A A xx T
� ��  with x complex and � real. 

CHER2 1384 Computes a rank-two update of an Hermitian matrix: 
A A xy yxT T
� � �� � . 

CHER2K 1387 Computes one of the Hermitian rank 2k operations: 
C AB BA C C A B B AT T T T
� � � � � �� � � � � or C� , 

where C is an n by n Hermitian matrix and A and B are n 
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by k matrices in the first case and k by n matrices in the 
second case. 

CHERK 1386 Computes one of the Hermitian rank k operations: 
C AA C C A AT T
� � � �� � � or C� , 

where C is an n by n Hermitian matrix and A is an n by k 
matrix in the first case and a k by n matrix in the second 
case. 

CHFCG 1408 Extends a complex Hermitian matrix defined in its upper 
triangle to its lower triangle. 

CHGRD 1349 Checks a user-supplied gradient of a function. 

CHHES 1352 Checks a user-supplied Hessian of an analytic function. 

CHJAC 1355 Checks a user-supplied Jacobian of a system of equations 
with M functions in N unknowns. 

CHOL 1475 Computes the Cholesky factorization of a positive-
definite, symmetric or self-adjoint matrix, A. 

COND 1476 Computes the condition number of a rectangular  
matrix, A. 

CONFT 734 Computes the least-squares constrained spline 
approximation, returning the B-spline coefficients. 

CONST 1669 Returns the value of various mathematical and physical 
constants. 

CPSEC 1631 Returns CPU time used in seconds. 

CRBCB 1405 Converts a real matrix in band storage mode to a complex 
matrix in band storage mode. 

CRBRB 1392 Copies a real band matrix stored in band storage mode. 

CRBRG 1397 Converts a real matrix in band storage mode to a real 
general matrix. 

CRGCG 1402 Copies a real general matrix to a complex general matrix. 

CRGRB 1395 Converts a real general matrix to a matrix in band storage 
mode. 

CRGRG 1389 Copies a real general matrix. 

CRRCR 1403 Copies a real rectangular matrix to a complex rectangular 
matrix. 

CS1GD 602 Evaluates the derivative of a cubic spline on a grid. 

CSAKM 500 Computes the Akima cubic spline interpolant. 

CSBRB 1409 Copies a real symmetric band matrix stored in band 
symmetric storage mode to a real band matrix stored in 
band storage mode. 
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C

CSCAL 1319 Multiplies a vector by a scalar, y � ay, both complex. 

CSCON 603 Computes a cubic spline interpolant that is consistent 
with the concavity of the data. 

CSDEC 593 Computes the cubic spline interpolant with specified 
derivative endpoint conditions. 

CSDER 610 Evaluates the derivative of a cubic spline. 

CSET 1318 Sets the components of a vector to a scalar, all complex. 

CSFRG 1406 Extends a real symmetric matrix defined in its upper 
triangle to its lower triangle. 

CSHER 597 Computes the Hermite cubic spline interpolant. 

CSIEZ 587 Computes the cubic spline interpolant with the ‘not-a-
knot’ condition and return values of the interpolant at 
specified points. 

CSINT 590 Computes the cubic spline interpolant with the ‘not-a-
knot’ condition. 

CSITG 616 Evaluates the integral of a cubic spline. 

CSPER 506 Computes the cubic spline interpolant with periodic 
boundary conditions. 

CSROT 1325 Applies a complex Givens plane rotation. 

CSROTM 1326 Applies a complex modified Givens plane rotation. 

CSSCAL 1319 Multiplies a complex vector by a single-precision scalar, 
y � ay. 

CSSCV 761 Computes a smooth cubic spline approximation to noisy 
data using cross-validation to estimate the smoothing 
parameter. 

CSSED 754 Smooths one-dimensional data by error detection. 

CSSMH 758 Computes a smooth cubic spline approximation to noisy 
data. 

CSUB 1319 Subtracts each component of a vector from a scalar,  
x � a � x, all complex. 

CSVAL 609 Evaluates a cubic spline. 

CSVCAL 1319 Multiplies a complex vector by a single-precision scalar 
and store the result in another complex vector, y � ax. 

CSWAP 1320 Interchanges vectors x and y, both complex. 

CSYMM 1334 Computes one of the matrix-matrix operations: 
, 

where A is a symmetric matrix and B and C are m by n 
matrices. 

C AB C C BA� � �� � � � or +
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C�

C�

CSYR2K 1335 Computes one of the symmetric rank 2k operations: 
, 

where C is an n by n symmetric matrix and A and B are n 
by k matrices in the first case and k by n matrices in the 
second case. 

C AB BA C C A B B AT T T T
� � � � � �� � � � � or 

CSYRK 1334 Computes one of the symmetric rank k operations: 
, 

where C is an n by n symmetric matrix and A is an n by k 
matrix in the first case and a k by n matrix in the second 
case. 

C AA C C A AT T
� � � �� � � or 

CTBMV 1331 Computes one of the matrix-vector operations: 
x Ax x A x x AT T
� � �, ,  or x , 

where A is a triangular matrix in band storage mode. 

CTBSV 1332 Solves one of the complex triangular systems: 

x A x x A x x A
T T

� � �
� �

�1 1 1
 ,   or e j e j, ,x  

where A is a triangular matrix in band storage mode. 

CTRMM 1335 Computes one of the matrix-matrix operations: 
B AB B A B B BA B BA

B A B B BA

T T

T T

� � � �

� �

� � � �

� �

, , ,

,or 

,
 

where B is an m by n matrix and A is a triangular matrix. 

CTRMV 1331 Computes one of the matrix-vector operations: 
x Ax x A x x AT T
� � �, ,  or x , 

where A is a triangular matrix. 

CTRSM 1336 Solves one of the complex matrix equations: 

B A B B BA B A B B B A

B A B B B A

T T

T T

� � � �

� �

� � �

� �

� � � �

� �

1 1 1

1 1

, , ,

,

e j e j

e j e jor 

�1 ,

where A is a traiangular matrix. 

CTRSV 1331 Solves one of the complex triangular systems: 

x A x x A x x A
T T

� � �
� �

�1 1 1
, ,e j e j or x , 

where A is a triangular matrix. 

CUNIT 1672 Converts X in units XUNITS to Y in units YUNITS. 

CVCAL 1319 Multiplies a vector by a scalar and store the result in 
another vector, y � ax, all complex. 

CVTSI 1630 Converts a character string containing an integer number 
into the corresponding integer form. 
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CZCDOT 1321 Computes the sum of a complex scalar plus a complex 
conjugate dot product, a x , using a double-precision 
accumulator. 

yT
�

CZDOTA 1321 Computes the sum of a complex scalar, a complex dot 
product and the double-complex accumulator, which is 
set to the result ACC � ACC + a + xTy. 

CZDOTC 1320 Computes the complex conjugate dot product, x , using 
a double-precision accumulator. 

yT

CZDOTI 1321 Computes the sum of a complex scalar plus a complex 
dot product using a double-complex accumulator, which 
is set to the result ACC � a + xTy. 

CZDOTU 1320 Computes the complex dot product xTy using a double-
precision accumulator. 

CZUDOT 1321 Computes the sum of a complex scalar plus a complex 
dot product, a + xTy, using a double-precision 
accumulator. 

DASPG 889 Solves a first order differential-algebraic system of 
equations, g(t, y, y�) = 0, using Petzold�Gear BDF 
method. 

DERIV 827 Computes the first, second or third derivative of a user-
supplied function. 

DET 1477 Computes the determinant of a rectangular matrix, A. 

DIAG 1479 Constructs a square diagonal matrix from a rank-1 array 
or several diagonal matrices from a rank-2 array. 

DIAGONALS 1479 Extracts a rank-1 array whose values are the diagonal 
terms of a rank-2 array argument. 

DISL1 1452 Computes the 1-norm distance between two points. 

DISL2 1450 Computes the Euclidean (2-norm) distance between two 
points. 

DISLI 1454 Computes the infinity norm distance between two points. 

DLPRS 1297 Solves a linear programming problem via the revised 
simplex algorithm. 

DMACH 1686 See AMACH.  

DQADD 1460 Adds a double-precision scalar to the accumulator in 
extended precision. 

DQINI 1460 Initializes an extended-precision accumulator with a 
double-precision scalar. 
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DQMUL 1460 Multiplies double-precision scalars in extended precision. 

DQSTO 1460 Stores a double-precision approximation to an extended-
precision scalar. 

DSDOT 1371 Computes the single-precision dot product xTy using a 
double precision accumulator. 

DUMAG 1664 This routine handles MATH/LIBRARY and 
STAT/LIBRARY type DOUBLE PRECISION options. 

EIG 1480  Computes the eigenvalue-eigenvector decomposition of 
an ordinary or generalized eigenvalue problem. 

EPICG 467 Computes the performance index for a complex 
eigensystem. 

EPIHF 518 Computes the performance index for a complex 
Hermitian eigensystem. 

EPIRG 460 Computes the performance index for a real eigensystem. 

EPISB 501 Computes the performance index for a real symmetric 
eigensystem in band symmetric storage mode. 

EPISF 483 Computes the performance index for a real symmetric 
eigensystem. 

 ERROR_POST 1568 Prints error messages that are generated by IMSL routines 
using EPACK  

ERSET 1679 Sets error handler default print and stop actions. 

EVAHF 508 Computes the largest or smallest eigenvalues of a 
complex Hermitian matrix. 

EVASB 490 Computes the largest or smallest eigenvalues of a real 
symmetric matrix in band symmetric storage mode. 

EVASF 473 Computes the largest or smallest eigenvalues of a real 
symmetric matrix. 

EVBHF 513 Computes the eigenvalues in a given range of a complex 
Hermitian matrix. 

EVBSB 495 Computes the eigenvalues in a given interval of a real 
symmetric matrix stored in band symmetric storage 
mode. 

EVBSF 478 Computes selected eigenvalues of a real symmetric 
matrix. 

EVCCG 464 Computes all of the eigenvalues and eigenvectors of a 
complex matrix. 

EVCCH 526 Computes all of the eigenvalues and eigenvectors of a 
complex upper Hessenberg matrix. 
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EVCHF 505 Computes all of the eigenvalues and eigenvectors of a 
complex Hermitian matrix. 

EVCRG 457 Computes all of the eigenvalues and eigenvectors of a 
real matrix. 

EVCRH 522 Computes all of the eigenvalues and eigenvectors of a 
real upper Hessenberg matrix. 

EVCSB 487 Computes all of the eigenvalues and eigenvectors of a 
real symmetric matrix in band symmetric storage mode. 

EVCSF 471 Computes all of the eigenvalues and eigenvectors of a 
real symmetric matrix. 

EVEHF 510 Computes the largest or smallest eigenvalues and the 
corresponding eigenvectors of a complex Hermitian 
matrix. 

EVESB 492 Computes the largest or smallest eigenvalues and the 
corresponding eigenvectors of a real symmetric matrix in 
band symmetric storage mode. 

EVESF 475 Computes the largest or smallest eigenvalues and the 
corresponding eigenvectors of a real symmetric matrix. 

EVFHF 515 Computes the eigenvalues in a given range and the 
corresponding eigenvectors of a complex Hermitian 
matrix. 

EVFSB 498 Computes the eigenvalues in a given interval and the 
corresponding eigenvectors of a real symmetric matrix 
stored in band symmetric storage mode. 

EVFSF 480 Computes selected eigenvalues and eigenvectors of a real 
symmetric matrix. 

EVLCG 462 Computes all of the eigenvalues of a complex matrix. 

EVLCH 525 Computes all of the eigenvalues of a complex upper 
Hessenberg matrix. 

EVLHF 502 Computes all of the eigenvalues of a complex Hermitian 
matrix. 

EVLRG 455 Computes all of the eigenvalues of a real matrix. 

EVLRH 520 Computes all of the eigenvalues of a real upper 
Hessenberg matrix. 

EVLSB 485 Computes all of the eigenvalues of a real symmetric 
matrix in band symmetric storage mode. 

EVLSF 469 Computes all of the eigenvalues of a real symmetric 
matrix. 

EYE 1481 Creates a rank-2 square array whose diagonals are all the 
value one. 
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FAURE_FREE 1655 Frees the structure containing information about the 
Faure sequence. 

FAURE_INIT 1655 Shuffled Faure sequence initialization. 

FAURE_NEXT 1656 Computes a shuffled Faure sequence. 

 FAST_DFT 992 Computes the Discrete Fourier Transform  
of a rank-1 complex array, x. 

 FAST_2DFT 1000 Computes the Discrete Fourier Transform (2DFT)  
of a rank-2 complex array, x. 

 FAST_3DFT 1006 Computes the Discrete Fourier Transform (2DFT)  
of a rank-3 complex array, x. 

FCOSI 1030 Computes parameters needed by FCOST. 

FCOST 1028 Computes the discrete Fourier cosine transformation of 
an even sequence. 

FDGRD 1338 Approximates the gradient using forward differences. 

FDHES 1340 Approximates the Hessian using forward differences and 
function values. 

FDJAC 1346 Approximates the Jacobian of M functions in N unknowns 
using forward differences. 

FFT 1482 The Discrete Fourier Transform of a complex sequence 
and its inverse transform. 

FFT_BOX 1482 The Discrete Fourier Transform of several complex or 
real sequences. 

FFT2B 1048 Computes the inverse Fourier transform of a complex 
periodic two-dimensional array. 

FFT2D 1045 Computes Fourier coefficients of a complex periodic two-
dimensional array. 

FFT3B 1055 Computes the inverse Fourier transform of a complex 
periodic three-dimensional array. 

FFT3F 1051 Computes Fourier coefficients of a complex periodic 
threedimensional array. 

FFTCB 1019 Computes the complex periodic sequence from its Fourier 
coefficients. 

FFTCF 1017 Computes the Fourier coefficients of a complex periodic 
sequence. 

FFTCI 1022 Computes parameters needed by FFTCF and FFTCB. 

FFTRB 1012 Computes the real periodic sequence from its Fourier 
coefficients. 
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FFTRF 1009 Computes the Fourier coefficients of a real periodic 
sequence. 

FFTRI 1015 Computes parameters needed by FFTRF and FFTRB. 

FNLSQ 720 Computes a least-squares approximation with user-
supplied basis functions. 

FPS2H 961 Solves Poisson’s or Helmholtz’s equation on a two-
dimensional rectangle using a fast Poisson solver based 
on the HODIE finite-difference scheme on a uni mesh. 

FPS3H 967 Solves Poisson’s or Helmholtz’s equation on a three-
dimensional box using a fast Poisson solver based on the 
HODIE finite-difference scheme on a uniform mesh. 

FQRUL 824 Computes a Fejér quadrature rule with various classical 
weight functions. 

FSINI 1026 Computes parameters needed by FSINT. 

FSINT 1024 Computes the discrete Fourier sine transformation of an 
odd sequence. 

GDHES 1343 Approximates the Hessian using forward differences and 
a user-supplied gradient. 

GGUES 1359 Generates points in an N-dimensional space. 

GMRES 368 Uses restarted GMRES with reverse communication to 
generate an approximate solution of Ax = b. 

GPICG 542 Computes the performance index for a generalized 
complex eigensystem Az = �Bz. 

GPIRG 535 Computes the performance index for a generalized real 
eigensystem Az = �Bz. 

GPISP 549 Computes the performance index for a generalized real 
symmetric eigensystem problem. 

GQRCF 815 Computes a Gauss, Gauss-Radau or Gauss-Lobatto 
quadrature rule given the recurrence coefficients for the 
monic polynomials orthogonal with respect to the weight 
function. 

GQRUL 811 Computes a Gauss, Gauss-Radau, or Gauss-Lobatto 
quadrature rule with various classical weight functions. 

GVCCG 540 Computes all of the eigenvalues and eigenvectors of a 
generalized complex eigensystem Az = �Bz. 

GVCRG 531 Computes all of the eigenvalues and eigenvectors of a 
generalized real eigensystem Az = �Bz. 
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GVCSP 547 Computes all of the eigenvalues and eigenvectors of the 
generalized real symmetric eigenvalue problem Az = �Bz, 
with B symmetric positive definite. 

GVLCG 537 Computes all of the eigenvalues of a generalized complex 
eigensystem Az = �Bz. 

GVLRG 529 Computes all of the eigenvalues of a generalized real 
eigensystem Az = �Bz. 

GVLSP 544 Computes all of the eigenvalues of the generalized real 
symmetric eigenvalue problem Az = �Bz, with B 
symmetric positive definite. 

HRRRR 1425 Computes the Hadamard product of two real rectangular 
matrices. 

HYPOT 1675 Computes a  without underflow or overflow. b2
�

2

IACHAR 1625 Returns the integer ASCII value of a character argument. 

IADD 1319 Adds a scalar to each component of a vector, x � x + a, 
all integer. 

ICAMAX 1324 Finds the smallest index of the component of a complex 
vector having maximum magnitude. 

ICAMIN 1323 Finds the smallest index of the component of a complex 
vector having minimum magnitude. 

ICASE 1626 Returns the ASCII value of a character converted to 
uppercase. 

ICOPY 1319 Copies a vector x to a vector y, both integer. 

IDYWK 1637 Computes the day of the week for a given date. 

IERCD 1680 Retrieves the code for an informational error. 

IFFT 1483 The inverse of the Discrete Fourier Transform of a 
complex sequence. 

IFFT_BOX 1484 The inverse Discrete Fourier Transform of several 
complex or real sequences.  

IFNAN(X) 1686 Checks if a value is NaN (not a number). 

IICSR 1627 Compares two character strings using the ASCII collating 
sequence but without regard to case. 

IIDEX 1629 Determines the position in a string at which a given 
character sequence begins without regard to case. 

IIMAX 1323 Finds the smallest index of the maximum component of a 
integer vector. 

IIMIN 1323 Finds the smallest index of the minimum of an integer 
vector. 
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IMACH 1683 Retrieves integer machine constants. 

INLAP 1078 Computes the inverse Laplace transform of a complex 
function. 

ISAMAX 1374 Finds the smallest index of the component of a single-
precision vector having maximum absolute value. 

ISAMIN 1374 Finds the smallest index of the component of a single-
precision vector having minimum absolute value. 

ISET 1318 Sets the components of a vector to a scalar, all integer. 

ISMAX 1374 Finds the smallest index of the component of a single-
precision vector having maximum value. 

ISMIN 1374 Finds the smallest index of the component of a single-
precision vector having minimum value. 

ISNAN 1485 This is a generic logical function used to test scalars or 
arrays for occurrence of an IEEE 754 Standard format of 
floating point (ANSI/IEEE 1985) NaN, or not-a-number. 

ISRCH 1620 Searches a sorted integer vector for a given integer and 
return its index. 

ISUB 1319 Subtracts each component of a vector from a scalar,  
x � a � x, all integer. 

ISUM 1322 Sums the values of an integer vector. 

ISWAP 1320 Interchanges vectors x and y, both integer. 

IUMAG 1658 Sets or retrieves MATH/LIBRARY integer options. 

IVMRK 844 Solves an initial-value problem y� = f(t, y) for ordinary 
differential equations using Runge-Kutta pairs of various 
orders. 

IVPAG 854 Solves an initial-value problem for ordinary differential 
equations using either Adams-Moulton’s or Gear’s BDF 
method. 

IVPRK 837 Solves an initial-value problem for ordinary differential 
equations using the Runge-Kutta-Verner fifth-order and 
sixth-order method. 

IWKCIN 1701 Initializes bookkeeping locations describing the character 
workspace stack. 

IWKIN 1700 Initializes bookkeeping locations describing the 
workspace stack. 

JCGRC 365 Solves a real symmetric definite linear system using the 
Jacobi preconditioned conjugate gradient method with 
reverse communication. 
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LCHRG 406 Computes the Cholesky decomposition of a symmetric 
positive semidefinite matrix with optional column 
pivoting. 

LCLSQ 388 Solves a linear least-squares problem with linear 
constraints. 

LCONF 1310 Minimizes a general objective function subject to linear 
equality/inequality constraints. 

LCONG 1316 Minimizes a general objective function subject to linear 
equality/inequality constraints. 

LDNCH 412 Downdates the RTR Cholesky factorization of a real 
symmetric positive definite matrix after a rank-one matrix 
is removed. 

LFCCB 262 Computes the LU factorization of a complex matrix in 
band storage mode and estimate its L� condition number. 

LFCCG 108 Computes the LU factorization of a complex general 
matrix and estimate its L� condition number. 

LFCCT 132 Estimates the condition number of a complex triangular 
matrix. 

LFCDH 179 Computes the RH R factorization of a complex Hermitian 
positive definite matrix and estimate its L� condition 
number. 

LFCDS 143 Computes the RT R Cholesky factorization of a real 
symmetric positive definite matrix and estimate its 
L�condition number. 

LFCHF 197 Computes the U DUH factorization of a complex 
Hermitian matrix and estimate its L� condition number. 

LFCQH 284 Computes the RH R factorization of a complex Hermitian 
positive definite matrix in band Hermitian storage mode 
and estimate its L� condition number. 

LFCQS 240 Computes the RT R Cholesky factorization of a real 
symmetric positive definite matrix in band symmetric 
storage mode and estimate its L� condition number. 

LFCRB 219 Computes the LU factorization of a real matrix in band 
storage mode and estimate its L� condition number. 

LFCRG 89 Computes the LU factorization of a real general matrix 
and estimate its L� condition number. 

LFCRT 125 Estimates the condition number of a real triangular 
matrix. 
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LFCSF 162 Computes the U DUT factorization of a real symmetric 
matrix and estimate its L� condition number. 

LFDCB 274 Computes the determinant of a complex matrix given the 
LU factorization of the matrix in band storage mode. 

LFDCG 119 Computes the determinant of a complex general matrix 
given the LU factorization of the matrix. 

LFDCT 134 Computes the determinant of a complex triangular matrix. 

LFDDH 190 Computes the determinant of a complex Hermitian 
positive definite matrix given the RH R Cholesky 
factorization of the matrix. 

LFDDS 153 Computes the determinant of a real symmetric positive 
definite matrix given the RH R Cholesky factorization of 
the matrix. 

LFDHF 207 Computes the determinant of a complex Hermitian matrix 
given the U DUH factorization of the matrix. 

LFDQH 295 Computes the determinant of a complex Hermitian 
positive definite matrix given the RH R Cholesky 
factorization in band Hermitian storage mode. 

LFDQS 250 Computes the determinant of a real symmetric positive 
definite matrix given the RT R Cholesky factorization of 
the band symmetric storage mode. 

LFDRB 230 Computes the determinant of a real matrix in band 
storage mode given the LU factorization of the matrix. 

LFDRG 99 Computes the determinant of a real general matrix given 
the LU factorization of the matrix. 

LFDRT 127 Computes the determinant of a real triangular matrix. 

LFDSF 172 Computes the determinant of a real symmetric matrix 
given the U DUT factorization of the matrix. 

LFICB 270 Uses iterative refinement to improve the solution of a 
complex system of linear equations in band storage mode. 

LFICG 116 Uses iterative refinement to improve the solution of a 
complex general system of linear equations. 

LFIDH 187 Uses iterative refinement to improve the solution of a 
complex Hermitian positive definite system of linear 
equations. 

LFIDS 150 Uses iterative refinement to improve the solution of a real 
symmetric positive definite system of linear equations. 
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LFIHF 204 Uses iterative refinement to improve the solution of a 
complex Hermitian system of linear equations. 

LFIQH 292 Uses iterative refinement to improve the solution of a 
complex Hermitian positive definite system of linear 
equations in band Hermitian storage mode. 

LFIQS 247 Uses iterative refinement to improve the solution of a real 
symmetric positive definite system of linear equations in 
band symmetric storage mode. 

LFIRB 227 Uses iterative refinement to improve the solution of a real 
system of linear equations in band storage mode. 

LFIRG 96 Uses iterative refinement to improve the solution of a real 
general system of linear equations. 

LFISF 169 Uses iterative refinement to improve the solution of a real 
symmetric system of linear equations. 

LFSCB 268 Solves a complex system of linear equations given the LU 
factorization of the coefficient matrix in band storage 
mode. 

LFSCG 114 Solves a complex general system of linear equations 
given the LU factorization of the coefficient matrix. 

LFSDH 184 Solves a complex Hermitian positive definite system of 
linear equations given the RH R factorization of the 
coefficient matrix. 

LFSDS 148 Solves a real symmetric positive definite system of linear 
equations given the RT R Choleksy factorization of the 
coefficient matrix. 

LFSHF 202 Solves a complex Hermitian system of linear equations 
given the U DUH factorization of the coefficient matrix. 

LFSQH 290 Solves a complex Hermitian positive definite system of 
linear equations given the factorization of the coefficient 
matrix in band Hermitian storage mode. 

LFSQS 245 Solves a real symmetric positive definite system of linear 
equations given the factorization of the coefficient matrix 
in band symmetric storage mode. 

LFSRB 225 Solves a real system of linear equations given the LU 
factorization of the coefficient matrix in band storage 
mode. 

LFSRG 94 Solves a real general system of linear equations given the 
LU factorization of the coefficient matrix. 

LFSSF 167 Solves a real symmetric system of linear equations given 
the U DUT factorization of the coefficient matrix. 
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LFSXD 336 Solves a real sparse symmetric positive definite system of 
linear equations, given the Cholesky factorization of the 
coefficient matrix. 

LFSXG 306 Solves a sparse system of linear equations given the LU 
factorization of the coefficient matrix. 

LFSZD 349 Solves a complex sparse Hermitian positive definite 
system of linear equations, given the Cholesky 
factorization of the coefficient matrix. 

LFSZG 319 Solves a complex sparse system of linear equations given 
the LU factorization of the coefficient matrix. 

LFTCB 265 Computes the LU factorization of a complex matrix in 
band storage mode. 

LFTCG 111 Computes the LU factorization of a complex general 
matrix. 

LFTDH 182 Computes the RH R factorization of a complex Hermitian 
positive definite matrix. 

LFTDS 146 Computes the RT R Cholesky factorization of a real 
symmetric positive definite matrix. 

LFTHF 200 Computes the U DUH factorization of a complex 
Hermitian matrix. 

LFTQH 288 Computes the RH R factorization of a complex Hermitian 
positive definite matrix in band Hermitian storage mode. 

LFTQS 243 Computes the RT R Cholesky factorization of a real 
symmetric positive definite matrix in band symmetric 
storage mode. 

LFTRB 222 Computes the LU factorization of a real matrix in band 
storage mode. 

LFTRG 92 Computes the LU factorization of a real general matrix. 

LFTSF 164 Computes the U DUT factorization of a real symmetric 
matrix. 

LFTXG 301 Computes the LU factorization of a real general sparse 
matrix. 

LFTZG 314 Computes the LU factorization of a complex general 
sparse matrix. 

LINCG 121 Computes the inverse of a complex general matrix. 

LINCT 136 Computes the inverse of a complex triangular matrix. 

LINDS 154 Computes the inverse of a real symmetric positive 
definite matrix. 
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LINRG 101 Computes the inverse of a real general matrix. 

LINRT 128 Computes the inverse of a real triangular matrix. 

 LIN_EIG_GEN 439 Computes the eigenvalues of a self-adjoint  
matrix, A. 

 LIN_EIG_SELF 432 Computes the eigenvalues of a self-adjoint  
matrix, A. 

 LIN_GEIG_SELF 448 Computes the generalized eigenvalues of an n � n  
matrix pencil, Av = �Bv. 

 LIN_SOL_GEN 9 Solves a general system of linear equations Ax = b.  

 LIN_SOL_LSQ 27 Solves a rectangular system of linear equations Ax � b,  
in a least-squares sense. 

 LIN_SOL_SELF 17 Solves a system of linear equations Ax = b, where A is a 
self-adjoint matrix. 

 LIN_SOL_SVD  36 Solves a rectangular least-squares system of linear 
equations Ax � b using singular value decomposition. 

 LIN_SOL_TRI 44 Solves multiple systems of linear equations.  

 LIN_SVD 57 Computes the singular value decomposition (SVD) of a 
rectangular matrix, A. 

LNFXD 331 Computes the numerical Cholesky factorization of a 
sparse symmetrical matrix A. 

LNFZD 344 Computes the numerical Cholesky factorization of a 
sparse Hermitian matrix A. 

LQERR 396 Accumulates the orthogonal matrix Q from its factored 
form given the QR factorization of a rectangular matrix A. 

LQRRR 392 Computes the QR decomposition, AP = QR, using 
Householder transformations. 

LQRRV 381 Computes the least-squares solution using Householder 
transformations applied in blocked form. 

LQRSL 398 Computes the coordinate transformation, projection, and 
complete the solution of the least-squares problem Ax = b. 

LSACB 257 Solves a complex system of linear equations in band 
storage mode with iterative refinement. 

LSACG 103 Solves a complex general system of linear equations with 
iterative refinement. 

LSADH 173 Solves a Hermitian positive definite system of linear 
equations with iterative refinement. 

LSADS 138 Solves a real symmetric positive definite system of linear 
equations with iterative refinement. 
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LSAHF 191 Solves a complex Hermitian system of linear equations 
with iterative refinement. 

LSAQH 276 Solves a complex Hermitian positive definite system of 
linear equations in band Hermitian storage mode with 
iterative refinement. 

LSAQS 232 Solves a real symmetric positive definite system of linear 
equations in band symmetric storage mode with iterative 
refinement. 

LSARB 213 Solves a real system of linear equations in band storage 
mode with iterative refinement. 

LSARG 83 Solves a real general system of linear equations with 
iterative refinement. 

LSASF 156 Solves a real symmetric system of linear equations with 
iterative refinement. 

LSBRR 385 Solves a linear least-squares problem with iterative 
refinement. 

LSCXD 327 Performs the symbolic Cholesky factorization for a sparse 
symmetric matrix using a minimum degree ordering or a 
userspecified ordering, and set up the data structure for 
the numerical Cholesky factorization. 

LSGRR 424 Computes the generalized inverse of a real matrix. 

LSLCB 259 Solves a complex system of linear equations in band 
storage mode without iterative refinement. 

LSLCC 356 Solves a complex circulant linear system. 

LSLCG 106 Solves a complex general system of linear equations 
without iterative refinement. 

LSLCQ 253 Computes the LDU factorization of a complex tridiagonal 
matrix A using a cyclic reduction algorithm. 

LSLCR 211 Computes the LDU factorization of a real tridiagonal 
matrix A using a cyclic reduction algorithm. 

LSLCT 130 Solves a complex triangular system of linear equations. 

LSLDH 176 Solves a complex Hermitian positive definite system of 
linear equations without iterative refinement. 

LSLDS 140 Solves a real symmetric positive definite system of linear 
equations without iterative refinement. 

LSLHF 194 Solves a complex Hermitian system of linear equations 
without iterative refinement. 
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LSLPB 237 Computes the RT DR Cholesky factorization of a real 
symmetric positive definite matrix A in codiagonal band 
symmetric storage mode. Solve a system Ax = b. 

LSLQB 281 Computes the RH DR Cholesky factorization of a 
complex hermitian positive-definite matrix A in 
codiagonal band hermitian storage mode. Solve a system 
Ax = b. 

LSLQH 279 Solves a complex Hermitian positive definite system of 
linearequations in band Hermitian storage mode without 
iterative refinement. 

LSLQS 234 Solves a real symmetric positive definite system of linear 
equations in band symmetric storage mode without 
iterative refinement. 

LSLRB 216 Solves a real system of linear equations in band storage 
mode without iterative refinement. 

LSLRG 85 Solves a real general system of linear equations without 
iterative refinement. 

LSLRT 123 Solves a real triangular system of linear equations. 

LSLSF 159 Solves a real symmetric system of linear equations 
without iterative refinement. 

LSLTC 354 Solves a complex Toeplitz linear system. 

LSLTO 352 Solves a real Toeplitz linear system. 

LSLTQ 252 Solves a complex tridiagonal system of linear equations. 

LSLTR 209 Solves a real tridiagonal system of linear equations. 

LSLXD 323 Solves a sparse system of symmetric positive definite 
linear algebraic equations by Gaussian elimination. 

LSLXG 297 Solves a sparse system of linear algebraic equations by 
Gaussian elimination. 

LSLZD 340 Solves a complex sparse Hermitian positive definite 
system of linear equations by Gaussian elimination. 

LSLZG 309 Solves a complex sparse system of linear equations by 
Gaussian elimination. 

LSQRR 378 Solves a linear least-squares problem without iterative 
refinement. 

LSVCR 419 Computes the singular value decomposition of a complex 
matrix. 

LSVRR 415 Computes the singular value decomposition of a real 
matrix. 



 

 
 

B-22 � Appendix B: Alphabetical Summary of Routines IMSL MATH/LIBRARY 

 

 

 

LUPCH 409 Updates the RTR Cholesky factorization of a real 
symmetric positive definite matrix after a rank-one matrix 
is added. 

LUPQR 402 Computes an updated QR factorization after the rank-one 
matrix �xyT is added. 

MCRCR 1423 Multiplies two complex rectangular matrices, AB. 

MOLCH 946 Solves a system of partial differential equations of the 
form ut = f(x, t, u, ux, uxx) using the method of lines. The 
solution is represented with cubic Hermite polynomials. 

MRRRR 1421 Multiplies two real rectangular matrices, AB. 

MUCBV 1436 Multiplies a complex band matrix in band storage mode 
by a complex vector. 

MUCRV 1435 Multiplies a complex rectangular matrix by a complex 
vector. 

MURBV 1433 Multiplies a real band matrix in band storage mode by a 
real vector. 

MURRV 1431 Multiplies a real rectangular matrix by a vector. 

MXTXF 1415 Computes the transpose product of a matrix, ATA. 

MXTYF 1416 Multiplies the transpose of matrix A by matrix B, ATB. 

MXYTF 1418 Multiplies a matrx A by the transpose of a matrix B, ABT. 

NAN 1486 Returns, as a scalar function, a value corresponding to the 
IEEE 754 Standard format of floating point (ANSI/IEEE 
1985) for NaN. . 

N1RTY 1680 Retrieves an error type for the most recently called IMSL 
routine. 

NDAYS 1634 Computes the number of days from January 1, 1900, to 
the given date. 

NDYIN 1636 Gives the date corresponding to the number of days since 
January 1, 1900. 

NEQBF 1169 Solves a system of nonlinear equations using factored 
secant update with a finite-difference approximation to 
the Jacobian. 

NEQBJ 1174 Solves a system of nonlinear equations using factored 
secant update with a user-supplied Jacobian. 

NEQNF 1162 Solves a system of nonlinear equations using a modified 
Powell hybrid algorithm and a finite-difference 
approximation to the Jacobian. 
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NEQNJ 1165 Solves a system of nonlinear equations using a modified 
Powell hybrid algorithm with a user-supplied Jacobian. 

NNLPF 1323 Uses a sequential equality constrained QP method. 

NNLPG 1329 Uses a sequential equality constrained QP method. 

NORM 1487 Computes the norm of a rank-1 or rank-2 array. For rank-
3 arrays, the norms of each rank-2 array, in dimension 3, 
are computed. 

NR1CB 1449 Computes the 1-norm of a complex band matrix in band 
storage mode. 

NR1RB 1447 Computes the 1-norm of a real band matrix in band 
storage mode. 

NR1RR 1444 Computes the 1-norm of a real matrix. 

NR2RR 1446 Computes the Frobenius norm of a real rectangular 
matrix. 

NRIRR 1443 Computes the infinity norm of a real matrix. 

 OPERATOR: .h. 1472 Computes transpose and conjugate transpose of a matrix. 

OPERATOR: .hx. 1471 Computes matrix-vector and matrix-matrix products.  

OPERATOR:.i. 1473 Computes the inverse matrix, for square non-singular 
matrices. 

  OPERATOR:.ix. 1474 Computes the inverse matrix times a vector or matrix for 
square non-singular matrices. 

 OPERATOR:..t. 1472 Computes transpose and conjugate transpose of a matrix. 

 OPERATOR:.tx. 1471 Computes matrix-vector and matrix-matrix products.  

 OPERATOR:.x. 1471 Computes matrix-vector and matrix-matrix products.. 

 OPERATOR:..xh. 1471 Computes matrix-vector and matrix-matrix products.   

 OPERATOR:..xi. 1474 Computes the inverse matrix times a vector or matrix for 
square non-singular matrices. 

 OPERATORS:.xt. 1471 Computes matrix-vector and matrix-matrix products.  

ORTH 1488 Orthogonalizes the columns of a rank-2 or rank-3 array. 

PCGRC 359 Solves a real symmetric definite linear system using a 
preconditioned conjugate gradient method with reverse 
communication. 

PARALLEL_NONNEGATIVE_LSQ 67 Solves a linear, non-negative constrained least-squares  
system.  

 PARALLEL_BOUNDED_LSQ 75 Solves a linear least-squares system with bounds on  
the unknowns. 

 PDE_1D_MG 913 Method of lines with Variable Griddings.  
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PERMA 1602 Permutes the rows or columns of a matrix. 

PERMU 1600 Rearranges the elements of an array as specified by a 
permutation. 

PGOPT 1599 Sets or retrieves page width and length for printing. 

PLOTP 1664 Prints a plot of up to 10 sets of points. 

POLRG 1429 Evaluates a real general matrix polynomial. 

PP1GD 687 Evaluates the derivative of a piecewise polynomial on a 
grid. 

PPDER 684 Evaluates the derivative of a piecewise polynomial. 

PPITG 690 Evaluates the integral of a piecewise polynomial. 

PPVAL 681 Evaluates a piecewise polynomial. 

PRIME 1668 Decomposes an integer into its prime factors. 

QAND 806 Integrates a function on a hyper-rectangle. 

QCOSB 1041 Computes a sequence from its cosine Fourier coefficients 
with only odd wave numbers. 

QCOSF 1039 Computes the coefficients of the cosine Fourier transform 
with only odd wave numbers. 

QCOSI 1043 Computes parameters needed by QCOSF and QCOSB. 

QD2DR 699 Evaluates the derivative of a function defined on a 
rectangular grid using quadratic interpolation. 

QD2VL 696 Evaluates a function defined on a rectangular grid using 
quadratic interpolation. 

QD3DR 705 Evaluates the derivative of a function defined on a 
rectangular three-dimensional grid using quadratic 
interpolation. 

QD3VL 702 Evaluates a function defined on a rectangular three-
dimensional grid using quadratic interpolation. 

QDAG 775 Integrates a function using a globally adaptive scheme 
based on Gauss-Kronrod rules. 

QDAGI 782 Integrates a function over an infinite or semi-infinite 
interval. 

QDAGP 779 Integrates a function with singularity points given. 

QDAGS 772 Integrates a function (which may have endpoint 
singularities). 

QDAWC 796 Integrates a function F(X)/(X � C) in the Cauchy principal 
value sense. 

QDAWF 789 Computes a Fourier integral. 
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QDAWO 785 Integrates a function containing a sine or a cosine. 

QDAWS 793 Integrates a function with algebraic-logarithmic 
singularities. 

QDDER 694 Evaluates the derivative of a function defined on a set of 
points using quadratic interpolation. 

QDNG  799 Integrates a smooth function using a nonadaptive rule. 

QDVAL   692 Evaluates a function defined on a set of points using 
quadratic interpolation. 

QMC 809 Integrates a function over a hyperrectangle using a  
quasi-Monte Carlo method. 

 QPROG 1307 Solves a quadratic programming problem subject to linear 
equality/inequality constraints. 

 QSINB 1034 Computes a sequence from its sine Fourier coefficients 
with only odd wave numbers. 

 QSINF 1032  Computes the coefficients of the sine Fourier transform 
with only odd wave numbers. 

 QSINI 1037 Computes parameters needed by QSINF and QSINB. 

 RAND 1489 Computes a scalar, rank-1, rank-2 or rank-3 array of 
random numbers. 

 RAND_GEN 1639 Generates a rank-1 array of random numbers. 

 RANK 1490 Computes the mathematical rank of a rank-2 or rank-3 
array. 

RATCH 764 Computes a rational weighted Chebyshev approximation 
to a continuous function on an interval. 

RCONV 1059 Computes the convolution of two real vectors. 

RCORL 1068 Computes the correlation of two real vectors. 

RCURV 716 Fits a polynomial curve using least squares. 

RECCF 818 Computes recurrence coefficients for various monic 
polynomials. 

RECQR 821 Computes recurrence coefficients for monic polynomials 
given a quadrature rule. 

RLINE 713 Fits a line to a set of data points using least squares. 

RNGET 1648 Retrieves the current value of the seed used in the IMSL 
random number generators. 

RNOPT 1650 Selects the uniform (0, 1) multiplicative congruential 
pseudorandom number generator. 

RNSET 1649 Initializes a random seed for use in the IMSL random 
number generators. 
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RNUN 1653 Generates pseudorandom numbers from a uniform (0, 1) 
distribution. 

RNUNF 1651 Generates a pseudorandom number from a uniform (0, 1) 
distribution. 

SADD 1370 Adds a scalar to each component of a vector, x � x + a, 
all single precision. 

SASUM 1373 Sums the absolute values of the components of a single-
precision vector. 

SAXPY 1370 Computes the scalar times a vector plus a vector,  
y � ax + y, all single precision. 

ScaLaPACK_READ 1545 Reads matrix data from a file and transmits it into the 
two-dimensional block-cyclic form required by 
ScaLAPACK routines. 

ScaLaPACK_WRITE 1547 Writes the matrix data to a file. 

SCASUM 1322 Sums the absolute values of the real part together with the 
absolute values of the imaginary part of the components 
of a complex vector. 

SCNRM2 1322 Computes the Euclidean norm of a complex vector. 

SCOPY 1369 Copies a vector x to a vector y, both single precision. 

SDDOTA 1321 Computes the sum of a single-precision scalar, a single-
precision dot product and the double-precision 
accumulator, which is set to the result ACC � ACC + a + 
xTy. 

SDDOTI 1372 Computes the sum of a single-precision scalar plus a 
singleprecision dot product using a double-precision 
accumulator, which is set to the result ACC � a + xTy. 

SDOT 1370 Computes the single-precision dot product xTy. 

SDSDOT 1371 Computes the sum of a single-precision scalar and a 
single precision dot product, a + xTy, using a double-
precision accumulator. 

SGBMV 1381 Computes one of the matrix-vector operations: 
, 

where A is a matrix stored in band storage mode. 
y Ax y y A xT
� � � �� � � �,  or 

SGEMM 1385 Computes one of the matrix-matrix operations: 

. 
C AB C C A B C C AB

C C A B C

T T

T T

� � � � �

� � �

� � � � �

� � �

, ,

, or 
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SGEMV 1381 Computes one of the matrix-vector operations: 

, y Ax y y A xT
� � � �� � � �,  or 

SGER 1383 Computes the rank-one update of a real general matrix: 
. A A xyT

� ��

SHOW 1571 Prints rank-1 or rank-2 arrays of numbers in a readable 
format. 

SHPROD 1372 Computes the Hadamard product of two single-precision 
vectors. 

SINLP 1081 Computes the inverse Laplace transform of a complex 
function. 

SLCNT 986 Calculates the indices of eigenvalues of a Sturm-Liouville 
problem with boundary conditions (at regular points) in a 
specified subinterval of the real line, [�, �]. 

SLEIG 973 Determines eigenvalues, eigenfunctions and/or spectral 
density functions for Sturm-Liouville problems in the 
form with boundary conditions (at regular points). 

SLPRS 1301 Solves a sparse linear programming problem via the 
revised simplex algorithm. 

SNRM2 1373 Computes the Euclidean length or L� norm of a single-
precision vector. 

 SORT_REAL 1604 Sorts a rank-1 array of real numbers x so the y results are 
algebraically nondecreasing, y1 � y2 � � yn. 

SPLEZ  618 Computes the values of a spline that either interpolates or 
fits user-supplied data. 

 SPLINE_CONSTRAINTS  562 Returns the derived type array result. 

 SPLINE_FITTING  564 Weighted least-squares fitting by B-splines to discrete 
One-Dimensional data is performed.  

 SPLINE_VALUES  563 Returns an array result, given an array  
of input 

SPRDCT 1373 Multiplies the components of a single-precision vector. 

 SRCH 1618 Searches a sorted vector for a given scalar and return its 
index. 

 SROT 1375 Applies a Givens plane rotation in single precision. 

SROTG 1374 Constructs a Givens plane rotation in single precision. 

SROTM 1377 Applies a modified Givens plane rotation in single 
precision. 

SROTMG 1376 Constructs a modified Givens plane rotation in single 
precision. 
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y

SSBMV 1382 Computes the matrix-vector operation  
, 

where A is a symmetric matrix in band symmetric storage 
mode. 

y Ax� �� �

SSCAL 1369 Multiplies a vector by a scalar, y � ay, both single 
precision. 

 SSET 1369 Sets the components of a vector to a scalar, all single 
precision. 

 SSRCH 1622 Searches a character vector, sorted in ascending ASCII 
order, for a given string and return its index. 

SSUB 1370 Subtracts each component of a vector from a scalar,  
x � a � x, all single precision. 

SSUM 1372 Sums the values of a single-precision vector. 

SSWAP 1370 Interchanges vectors x and y, both single precision. 

SSYMM 1385 Computes one of the matrix-matrix operations: 
, 

where A is a symmetric matrix and B and C are m by n 
matrices. 

C AB C C BA� � �� � � � or +

SSYMV 1382 Computes the matrix-vector operation 
, 

where A is a symmetric matrix. 
y Ax� �� �

SSYR 1384 Computes the rank-one update of a real symmetric 
matrix: 
A A xxT
� �� . 

SSYR2 1384 Computes the rank-two update of a real symmetric 
matrix: 

. A A xy yxT T
� � �� �

SSYR2K 1386 Computes one of the symmetric rank 2k operations: 
, 

where C is an n by n symmetric matrix and A and B are n 
by k matrices in the first case and k by n matrices in the 
second case. 

C AB BA C C A B B AT T T T
� � � � � �� � � � � or C�

C�

x

SSYRK 1386 Computes one of the symmetric rank k operations: 
, 

where C is an n by n symmetric matrix and A is an n by k 
matrix in the first case and a k by n matrix in the second 
case. 

C AA C C A AT T
� � � �� � � or 

STBMV 1382 Computes one of the matrix-vector operations: 

where A is a triangular matrix in band storage mode. 
x Ax x AT
� �or , 
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B1 ,

x

STBSV 1383 Solves one of the triangular systems: 

, 

where A is a triangular matrix in band storage mode. 

x A x x A
T

� �
� �1 1 or e j

STRMM 1387 Computes one of the matrix-matrix operations: 
, 

where B is an m by n matrix and A is a triangular matrix. 
B AB B A B B BA B BAT T
� � � �� � � �, , or 

STRMV 1382 Computes one of the matrix-vector operations: 

where A is a triangular matrix. 
x Ax x AT
� �or , 

STRSM 1387 Solves one of the matrix equations: 

 

where B is an m by n matrix and A is a triangular matrix. 

B A B B BA B A

B B A

T

T

� � �

�

� � �

�

� � �

�

1 1

1

, , e j

e jor 

STRSV 1383 Solves one of the triangular linear systems: 

 

where A is a triangular matrix. 

x A x x A
T

� �
� �1 1 or e j

SUMAG 1664 Sets or retrieves MATH/LIBRARY single-precision 
options. 

 SURF   710 Computes a smooth bivariate interpolant to scattered data 
that is locally a quintic polynomial in two variables. 

SURFACE_CONSTRAINTS   574 Returns the derived type array result given  
optional input.  

 SURFACE_FITTING  577 Weighted least-squares fitting by tensor product  
B-splines to discrete two-dimensional data  
is performed.  

 SURFACE_VALUES  575 Returns a tensor product array result, given two arrays of  
independent variable values. 

SVCAL 1369 Multiplies a vector by a scalar and store the result in 
another vector, y � ax, all single precision. 

SVD 1491 Computes the singular value decomposition of a rank-2 or 
rank-3 array, TA USV� . 

SVIBN 1615 Sorts an integer array by nondecreasing absolute value. 

SVIBP 1617 Sorts an integer array by nondecreasing absolute value 
and returns the permutation that rearranges the array. 

SVIGN 1610 Sorts an integer array by algebraically increasing value. 
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SVIGP 1611 Sorts an integer array by algebraically increasing value 
and returns the permutation that rearranges the array. 

SVRBN 1612 Sorts a real array by nondecreasing absolute value. 

SVRBP 1614 Sorts a real array by nondecreasing absolute value and 
returns the permutation that rearranges the array. 

SVRGN 1607 Sorts a real array by algebraically increasing value. 

SVRGP 1608 Sorts a real array by algebraically increasing value and 
returns the permutation that rearranges the array. 

SXYZ 1372 Computes a single-precision xyz product. 

TDATE 1633 Gets today’s date. 

TIMDY 1632 Gets time of day. 

TRNRR 1413 Transposes a rectangular matrix. 

TWODQ 801 Computes a two-dimensional iterated integral. 

UMACH 1688 Sets or retrieves input or output device unit numbers. 

UMAG 1661 Handles MATH/LIBRARY and STAT/LIBRARY type 
REAL and double precision options. 

UMCGF 1219 Minimizes a function of N variables using a conjugate 
gradient algorithm and a finite-difference gradient. 

UMCGG 1223 Minimizes a function of N variables using a conjugate 
gradient algorithm and a user-supplied gradient. 

UMIAH 1213 Minimizes a function of N variables using a modified 
Newton method and a user-supplied Hessian. 

UMIDH 1208 Minimizes a function of N variables using a modified 
Newton method and a finite-difference Hessian. 

UMINF 1196 Minimizes a function of N variables using a quasi-New 
method and a finite-difference gradient. 

UMING 1202 Minimizes a function of N variables using a quasi-New 
method and a user-supplied gradient. 

UMPOL 1227 Minimizes a function of N variables using a direct search 
polytope algorithm. 

UNIT 1492  Normalizes the columns of a rank-2 or rank-3 array so 
each has Euclidean length of value one. 

UNLSF 1231 Solves a nonlinear least squares problem using a modified 
Levenberg-Marquardt algorithm and a finite-difference 
Jacobian. 

UNLSJ 1237 Solves a nonlinear least squares problem using a modified 
Levenberg-Marquardt algorithm and a user-supplied 
Jacobian. 
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UVMGS 1193 Finds the minimum point of a nonsmooth function of a 
single variable. 

UVMID 1189 Finds the minimum point of a smooth function of a single 
variable using both function evaluations and first 
derivative evaluations. 

UVMIF 1186 Finds the minimum point of a smooth function of a single 
variable using only function evaluations. 

VCONC 1457 Computes the convolution of two complex vectors. 

VCONR 1455 Computes the convolution of two real vectors. 

VERML 1638 Obtains IMSL MATH/LIBRARY-related version, system 
and license numbers. 

WRCRL 1588 Prints a complex rectangular matrix with a given format 
and labels. 

WRCRN 1586 Prints a complex rectangular matrix with integer row and 
column labels. 

WRIRL 1583 Prints an integer rectangular matrix with a given format 
and labels. 

WRIRN 1581 Prints an integer rectangular matrix with integer row and 
column labels. 

WROPT 1591 Sets or retrieves an option for printing a matrix. 

WRRRL 1577 Prints a real rectangular matrix with a given format and 
labels. 

WRRRN 1575 Prints a real rectangular matrix with integer row and 
column labels. 

ZANLY 1153 Finds the zeros of a univariate complex function using 
Müller’s method. 

ZBREN 1156 Finds a zero of a real function that changes sign in a 
given interval. 

ZPLRC 1148 Finds the zeros of a polynomial with real coefficients 
using Laguerre’s method. 

ZPOCC 1152 Finds the zeros of a polynomial with complex coefficients 
using the Jenkins-Traub three-stage algorithm. 

ZPORC 1150 Finds the zeros of a polynomial with real coefficients 
using the Jenkins-Traub three-stage algorithm. 

ZQADD 1460 Adds a double complex scalar to the accumulator in 
extended precision. 

ZQINI 1460 Initializes an extended-precision complex accumulator to 
a double complex scalar. 
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ZQMUL 1460 Multiplies double complex scalars using extended 
precision. 

ZQSTO 1460 Stores a double complex approximation to an extended-
precision complex scalar. 

ZREAL 1159 Finds the real zeros of a real function using Müller’s 
method. 
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