Homework 1

Due 08/27/2015

1. In class (see also Example 1.2 in our textbook), we used the forward difference to approximate $f^{\prime}(x)$, i.e.

$$
f^{\prime}(x) \approx \frac{f(x+h)-f(x)}{h}, \quad \text { where } h>0 .
$$

We could have also used the backward difference $\frac{f(x)-f(x-h)}{h}$, or even better - the central difference, which is the average of the two, i.e.

$$
f^{\prime}(x) \approx \frac{1}{2}\left(\frac{f(x+h)-f(x)}{h}+\frac{f(x)-f(x-h)}{h}\right)=\frac{f(x+h)-f(x-h)}{2 h}
$$

(a) Use second order Taylor approximation to derive the absolute error in approximating $f^{\prime}(x)$ by central difference.
(b) What is the absolute error's rate of convergence as $h \rightarrow 0^{+}$? (Compare with that of Example 1.2).
(c) Use Matlab or Python to make a log-log plot of h vs the computed absolute error (h ranges from 10^{-16} to 1) for approximating $\frac{d}{d x} \sqrt{x}$ at $x=1$ using both the forward- and central difference approximations. Submit a print out of your plot and submit your code on canvas. You can refer to the code on the website or in the book on p.8.
2. Suppose the error $E(h) \rightarrow 0$ as $h \rightarrow 0^{+}$, where $h>0$ is some discretization parameter. If $E(h)=O\left(h^{\alpha}\right)$ as $h \rightarrow 0^{+}(\alpha>0)$, we say the error converges algebraically/polynomially at the rate α. In practice, one way of checking whether the error converges algebraically and of estimating the rate α is to plot $\log (h)$ on the x-axis, against $\log (E(h))$ on the y-axis. If for small enough h and some constant $C>0$,

$$
\begin{aligned}
& E(h) \approx C h^{\alpha}, \text { then } \\
& \log (E(h)) \approx \log \left(C h^{\alpha}\right)=\log (C)+\alpha \log (h)
\end{aligned}
$$

The resulting graph is therefore roughly a straight line and we can then read off the convergence rate α from its slope.
(a) If we're lucky, the error may be exponential (some say geometric), i.e. $E(h)=O\left(\beta^{1 / h}\right)$, with $0<\beta<1$. Devise a similar trick to the one above to check whether $E(h)$ converges geometrically and of estimating β in this case.
(b) The following error expressions $E(n)$ decay either algebraically, sub-exponentially (slower than exponential), exponentially, or super-exponentially (faster than exponential) as $n=1 / h \rightarrow \infty$. Here is a useful fact:

$$
\lim _{n \rightarrow \infty} \frac{E(n)}{E_{r e f}(n)}= \begin{cases}\infty & \Rightarrow E(n) \text { converges slower than } E_{r e f}(n) \\ K & \Rightarrow E(n)=O\left(E_{r e f}(n)\right) \\ 0 & \Rightarrow E(n)=o\left(E_{r e f}(n)\right) \Rightarrow E(n)=O\left(E_{r e f}(n)\right)\end{cases}
$$

where K is any constant. Use this fact to determine the convergence regime of $E(n)$ (algebraic, sub-exponential, etc..) and the convergence rates when appropriate, i.e. in the case of algebraic or exponential convergence.
i. $E(n)=e^{-n}-\frac{0.01}{n^{2}}$
ii. $E(n)=n^{2} e^{-n}$
iii. $E(n)=10^{-n^{2}}$
3. Use the Mean Value Theorem to show that

$$
\left|\cos \left(\frac{x_{2}}{2}\right)-\cos \left(\frac{x_{1}}{2}\right)\right| \leq \frac{1}{2}\left|x_{2}-x_{1}\right|
$$

for all $x_{1}, x_{2} \in[0,2 \pi]$ (Hint: this is a proof by contradiction).

