
A Texture-Based Framework for Spacetime-Coherent Visualization of
Time-Dependent Vector Fields

Daniel Weiskopf1 Gordon Erlebacher2 Thomas Ertl1

1Institute of Visualization and Interactive
Systems, University of Stuttgart∗

2School of Computational Science and Information
Technology, Florida State University†

Abstract

We propose Unsteady Flow Advection–Convolution (UFAC) as a
novel visualization approach for unsteady flows. It performs time
evolution governed by pathlines, but builds spatial correlation ac-
cording to instantaneous streamlines whose spatial extent is con-
trolled by the flow unsteadiness. UFAC is derived from a generic
framework that provides spacetime-coherent dense representations
of time dependent-vector fields by a two-step process: 1) con-
struction of continuous trajectories in spacetime for temporal co-
herence, and 2) convolution along another set of paths through
the above spacetime for spatially correlated patterns. Within the
framework, known visualization techniques—such as Lagrangian-
Eulerian Advection, Image-Based Flow Visualization, Unsteady
Flow LIC, and Dynamic LIC—can be reproduced, often with better
image quality, higher performance, or increased flexibility of the vi-
sualization style. Finally, we present a texture-based discretization
of the framework and its interactive implementation on graphics
hardware, which allows the user to gradually balance visualization
speed against quality.

CR Categories: I.3.3 [Computer Graphics]: Picture/Image Gen-
eration; I.3.7 [Computer Graphics]: Three-Dimensional Graphics
and Realism—Color, shading, shadowing, and texture

Keywords: time-dependent vector fields, unsteady flow visualiza-
tion, LIC, texture advection, hardware acceleration

1 Introduction

An important class of flow visualization techniques computes the
motion of massless particles transported along the velocity field
to obtain characteristic structures like streamlines, pathlines, or
streaklines. A fundamental issue is an appropriate placing of seed
points for particle tracing. Critical vector field features will be
missed if these important regions are not covered by any particle
path. This problem can be overcome by a dense representation, i.e.,
by covering the domain densely with particle traces.

In this paper, we adopt the concept of a dense representation
and specifically address the visualization of time-dependent vec-
tor fields. A crucial observation is that two types of coherence are

∗{weiskopf,ertl}@informatik.uni-stuttgart.de
†erlebach@csit.fsu.edu

essential for understanding animated visualizations. First, spatial
coherence within a single picture reveals image patterns indicating
some vector field structure. Second, frame-to-frame coherence al-
lows the user to identify a consistent motion of these patterns. Many
previous approaches for time-dependent vector field visualization
do not explicitly model spatial and temporal coherence, but inter-
mingle these two distinct features. To achieve separate control over
both properties we apply a generic and flexible framework that pro-
vides spacetime-coherent dense representations of time-dependent
vector fields by a two-step process. First, continuous trajectories are
constructed in spacetime to guarantee temporal coherence. Second,
convolution along another set of paths through the above space-
time results in spatially correlated patterns. The framework can be
mapped to a discrete texture-based representation in combination
with a SIMD architecture and therefore makes feasible an efficient
implementation on graphics hardware.

The actual visualization result depends on the choice of param-
eters, leading to a wide range of possible applications. For exam-
ple, the framework is capable of mimicking known visualization
techniques, such as Line Integral Convolution (LIC) for steady vec-
tor fields [Cabral and Leedom 1993], Unsteady Flow LIC (UFLIC)
[Shen and Kao 1998], Lagrangian-Eulerian Advection (LEA) [Jo-
bard et al. 2002], Image-Based Flow Visualization (IBFV) [van
Wijk 2002], and Dynamic LIC (DLIC) [Sundquist 2003]. Although
the same qualitative visualization results are achieved, the under-
lying computational models may differ significantly, causing dif-
ferences with respect to image quality, performance, and flexibil-
ity. Since the framework makes use of two different sets of paths
for temporal and spatial coherence, even more advanced visualiza-
tion techniques have become possible. We propose Unsteady Flow
Advection–Convolution (UFAC) as a novel approach for unsteady
fluid flows that performs time evolution governed by pathlines, but
builds spatial correlation according to instantaneous streamlines.
The spatial extent of streamlines is related to the degree of unsteadi-
ness.

2 Previous Work

The discussion of previous work focuses on noise-based and dense
texture representations [Sanna et al. 2000]. An early texture-
synthesis technique for vector field visualization, spot noise [van
Wijk 1991], generates a texture by distributing a large number of
spots on the spatial domain. LIC [Cabral and Leedom 1993] is
a popular technique for the dense representation of streamlines in
steady vector fields. LIC locally smoothes an input noise texture
along streamlines by convolution with a filter kernel, leading to a
high correlation along, and little or no correlation perpendicular
to, streamlines. Subsequently, LIC has been extended in various
respects: improvement of contrast and quality by postprocessing
[Okada and Kao 1997], animated LIC [Forssell and Cohen 1995],
visualization of the orientation of flow [Wegenkittl et al. 1997], the
combination of animation and dye advection [Shen et al. 1996], and
Fast LIC [Stalling and Hege 1995]. Pseudo LIC (PLIC) [Verma
et al. 1999] uses LIC to generate a template texture that is then

mapped onto “thick” streamlines. UFLIC [Shen and Kao 1998]
and its accelerated version [Liu and Moorhead 2002] address the
issue of temporal coherence by scattering particles along pathlines
and subsequently collecting their contributions to the filtered im-
age. DLIC [Sundquist 2003] is an extension of LIC that allows for
the evolution of streamlines in time-dependent vectors fields, such
as electric fields. Streamline evolution is also considered in the
context of evenly spaced streamlines [Jobard and Lefer 2000].

Another, yet related class of dense representations is based on
texture advection. The basic idea is to represent a dense collec-
tion of particles in a texture and transport this texture according
to the motion of particles [Max and Becker 1995]. LEA [Jobard
et al. 2002] visualizes unsteady flows by integrating particle posi-
tions (i.e., the Lagrangian part) and advecting the color of the par-
ticles based on a texture representation (i.e., the Eulerian aspect).
IBFV [van Wijk 2002] is a recently developed variant of 2D texture
advection. Not only is the texture transported along the flow, but
additionally a second texture is blended into the advected texture at
each time step. In an alternative approach, nonlinear diffusion can
be used to visualize particle transport along a flow field [Diewald
et al. 2000].

Implementations on graphics hardware are possible for many of
the above techniques to increase performance. For example, GPU
(graphics processing unit) based implementations are known for
LIC [Heidrich et al. 1999], for different versions of texture advec-
tion [Jobard et al. 2000; Weiskopf et al. 2001; Weiskopf et al. 2002],
and for IBFV [van Wijk 2002].

3 Continuous Framework

We briefly discuss a generic framework that describes spatial and
temporal correlation for vector field visualization on a continuous
level. Most parts of the framework are explained in more detail in
[Erlebacher et al. 2003]. The development of the framework was
inspired by a similar approach taken for DLIC [Sundquist 2003].

In what follows, a 2D spatial domain is assumed because the vi-
sualization applications of this paper are restricted to 2D. However,
the framework itself can be directly extended to 3D. In a flat, Eu-
clidean space, a time-dependent vector field is a map u(x, t) that
assigns a vector to each point x in space at time t. Pathlines xpath
are the integral curves of a vector field, governed by the ordinary
differential equation

dxpath(t;x0, t0)

dt
= u(xpath(t;x0, t0), t) , (1)

with the initial condition xpath(t0;x0, t0) = x0. In general, we adopt
a notation in which x(t;x0, t0) describes a curve parameterized by t
that yields the point x0 for t = t0.

Particle motion can be investigated in spacetime, i.e., in a
manifold with one temporal and two spatial dimensions. We as-
sume changes of reference frames to be governed by the Galilei
group of Newtonian physics. The world line (i.e., the spacetime
curve) traced out by a particle can be written as Y (t;x0, t0) =
(xpath(t;x0, t0), t). In general, curves in spacetime are denoted by
scripted variables and have three components: two spatial and one
temporal. Y (t;x0, t0) is parameterized by its first argument and
passes through the point (x0, t0) when t = t0. We use the term tra-
jectory for the spacetime description of a pathline. A dense repre-
sentation of a vector field employs a large number of particles so
that the intersection between each spatial slice and the trajectories
yields a dense coverage by points. Accordingly, spacetime itself is
densely filled by trajectories.

Properties can be attached to particles to distinguish them from
one another. In what follows, a property is assumed to be a gray-
scale value from the range [0,1]. Properties are allowed to change

continuously along the trajectory; very often, however, they remain
constant. From a collection of trajectories, along with the corre-
sponding particle properties, a function I(x, t) can be defined by
setting its value to the property of the particle crossing through the
spacetime point (x, t). The function value will be zero if no tra-
jectory touches the point. The function I(x, t) filling spacetime is
an important element of the framework. The continuous behav-
ior of trajectories and their attached properties ensures that spatial
slices through the property field I(x, t) at nearby times are strongly
related—and therefore temporal coherence is achieved. An ani-
mated sequence built from spatial slices with uniformly increasing
time yields the motion of particles governed by the vector field.

Since, in general, different particles are not correlated, spatial
slices of the property field do not exhibit any coherent spatial struc-
tures. To achieve spatial correlation, a filtered spatial slice Dt(x) is
defined through the convolution

Dt(x) =
∫ ∞

−∞
k(s)I(Z (t − s;x, t))ds (2)

along a path Z (s;x, t) through spacetime. The subscript on Dt is
a reminder that the filtered image depends on time. For generality,
we perform the convolution along the entire time axis, and rely on
the definition of the filter kernel k(s) to restrict the domain of inte-
gration. The kernel need not be the same for all points on the fil-
tered slice and may depend on additional parameters, such as data
derived from a vector field. For simplicity of notation, these pa-
rameters are not explicitly marked in the mathematical expressions.
Z (s;x, t) can be any path through spacetime and need not be the
trajectory of a particle. However, the spatial components of the
path are given by the pathlines of another vector field w(x, t). The
temporal component of Z (s;x, t) may depend on s and t. In the
visualization approaches of this paper, either Z (s;x, t) = (· , t) or
Z (s;x, t) = (· ,s) are used.

An animated visualization produces filtered images Dt for uni-
formly increasing times t. Two issues have to be considered for a
useful animation sequence. First, each single filtered image should
introduce some intuitively understandable visual patterns. There-
fore, the property field I and the family of convolution paths Z
should not be chosen arbitrarily, but should be constructed to lead
to these patterns. Secondly, the spatial structures should be coher-
ent from frame to frame. It is important to note that the coherence
of I along the time axis does not automatically imply a temporal
coherence of the filtered images Dt . Thus, further restrictions are
imposed on the choice of I and Z .

In summary, the structure of Dt is defined by the triplet [I,Z ,k],
where I is built from trajectories Y ; some useful combinations for
this triplet are discussed in Section 5. The main advantage of this
generic framework is its direct, explicit, and separate control over
the temporal evolution along pathlines of u(x, t) and over the spatial
structures that result from convolution along paths based on w(x, t).

4 Texture-Based Discretization

The continuous framework must be discretized to compute images.
We chose a novel texture-based approach for storing and processing
the dense representation, the vector field itself, and some additional
auxiliary data. Since the algorithms only utilize textures and no
other complex data structures, an efficient, purely GPU-based im-
plementation is possible. The rough outline of the texture-based
discretization is as follows. First, spatial slices of the property
field I are constructed from trajectories. For each texel, trajectories
backward in time are iteratively computed in a Lagrangian manner;
property contributions from particles starting at previous times and
propagating to the current texel position of I are collected along
the trajectory. By combining spatial slices, the complete property

field defined on a spacetime domain is built. Second, a convolu-
tion is computed along Z within the resulting 3D property field.
A Lagrangian integration of the corresponding paths is iteratively
calculated to obtain contributions for the respective texel.

A more detailed description of the discretization follows, start-
ing with the first major component—the construction of the prop-
erty field. Still in a continuous notation, we assign to each parti-
cle a finite lifetime τ , and therefore each trajectory Z has a max-
imum temporal length. A particle is born at (x0, t0) and dies at
time t = t0 + τ . We describe newly introduced particles by a field
P(x, t) defined on the spacetime domain. The field yields a contin-
uous description—particles are no longer considered as point ob-
jects, but rather are continuously spread over space, i.e., the particle
field describes a particle density. The invariant property of a par-
ticle born at (x0, t0) is described by P(x0, t0). The actual property
of a particle may change during its lifetime, governed by a weight
function w(tage), where tage ∈ [0,τ] is the age of the particle. For
example, w = 1 describes a constant property along the entire tra-
jectory, while some other choice for the weight may be used for
a gradual phase-in and phase-out of a particle’s brightness. The
weight might also depend on outside parameters, such as informa-
tion derived from the data set or the particle injection field P. These
parameters are not explicitly noted. The contribution to the prop-
erty field I at time t by a particle born at position x0 and at an earlier
time t0 (within the lifetime) is therefore

I(Y (t;x0, t0)) = w(t − t0)P(x0, t0) .

Due to the symmetry of Newtonian mechanics with respect to time
reversal, the trajectory can equally well be computed backward in
time, starting from t. By adding contributions from all possible
particle paths originating from different discrete times tl between
(t − τ) and t, one obtains the property field

I(x, t) = ∑
tl

w(t − tl)P(Y (tl ;x, t)) .

The fields I and P are discretized by a uniform sampling in space
and time. Stated differently, I and P can be represented by stacks
of equidistant 2D textures. We regard textures as uniform grids,
and texels as cells of these grids. Accordingly, the discrete property
field is

Ii(x jk) =
i−∆iτ

∑
l=i

w(ti − tl)Pl(xpath(tl ;x jk, ti)) .

Here, Ii and Pi denote spatial slices of I or P at time ti, respectively;
∆iτ is the maximum number of discrete time intervals per lifespan;
x jk denotes the spatial position of a grid point. Being a texture, Pi
can represent any distribution of released particles—ranging from
white noise to frequency-filtered noise or some input with large-
scale structures that is used for dye injection. Figure 1 illustrates
how particles released at previous times contribute to the property
at time ti. The property slice Ii is only sampled at discrete grid
points x jk, i.e., point sampling is assumed. Without changing the
basic procedure, more complex filtering, for example by means of
subsampling, could be applied. Due to convergence or divergence
of the vector field, trajectories starting at a given spatial distance
from each other might sample the injection textures Pi at varying
distances (i.e., at different spatial frequencies). However, the lim-
ited lifetime of particles ensures that these differences do not grow
without bound (provided that the vector field is smooth) and there-
fore subsampling and filtering is usually not required.

Although the access to Ii is restricted to grid points x jk, the
lookup in Pl is not. Therefore, some kind of interpolation scheme
has to be employed. In our implementation, a tensor product of

t i−1

t i−3

t i−2

t i

x

lif
et

im
e

particles released

trajectory

texelst

Figure 1: Computing two example texels of Ii (dashed horizontal
slice) by adding all possible contributions from particles starting
(marked by black dots) at previous times.

linear interpolations is used, i.e., a bilinear interpolation on 2D spa-
tial slices. Alternatively, simple nearest-neighbor sampling or more
sophisticated higher-order interpolation schemes are possible. In
all discussions of this paper, the existence of some interpolation
scheme is assumed to access textures at arbitrary positions.

Finally, the discretized pathline xpath(tl ;x jk, ti) is computed from
the vector field, which is stored either as a stack of 2D textures for
different times or as a 3D texture for a spacetime domain. Further-
more, we assume that some black-box function

∆x(x, ti) = x−xpath(ti −∆t;x, ti) (3)

yields the motion of a particle for a small time step ∆t. In our cur-
rent implementation, first-order explicit Euler integration approx-
imates ∆x(x, ti) by ∆tu(x, ti). Higher-order schemes could be ap-
plied if higher accuracy were needed.

Combining the aforementioned building blocks, the texture-
based computation of a single spatial slice Ii can be accomplished
by iterating ∆iτ times the recurrence relations

X̃l(x jk) = X̃l+1(x jk)−∆x(X̃l+1(x jk), tl+1) (4)

Ĩl(x jk) = Ĩl+1(x jk)+w(ti − tl)Pl(X̃l(x jk)) , (5)

with l = i−1, . . . , i−∆iτ . The initial values are

X̃i(x jk) = x jk and Ĩi(x jk) = w(0)Pi(x jk) . (6)

The final result is

Ii(x jk) = Ĩl−∆iτ
(x jk) .

The 2D texture Ĩl holds the intermediate results for the accumu-
lation of property values; X̃l is a two-component 2D texture that
stores the iteratively updated spatial positions along pathlines. Fig-
ure 1 illustrates this process in a spacetime diagram. The iteration
starts at the current time ti and scans starting points of trajectories
at previous time steps, up to the maximum lifetime (which is three
time steps in this example). The lookups in X̃l and Ĩl are restricted
to fixed grid points x jk and do not need an interpolation scheme.
Since the above iteration equations and ∆x(x, t) only need access
to various textures and a fixed set of numerical operations, a direct
mapping to fragment processing on modern graphics hardware is
feasible. Specific GPU-related implementation issues are discussed
in Section 6.

So far, a uniform lifetime τ was assumed. However, the lifetime
of particles can be individually adapted by changing the support of
the weight function w(tage)—as long as some maximum age τmax is
not exceeded. Since a large and possibly varying number of parti-
cles contributes to each texel of Ii, the sum of the weights w should

be normalized to one for each cell of Ii. Therefore, the weights
are accumulated along with the accumulated properties Ĩl , and the
final property value Ii is the accumulated property divided by the
accumulated weight.

One issue concerns inflow regions, i.e., parts of the domain in
which the backward integration of trajectories leaves the bound-
aries of the textures Pi. The solution is to enlarge the input textures
so that the pathlines do not exceed these boundaries. The texture
size depends both on the maximum magnitude of the vector field
and on the lifetime of the particles. Typically, the particle injection
textures P are enlarged only virtually by applying texture wrapping,
provided that these textures are seamless, e.g., white noise. Simi-
larly, the vector field textures can be virtually enlarged by clamp-
ing texture coordinates to the texture boundaries. Another issue is
a possible change of spatial frequency of input P along trajecto-
ries through regions of divergence or convergence. However, due
to the limited lengths of trajectories, these effects do not continue
over large distances and are usually not noticeable even in small re-
gions. Finally, the accumulation of random particles released from
various previous times in a noise-based approach (i.e., uncorrelated
injection with respect to both space and time) essentially represents
a summation of independent random variables, leading to a nor-
mal distribution dictated by the central limit theorem. The standard
deviation depends on the number of elements added, i.e., on ∆iτ .
For a long lifetime of particles, Ii becomes a gray image with most
intensities in a small interval around 0.5. Good contrast can be
reestablished by histogram equalization [Okada and Kao 1997]. It
is sufficient to compute the histogram once because the distribution
of property values changes only slightly over time.

The second major component of the framework concerns the
convolution along spacetime paths Z . The basic idea is to dis-
cretize the convolution integral (2) by a Riemann sum. Fortunately,
the texture-based implementation of this part is strongly related to
the above implementation of the construction of I. In what fol-
lows, analogous elements in the two implementations are briefly
described and differences are discussed. Since the spatial compo-
nents of both Y and Z are based on pathlines of some vector field,
the integration process acting on coordinate textures X̃i is the same.
The filter kernel k(s) replaces the weight w(tage), including the ac-
cumulation of kernel contributions and the final normalization to
unity. Moreover, the filter kernel can depend on the position in
spacetime, additional outside parameters, or values derived from
the given data set. Input to the convolution process is the stack of
properties Ii, which acts as a substitute for the description of parti-
cle injections, Pi. The maximum lifetime of particles is analogous
to the maximum support of the filter kernel.

The following differences exist between constructing I and com-
puting the convolution. First, the vector fields for computing
pathlines can be different. Second, the temporal component of
Z (s;x, t) is not necessarily s. Therefore, a mechanism has to cal-
culate the appropriate time ti for each iteration step and address
the corresponding slice Ii. In all visualization approaches investi-
gated so far, the temporal component of Z (s;x, t) is either s or t,
i.e., the iteration either processes the stack of textures Ii concur-
rently to the integration time or uses a single property texture at a
fixed time. Third, a provision must be made for integrating the con-
volution forward and backward in time, which is implemented by
performing both parts independently and combining their results.
Fourth, the treatment of boundaries is different. The convolution
integral is limited to the boundaries of the domain; once the inte-
grated coordinates leave the domain, the kernel is set to zero. Due
to the normalization of accumulated kernel weights, the property
values exhibit no intensity loss by a decreased filter support near
boundaries. Fifth, both histogram equalization, which is also used
for reestablishing high contrast in the construction of I, and edge
enhancement by high-pass filtering (such as a Laplacian filter) are

used to improve image quality [Okada and Kao 1997].
The main features of this implementation of the continuous

framework are the following. First, an explicit and separate con-
trol over the temporal evolution and the structure of spatial pat-
terns is possible. Second, any input texture Pi can be used; one
is not restricted to white noise or to dye textures that exhibit only
large-scale spatial structures. Third, a complete Lagrangian inte-
gration scheme is employed for particle transport in each time step
of an animation, which avoids the accumulation of sampling arti-
facts or artificial smoothing, prevalent in Eulerian or semi-Eulerian
approaches. Fourth, there is no restriction on the possible filter ker-
nel k(s) or property weight w(tage)—except for a compact support
of these functions. They can even depend on parameters derived
from data sets or current spacetime locations. This flexibility al-
lows for custom kernel design for further quality enhancement. A
similar argument holds for the temporal behavior of particle trans-
port along Y ; for example, popping artifacts can be avoided by a
slow phase-in and phase-out of particles through a time-dependent
property weight.

5 Visualization Approaches

Within the structure of the above framework and its texture-based
discretization, several visualization approaches are possible. In
this section, some well-known visualization techniques for time-
dependent data sets are revisited. Detailed background information
on the mapping of LEA, IBFV, and DLIC to the continuous frame-
work is presented in [Erlebacher et al. 2003]. The basic idea is that
by choosing appropriately the parameters at our disposal, visualiza-
tion results that are qualitatively similar to existing techniques can
be reproduced, even if the underlying computational models differs
significantly. We focus in particular on differences with respect to
image quality, performance, and flexibility. Furthermore, we pro-
pose a new approach: the Unsteady Flow Advection–Convolution
derived from our framework.

5.1 Lagrangian-Eulerian Advection

LEA [Jobard et al. 2002] is realized within the framework by set-
ting u(x, t) to the given vector field v(x, t), and w(x, t) = 0. LEA
does not change the properties of particles along their paths (i.e.,
w(tage) = 1). Particle transport is computed according to the de-
scription in Section 4. To emulate the exponential filter of the origi-
nal version of LEA, successive α blending of the results of particle
transport can be applied. For any other kernel, the implementation
of Section 4 is employed—except for the superfluous update of po-
sitions X̃l(x jk). The advantage of the exponential filter is that only
one blending operation is required for each final image Di, while
other kernels require an iterative computation of the entire convo-
lution for each time step. However, some of these successive filter
calculations could be accelerated by exploiting coherence analo-
gously to FLIC methods [Stalling and Hege 1995].

Particle transport in the original LEA utilizes a hybrid
Lagrangian-Eulerian texture update. Unfortunately, this computa-
tion scheme does not always reproduce trajectories faithfully and
white noise input becomes gradually duplicated over several tex-
els. Therefore, larger homogeneous patterns, even perpendicular to
pathlines, emerge after some time of particle motion. The degrada-
tion of noise frequency is overcome by an ad-hoc injection of noise
during each time step. Furthermore, many particles are completely
discarded from one time step to the following because a texel is
only filled with information from a single texel of the previous time
step (by nearest-neighbor sampling). As a consequence, the orig-
inal LEA exhibits only suboptimal temporal correlation, which is
apparent in the form of noisy and rather short spatial patterns after

convolution. For the implementation of LEA within our framework,
these issues do not arise and therefore the final visualization shows
an improved temporal and spatial coherence. As another advan-
tage, the framework supports any type of input texture Pi, and is not
restricted to white noise as in the original LEA. Thus, high spatial
frequencies can be removed in a prefiltered input to avoid aliasing
artifacts after convolution.

The disadvantage of the alternative implementation is its higher
computational cost for processing ∆iτ input images per time step.
However, for short lifetimes of particles (e.g., some 15 iterations),
alternative LEA executes at interactive frame rates on current GPUs
and yet shows a higher temporal correlation than the original imple-
mentation. Moreover, the framework can be easily adjusted to tar-
geted frame rates by adapting ∆iτ ; for example, only a few iteration
steps could be processed for particle transport during user interac-
tion, while a high-quality update of a snapshot could be computed
with an increased number of iterations.

5.2 Image-Based Flow Visualization

In the context of the framework, IBFV [van Wijk 2002] is dual to
LEA: now w(x, t) is identified with the given vector field v(x, t),
and u(x, t) = 0. From a physical point of view, IBFV shows streak-
lines of particles injected at various points according to the structure
of the input Pi.

The implementation of IBFV within the framework computes the
convolution according to the description in Section 4. The construc-
tion of the property field I is trivial: Ii is set to the particle injec-
tion at the same time, Pi. The only essential difference between the
original IBFV implementation and the alternative framework-based
implementation is the convolution process. The original approach
permanently and implicitly updates Ĩl , i.e., particles are resampled
on a texture after each integration step. This resampling is based
on bilinear interpolation and thus results in artificial smoothing.
In contrast, the alternative IBFV implementation never resamples
particles for intermediate steps, but rather employs a Lagrangian
integration of the complete pathline and samples only the original
particles released on Pi. Therefore, no artificial diffusion is intro-
duced.

The alternative implementation has the downside of higher com-
putational costs because complete pathlines have to be calculated
for each time step. We think that a combination of both imple-
mentations is most useful: interactive visualization could be based
on the faster original implementation, while high-quality, high-
contrast snapshots with very long streaklines are produced by the
alternative approach. At no additional cost, filters different from
an exponential kernel (which is intriniscally built into the original
IBFV) can be applied for these snapshots to further improve image
quality or achieve different visualization styles.

5.3 Unsteady Flow LIC

UFLIC [Shen and Kao 1998] visualizes unsteady flow fields by ad-
vecting a dense set of particles forward in time—particles are re-
leased in a noise-based fashion and then distributed over space and
time. The original UFLIC implementation attaches a time stamp
to each particle to feed the points of a trajectory into spacetime
buckets. Figure 2 illustrates for a single trajectory how points are
distributed into buckets of temporal size ∆T . Using forward inte-
gration and scattering, several buckets next to each other in a single
spacetime slab (a subset of spacetime covering the entire spatial
domain and having a temporal thickness of ∆T) can be filled by
spacetime curve drawing. At each time step Tj (i.e., an integer mul-
tiple of ∆T), a large number of new particles is released and traced
up to the maximum age τ to obtain a dense representation. The final
image for one spacetime slab is constructed from the contributions

∆t

T∆

spacetime
slab

x
spacetime bucket

t

Figure 2: Spacetime sampling of trajectories for UFLIC.

of all particles crossing this slab. Actual visualization results are
displayed at time intervals ∆T .

Unlike the original UFLIC implementation, our framework is
completely texture-based and cannot make use of scattering or
curve-based modeling. However, the same qualitative visualiza-
tion approach is feasible by subsampling spacetime slabs at inter-
vals ∆t that are shorter than ∆T , see Figure 2. In the formalism of
the framework, u(x, t) is set to the given vector field v(x, t), and
w(x, t) = 0. Convolution is performed along straight lines parallel
to the time axis, and the support of the filter is exactly the thick-
ness of a spacetime slab, ∆T . Particle injection textures Pj are only
needed at the coarser steps Tj. The original UFLIC approach reuses
filtered images as input for releasing new particles to achieve highly
correlated spatial structures. This feed-forward technique can be di-
rectly mapped to the framework by using Di as a particle injection
texture Pl for a later time—at the expense of losing a clear separa-
tion between the mechanisms of spatial and temporal correlations.

5.4 Dynamic LIC

DLIC [Sundquist 2003] targets the animation of instantaneous
streamlines (or fieldlines) of a time-dependent vector field, e.g.,
an electric field. More specifically, two vector fields are given:
w(x, t) governs the streamline generation at each time step, while
u(x, t) describes the evolution of streamlines. Therefore, w(x, t)
and u(x, t) cannot be chosen independently. Using these variable
names for the vector fields, DLIC maps one-to-one to the frame-
work. Unlike the aforementioned techniques, DLIC sets the tempo-
ral component of the convolution lines to the time corresponding to
the filtered image, i.e., Z (s;x, t ′) = (· , t ′). In this way, convolution
is computed on a single spatial slice through I.

In the original CPU-based implementation of DLIC, a large
number of individual particles, representing discs of finite radius,
is tracked in a Lagrangian approach. The particles are allowed to
overlap. An almost uniform particle density is achieved by remov-
ing or adding particles on a per-cell basis after each integration step.
A noise texture is produced by sampling the particles on a uniform
grid. Finally, streamlines are generated by FLIC [Stalling and Hege
1995]. The main advantage of the implementation within the frame-
work is GPU support and thus an interactive visualization speed.
(Sundquist [2003] does not report performance measurements, but
we assume a speed well below interactive frame rates for typical
data set sizes.) Another advantage is related to the LIC process.
Sundquist takes special care in choosing seed points for FLIC to
avoid temporal sampling artifacts. Unlike FLIC, the convolution in
the framework employs an independent sampling at every texel and
integration step, and therefore is not subject to these artifacts. Both
implementations may exhibit problems in regions of strong conver-
gence or divergence. The original DLIC algorithm loses contrast
for contracting fields, while the spatial frequency of noise might be
changed in our implementation (see Section 4).

5.5 Unsteady Flow Advection–Convolution

Unsteady Flow Advection–Convolution (UFAC) is a novel ap-
proach for displaying unsteady fluid flows. The development of
this method has been guided by the following observations. First,
streaklines of an unsteady flow (or similarly, pathlines) may cross
each other and, consequently, are an inappropriate basis for a dense
representation. Second, streamlines never intersect (except at criti-
cal points). Third, a coherent temporal evolution of image patterns
can be recognized by the user as a consistent motion, and can be
used as an additional means of conveying paths. Fortunately, the
spatial part of these paths may intersect at different times without
destroying the impression of a consistent motion.

UFAC aims to produce an animated sequence of streamline im-
ages, where the evolution of streamlines is governed by the motion
of particles along pathlines. In this way, each image would contain
only non-intersecting line structures, while the temporal evolution
would reveal the trajectories of particles. Analogously to DLIC,
this approach can be formulated in the context of the framework
by setting u(x, t) to the given time-dependent flow field v(x, t) and
by performing the convolution along instantaneous streamlines (at
time t ′) of the same field, w(x, t) = v(x, t ′). The convolution is com-
puted on a single spatial slice through I, i.e., Z (s;x, t ′) = (· , t ′).
Unlike DLIC, the evolution of streamlines along pathlines might
not lead to streamlines of the subsequent time step. In other words,
the temporal evolution according to u(x, t) is, in general, not com-
patible with the structure of streamlines of w(x, t). For the special
case of a steady flow, however, pathlines and streamlines are iden-
tical, and the time evolution is compatible with the construction of
streamlines. As a solution, we propose to link the length of spatial
patterns to the degree of unsteadiness. In regions where the flow
changes rapidly, the correlated segments along streamlines should
be very short or could even degenerate to point particles specified
on Ii, while time-independent parts should be covered by long pat-
terns. Note that the motion of unfiltered elements of Ii is, by con-
struction, temporally correlated, regardless of the unsteadiness of
the vector field. The framework allows for variable filter types and
lengths, controlled by quantities derived from the input flow, and
thus is prepared for spacetime-coherent flow visualization.

This visualization approach exhibits the following advantageous
features. First, it shows both the motion of particles along pathlines
and instantaneous streamlines in the same animation. Second, the
degree of unsteadiness is revealed even in a single, frozen image in
the form of the spatial frequency of noise along streamlines. Third,
in the limit of a time-independent flow, the direction of motion is
visualized similarly to animated LIC [Forssell and Cohen 1995].
UFAC cannot solve the fundamental dilemma of inconsistency be-
tween spatial and temporal patterns, but it explicitly addresses the
problem and directly controls the length of the spatial structures.
It maximizes the length of spatial patterns and the density of their
representation, while retaining temporal coherence.

Other unsteady flow methods only implicitly address the issue,
or neglect it completely. IBFV and LEA construct streaklines or
time-reversed streaklines. When these lines intersect, the visual-
ization may become convoluted or smeared out—it loses under-
standable spatial structure. An even more important problem of
these techniques is the hysteresis in their visualization. An image
strongly depends on the particle’s past. In contrast, UFAC does not
depend on visualization history, as long as particle injection by Pi
is based on noise. Hysteresis is even more severe for UFLIC due
to its feed-forward approach. Even for a steady flow, the struc-
ture of the display depends on how long the visualization has been
running: the longer the time, the longer the correlation length along
streamlines. Large-scale structures without high spatial frequencies
in one direction can emerge and could therefore limit the spatial res-
olution perpendicular to the velocity field after this time-dependent
flow has turned.

6 Implementation

Our implementation of the texture-based discretization of the
framework is based on C++ and DirectX 9.0. GPU states and frag-
ment programs (i.e., pixel shader programs) are configured within
effect files. A change of this configuration can be included by
changing the effect files without recompiling the C++ code. The
source code of the essential effect files is provided on our project
web page [Weiskopf 2003] to facilitate a re-implementation. Most
parts of the framework can be readily mapped to the functional-
ity of a DirectX 9.0 compliant GPU. A comparable implementation
should be feasible with OpenGL and its fragment program support.

Any texture-related data is stored in 2D textures with fixed-point
color channels; time dependency is represented by stacks of 2D
textures. We start with the implementation of the first part of the
framework: the construction of the property field. The vector field
u is represented by fixed-point numbers in the red and green chan-
nels of a 2D texture by mapping the original floating-point compo-
nents to the range [0,1] (this mapping could be avoided by using
floating-point textures). The two coordinates of a particle (X̃l), the
accumulated property (Ĩl), and the accumulated weight are stored
together in the RGBA channels of another 2D texture. The coordi-
nates are chosen so that the range [0.25,0.75]2 corresponds to the
domain of the vector field; in this way, an area around the domain
can be covered by valid fixed-point coordinates.

First, this texture is filled with the initial values by rendering
a quadrilateral that covers the computational domain. The corre-
sponding fragment program implements Eq. (6). The particle in-
jection Pl is represented by a 2D texture with a single color channel
for the brightness of the particle; the weight w is an outside program
parameter. Then, the recurrence relations Eqs. (4) and (5) are eval-
uated by another fragment program that is executed by rendering
a domain-filling quadrilateral ∆iτ times. This multipass approach
makes use of the render-to-texture functionality of DirectX. The re-
quired values from Ĩl , Pl , and u are obtained by texture lookups,
and the computations in Eqs. (3)–(5) are directly supported by the
numerical operations in the fragment program. At last, the accumu-
lated values Ĩl−∆iτ

are transferred to a single-channel representation
of the final result by a trivial fragment program.

The second part of the framework—the convolution—can be
mapped to graphics hardware in a very similar way. After each
of these two parts, histogram equalization is applied to the accu-
mulated values to restore a good contrast. A user-specified pa-
rameter makes possible a gradual change between full histogram
equalization and no equalization. The histogram is built only once,
by a CPU-based implementation. Equalization is applied to each
fragment by a dependent texture lookup in the integrated histogram
(i.e., in a color table). In addition, a Laplacian filter enhances the
line-like patterns in the result of the final convolution; a 3×3 filter
is employed in the current implementation. The strength of edge
enhancement is also controlled by a user-set parameter. In addition,
optional dye advection is implemented as a separate process simi-
larly to [Weiskopf et al. 2001]; its results can be overlaid onto the
noise-based visualization for the final display.

One important caveat is the resolution of texture channels. The
accumulated property values are coded as 16 bits numbers to allow
for an adequate accuracy for the weighted sum of a large number of
samples along a path. For example, a filter length of 300 samples
is quite common for the convolution step. Accuracy is even more
important when histogram equalization with its non-uniform map-
ping is applied. We also use 16 bit channels to represent coordinate
arrays. From our experience, these fixed-point numbers provide
enough accuracy for the integration of particle paths and address-
ing texture coordinates. Even higher accuracy could be achieved by
floating-point numbers. Conversely, particle injection textures such
as input noise can be 8 bit or less. Finally, the vector fields are repre-

(a) (b) (c) (d)

Figure 3: Visualization of a shock data set, comparing UFAC with velocity masking (a), UFAC without masking (b), LIC (c), and LEA (d).

sented by fixed-point 16 bit numbers in the current implementation.
Again, floating-point textures could be used for higher accuracy and
range. However, bilinear interpolation is not supported by sampler
stages for floating-point textures in DirectX 9.0 and must be re-
implemented by computing the weighted sum of the four neighbor-
ing texels within a fragment program. On the other hand, bilinear
interpolation is directly provided for fixed-point 8 or 16 bit textures.

7 Results

In this section, results obtained by the framework are presented and
discussed. Videos contained on our project web page [Weiskopf
2003] clearly demonstrate the effects of temporal correlation
through animations.

Figures 3(a)–(d) show the same snapshot from the animated vi-
sualization of a time-dependent shock data set from CFD. The
complete data set has 200 time steps and a spatial resolution of
256×151. Figures 3(a) and 3(b) present UFAC. An additional ve-
locity masking [Jobard et al. 2002] is applied to image (a) to em-
phasize regions of high velocity magnitude. In regions of large un-
steadiness, such as the shock regions in the center of image, the
correlation length along streamlines is reduced. In this way, un-
steadiness is visualized even in a single image. Steady regions of
the flow are represented by clearly defined, long streamline struc-
tures. Figure 3(c) is based on LIC, i.e., UFAC without controlling
the length of streamlines. The important regions of unsteadiness
are hard to recognize. Even worse, the animation exhibits substan-
tial flickering in these regions because the temporal evolution is
not compatible with the spatial structure of the streamlines. Fig-
ure 3(d) demonstrates the LEA implementation within the frame-
work. LEA shows the magnitude of the velocity by the length of
(inverse) streaklines, but tends to produce noisy images. The com-
putational domain for all images is 512×302. For images (a)–(c),
the maximum filter length is 120 and the maximum lifetime of par-
ticles is 40. The blending weight for LEA in Figure 3(d) is 0.05.

Figure 4 shows two frames of the visualization of a time-
dependent electric field generated by an oscillating electric dipole.
The evolution of field lines is governed by a velocity field specified
in [Sundquist 2003]. The images were produced by the framework-
based implementation of DLIC, on a resolution of 10242 with
τ = 20 and filter length 1200. This example shows that a high-
quality and fast DLIC visualization is feasible on a purely texture-
based representation.

Table 1: Performance measurements in fps for one iteration step.

Domain size 2562 5122 10242

Constructing I 5,100 1,380 350
Convolution 3,800 1,055 268

Figure 5 compares IBFV-guided techniques. Both images rep-
resent the very same underlying continuous model—with two dif-
ferent kinds of discretization. The same exponential filter kernel
and the same accuracy of 16 bits for the property fields is used for
both images. The computational domain has size 5122. Figure 5(a)
exhibits long, clearly defined streaklines generated by Lagrangian
integration of trajectories in the framework-based approach. In con-
trast, Figure 5(b) shows strong blurring effects caused by the artifi-
cial diffusion in the original IBFV implementation (cf. the discus-
sion in Section 5.2). This example is extreme because it uses only
a few seed points and a filter with a long decay time. However, the
blurring effect remains, to a smaller degree, even for shorter kernels
and dense noise input.

The performance of the implementation depends mainly on the
maximum lifetime of particles and the support of the convolution
kernel. Table 1 shows the computation times of a single particle
transport or convolution iteration (obtained by performing many
steps and dividing by the number of steps). Times were measured
on a PC with a Radeon 9700 GPU and an Athlon XP 2200+ CPU
(1.8 GHz), running under Windows XP and DirectX 9.0. Convolu-
tion is slightly slower than constructing the property field because
the fragment program is slightly more complex. The timings show
an almost perfect linear dependency with respect to the number
of texels in the domain. Furthermore, the complete visualization
process depends linearly on the number of iteration steps. Conse-
quently, the overall performance can be adjusted to a targeted frame
rate by adapting the spatial resolution, filter length, and/or max-
imum lifetime, i.e., quality and speed can be smoothly balanced.
In addition to the iterative computations, a small time offset is in-
troduced by the general management of the visualization system
(event handling etc.), edge enhancement, histogram equalization,
velocity masking, color table mappings, final display to the screen,
and transfer of time-dependent vector data from main memory to
GPU. This transfer has only a minor effect on performance because
just a single 2D texture for each new time step is passed to the GPU
(since data for previous time steps has already been transferred).
To give an impression of typical speeds for a complete visualiza-
tion cycle that combines all these aspects: 12.7 fps are achieved for
τ = 20, filter length of 60, and a 5122 domain; 3 fps for τ = 50,
filter length of 300, and a 5122 domain.

8 Conclusion and Future Work

We have presented a generic framework for the visualization of
time-dependent vector fields, along with a texture-based discretiza-
tion that can be mapped to the SIMD architecture of graphics hard-
ware for an efficient implementation. Spacetime-coherent dense
representations are achieved by a two-step process: construction of
continuous trajectories in spacetime for temporal coherence, and
convolution along another set of paths through the above space-
time for spatially correlated patterns. The novel Unsteady Flow

Figure 4: Electric fields of an oscillating electric dipole.

Advection–Convolution (UFAC) performs time evolution governed
by pathlines, but builds spatial correlation according to instanta-
neous streamlines whose spatial extent is controlled to ensure their
frame-to-frame coherence. In this way, UFAC specifically tar-
gets the visualization of unsteadiness. By an appropriate choice
of parameters, the qualitative visualization results of LEA, IBFV,
UFLIC, or DLIC can be obtained; since the underlying compu-
tational models may differ significantly, differences exist with re-
spect to image quality, performance, and flexibility. In general, the
framework allows the user to gradually balance visualization speed
against quality.

UFAC and the other known techniques are only examples for
specific choices of paths and filter kernels for the framework. We
believe that more sophisticated visualization techniques are achiev-
able within the same framework; for example, a more complex tem-
poral dependency along the convolution paths or different types of
spatial curves could be investigated. The final goal is a method that
optimizes the parameters of the framework according to the input
vector field (and maybe some other preferences). It is a challenge
for future work to find appropriate quality measures and an opti-
mization strategy. Considering a more basic and technical aspect,
the dependency of the spatial frequency of noise transported along
trajectories could be addressed by adapting the lifetime of particles
according to the divergence or convergence of the vector field. Fi-
nally, the framework could be extended to visualizing 3D vector
fields on curved hyperplanes and eventually to a completely 3D vi-
sualization.

Acknowledgments

The first author thanks Landesstiftung Baden-Württemberg for sup-
port, the second author acknowledges support from NSF under
grant NSF-0083792.

References

CABRAL, B., AND LEEDOM, L. C. 1993. Imaging vector fields using line
integral convolution. In Proc. ACM SIGGRAPH 93, 263–272.

DIEWALD, U., PREUSSER, T., AND RUMPF, M. 2000. Anisotropic dif-
fusion in vector field visualization on Euclidean domains and surfaces.
IEEE Trans. Vis. Comput. Gr. 6, 2, 139–149.

ERLEBACHER, G., JOBARD, B., AND WEISKOPF, D. 2003. Flow tex-
tures. In Visualization Handbook, C. R. Johnson and C. D. Hansen, Eds.
Academic Press. In print.

FORSSELL, L. K., AND COHEN, S. D. 1995. Using line integral convolu-
tion for flow visualization: Curvilinear grids, variable-speed animation,
and unsteady flows. IEEE Trans. Vis. Comput. Gr. 1, 2, 133–141.

HEIDRICH, W., WESTERMANN, R., SEIDEL, H.-P., AND ERTL, T. 1999.
Applications of pixel textures in visualization and realistic image synthe-
sis. In ACM Symp. Interact. 3D Gr., 127–134.

(a) (b)

Figure 5: Comparison of IBFV-guided techniques: long, clearly
defined streaklines for the framework-based method (a); artificial
diffusion for the original IBFV implementation (b).

JOBARD, B., AND LEFER, W. 2000. Unsteady flow visualization by ani-
mating evenly-spaced streamlines. In Eurographics ’00, 31–40.

JOBARD, B., ERLEBACHER, G., AND HUSSAINI, M. Y. 2000. Hardware-
accelerated texture advection for unsteady flow visualization. In IEEE
Vis. ’00, 155–162.

JOBARD, B., ERLEBACHER, G., AND HUSSAINI, M. Y. 2002.
Lagrangian-Eulerian advection of noise and dye textures for unsteady
flow visualization. IEEE Trans. Vis. Comput. Gr. 8, 3, 211–222.

LIU, Z. P., AND MOORHEAD, R. J. 2002. AUFLIC: An accelerated algo-
rithm for unsteady flow line integral convolution. In EG / IEEE TCVG
Symp. Vis. ’02, 43–52.

MAX, N., AND BECKER, B. 1995. Flow visualization using moving tex-
tures. In Proc. ICASW/LaRC Symp. Vis. Time-Varying Data, 77–87.

OKADA, A., AND KAO, D. 1997. Enhanced line integral convolution with
flow feature detection. In Proc. IS&T/SPIE Electr. Imag. ’97, 206–217.

SANNA, A., MONTRUCCHIO, B., AND MONTUSCHI, P. 2000. A survey
on visualization of vector fields by texture-based methods. Recent Res.
Devel. Pattern Rec. 1, 13–27.

SHEN, H.-W., AND KAO, D. L. 1998. A new line integral convolution al-
gorithm for visualizing time-varying flow fields. IEEE Trans. Vis. Com-
put. Gr. 4, 2, 98–108.

SHEN, H.-W., JOHNSON, C. R., AND MA, K.-L. 1996. Visualizing vector
fields using line integral convolution and dye advection. In 1996 Vol. Vis.
Symp., 63–70.

STALLING, D., AND HEGE, H.-C. 1995. Fast and resolution independent
line integral convolution. In Proc. ACM SIGGRAPH 95, 249–256.

SUNDQUIST, A. 2003. Dynamic line integral convolution for visualizing
streamline evolution. IEEE Trans. Vis. Comput. Gr. 9, 3, 273–283.

VAN WIJK, J. J. 1991. Spot noise – texture synthesis for data visualization.
Comput. Gr. (Proc. ACM SIGGRAPH 91) 25, 309–318.

VAN WIJK, J. J. 2002. Image based flow visualization. ACM Trans. Gr. 21,
3, 745–754.

VERMA, V., KAO, D., AND PANG, A. 1999. PLIC: Bridging the gap
between streamlines and LIC. In IEEE Vis. ’99, 341–348.

WEGENKITTL, R., GRÖLLER, E., AND PURGATHOFER, W. 1997. Ani-
mating flow fields: Rendering of oriented line integral convolution. In
Comput. Anim. ’97, 15–21.

WEISKOPF, D., HOPF, M., AND ERTL, T. 2001. Hardware-accelerated vi-
sualization of time-varying 2D and 3D vector fields by texture advection
via programmable per-pixel operations. In Proc. VMV ’01, 439–446.

WEISKOPF, D., ERLEBACHER, G., HOPF, M., AND ERTL, T. 2002.
Hardware-accelerated Lagrangian-Eulerian texture advection for 2D
flow visualization. In Proc. VMV ’02, 77–84.

WEISKOPF, D., 2003. Spacetime-coherent visualization of time-dependent
vector fields. Web Site: http://www.vis.uni-stuttgart.de/ufac.

